OODA of TreeStructured Data Objects Using Persistent Homology
The field of Object Oriented Data Analysis has made a lot of progress on the statistical analysis of the variation in populations of complex objects. A particularly challenging example of this type is populations of tree-structured objects. Deep challenges arise, whose solutions involve a marriage of ideas from statistics, geometry, and numerical analysis, because the space of trees is strongly non-Euclidean in nature. Here these challenges are addressed using the approach of persistent homologies from topological data analysis. The benefits of this data object representation are illustrated using a real data set, where each data point is the tree of blood arteries in one person's brain. Persistent homologies give much better results than those obtained in previous studies.