Home / page 9

Scientific Reports

The preprint collection of the Department of Mathematics.
Full-text generally not available for preprints prior to may 2006.

MOX Reports

The preprint collection of the Laboratory for Modeling and Scientific Computation MOX. It mainly contains works on numerical analysis and mathematical modeling applied to engineering problems. MOX web site is mox.polimi.it
Found 1268 products 
  • 97/2024 - 11/12/2024
    Ferro, N.; Mezzadri, F.; Carbonaro, D.; Galligani, E.; Gallo, D.; Morbiducci, U.; Chiastra, C.; Perotto, S.
    Designing novel vascular stents with enhanced mechanical behavior through topology optimization of existing devices
  • 94/2024 - 11/11/2024
    Franco, N.R.; Fresca, S.; Tombari, F.; Manzoni, A.
    Deep Learning-based surrogate models for parametrized PDEs: handling geometric variability through graph neural networks
  • 93/2024 - 11/11/2024
    Conti, P.; Kneifl, J.; Manzoni, A.; Frangi, A.; Fehr, J.; Brunton, S.L.; Kutz, J.N.
    VENI, VINDy, VICI - a variational reduced-order modeling framework with uncertainty quantification
  • 95/2024 - 11/11/2024
    Zacchei, F.; Rizzini, F.; Gattere, G.; Frangi, A.; Manzoni, A.
    Neural networks based surrogate modeling for efficient uncertainty quantification and calibration of MEMS accelerometers
  • 96/2024 - 11/11/2024
    Brivio, S.; Fresca, S.; Manzoni, A.
    PTPI-DL-ROMs: Pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs
  • 91/2024 - 11/10/2024
    Ciaramella, G.; Kartmann, M.; Mueller, G.
    Solving Semi-Linear Elliptic Optimal Control Problems with L1-Cost via Regularization and RAS-Preconditioned Newton Methods
  • 85/2024 - 11/09/2024
    Brivio, S.; Franco, Nicola R.; Fresca, S.; Manzoni, A.
    Error estimates for POD-DL-ROMs: a deep learning framework for reduced order modeling of nonlinear parametrized PDEs enhanced by proper orthogonal decomposition
  • 86/2024 - 11/09/2024
    Franco, N.R.; Fraulin, D.; Manzoni, A.; Zunino, P.
    On the latent dimension of deep autoencoders for reduced order modeling of PDEs parametrized by random fields