### Seminari

### Prossimi Seminari

**Computational Prediction of Blood Damage**

Marek Behr, Chair for Computational Analysis of Technical Systems Faculty of Mechanical Engineering, RWTH Aachen

lunedì 1 ottobre 2018 alle ore 14:00, Aula Consiglio VII Piano – Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANO**Caputo Evolution Equations with time-nonlocal initial condition**

Lorenzo Toniazzi, University of Warwick

martedì 9 ottobre 2018 alle ore 15:15, Aula Seminari 3° piano**Statistical modeling and monitoring of product and process quality in Additive Manufacturing: opportunities and challenges**

Bianca Maria Colosimo, Dipartimento di Meccanica, Politecnico di Milano

giovedì 11 ottobre 2018 alle ore 14:00, Aula Consiglio VII Piano – Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANO**Elastic waves in soft tissues: inverse analysis, experiments, simulations, validation**

Michel Destrade, Chair of Applied Mathematics at NUI Galway

giovedì 18 ottobre 2018 alle ore 14:00, Aula Consiglio VII Piano – Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANO**An overview of some mathematical and computational problems in Network Science**

Michele Benzi, Scuola Normale Superiore, Pisa

giovedì 22 novembre 2018 alle ore 14:00, Aula Consiglio VII Piano – Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANO**BIRATIONAL EQUIVALENCE OF ALGEBRAIC VARIETIES**

Shigefumi Mori, Kyoto University Institute of Advanced Study

lunedì 26 novembre 2018 alle ore 16:30, Aula Chisini, Diparimento di Matematica, Via C. Saldini 50

### Seminari Passati

**The essential norm estimates of Hankel and the $\overline\partial$-Neumann operators**

Zeljko Cuckovic, University of Toledo

venerdì 1 giugno 2018 alle ore 11:00, Sala di Rappresentanza, Università di Milano, Via C. Saldini 50, MilanoABSTRACTCompactness of the $\overline\partial$-Neumann operator is

closely connected to the compactness of Hankel operators on the Bergman

space. At first, for convex domains in $\mathbb{C}^n$, we use the

$\overline\partial$ methods to relate the compactness of a Hankel

operator to the boundary behavior of its symbol. In the absence of

compactness, we give the essential norm estimates of Hankel operators.

This in turn, led us to obtain the essential norm estimates for the

$\overline\partial$-Neumann operator on convex domains. (This is joint

work with Sonmez Sahutoglu)**On the harmonicity of slice regular functions**

Cinzia Bisi, Università di Ferrara

giovedì 31 maggio 2018 alle ore 14:30, Aula Seminari III pianoABSTRACTI will start improving the definition of slice regular function over the quaternions given by Gentili-Struppa in 2006-2007.

Then, bringing new ideas to the theory, I will answer positively to the question: is a slice regular function over the quaternions (analogously to a holomorphic function over the complex) ”harmonic” in some sense, i.e. is it in the kernel of some order-two differential operator over the quaternions?

Finally, I will deduce novel integral formulas as applications.

This is part of a common project with J. Winkelmann.**La geometria delle piramidi egizie**

Corinna Rossi, Politecnico di Milano

mercoledì 30 maggio 2018 alle ore 12:15, Politecnico di Milano Campus Bonardi Edificio14 aula B21**Tales of Our Forefathers**

Barry Simon, California Institute of Technology

martedì 29 maggio 2018 alle ore 11:00, Sala Consiglio, 7 piano, Edificio La Nave, Via Bonardi 9ABSTRACTThis is not a mathematics talk but it is a talk for mathematicians. Too often, we think of historical mathematicians as only names assigned to theorems. With vignettes and anecdotes, I’ll convince you they were also human beings and that, as the Chinese say, “May you live in interesting times” really is a curse.**SPECTRAL THEORY, SUM RULES AND LARGE DEVIATIONS**

Barry Simon, California Institute of Technology

lunedì 28 maggio 2018 alle ore 16:30, Aula Chisini, Diparimento di Matematica, Via C. Saldini 50ABSTRACTAfter dening the spectral theory of orthogonal polynomials on the unit circle

(OPUC) and real line (OPRL), I’ll describe Verblunsky’s version of Szego’s

theorem as a sum rule for OPUC and the Killip-Simon sum rule for OPRL

and their spectral consequences. Next I’ll explain the original proof of Killip-Simon using representation theorems for meromorphic Herglotz functions.

Finally I’ll focus on recent work of Gamboa, Nagel and Rouault who obtain

the sum rules using large deviations for random matrices.**Matrix equation techniques for a class of PDE problems with data uncertainty**

Valeria Simoncini, Dipartimento di Matematica, Alma Mater Studiorum – Universita’ di Bologna

giovedì 24 maggio 2018 alle ore 11:30, Aula Consiglio VII Piano – Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANOABSTRACTLinear matrix equations arise in an amazingly growing number of applications. Classically, they have been extensively encountered in Control theory and eigenvalue problems. More recently they have been shown to provide a natural platform in the discretization of certain partial differential equations (PDEs), both in the deterministic setting, and in the presence of uncertainty in the data. We first review some numerical techniques for solving various classes of large scale linear matrix equations commonly occurring in applications. Then we focus on recent developments in the solution of (systems of) linear matrix equations associated with the numerical treatment of various stochastic PDE problems.

Contact: paolo.zunino@polimi.it

**La Scoperta del Secolo – Perché le Onde Gravitazionali valgono un Nobel**

Luca Perri, L’Officina del Planetario

mercoledì 23 maggio 2018 alle ore 12:15, Politecnico di Milano Campus Bonardi Edificio14 aula B21**On the Hopf boundary lemma for quasilinear problems involving singular nonlinearities and applications**

Berardino Sciunzi, Università della Calabria

mercoledì 23 maggio 2018 alle ore 15:15, Aula seminari 3° pianoABSTRACTWe consider positive solutions to quasilinear elliptic problems with singular nonlinearities. We provide a Hopf type boundary lemma via a suitable scaling argument that allows to deal with the lack of regularity of the solutions up to the boundary. Symmetry and monotonicity properties of the solutions follows as an application.