Head of Dept: Prof. Giulio Magli
Vice-Head of Dept: Prof. Gabriele Grillo
Department Manager: Dr.ssa Franca Di Censo


For communications or information contact: Salute e Sicurezza dip. Matematica


  • in case of danger, evaluate the nature and the size of the event; intervene to restore normality only in case of controllable situations and if in possession of adequate training;
  • in case the danger rapidly degenerates (fire principle, risk of collapse or flooding, electrical risk, etc), immediately contact the number shown in the emergency plan and proceed as indicated below;
  • if the communication with the emergency number takes too long, immediately activate the alarm system by pressing the emergency button



  • following the evacuation alarm (siren) or in severe cases, when an emergency occurs and, therefore, without waiting for any signal, you must
    • interrupt the activity in progress (lesson, tutorial, exam, interview, research) and leave the room where you are, inviting any other person around to leave as well as those who occupy nearby and / or adjacent rooms;
    • follow the route and reach the emergency exits indicated by the signs displayed;
    • inform the workers, wearing the emergency jacket at the collection point, about the evacuation and/or about any critical issues that have occurred and remain available to them;
  • remember that during the evacuation the upper floors take precedence, therefore, once you reach the stairs (the elevators cannot be used), you will have to wait until they are clear;
  • in any case, both during the evacuation and after reaching the collection point, follow the instructions of the staff.

 About us...

Upcoming Events

  • oct 29 thu 2020

    MOX Colloquia
    Jan S. Hesthaven, Nonintrusive reduced order models using physics informed neural networks,  10-29-2020, 14:00 precise
    logo matematica
    MOX Numeth

    • MOX Colloquia
    • Jan S. Hesthaven
    • Chair of Computational Mathematics and Simulation Science, EPFL, Lausanne, CH
    • Nonintrusive reduced order models using physics informed neural networks
    • Thursday, 29 October 2020 at 14:00 right
    • Online seminar:
    • Abstract
      The development of reduced order models for complex applications, offering the promise for rapid and accurate evaluation of the output of complex models under parameterized variation, remains a very active research area. Applications are found in problems which require many evaluations, sampled over a potentially large parameter space, such as in optimization, control, uncertainty quantification, and in applications where a near real-time response is needed. However, many challenges remain unresolved to secure the flexibility, robustness, and efficiency needed for general large-scale applications, in particular for nonlinear and/or time-dependent problems.

      After giving a brief general introduction to projection based reduced order models, we discuss the use of artificial feedforward neural networks to enable the development of fast and accurate nonintrusive models for complex problems. We demonstrate that this approach offers substantial flexibility and robustness for general nonlinear problems and enables the development of fast reduced order models for complex applications.

      In the second part of the talk, we discuss how to use residual based neural networks in which knowledge of the governing equations is built into the network and show that this has advantages both for training and for the overall accuracy of the model.

      Time permitting, we finally discuss the use of reduced order models in the context of prediction, i.e. to estimate solutions in regions of the parameter beyond that of the initial training. With an emphasis on the Mori-Zwansig formulation for time-dependent problems, we discuss how to accurately account for the effect of the unresolved and truncated scales on the long term dynamics and show that accounting for these through a memory term significantly improves the predictive accuracy of the reduced order model.

    • Jan S. Hesthaven
      After receiving his PhD in 1995 from the Technical University of Denmark, Professor Hesthaven joined Brown University, USA where he became Professor of Applied Mathematics in 2005. In 2013 he joined EPFL as Chair of Computational Mathematics and Simulation Science and since 2017 as Dean of the School of Basic Sciences. His research interests focus on the development, analysis, and application of high-order accurate methods for the solution of complex time-dependent problems, often requiring high-performance computing. A particular focus of his research has been on the development of computational methods for problems of linear and non-linear wave problems and the development of reduced basis methods, recently with an emphasis on combining traditional methods with machine learning and neural networks with broad applications, including structural health monitoring.

      He has received several awards for both his research and his teaching, and has published 4 monographs and more than 160 research papers. He is on the editorial board of 8 journals and serves as Editor-in-Chief of SIAM J. Scientific Computing.

      Homepage -
    • Politecnico di Milano, Dipartimento di Matematica edificio 14, via Giuseppe Ponzio 31/P, 20133 Milano - Telefono: +39 02 2399 4505 - Fax: +39 02 2399 4568

Innovative Teaching


Mathematical Engineering
Educational Program

PhD School
Mathematical Models and Methods in Engineering

PhD School
DADS (Data Analytics and Decision Sciences)

AIM Associazione degli Ingegneri Matematici
Associazione degli
Ingegneri Matematici