italianoITA
Head of Dept: Prof. Giulio Magli
Vice-Head of Dept: Prof. Gabriele Grillo
Department Manager: Dr.ssa Franca Di Censo

 Seminars

Please select the search field
Insert the search string

Upcoming seminars

  • Pricing and hedging in rough Heston models
    Omar El Euch, Spire Europe Limited
    martedì 22 ottobre 2019 alle ore 14:15, Aula seminari del terzo piano
  • Symmetry results for critical $p$-Laplace equations
    Giulio Ciraolo, Università degli Studi di Milano
    mercoledì 23 ottobre 2019 alle ore 15:15, Aula seminari 3° piano
  • Clinical Personalization of Computational Models of Total Heart Function
    Gernot Plank, Medical University of Graz, Austria
    giovedì 24 ottobre 2019 alle ore 14:00, Aula Consiglio VII Piano - Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANO
  • One Hunderd Years of Universes
    John Barrow, University of Cambridge
    martedì 29 ottobre 2019 alle ore 11:30, Palazzo di Brera, Via Brera 28, Milano, Sala Maria Teresa
  • On Mean Field Games
    Pierre-Louis Lions, Collège de France
    martedì 29 ottobre 2019 alle ore 14:40, Palazzo di Brera, Via Brera 28, Milano, Sala Maria Teresa
  • On the Power of Geometric Illustration in Mathematics and Science
    Roger Penrose, University of Oxford
    martedì 29 ottobre 2019 alle ore 16:00, Palazzo di Brera, Via Brera 28, Milano, Sala Maria Teresa
  • Maths goes social: usare i meme per fare matematica in classe
    Giulia Bini, Università degli Studi di Torino
    mercoledì 30 ottobre 2019 alle ore 15:00, Sala Consiglio - piano 7° - edificio 14 - via Ponzio 31/p
  • Quantum Hydrodynamics: physical models and mathematical theory
    Piero Marcati, DISIM, Università de L' Aquila & Gran Sasso Science Institute (GSSI)
    lunedì 4 novembre 2019 alle ore 14:15, aula Saleri VI piano
  • La retromarcia in Matematica: invertire formule, funzioni, operatori
    Anna Salvadori, Primo Brandi, Università di Perugia
    mercoledì 13 novembre 2019 alle ore 15:00, Sala Consiglio - piano 7° - edificio 14
  • Construction and Validation of Subject-Specific Biventricular Finite-Element Models of Healthy and Failing Swine Hearts From High-Resolution Diffusion Tensor MRI
    Julius Guccione, Surgery Division of Adult Cardiothoracic Surgery, University of California San Francisco (UCSF)
    martedì 19 novembre 2019 alle ore 15:00, aula consiglio VII piano
  • Geometrie non Euclidee e Teorie Fisiche
    Marco Pedroni, Università di Bergamo
    mercoledì 20 novembre 2019 alle ore 15:00, Sala Consiglio - piano 7° - edificio 14
  • Un viaggio nel mondo dei poliedri
    Giuseppe Conti, Università di Firenze
    mercoledì 27 novembre 2019 alle ore 15:00, Sala Consiglio - piano 7° - edificio 14
  • Come utilizzare le prove invalsi nella pratica d’aula
    Alice Lemmo, Università degli studi dell’Aquila
    mercoledì 4 dicembre 2019 alle ore 15:00, Sala Consiglio - piano 7° - edificio 14
  • Translating cardiac models into the clinic
    Steven Niederer, Biomedical Engineering, King’s College London
    giovedì 12 dicembre 2019 alle ore 14:00,  Aula Consiglio VII Piano - Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANO
  • Nonlinear Peridynamic Models
    Giuseppe Maria Coclite, Politecnico di Bari
    mercoledì 22 gennaio 2020 alle ore 15:15, Aula seminari 3° piano

Past Seminars

  • L'interazione fra neuroscienze e matematica: analisi della connettività cerebrale utilizzando i grafi
    Paolo Finotelli,  Politecnico di Milano
    mercoledì 16 ottobre 2019 alle ore 15:30, Sala Consiglio - piano 7° - edificio 14 - via Ponzio 31/p
    ABSTRACT
    L'intento di questo seminario è mostrare come l'interazione fra le neuroscienze e la matematica sia in continua crescita e sia destinata a costituire la base della medicina moderna. In particolare, verranno introdotti i fondamenti della connettività cerebrale e della teoria delle reti complesse, di cui la teoria dei grafi costituisce l’impalcatura matematica. Come caso particolare verrà presentato un recente modello per la determinazione della connettività cerebrale basato sulla teoria dei grafi.
  • Control problems in Wasserstein space
    Antonio Marigonda, University of Verona
    lunedì 14 ottobre 2019 alle ore 15:15, Aula seminari 6° piano
    ABSTRACT
    In this talk we present recent results about the existence and uniqueness of the viscosity solution for a certain classes on Hamilton-Jacobi Equations in the Wasserstein space of probability measure, arising in problem of mean field control of multi-agent systems. We consider a multi-agent system subject to a centralized controller
    aiming to minimize a cost function. The microscopic dynamics of each agent is given by a differential inclusion. We model the distribution of agents by a probability measure, and formulate the minimization problem
    as a Mayer problem for a dynamics in the Wasserstein space represented by a controlled continuity equation describing the macroscopical evolution of the system. We prove that the value function V of the
    problem solves a Hamilton-Jacobi equation in the Wasserstein space in a suitable viscosity sense, and prove a comparison principle for such an equation, thus characterizing V as the unique viscosity solution of the
    Hamilton-Jacobi equation associated to the problem.
  • How Mathematics helps structuring climate discussions
    Rupert Klein, FU Berlin & ECMWF Fellow
    giovedì 3 ottobre 2019 alle ore 14:00, Aula Consiglio VII Piano - Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANO
    ABSTRACT
    Mathematics in climate research is often thought to be mainly a provider of techniques for solving the continuum mechanical equations for the flows of the atmosphere and oceans, for the motion and evolution of Earth's ice masses, and the like. Three examples will elucidate that there is a much wider range of opportunities. Climate modellers often employ reduced forms of the continuum mechanical equations to efficiently address their research questions of interest. The first example discusses how mathematical analysis can provide systematic guidelines for the regime of applicability of such reduced model equations. Meteorologists define 'climate', in a narrow sense, as the statistical description in terms of the mean and variability of relevant quantities over a period of time (World Meteorological Society, http://www.wmo.int; see the website for a broader sense definition). Now, climate researchers are most interested in changes of the climate over time, and yet there is no unique, well-defined notion of time dependent statistics. In fact, there are restrictive conditions which data from time series need to satisfy for classical statistical methods to be applicable. The second example describes recent developments of analysis techniques for time series with non-trivial temporal trends. Modern climate research has joined forces with economy and the social sciences to generate a scientific basis for informed political decisions in the face of global climate change. One major type of problems hampering progress of the related interdisciplinary research consists of often subtle language barriers. The third example describes how mathematical formalization of the notion of 'vulnerability' has helped structuring related interdisciplinary research efforts.

    Contact: luca.bonaventura@polimi.it
  • Mountain pass structure, non-degeneracy conditions and variational gluing
    Paul H. Rabinowitz, University of Wisconsin, Madison
    venerdì 20 settembre 2019 alle ore 14:00, Sala di Rappresentanza, Via C. Saldini 50
    ABSTRACT
    The effect of non-degeneracy conditions on the applicability of variational gluing arguments for some variational problems possessing mountain pass structure will be discussed.

  • Decay and Sobolev regularity properties for solutions at infinity of (nonlinear) PDEs
    Stefano Pigola, Università dell’Insubria
    venerdì 20 settembre 2019 alle ore 11:15, Aula seminari 3° piano
    ABSTRACT
    I will present some recent results on the global behaviour of nonnegative and bounded subsolutions of $\Delta_p u = f(u)$ over an exterior domain of a complete Riemannian manifold. I shall discuss geometric conditions under which such a subsolution decays to zero at infinity. The main tools are represented by (a nonlinear version of) the Feller property and some global comparison results. These, in turn, are related to a new characterization of the ($p$-)stochastic completeness of the manifold in terms of the Sobolev space $W^{1,p}$.
  • Algebraic Option Pricing
    Peter Carr, New York University
    venerdì 13 settembre 2019 alle ore 12:15, Sala Consiglio settimo piano
    ABSTRACT
    Optionality arises whenever an investor can choose between owning either of two
    assets. We treat the value of optionality as a modified sum. We then explore
    options on options as sums of sums. This viewpoint allows us to derive a simple
    closed form formula for a Bermudan option.
  • Stability of some coupled partial differential equations in both bounded and unbounded domains
    Abdelaziz Soufyane, University of Sharjah
    giovedì 12 settembre 2019 alle ore 15:15, Aula seminari 3° piano
    ABSTRACT
    This talk deals with some recent results on the stability of a coupled partial differential equations. We will present the energy decay rates for many systems (arising in many applications) in the bounded domain, different approaches will be used to establish the energy decay. Also, we will discuss the rate decay for some models in the unbounded domain using the Fourier transformation, the multipliers techniques in Fourier image. We conclude our talk by giving some remarks and open problems.

    This seminar is organized within the PRIN 2017 Research project «Direct and inverse problems for partial differential equations: theoretical aspects and applications» Grant Registration number 201758MTR2, funded by MIUR - Project coordinator Prof. Filippo Gazzola
  • Curve di Osgood
    Aljosa Volcic, Università della Calabria
    giovedì 12 settembre 2019 alle ore 11:00 precise, Dipartimento di Matematica - 7° piano, Politecnico di Milano
    ABSTRACT
    La conferenza sarà dedicata a due argomenti vicini al classico argomento del teorema di Cantor sulla corrispondenza biunivoca (che non può essere continua) tra $[0,1]$ e $[0,1]^2$ ed alla curva di Peano.

    Principalmente si parlerà di curve create nel 1903 da William F. Osgood il quale costruì, per ogni $\beta \in ]0,1[$ una curva iniettiva la cui immagine ha area $\beta$.
    Si farà una breve storia di altre costruzioni analoghe, dedicandosi in particolare all'ultima di esse, dovuta a Karl Stromberg e Shiojenn Tseng.
    In conclusione verrà presentata la dimostrazione dell'esistenza di una curva iniettiva definita su $]0,1[$ la cui immagine ha misura di Lebesgue bidimensionale uguale a $1$.