Eventi
A quantitative approach to entanglement theory via hypothesis testing
I will start by presenting the notion of entanglement as studied in quantum information theory. According to this definition, originally proposed by Werner in 1989, a density operator on a bipartite quantum system is declared to be entangled if it cannot be written as a convex combination of tensor products of single-system density operators, and separable (or unentangled) otherwise. I will then discuss the basics of quantum hypothesis testing and introduce the task of “entanglement testing”, which consists in discriminating a given entangled state from the set of all separable states. This task is a fundamental quantum information primitive, with applications ranging from device certification to gravitational entanglement detection. I will finish by discussing the statement of the “generalised quantum Stein’s lemma”, which connects the ultimate efficiency of entanglement testing with a key entanglement measure known as “relative entropy of entanglement”.
This initiative is part of the "PhD Lectures" activity of the project "Departments of Excellence 2023-2027" of the Department of Mathematics of Politecnico di Milano. This activity consists of seminars open to PhD students, followed by meetings with the speaker to discuss and go into detail on the topics presented at the talk.
Seminari Matematici al
Politecnico di Milano
- Analisi
- Cultura Matematica
- Seminari FDS
- Geometria e Algebra
- Probabilità e Statistica Matematica
- Probabilità Quantistica