Head of Dept: Prof. Giulio Magli
Vice-Head of Dept: Prof. Gabriele Grillo
Department Manager: Dr.ssa Franca Di Censo


Please select the search field
Insert the search string

Upcoming seminars

  • Construction and Validation of Subject-Specific Biventricular Finite-Element Models of Healthy and Failing Swine Hearts From High-Resolution Diffusion Tensor MRI
    Julius Guccione, Surgery Division of Adult Cardiothoracic Surgery, University of California San Francisco (UCSF)
    martedì 19 novembre 2019 alle ore 15:00, aula consiglio VII piano
  • Geometrie non Euclidee e Teorie Fisiche
    Marco Pedroni, Università di Bergamo
    mercoledì 20 novembre 2019 alle ore 15:00, Sala Consiglio - piano 7° - edificio 14
  • Zero-dimensional symmetry, or locally profinite groups
    George Willis, University of Newcastle, Australia
    giovedì 21 novembre 2019 alle ore 16:00, Aula U5-3014 (Edificio 5, terzo piano) del Dipartimento di Matematica e Applicazioni dell'Università di Milano-Bicocca, in Via Cozzi 55
  • Un viaggio nel mondo dei poliedri
    Giuseppe Conti, Università di Firenze
    mercoledì 27 novembre 2019 alle ore 15:00, Sala Consiglio - piano 7° - edificio 14
  • Propagation of singularities for solutions to Hamilton-Jacobi equations
    Piermarco Cannarsa, Università di Roma Tor Vergata
    lunedì 2 dicembre 2019 alle ore 15:30, Sala Consiglio del 7 piano, Dipartimento di Matematica, Via Ponzio 31-33, Milano
  • Come utilizzare le prove invalsi nella pratica d’aula
    Alice Lemmo, Università degli studi dell’Aquila
    mercoledì 4 dicembre 2019 alle ore 15:00, Sala Consiglio - piano 7° - edificio 14
  • Explainability, intepretability and sensitivity analysis
    Emanuele Borgonovo, Department of Decision Sciences, BIDSA, Bocconi University, Milano
    venerdì 6 dicembre 2019 alle ore 14:30, Aula Saleri - VI piano
  • The mysteries of L-values
    Sarah Zerbes, University College London
    martedì 10 dicembre 2019 alle ore 14:00, Sala di Rappresentanza, Dipartimento di Matematica, Via C. Saldini 50
  • Translating cardiac models into the clinic
    Steven Niederer, Biomedical Engineering, King’s College London
    giovedì 12 dicembre 2019 alle ore 14:00,  Aula Consiglio VII Piano - Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANO
  • Nonlinear Peridynamic Models
    Giuseppe Maria Coclite, Politecnico di Bari
    mercoledì 22 gennaio 2020 alle ore 15:15, Aula seminari 3° piano

Past Seminars

  • Comunicare il progetto. Storytelling e tecniche di rappresentazione
    Francesca Piredda, Politecnico di Milano
    mercoledì 29 maggio 2019 alle ore 12:15, Politecnico di Milano Campus Bonardi Edificio14 aula B21
  • Game-theoretical models of debt and bankruptcy
    Alberto Bressan, Penn State University
    martedì 28 maggio 2019 alle ore 17:00, Aula seminari del terzo piano
    The talk will be concerned with problems of optimal debt management. In a basic model, the interest rate as well as the bankruptcy risk are given a priori. In this case the borrower faces a standard problem of optimal control.
    In alternative, debt management can be modeled as a noncooperative game between a borrower and a pool of lenders, in infinite time horizon with exponential discount. The yearly income of the borrower is governed by a stochastic process. When the debt-to-income ratio surpasses a given threshold, bankruptcy occurs.
    The interest rate charged by the risk-neutral lenders is precisely determined in order to compensate for this possible loss of part of their investment.
    Existence and properties of optimal feedback strategies for the borrower will be discussed, in a stochastic framework as well as in the limit deterministic setting.
  • Multiple solutions for the 2-dimensional Euler equations
    Alberto Bressan,  Pennsylvania State University
    lunedì 27 maggio 2019 alle ore 16:00 precise, Aula U5-3014 (Edificio 5 terzo piano), Dip. Matematica e Applicazioni, Via Cozzi 55, Milano
    In one space dimension, it is well known that hyperbolic conservation
    laws have unique entropy-admissible solutions, depending continuously on
    the initial data. Moreover, these solutions can be obtained as limits of
    vanishing viscosity approximations.

    For many years it was expected that similar results would hold in
    several space dimensions. However, fundamental work by De Lellis,
    Szekelyhidi, and other authors, has shown that multidimensional
    hyperbolic Cauchy problems usually have infinitely many weak solutions.
    Moreover, all known entropy criteria fail to select a single admissible one.

    In the first part of this talk I shall outline this approach based on a
    Baire category argument, yielding the existence of infinitely many weak

    I then wish to discuss an alternative research program,
    aimed at constructing multiple solutions to some specific Cauchy
    problems. Starting with some numerical simulations, here the eventual
    goal is to achieve rigorous, computer-aided proofs of the existence of
    two distinct self-similar solutions with the same initial data.
    While solutions obtained via Baire category have turbulent nature, these
    self-similar solutions are smooth, with the exception of one or two
    points of singularity. They are thus much easier to visualize and
  • Matematica, società, economia e sviluppo
    Giulia di Nunno, University di Oslo
    mercoledì 22 maggio 2019 alle ore 12:15, Politecnico di Milano Campus Bonardi Edificio14 aula B21
  • Mathematical Models of Markovian Dephasing
    Franco Fagnola, Politecnico di Milano
    venerdì 17 maggio 2019 alle ore 11:30 precise, Aula Seminari III piano
    We develop a notion of dephasing under the action of a quantum? Markov semigroup in terms of convergence of operators to a block-diagonal? form determined by irreducible invariant subspaces. If the latter are all ?one-dimensional, we say the dephasing is maximal. We study characterization ?of a maximally dephasing evolution in terms of unitary dilations ?with only classical noise. In particular, we introduce an intrinsic? quantity constructed from the generator which quantities the? degree of obstruction to having a classical diffusive noise model.? (Joint work with J.E. Gough, H.I. Nurdin and L. Viola)?
  • Forma e complessità in Natura: perché il mondo è matematico?
    Pasquale Ciarletta, Politecnico di Milano
    mercoledì 15 maggio 2019 alle ore 12:15, Politecnico di Milano Campus Bonardi Edificio14 aula B21
  • How to hear the shape of a drum
    Fabio Cipriani, Politecnico di Milano
    martedì 14 maggio 2019 alle ore 15:30, Aula seminari 3° piano
    In a iconic 1912 paper Hermann Weyl, motivated by problems posed by the physicist H.A. Lorentz about J.H. Jeans's radiation theory, showed that the dimension and the volume of a Euclidean domain may be traced from the asymptotic distribution of the eigenvalues of its Laplace operator.
    In a as much famous 1966 paper titled "Can one hear the shape of a drum" Marc Kac popularized this and related problems connecting geometry and spectrum. He noticed that the hope to characterize {\it isometrically}, Euclidean domains or compact Riemannian manifolds by the spectrum of the Laplace operator, is vain: John Milnor in 1964 had showed the existence of non isometric 16 dimensional tori sharing a common (discrete) spectrum.

    The aim of the talk is to show how to recognize {\it conformal maps} between Euclidean domains as those homeomorphisms which transform multipliers of the Sobolev-Dirichlet spaces of a domain into multipliers of the other and leave invariant the {\it fundamental tone} or {\it first nonzero eigenvalue} of the Dirichlet integral with respect to the energy measures of any multiplier. Related results hold true for {\it quasiconformal and bounded distortion maps}.
    In the opposite direction, we prove that the trace of the Dirichlet integral, with respect to the energy measure of a multiplier, is a Dirichlet space that only depends upon the orbit
    of the conformal group of the Euclidean space on the multiplier algebra.

    The methods involve potential theory of Dirichlet forms (changing of speed measure, multipliers) and the Li-Yau conformal volume of Riemannian manifolds.

    This is a collaboration with Jean-Luc Sauvageot C.N.R.S. France et Universit\'e Paris 7.
  • Soluzioni a valori misure di equazioni di evoluzione nonlineari
    Alberto Tesei, Università degli Studi di Roma "La Sapienza"
    martedì 14 maggio 2019 alle ore 14:30, Aula seminari 3° piano
    Soluzioni a valori misure si presentano in modo naturale per importanti classi di equazioni di evoluzione nonlineari (equazione dei mezzi porosi, equazioni "forward-backward", leggi di conservazione). Nel seminario saranno esposti alcuni recenti risultati di esistenza, unicità e comportamento qualitativo di soluzioni entropiche
    a valori misure di Radon di leggi di conservazione iperboliche in una dimensione spaziale, con flusso limitato e lipschitziano. Tempo permettendo, sarà discusso il legame fra tali soluzioni e soluzioni viscose discontinue di equazioni di Hamilton-Jacobi. I risultati presentati sono contenuti in alcuni lavori con M. Bertsch, F. Smarrazzo e A. Terracina.