mathematics for sustainable development

scientific coordinator: Luca Formaggia

 

The main goals for this topic are the development of mathematical models and numerical methods with applications to biomedicine (e.g., precision medicine, mathematical oncology, neurosciences) and for the sustainable use of the subsoil and mitigation of the effects of human activities (e.g., CO2 sequestration, geothermal reservoirs), as well as the implementation and analysis of scientific machine learning algorithms.

 

publications

  • A. Agosti, E. Rocca, L. Scarpa, "Strict separation and numerical approximation for a non-local Cahn-Hilliard equation with single-well potential",  preprint arXiv:2306.15819 [math.AP];
  • D. Carbonaro, F. Mezzadri, N. Ferro, G. De Nisco, A.L. Audenino, D. Gallo, C. Chiastra, U. Morbiducci, S. Perotto, "Design of innovative self-expandable femoral stents using inverse homogenization topology optimization", Comput. Methods Appl. Mech. Eng. 416, 116288, 2023;
  • F. Gatti, S. Perotto, C. de Falco, L. Formaggia, "A parallel well-balanced numerical scheme for the simulation of fast landslides with efficient time stepping", preprint;
  • F. Gatti, S. Perotto, C. de Falco, L. Formaggia, M. Pastor, "A scalable well-balanced numerical scheme for the modeling of two-phase shallow granular landslide consolidation", J. Comput. Phys. online, 2023;
  • G. Ciaramella, F. Nobile, T. Vanzan, "A multigrid method for PDE-constrained optimization with uncertain inputs", preprint arXiv:2302.13680v3 [math.OC];
  • G. Negrini, N. Parolini, M. Verani, "The Rhie-Chow stabilized Box Method for the Stokes problem", preprint arXiv:2308.01059v1 [math.NA];
  • M. Abatangelo, C. Cavaterra, M. Grasselli, H. Wu, "Optimal Distributed Control for a Cahn-Hilliard-Darcy System with Mass Sources, Unmatched Viscosities and Singular Potential", preprint arXiv:2308.01569v1 [math.OC];
  • M. Caldana, P.F. Antonietti, L. Dedè, "A Deep Learning algorithm to accelerate Algebraic Multigrid methods in Finite Element solvers of 3D elliptic PDEs", preprint arXiv:2304.10832v2 [math.NA];
  • M. Corti, F. Bonizzoni, P.F. Antonietti, "Structure Preserving Polytopal Discontinuous Galerkin Methods for the Numerical Modeling of Neurodegenerative Diseases", SIAM J. Sci. Comput., to appear;
  • M. Corti, F. Bonizzoni, P.F. Antonietti, A.M. Quarteroni, "Uncertainty Quantification for Fisher-Kolmogorov Equation on Graphs with Application to Patient-Specific Alzheimer Disease", preprint arXiv:2305.03619v2 [math.NA];
  • M. Gambarini, G. Ciaramella, E. Miglio, T. Vanzan, "Robust optimization of control parameters for WEC arrays using stochastic methods", preprint arXiv:2305.04130v2 [math.OC];
  • M. Torzoni, M. Tezzele, S. Mariani, A. Manzoni, K.E. Willcox, "A digital twin framework for civil engineering structures", preprint arXiv:2308.01445v1 [math.NA];
  • N.R. Franco, S. Fresca, F. Tombari, A. Manzoni, "Deep Learning-based surrogate models for parametrized PDEs: handling geometric variability through graph neural networks", preprint arXiv:2308.01602v1 [math.NA];
  • P.F. Antonietti, F. Bonizzoni , M. Verani, "A DG-VEM method for the dissipative wave equation", preprint arXiv:2303.17391v2 [math.NA];
  • S. Buchwald, G. Ciaramella, J. Salomon, "Gauss-Newton oriented greedy algorithms for the reconstruction of operators in nonlinear dynamics", preprint arXiv:2308.15450v1 [math.OC];
  • Y. Su, D. Riccobelli, Y. Chen, W. Chen, P. Ciarletta, "Tunable morphing of electroactive dielectric-elastomer balloons",  Proc. R. Soc. A 479, 20230358, 2023;
  • F. Ieva, G. Galliani, P. Secchi, "The impact of public transport on the diffusion of COVID-19 pandemic in Lombardy during 2020", preprint mra.v11i9.4356;
  • L. Clementi, E. Arnone, M. Santambrogio, S. Franceschetti, F. Panzica, L.M. Sangalli, "Anatomically compliant modes of variations: new tools for brain connectivity", PLoS ONE 18, e0292450, 2023;
  • L. Cavinato, M.C. Massi, M. Sollini, M. Kirienko, F. Ieva, "Dual adversarial deconfounding autoencoder for joint batch-effects removal from multi-center and multi-scanner radiomics data", Sci. Rep. 13, 18857, 2023;
  • I. Epifani, E. Lanzarone, A. Guglielmi, "Predicting donations and profiling donors in a blood collection center: a Bayesian approach", Flex. Serv. Manuf. J., 2023;
  • A. Burzacchi, L. Rossi, T. Agasisti, A.M. Paganoni, S. Vantini, "Commuting time as a determinant of higher education students' performance: the case of Politecnico di Milano", preprint MOX report 92/2023;
  • S. Bonetti, M. Botti, P.A. Antonietti, "Robust discontinuous Galerkin-based scheme for the fully-coupled non-linear thermo-hydro-mechanical problem", preprint arXiv:2311.15665 [math.NA];
  • A. Agosti, A. Signori, "Analysis of a multi-species Cahn–Hilliard–Keller–Segel tumor growth model with chemotaxis and angiogenesis", preprint arXiv:2311.13470 [math.AP];
  • P.F. Antonietti, M. Botti, I. Mazzieri, "A space-time discontinuous Galerkin method for coupled poroelasticity-elasticity problems", preprint arXiv:2306.01140 [math.NA];
  • M. Corti, F. Bonizzoni, L. Dedè, A. Quarteroni, P.F. Antonietti, "Discontinuous Galerkin Methods for Fisher-Kolmogorov Equation with Application to α-Synuclein Spreading in Parkinson's Disease", Comput. Methods Appl. Mech. Eng. 417, 116450, 2023;
  • P.F. Antonietti, F. Bonizzoni, M. Corti, A. Dall'Olio, "Discontinuous Galerkin for the heterodimer model of prion dynamics in Parkinson's disease", preprint arXiv:2310.08342 [math.NA];
  • D. Ambrosi, L. Deorsola, S. Turzi, M. Zoppello, "The shape of the mitral annulus: A hypothesis of mechanical morphogenesis", Math. Mech. Solids published online, 2023;
  • A. Marzorati, S. Turzi, "Bifurcation analysis of spontaneous flows in active nematic fluids", J. Phys. A 56, 315601, 2024;
  • B. Begu, S. Panzeri, E. Arnone, M. Carey, L.M. Sangalli, "A nonparametric penalized likelihood approach to density estimation of space–time point patterns", Spat. Stat. 61, 100824, 2024;
  • M. Salvador, M. Strocchi, F. Regazzoni, C.M. Augustin, L. Dedè, S.A. Niederer, A. Quarteroni, "Whole-heart electromechanical simulations using Latent Neural Ordinary Differential Equations", npj Digit. Med. 7, 90, 2024;
  • A. Tonini, C. Vergara, F. Regazzoni, L. Dedè, R. Scrofani, C. Cogliati, A. Quarteroni, "A mathematical model to assess the effects of COVID-19 on the cardiocirculatory system", Sci. Rep. 14, 8304, 2024;
  • A. Zingaro, Z. Ahmad, E. Kholmovski, K. Sakata, L. Dedè, A.K. Morris, A. Quarteroni, N.A. Trayanova, "A comprehensive stroke risk assessment by combining atrial computational fluid dynamics simulations and functional patient data", Sci. Rep. 14, 9515, 2024;
  • A. Palummo, E. Arnone, L. Formaggia, L.M. Sangalli, "Functional principal component analysis for incomplete space–time data", Environ. Ecol. Stat., published online, 2024;
  •  L. Clementi, E. Arnone, M.D. Santambrogio, S. Franceschetti, F. Panzica, L.M. Sangalli, "Anatomically compliant modes of variations: New tools for brain connectivity", Plos One 18, e0292450, 2023;
  • A. Zingaro, M. Bucelli, R. Piersanti, F. Regazzoni, L. Dedè, A. Quarteroni, "An electromechanics-driven fluid dynamics model for the simulation of the whole human heart", J. Comput. Phys. 504, 112885, 2024;
  • F. Regazzoni, S. Pagani, M. Salvador, L. Dedè, A. Quarteroni, "Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks", Nat. Commun. 15, 1834, 2024;
  • P.F. Antonietti, L. Beirao da Veiga, M. Botti, G. Vacca, M. Verani, "A Virtual Element method for non-Newtonian fluid flows", preprint arXiv:2403.03886 [math.NA];
  • M. Caldana, P.F. Antonietti, L. Dedè, "Discovering Artificial Viscosity Models for Discontinuous Galerkin Approximation of Conservation Laws using Physics-Informed Machine Learning", preprint arXiv:2402.16517 [math.NA];
  • I. Fumagalli, M. Corti, N. Parolini, P.F. Antonietti, "Polytopal discontinuous Galerkin discretization of brain multiphysics flow dynamics", J. Comput. Phys. published online, 2024;
  • S. Brivio, S. Fresca, N. Franco, A. Manzoni, "Error estimates for POD-DL-ROMs: a deep learning framework for reduced order modeling of nonlinear parametrized PDEs enhanced by proper orthogonal decomposition", Adv. Comput. Math. 50, 33, 2024;
  • S. Brivio, S. Fresca, A. Manzoni, "PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs", preprint arXiv:2405.08558 [math.NA];
  • C.B. Leimer Saglio, S. Pagani, M. Corti, P.F. Antonietti, "A high-order discontinuous Galerkin method for the numerical modeling of epileptic seizures", preprint arXiv:2401.14310 [math.NA];
  • S. Buchwald, G. Ciaramella, J. Salomon, "Gauss–Newton Oriented Greedy Algorithms for the Reconstruction of Operators in Nonlinear Dynamics", SIAM J. Contr. Opt. 62, 1343-1368, 2024;
  • M. Gambarini, G. Ciaramella, E. Miglio, T. Vanzan, "Robust optimization of control parameters for WEC arrays using stochastic methods", J. Comput. Phys. 493, 112478, 2023;
  • P.F. Antonietti, L. Beirao da Veiga, M. Botti, G. Vacca, M. Verani, "A Virtual Element method for non-Newtonian pseudoplastic Stokes flows", 2024, Comput. Methods Appl. Mech. Eng. 428, 117079, 2024;
  • K. Kassem, M. Sperti, A. Cavallo, A.M. Vergani, D. Fassino, M. Moz, A. Liscio, R. Banali, M. Dahlweid, L. Benetti, F. Bruno, G. Gallone, O. De Filippo, M. Iannaccone, F. D'Ascenzo, G.M. De Ferrari, U. Morbiducci, E. Della Valle, M.A. Deriu, "An innovative artificial intelligence-based method to compress complex models into explainable, model-agnostic and reduced decision support systems with application to healthcare (NEAR)", Artif. Intell. Med. 151, 102841, 2024;
  • T. Bortolotti, R. Peli, G. Lanzano, S. Sgobba, A. Menafoglio, "Weighted functional data analysis for the calibration of a ground motion model in Italy", J. Am. Stat. Assoc. 119, 1697-1708, 2024;
  • S. Sgobba, C. Felicetta, T. Bortolotti, A. Menafoglio, G. Lanzano, F. Pacor, "A geostatistical modeling of empirical amplification functions and related site proxies for shaking scenarios in central Italy", Soil Dyn. Earthq. Eng. 179, 108496, 2024;
  • D. Carbonaro, F. Mezzadri, N. Ferro, G. De Nisco, A.L. Audenino, D. Gallo, C. Chiastra, U. Morbiducci, S. Perotto, "Design of innovative self-expandable femoral stents using inverse homogenization topology optimization", Comput. Methods Appl. Mech. Eng. 416, 116288, 2023;
  • D. Riccobelli, P. Ciarletta, G. Vitale, C. Maurini, L. Truskinovsky, "Elastic Instability behind Brittle Fracture", Phys. Rev. Lett. 132, 248202, 2024;
  • E. Ballini, L. Formaggia, A. Fumagalli, E. Keilegavlen, A. Scotti, "A hybrid upwind scheme for two-phase flow in fractured porous media", Comput. Methods Appl. Mech. Eng. 432, 117437, 2024;
  • L. Bindini, S. Pagani, A. Bernardini, B. Grossi, A. Giomi, A. Frontera, P. Frasconi, "All-in-one electrical atrial substrate indicators with deep anomaly detection", Biomed. Signal Process. Control. 98, 106737, 2024;
  • M. Beraha, M. Pegoraro, "Wasserstein principal component analysis for circular measures", Stat. Comput. 34, 171, 2024;
  • M. Beraha, S. Favaro, M. Sesia, "Random measure priors in Bayesian recovery from sketches", J. Mach. Learn. Res. 25, 1−53, 2024;
  • F. Regazzoni, "An optimally convergent Fictitious Domain method for interface problems", Comput. Methods Appl. Mech. Eng. 431, 117327, 2024;
  • E. Zappon, M. Salvador, P. Piersanti, F. Regazzoni, L. Dedè, A. Quarteroni, "An integrated heart-torso electromechanical model for the simulation of electrophysiogical outputs accounting for myocardial deformation", 2024, Comput. Methods Appl. Mech. Eng. 427, 117007, 2024;
  • P.F. Antonietti, F. Bonizzoni, M. Corti, A. Dall'Olio, "Discontinuous Galerkin approximations of the heterodimer model for protein-protein interaction", Comput. Methods Appl. Mech. Eng. 431, 117282, 2024;
  • P.F. Antonietti, P. Matalon, M. Verani, "Iterative solution to the biharmonic equation in mixed form discretized by the Hybrid High-Order method", preprint arXiv:2308.10748 [math.NA], 2023; 
  • N. Parolini, A. Poiatti, J. Vené, M. Verani, "Structure-preserving neural networks in data-driven rheological models", preprint arXiv:2401.07121 [math.NA], 2024;
  • M. Cavazzutti, E. Arnone, F. Ferraccioli, C. Galimberti, L. Finos, L.M. Sangalli, "Sign-flip inference for spatial regression with differential regularisation", Stat. 13, e711, 2024;
  • B. Begu, S. Panzeri, E. Arnone, M. Carey, L.M. Sangalli, "A nonparametric penalized likelihood approach to density estimation of space-time point patterns", Spat. Stat. 61, 100824, 2024;
  • C. Castiglione, E. Arnone, M. Bernardi, A. Farcomeni, L.M. Sangalli, "PDE-regularised spatial quantile regression", J. Multivar. Anal. 205, 105381, 2025;
  • N.R. Franco, D. Fraulin, A. Manzoni, P. Zunino, "On the latent dimension of deep autoencoders for reduced order modeling of PDEs parametrized by random fields", Adv. Comput. Math. 50, 96, 2024;
  • P. Vitullo, A. Colombo, N.R. Franco, A. Manzoni, P. Zunino, "Nonlinear model order reduction for problems with microstructure using mesh informed neural networks", Finite Elem. Anal. Des. 229, 104068, 2024;
  • L. Cicci, S. Fresca, M. Guo, A. Manzoni, P. Zunino, "Uncertainty quantification for nonlinear solid mechanics using reduced order models with Gaussian process regression", Comput. Math. Appl. 149, 1−23 , 2024;
  • M. Torzoni, M. Tezzele, S. Mariani, A. Manzoni, K.E. Willcox, "A digital twin framework for civil engineering structures", Torzoni, M., Tezzele, M., Mariani, S., Manzoni, A., Willcox, K.E., A digital twin framework for civil engineering structures, Comput. Methods Appl. Mech. Eng. 418, 11658, 2024;
  • S. Brivio, S. Fresca, A. Manzoni, "PTPI-DL-ROMs: Pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs", Comput. Methods Appl. Mech. Eng. 432, 117404, 2024;
  • L. Rosafalco, P. Conti, A. Manzoni, S. Mariani, A. Frangi, "EKF–SINDy: Empowering the extended Kalman filter with sparse identification of nonlinear dynamics", Comput. Methods Appl. Mech. Eng. 431, 117264 , 2024;
  • P. Conti, M. Guo, A. Manzoni, A. Frangi, S.L. Brunton, J.N. Kutz, "Multi-fidelity reduced-order surrogate modelling", Proc. R. Soc. A 480, 20230655, 2024;
  • N. Farenga, S. Fresca, S. Brivio, A. Manzoni, "On latent dynamics learning in nonlinear reduced order modeling", preprint arXiv:2408.15183 [math.NA], 2024;
  • P. Conti, J. Kneifl, A. Manzoni, A. Frangi, J. Fehr, S.L. Brunton, J.N. Kutz, "VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification", preprint arXiv:2405.20905 [cs.LG], 2024;
  • N.R. Franco, A. Manzoni, P. Zunino, J. Hesthaven, "Deep orthogonal decomposition: a continuously adaptive data-driven approach to model order reduction", preprint arXiv:2404.18841 [math.NA], 2024;
  • P.F. Antonietti, M. Botti, A. Cancrini, I. Mazzieri, "A polytopal Discontinuous Galerkin Method for the pseudo-stress formulation of the unsteady Stokes problem", preprint arXiv:2408.08760 [math.NA], 2024;
  • B. Guindani, D. Ardagna, A. Guglielmi, R. Rocco, G. Palermo, "Integrating Bayesian Optimization and Machine Learning for the Optimal Configuration of Cloud Systems", IEEE Trans. Cloud Comp.12, 277-294, 2024;
  • V. Torri, M. Ercolanoni, F. Bortolan, O. Leoni, F. Ieva, "A NLP-based semi-automatic identification system for delays in follow-up examinations: an Italian case study on clinical referrals", BMC Med. Inform. Decis. Mak. 24, 107, 2024;
  • C.A. Tentori, C. Gregorio, et al, "Clinical and Genomic-Based Decision Support System to Define the Optimal Timing of Allogeneic Hematopoietic Stem-Cell Transplantation in Patients With Myelodysplastic Syndromes", J. Clin. Oncol. 42, 2024;
  • L. Ghilotti, M. Beraha, A. Guglielmi, "Bayesian clustering of high-dimensional data via latent repulsive mixtures", Biometrika, asae059, 2024;
  • A. Fumagalli, L. Panzeri, L. Formaggia, A. Scotti, D. Arosio, "A mixed-dimensional model for direct current simulations in the presence of a thin high-resistivity liner", Int. J. Numer. Methods Eng. 125 e7407, 2024;
  • L. Possenti, P. Vitullo, A. Cicchetti, P. Zunino, T. Rancati, "Modeling hypoxia-induced radiation resistance and the impact of radiation sources", Comput. Biol. Med. 173, 108334, 2024;
  • P. Vitullo, L. Cicci, L. Possenti, A. Coclite, M.L. Costantino, P. Zunino, "Sensitivity analysis of a multi-physics model for the vascular microenvironment, 2024, Int. J. Numer. Methods Biomed. Eng. 39, e3752, 2023;
  • L. Possenti, A. Gallo, P. Vitullo, A. Cicchetti, T. Rancati, M.L. Costantino, P. Zunino, "A computational model of the tumor microenvironment applied to fractioned radiotherapy", in A. Linninger, K.A. Mardal, P. Zunino (eds), "Quantitative approaches to microcirculation: mathematical models, computational methods and data analysis", SEMA SIMAI Springer Series 36, 23–47, 2024;
  • N. Dimola, M. Kuchta, K.A. Mardal, P. Zunino, "Robust Preconditioning of Mixed-Dimensional PDEs on 3d-1d Domains Coupled with Lagrange Multipliers", iA. Linninger, K.A. Mardal, P. Zunino (eds), "Quantitative approaches to microcirculation: mathematical models, computational methods and data analysis", SEMA SIMAI Springer Series 36, 137–171, 2024;
  • P. Vitullo, N.R. Franco, P. Zunino, "Deep learning enhanced cost-aware multi-fidelity uncertainty quantification of a computational model for radiotherapy", Found. Data Sci. 7, 386417, 2024;
  • E. Ballini, L. Formaggia, A. Fumagalli, A. Scotti, P. Zunino, "Application of deep learning reduced-order modeling for single-phase flow in faulted porous media", Comput. Geosci. 28, 1279–1303, 2024;
  • M. Boulakia, C. Grandmont, F. Lespagnol, P. Zunino, "Mathematical and numerical analysis of reduced order interface conditions and augmented finite elements for mixed dimensional problems", Comput. Math. Appl. 175, 536–569, 2024;
  • F. Lespagnol, C. Grandmont, P. Zunino, M.A. Fernández, "A mixed-dimensional formulation for the simulation of slender structures immersed in an incompressible flow", Comput. Methods Appl. Mech. Eng. 432, 117316, 2024;
  • A. Ragni, C. Masci, F. Ieva, A.M. Paganoni, "A Statistical Significance-Based Approach for Clustering Grouped Data via Generalized Linear Model with Discrete Random Effects", J. R. Stat. Soc., A: Stat. Soc. online, 2025;
  • Tomasetto, M., Arnone, E., Sangalli, L.M., "Modeling Anisotropy and Non-Stationarity Through Physics-Informed Spatial Regression", Environmetrics 35, e2889, 2024;
  • Barucci E., Marazzina D., Nassigh A., "Sovereign Debt Default and Climate Risk", arXiv:2501.11552 [econ.GN], 2025;  
  • Regazzoni, F., "Stabilization of staggered time discretization schemes for 0D-3D fluid-structure interaction problems", Numer. Math. 157, 249–306, 2025;
  • Ziarelli, G., Pagani, S., Parolini, N., Regazzoni, F., Verani, M., "A model learning framework for inferring the dynamics of transmission rate depending on exogenous variables for epidemic forecasts", Comput. Methods Appl. Mech. Eng437, 117796, 2025;
  • D. Nolte, A. Brown, A. Gebauer, E. Karabelas, J. Jilberto, M. Salvador, M. Bucelli, R. Piersanti, K. Osouli, C. Augustin, L. Shi, H. Finsberg, M. Pfaller, M. Hirschvogel, P. Africa, M. Gsell, A. Marsden, D. Nordsletten, F. Regazzoni, G. Plank, J. Sundnes, L. Dede', M. Peirlinck, V. Vedula, W. Wall, C. Bertoglio, "A software benchmark for cardiac elastodynamics", Comput. Methods Appl. Mech. Eng. 435, 117485, 2025;
  • Corda, A., Pagani, S., Vergara, C., "Influence of acute myocardial ischemia on arrhythmogenesis: a computational study", medRxiv, 2025;
  • Piersanti, R.; Bradley, R.; Ali, S.Y.; Quarteroni, A.; Dede', L.; Trayanova, N.A., "Defining myocardial fiber bundle architecture in atrial digital twins", Comput. Biol. Med. online, 2025
  • Marco Francesco De Sanctis, Ilenia Di Battista, Eleonora Arnone, Cristian Castiglione, Mauro Bernardi, Alessandro Palummo, Laura Maria Sangalli, "Penalised Spatial Quantile Regression: Application to Air Quality Data", in Methodological and Applied Statistics and Demography, Springer, 532-537, 2025;
  • Clemente, A., Arnone, E., Sangalli, L.M., "A Multi-Domain Model with Partial Differential Regularization: An Application to Neuroimaging Data", in Methodological and Applied Statistics and Demography, Springer, 2025;
  • Botti, M., Fumagalli, I., Mazzieri, I., "Polytopal discontinuous Galerkin methods for low-frequency poroelasticity coupled to unsteady Stokes flow", arXiv:2501.19170 [math.NA], 2025;
  • Donelli, Pietro, A. Hernández-Roig, Harold, Aguilera-Morillo M., Carmen, Arnone, Eleonora, Clementi Letizia, Rosa, E. Lillo, Palummo, Alessandro, Sangalli, Laura M., "Regularized Functional Partial Least Squares Regression of Neuroimaging Data", in Methodological and Applied Statistics and Demography, Springer, 611-616, 2025; 
  • Cavazzutti, M., Arnone, E., Ferraccioli, F., Finos, L., Sangalli, L., "Efficient Parametric Tests in Semiparametric Regression with Differential Regularization", in Methodological and Applied Statistics and Demography III. SIS 2024Pollice, A., Mariani, P. (eds), Springer, 2025;
  • Caldera, L., Masci, C., Cappozzo, A., Forlani, M., Antonelli, B., Leoni, O., Ieva, F., "Uncovering mortality patterns and hospital effects in COVID-19 heart failure patients: a novel multilevel logistic cluster-weighted modeling approach", Biometrics 81, 2025;
  • Azzone, M., Baviera, B., Manzoni, P., "The puzzle of Carbon Allowance spread", Energy Economics 146, 108459, 2025;
  • Quarteroni, A., Gervasio, P., Regazzoni, F., "Combining physics-based and data-driven models: advancing the frontiers of research with Scientific Machine Learning", Mathematical Models and Methods in Applied Sciences 35905-1071, 2025; 
  • Tonini, A., Regazzoni, F., Salvador, M., Dede', L., Scrofani, R., Fusini, L., Cogliati, C., Pontone, G., Vergara, C.,Quarteroni, A, "Two new calibration techniques of lumped-parameter mathematical models for the cardiovascular system", Int. Journal for Numerical Methods in Engineering 126, e7648, 2025;
  • Leone, F., Marazzina, D., Rosamilia, N., What’s news with you: Price forecasting with global and ESG sentiment scores, 2025 Finance Research Open, 1(2): 100013.1-13 , https://doi.org/10.1016/j.finr.2025.100013 
  • Barucci, E., Marazzina, D., Nassigh, A., 2025, Sovereign Debt Default and Climate Risk, Preprint, arxiv - https://arxiv.org/abs/2501.11552 
  • Fois M., Gatti F., de Falco C., Formaggia L.,2025, A comparative analysis of mesh-based and particle-based numerical methods for landslide run-out simulations, Computers & Fluids, 295, 106641, https://doi.org/10.1016/j.compfluid.2025.106641 
  • Gatti F, de Falco C., Fois M, Formaggia L, 2025, A scalable well-balanced Taylor-Galerkin scheme for a lava flow depth-integrated model with point source vents, Computers & Mathematics with Applications, 184, 153-167, https://doi.org/10.1016/j.camwa.2025.02.014
  • Regazzoni, F., Stabilization of staggered time discretization schemes for 0D-3D fluid-structure interaction problems, 2025, Numerische Mathematik, 157: 249–306, https://doi.org/10.1007/s00211-025-01452-z
  • Ziarelli, G., Pagani, S., Parolini, N., Regazzoni, F., Verani, M., A model learning framework for inferring the dynamics of transmission rate depending on exogenous variables for epidemic forecasts, 2025, Computer Methods in Applied Mechanics and Engineering, 437: 117796, https://doi.org/10.1016/j.cma.2025.117796
  • D. Nolte, A. Brown, A. Gebauer, E. Karabelas, J. Jilberto, M. Salvador, M. Bucelli, R. Piersanti, K. Osouli, C. Augustin, L. Shi, H. Finsberg, M. Pfaller, M. Hirschvogel, P. Africa, M. Gsell, A. Marsden, D. Nordsletten, F. Regazzoni, G. Plank, J. Sundnes, L. Dede’, M. Peirlinck, V. Vedula, W. Wall, C. Bertoglio, A software benchmark for cardiac elastodynamics, 2025, Computer Methods in Applied Mechanics and Engineering, 435: 117485, https://doi.org/10.1016/j.cma.2024.117485
  • Corda, A., Pagani, S., Vergara, C., Influence of acute myocardial ischemia on arrhythmogenesis: a computational study, 2025, preprint, https://www.medrxiv.org/content/10.1101/2024.11.20.24317476v1
  • Piersanti, R.; Bradley, R.; Ali, S.Y.; Quarteroni, A.; Dede', L.; Trayanova, N.A., Defining myocardial fiber bundle architecture in atrial digital twins, 2025, Computers in Biology and Medicine, https://doi.org/10.1016/j.compbiomed.2025.109774
  • Marco Francesco De Sanctis, Ilenia Di Battista, Eleonora Arnone, Cristian Castiglione, Mauro Bernardi, Alessandro Palummo, Laura Maria Sangalli, Penalised Spatial Quantile Regression: Application to Air Quality Data, 2025, Methodological and Applied Statistics and Demography, Springer, 532-537, https://doi.org/10.1007/978-3-031-64431-3_88
  • Clemente, A., Arnone, E., Sangalli, L.M., 2025. A Multi-Domain Model with Partial Differential Regularization: An Application to Neuroimaging Data, Methodological and Applied Statistics and Demography, Springer, https://doi.org/10.1007/978-3-031-64431-3_70
  • Donelli, Pietro, A. Hernández-Roig, Harold, Aguilera-Morillo M., Carmen, Arnone, Eleonora, Clementi Letizia, Rosa, E. Lillo, Palummo, Alessandro, Sangalli, Laura M., Regularized Functional Partial Least Squares Regression of Neuroimaging Data, 2025, Methodological and Applied Statistics and Demography, Springer, p 611-616, ISBN: 978-3-031-64446-7, https://doi.org/10.1007/978-3-031-64431-3_102
  • Cavazzutti, M., Arnone, E., Ferraccioli, F., Finos, L., Sangalli, L., Efficient Parametric Tests in Semiparametric Regression with Differential Regularization, 2025, Pollice, A., Mariani, P. (eds) Methodological and Applied Statistics and Demography III. SIS 2024. Italian Statistical Society Series on Advances in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-64431-3_61
  • Caldera, L., Masci, C., Cappozzo, A., Forlani, M., Antonelli, B., Leoni, O., Ieva, F., 2025, Uncovering mortality patterns and hospital effects in COVID-19 heart failure patients: a novel multilevel logistic cluster-weighted modeling approach, Biometrics, 81 (2), https://doi.org/10.1093/biomtc/ujaf046.
  • Azzone, M., Baviera, B., Manzoni, P, , 2025. The puzzle of Carbon Allowance spread, Energy Economics, 146,108459, https://doi.org/10.1016/j.eneco.2025.108459
  • Quarteroni, A., Gervasio, P., Regazzoni, F., 2025, Combining physics-based and data-driven models: advancing the frontiers of research with Scientific Machine Learning, Mathematical Models and Methods in Applied Sciences, 35 (4): 905-1071, https://doi.org/10.1142/S0218202525500125
  • Tonini, A., Regazzoni, F., Salvador, M., Dede', L., Scrofani, R., Fusini, L., Cogliati, C., Pontone, G., Vergara, C.,Quarteroni, A, 2025, Two new calibration techniques of lumped-parameter mathematical models for the cardiovascular system, Int. Journal for Numerical Methods in Engineering, 126 (1): e7648, http://dx.doi.org/10.1002/nme.7648  - T20
  • Leone, F., Marazzina, D., Rosamilia, N., What's news with you: Price forecasting with global and ESG sentiment scores, 2025 Finance Research Open, 1(2): 100013.1-13 , https://doi.org/10.1016/j.finr.2025.100013
  • Fois M., Gatti F., de Falco C., Formaggia L.,2025, A comparative analysis of mesh-based and particle-based numerical methods for landslide run-out simulations, Computers & Fluids, 295, 106641, https://doi.org/10.1016/j.compfluid.2025.106641
  • Gatti F, de Falco C., Fois M, Formaggia L, 2025, A scalable well-balanced Taylor-Galerkin scheme for a lava flow depth-integrated model with point source vents, Computers & Mathematics with Applications, 184, 153-167, https://doi.org/10.1016/j.camwa.2025.02.014
  • Ferro, A., Marazzina, D., Stocco, D.,2025  Uncovering ESG Ratings: The (Im)Balance of Aspirational and Performance Features, Corporate Social Responsibility and Environmental Management, https://doi.org/10.1002/csr.70007
  • Ivan Fumagalli, 2025, Discontinuous Galerkin method for a three-dimensional coupled fluid-poroelastic model with applications to brain fluid mechanics, Mathematics in Engineering, 7 (2): 130-161, https://doi.org/10.3934/mine.2025006
  • Torri, V., Bottelli, A., Ercolanoni, M., Leoni, O., Ieva, F., 2025. NLP-based assessment of prescription appropriateness from Italian referrals, Preprint. https://arxiv.org/abs/2501.14701
  • Torri, V., Boonstra, M. J., van de Veerdonk, M. C., Kalkman, D. N., Uijl, A., Ieva, F., Abu-Hanna, A., Asselbergs, F. W., Calixto, I., 2025. Interpretable phenotyping of Heart Failure patients with Dutch discharge letters, Preprint, https://arxiv.org/abs/2505.24619
  • Fontana, N., Secchi, P., Pivato, C.A., Di Angelantonio, E., Ieva, F., 2025, Fostering Drug Repurposing Using Observational Data by Integrating Functional Data Analysis and Causal Inference, 2025 Statistics for Innovation III. SIS 2025. Italian Statistical Society Series on Advances in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-95995-0 _42
  • Ieva, F., Fontana, N., Pivato, C.A., Di Angelantonio, E., Secch,i P., 2025, Enhancing Causal Inference in Functional Data: a Method for Estimating Time-Varying Causal Treatment Effects. New Trends in Functional Statistics and Related Fields. IWFOS 2025. Contributions to Statistics. Springer Cham. http://dx.doi.org/10.1007/978-3-031-92383-8_35
  • De Sanctis, M.F., Di Battista, I., Arnone, E., Castiglione, C., Palummo, A., Bernardi, M., Ieva, F., Sangalli, L.M., 2025. Exploring nitrogen dioxide spatial concentration via physics-informed multiple quantile regression, Environmental and Ecological Statistics: 1-38, https://doi.org/10.1007/s10651-025-00664-8
  • De Sanctis, M.F., Di Battista, I., Arnone, E., Castiglione, C., Bernardi, M., Ieva, F., Sangalli, L.M., 2025. Estimating Multiple Quantile Surfaces: A Penalized Functional Approach. New Trends in Functional Statistics and Related Fields, Springer, Cham: 151-158, https://doi.org/10.1007/978-3-031-92383-8_19
  • Cavinato, L., Ferrara, L., Pegoraro, M., Erba, P. A., Ieva, F., 2025 Topological Data Analysis Applied to Radiomics (topiomics) Data in Recurrent Prostate Cancer, The Scientific Meeting of the Italian Statistical Society (pp. 379-385). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64431-3_63
  • Caldera, L., Cavinato, L., Cappozzo, A., Cama, I., Garbarino, S., Cirone, A., Lodi, R., Tagliavini, F., Nigri, A., De Francesco, S., Ieva, 2025. F.. DISARM: Disentangled Scanner-Free Image Generation via Unsupervised Image2Image Translation, International Workshop on Machine Learning in Clinical Neuroimaging (pp. 102-112). Springer, Cham. https://doi.org/10.1007/978-3-031-78761-4_10
  • Patanè G., Bortolotti T., Yordanov V., Biagi L.G.A., Brovelli M.A., Truong X.Q., Vantini S., 2025 An interpretable and transferable model for shallow landslides detachment combining spatial Poisson point processes and generalized additive models, Stochastic Environmental Research and Risk Assessment, 39 (4), art. no. 104396, pp. 1723 – 1740, https://doi.org/10.1007/s00477-025-02943-z
  • Burzacchi A.; Landrò M.; Vantini S., 2025, Monitoring road infrastructure from satellite images in Greater Maputo, Statistical Methods and Applications, 34 (1), pp. 69 - 90. https://doi.org/10.1007/s10260-024-00772-y
  • Michele Cavazzutti, Eleonora Arnone, Federico Ferraccioli, Livio Finos, Laura M Sangalli, 2025. Efficient Parametric Tests in Semiparametric Regression with Differential Regularization. Scientific Meeting of the Italian Statistical Society, Springer Nature Switzerland, 366-372, https://doi.org/10.1007/978-3-031-64431-3_61
  • Cavazzutti, M., Arnone, E., Sun, Y., Genton, M.G., Sangalli, L.M., 2025 Functional Data Depth for the Analysis of Earth Surface Temperatures, New Trends in Functional Statistics and Related Fields, IWFOS 2025 Contributions to Statistics, Springer, Cham. https://doi.org/10.1007/978-3-031-92383-8_15
  • Spreafico, M., Ieva, F., Fiocco, M., 2024. Causal effect of chemotherapy received dose intensity on survival outcome: a retrospective study in osteosarcoma. BMC Med Res Methodol 24, 296 https://doi.org/10.1186/s12874-024-02416-x
  • Ieva, F., Michael Ronzulli, M., Paganoni, A.M., 2025. A Spearman dependence matrix for multivariate functional data. Journal of Nonparametric Statistics, 82-104, https://doi.org/10.1080/10485252.2024.2353615
  • Franco, N.R., Meanti, L., Zunino, P., Paganoni, A.M., 2025. Functional and Topological Data Analysis for the Stratification of patients with Marfan syndrome, Statistics for Innovation IV, Italian Statistical Society Series on Advances in Statistics, Chapter 43, pg. 262-268, https://doi.org/10.1007/978-3-031-96033-8
  • Bortolotti, T., Troilo, R., Menafoglio, A., Vantini, S., 2025. Regularized Nonparametric Estimation of Covariance Kernels for High-Dimensional Interferometric Data. New Trends in Functional Statistics and Related Fields. IWFOS 2025. Springer, Cham. https://doi.org/10.1007/978-3-031-92383-8_9
  • Borgoni, R., Gilardi, A., Michelangeli, A., Tkach, K., 2025. An Inverted-U, an Elephant or Neither? Exploring the Link Between Migrant Integration Policies and Pro-Immigrant Sentiment. Population, Space and Place, 31: e70053. https://doi.org/10.1002/psp.70053
  • Bortolotti, T., Prioglio, E., Colosimo, B.M., Vantini, S., 2025. Anomaly Detection of Functional Data via Conformal Prediction. Statistics for Innovation I. SIS 2025. Italian Statistical Society Series on Advances in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-96736-8_13
  • Pederzoli V., Corti M., Riccobelli D., Antonietti P. F., 2025, A coupled mathematical and numerical model for protein spreading and tissue atrophy applied to Alzheimer's disease. Computer Methods in Applied Mechanics and Engineering, 444:118118, https://doi.org/10.1016/j.cma.2025.118118
  • Arostica R. et al. A software benchmark for cardiac elastodynamics. 2025. Computer Methods in Applied Mechanics and Engineering, 435: 117485, https://doi.org/10.1016/j.cma.2024.117485
  • Leimer Saglio C.C., S. Pagani, P. F. Antonietti, 2025. A p-adaptive polytopal discontinuous Galerkin method for high-order approximation of brain electrophysiology. Computer Methods in Applied Mechanics and Engineering, https://doi.org/10.1016/j.cma.2025.118249
  • Pozzi G., Mazzilli G., D'Arrigo G., Verderio C., Legname G., Turzi S., Ciarletta P., 2025. Modelling the prion protein-mediated transport of extracellular vesicles on the neuron surface. Proceedings of the Royal Society A, 481, 20240655 https://doi.org/10.1098/rspa.2024.0655
  • Gower, A.L., Shearer T., Ciarletta P., Destrade M.. 2025. The elastic stored energy of initially strained, or stressed, materials: restrictions and third-order expansions. Proceedings of the Royal Society A, 481:20240272, http://doi.org/10.1098/rspa.2024.0272
  • Andrini D, Chen X, Ciarletta P. Nonlinear Morphoelastic Theory of Biological Shallow Shells with Initial Stress. Journal of Elasticity, 157 (21), https://doi.org/10.1007/s10659-025-10113-z
  • Chen X, Yu X, Ciarletta P. 2025. A Morphoelastic Shell Theory of Biological Invagination in Embryos. Journal of Elasticity, 156:1171–1194, https://doi.org/10.1007/s10659-024-10084-7
  • Ferro N, Mezzadri F., Carbonaro D., Galligani E., Gallo D , Morbiducci U, Chiastra C, Perotto S., 2025. Designing novel vascular stents with enhanced mechanical behavior through topology optimization of existing devices. Finite Elements in Analysis & Design. 244:104304, https://doi.org/10.1016/j.finel.2024.104304
  • Liverotti L., Ferro N., Matteucci M., Perotto S., 2025. A PCA and Mesh Adaptation-Based Format for High Compression of Earth Observation Optical Data With Applications in Agriculture. International Journal for Numerical Methods in Engineering, 126 (12): e70064. https://doi.org/10.1002/nme.70064
  • Rokian, A.A. and Scotti, A. and Fumagalli, A. 2025. Free convection in fractured porous media: A numerical study. Advances in Water Resources 202:104988 https://doi.org/10.1016/j.advwatres.2025.104988
  • Lorenzo, P. and Fumagalli, A. and Longoni, L. and Papini, M. and Arosio, D. 2025. Sensitivity analysis with a 3D mixed-dimensional code for direct current geoelectrical investigations of landfills: synthetic tests. Geophysical Prospecting 2025;1–16 https://doi.org/10.1111/1365-2478.70006
  • Boon, W.M. and Franco, N.R. and Fumagalli, A., 2025. Neural network solvers for parametrized elasticity problems that conserve linear and angular momentum. Computer Methods in Applied Mechanics and Engineering 437 (2025) 117759 https://doi.org/10.1016/j.cma.2025.117759. - T10
  • Cao, Z. and Song, Z., and Sun, W. and Xie Q., and Fumagalli, A. and Tian, X. and Shen, X.. 2025. A numerical approach for CFD-DEM coupling method with pore network model considering the effect of anisotropic permeability in soil-rock mixtures. Computers and Geotechnics 178:106898 https://doi.org/10.1016/j.compgeo.2024.106898.
  • Fumagalli, A. and Patacchini, F.S., 2025. Numerical validation of an adaptive model for the determination of nonlinear-flow regions in highly heterogeneous porous media. Mathematics and Computers in Simulation 230 (2025) 306–322 https://doi.org/10.1016/j.matcom.2024.10.024.
  • Grasselli, M. , Melzi, L., Signori, A., 2026. On a non-local phase-field model for tumour growth with single-well Lennard-Jones potential.Nonlinear Anal. Real World Appl., 88: 104466, https://doi.org/10.1016/j.nonrwa.2025.104466
  • Di Florio, V.,  Ansalone, P.,  Siryk, S. V., Decherchi, S., de Falco, C., Rocchia, W., 2025. NextGenPB: An analytically-enabled super resolution tool for solving the Poisson-Boltzmann Equation featuring local (de)refinement. Computer Physics Communications - https://doi.org/10.1016/j.cpc.2025.109816. T10
  • Carbonaro, D., Ferro, N., Mezzadri, F., Gallo, D., Audenino, A., Perotto, S., Morbiducci, U., Chiastra, C., 2025. Easy-to-use formulations based on the homogenization theory for vascular stent design and mechanical characterization., Computer Methods and Programs in Biomedicine, 257: 108467, https://doi.org/10.1016/j.cmpb.2024.108467.
  • Liverotti, L., Ferro, N., Soli, L., Matteucci, M., Perotto, S., 2025. Using SAR data as an effective surrogate for optical data in nitrogen variable rate applications: a winter wheat case study. Advances in Computational Science and Engineering, 2 (4): 320-341, doi:10.3934/acse.2024016
  • Liverotti, L., Ferro, N., Matteucci, M., Perotto, S., 2025. A PCA and mesh adaptation-based format for high compression of Earth Observation optical data with applications in agriculture. International Journal for Numerical Methods in Engineering, 126: e70064, https://doi.org/10.1002/nme.70064