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Abstract

We consider a single-phase depth-averaged model for the numerical simulation
of fast-moving landslides with the goal of constructing a well-balanced, yet scal-
able and efficient, second-order time-stepping algorithm. We apply a Strang split-
ting approach to distinguish between parabolic and hyperbolic problems. For the
parabolic contribution, we adopt a second-order Implicit-Explicit Runge-Kutta-
Chebyshev scheme, while we use a two-stage Taylor discretization combined with
a path-conservative strategy, to deal with the purely hyperbolic contribution. The
proposed strategy allows to combine these schemes in such a way that the corre-
sponding absolute stability regions remain unbiased, while guaranteeing positivity-
preserving of the free surface and the well-balancing property to the overall imple-
mentation. The spatial discretization we adopt is based on a standard finite element
method, associated with a hierarchically refined Cartesian grid. After providing nu-
merical evidence of the well-balancing property, we demonstrate the capability of
the proposed approach to select time steps larger with respect to the ones adopted
by a classical Taylor-Galerkin scheme. Finally, we provide some meaningful scal-
ing results, both on ideal and realistic scenarios.

Keywords:
Taylor-Galerkin scheme, Depth-integrated models, Implicit-explicit
Runge-Kutta-Chebyshev scheme, C-property, Path-conservative methods, Parallel
simulations.

1. Introduction

The two-step Taylor-Galerkin (TG2) method, introduced in [1, 2, 3], has been
recently applied to the simulation of fast landslides [4, 5]. TG2 coincides with
an explicit scheme. Consequently, it can be efficiently implemented in a parallel
framework, yet it could require a too restrictive time step when compared with the
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landslide run-out time-scale. This is due to the stiffness of the parabolic part and
of the source characterizing the landslide model.

In this paper, we propose a new method that enables to use larger time steps
with respect to the explicit TG2 scheme, while preserving the data locality property,
which represents a key aspect for the implementation of a highly scalable code (see,
e.g., [6]). More precisely, we set a second-order space-time numerical framework
that enlarges the absolute stability region, while maintaining the locality of the im-
plementation in order to efficiently solve the single-phase depth-integrated model
for fast landslides. For the time discretization, the new method merges the sec-
ond order Implicit–Explicit Runge–Kutta–Chebyshev (IMEX-RKC) scheme with
a TG2 approach enriched by a path-conservative (PC) procedure (namely, a TG2-
PC approximation), by resorting to a Strang splitting scheme [7, 8]. This choice
allows us to integrate the non-conservative products so that the well-balance prop-
erty is guaranteed. We resort to finite elements on hierarchical quadree meshes for
the spatial discretization. This leads to approximate the diffusion-reaction contri-
bution with a finite element IMEX-RKC scheme and the transport term with the
TG2-PC method. The complete scheme will be referred to as Split IMEX-RKC
TG2-PC method.

Concerning PC methods, the basic theory has been formalized by G. Dal Maso,
P.C. Lefloch and F. Murat [9] on weak solutions to hyperbolic partial differen-
tial equations with non-conservative products, and successively developed by C.
Parés, M.J. Castro and co-workers in the framework of a finite-volume discretiza-
tion [10, 11, 12, 13, 14, 15, 16, 17, 18]. In particular, in the approximation of
shallow water equations, it has been demonstrated that PC methods guarantee a
well-balanced numerical scheme [19, 20]. The PC strategy has been already suc-
cessfully employed in the literature in the context of a discontinuous Galerkin (DG)
spatial discretization, see [21, 22]. On the contrary, to the authors knowledge, the
PC scheme has been never adopted in a continuous finite element setting. In the
verification phase, we provide numerical evidence of the capability of PC schemes
to satisfy the well-balance property also when dealing with a continuous finite ele-
ment approximation.

With reference to the IMEX-RKC method, the approach was introduced in [23]
as an extension of the Runge–Kutta–Chebyshev (RKC) method first proposed in
[24], and successfully used in reaction-diffusion problems (see, e.g., [25, 26, 27]).
IMEX-RKC treats the moderately stiff diffusion terms explicitly and the strongly
nonlinear reaction terms implicitly. The explicit treatment of the diffusion term is
a key aspect in a parallel implementation since an implicit treatment needs to solve
a global linear system and creates a potential bottleneck in the parallel implemen-
tation. In this work, we propose an implementation of the IMEX-RKC approach
in a finite element space associated with a quadtree partition of the computational

2



domain. This constitutes a novelty with respect to the state-of-the-art, where such
a scheme is, in general, adopted in a conforming discrete setting.

The paper is organized as follows. In Section 2 we present the single-phase
depth-integrated mathematical model for fast landslides. Section 3 illustrates the
Split IMEX-RKC TG2-PC method, first by describing the TG2-PC and the IMEX-
RKC schemes we adopt and successively by dealing with the Strang split proce-
dure. In Section 4, we analyze the reliability of the Split IMEX-RKC TG2-PC
scheme through some numerical checks. In particular, after investigating the accu-
racy of the procedure, we show numerical evidence of the well-balancing property
together with the capability to use a larger time step when compared with a basic
TG2 scheme. Then, we assess the performance of the overall parallel implemen-
tation by performing a strong scalability analysis on both ideal and real satellite
orography. Concluding remarks are provided in Section 5.

2. Model equations

Let us consider a rectangular computational domain, Ω ⊂ R2, which contains
a subdomain, Ωw ⊂ Ω, representing the region of landslide material, varying in
space and time, defined as the portion of Ω where the depth, H , of the landslide
material is strictly greater than zero.

We are interested in solving the following set of nonlinear and non-conservative
equations,

∂tq+∇ · F+∇ ·G+B∇Z = r in Ωw × (0, T ], (1)

equipped with proper boundary and initial conditions, where q = q(x, t) ∈ R4

is the vector of conserved variables, F = F(q) ∈ R4×2 is the tensor of transport
fluxes, G = G(q,∇q) ∈ R4×2 is the tensor of diffusive fluxes, B = B(q) ∈
R4×2 is the matrix of the non-conservative terms, Z is the orography profile, r =
r(q) ∈ R4 is the reaction term, and (0, T ] denotes the time window of interest. In
particular, to model the landslide run-out phase, we consider the de Saint-Venant
equations (see, e.g., [28, 29, 5, 30]), so that q = [H,Ux, Uy, Z]T , with x- and y-
direction mass fluxes Ux and Uy, respectively. In more detail, the transport fluxes
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coincide with

F(q) =



Ux Uy

U2
x

H
+

1

2
gH2 UyUx

H

UyUx

H

U2
y

H
+

1

2
gH2

0 0


, (2)

with g the gravitational field; the diffusive fluxes are characterized by the expres-
sions

G(q,∇q) =



0 0

−1

ρ
σxxH −1

ρ
σxyH

−1

ρ
σxyH −1

ρ
σyyH

0 0


, (3)

with ρ the material density that we assume uniform and constant, and where the set
{σij}ij , i, j = x, y, defines the deviatoric part of the Cauchy stress tensor σ; the
non-conservative matrix is defined by

B(q) =



0 0

gH 0

0 gH

0 0


; (4)

the reaction term is given by

r(q) =



0

1

ρ
fB
x

1

ρ
fB
y

0


, (5)
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with fB
i = fB

i (q), i = x, y, the bed friction. In particular, we adopt the Voellmy
rheology, i.e., we choose

fB
i (q) = −

(
pb tan δ sgnwi + ρg

|wi|wi

ξ

)
, (6)

being w the velocity field with components wi = Ui/H , i = x, y and sgn the
signum function. The pb is the basal pressure and according to Stevino varies lin-
early along the vertical axis, i.e., pb = ps+ ρgH with ps the atmospheric pressure,
δ is the bed friction angle that we assume constant in time due to the absence of
consolidation processes in the considered model, and ξ is the turbulence coeffi-
cient.

Concerning the tensor σ, following the works [31, 29, 32], we adopt a depth-
integrated regularized visco-plastic Bingham stress model where the regularization
is performed through an exponential function. Thus, we have

σ =

(
2µ+

τY (1− e−N
√
I2)√

I2

)
D, (7)

where µ is the fluid viscosity, τY is the yield shear stress, N is the regularization
parameter, D is the horizontal strain rate tensor defined by D = 1

2(∇w +∇wT ),
and I2 is the second invariant of the complete depth-integrated strain tensor and is
calculated following a procedure fully described in the works [5, 6].
The regularization parameter N (set to 1000s in all the simulations of Section 4, as
in [32]) is necessary to prevent the deviatoric stress tensor from becoming singular
in the case of low strain rates, i.e., when the second invariant is close to zero. This
implies that, in the limit of I2 close to zero, the exponentially regularized rheology
exists finite and is proportional to the coefficient N , that is, the apparent viscosity
that multiplies the tensor D in (7) becomes equal to µ̄ = 2µ+NτY .

Finally, we point out that the model (1) admits the steady state ‘lake-at-rest‘
solution [33], i.e.,

η = H + Z = constant, [Ux, Uy]
T = 0, (8)

where η is the free surface height. In the rest of the paper, we will refer to a
well-balanced numerical method when it can ensure the lake-at-rest solution (see
Section 4.1.2). We note that, the lake-at-rest condition leads to a balance between
pressure forces and slope contributions, namely to satisfy the condition

wb = ∇ · F+B∇Z = 0 (9)
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in the whole domain.

3. The numerical scheme

Before considering the specific discretization we adopt, it is important to re-
mark that model (1) is actually approximated on the whole computational spatial
domain Ω rather than on the wet region Ωw only. With this aim, we introduce a
threshold Hmin for the depth of the landslide material, under which we assign a null
velocity, thus defining the wet (dry) region as the portion of Ω where H > Hmin

(H ≤ Hmin). This modeling trick considerably simplifies the numerical treatment
of problem (1), since domain Ωw varies in time and can take any possible shape;
vice versa domain Ω does coincide with a rectangle during the entire time win-
dow. This leads to the imposition of boundary conditions directly on the boundary
of the computational domain, ∂Ω, rather than on the wet-dry interface curve ∂Ωw

changing in time.
This wetting-drying method is fully conservative since drainage zones are ex-

plicitly identified. Moreover, on the wet-dry interface, outflow or zero mass flux
boundary conditions are automatically imposed, depending on the local orography
profile. The wetting-drying approach is thoroughly described in [34], where it is
applied to the numerical solution of the semi-Lagangian shallow water equations
when resorting to a DG space discretization.

In the next two sections, we introduce the numerical schemes which turn out
to be instrumental in the formalization of the Split IMEX-RKC TG2-PC method
proposed in this paper, see Section 3.3.

3.1. The TG2-PC scheme
The two-step Taylor-Galerkin (TG2) scheme is based on a Taylor series expan-

sion in time which, according to [35], offers a useful alternative to a Runge-Kutta
time integration when dealing with non-stiff problems. Indeed, a TG2 scheme re-
quires to perform a flux limiting procedure just once per time step, in contrast to a
Runge-Kutta method which demands such a correction at each stage of the method.

In this paper, we propose a new variant to the standard explicit TG2 scheme
by introducing the integration of the non-conservative contributions with a PC
method. For a review of the explicit standard TG2 scheme in fast landslide simu-
lation, we refer to [36, 6].

Let us consider a hyperbolic problem with non-conservative contributions, i.e.,
model (1) when omitting the diffusive fluxes G and the source term r. This is
equivalent to considering frictionless shallow-water equations in the presence of
an arbitrary bottom, which is fixed in time (i.e., with ∂tZ = 0).
At a generic time tn+o, o = 0, 12 , 1, after denoting by Qn+o ≈ qn+o the time
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discrete counterpart of the conservative variable at time tn+o, and letting Fn+o =
F(Qn+o), Bn+o = B(Qn+o), we integrate system (1) between two consecutive
time instants, tn and tn+1. This yields the two-step second-order semi-discrete
scheme, 

Qn+ 1
2 = Qn +

∆t

2
(−∇ · Fn −Bn∇Zn) ,

Qn+1 = Qn +∆t
[
−∇ · Fn+ 1

2 −Bn+ 1
2∇Zn+ 1

2

]
,

(10)

where the first equation coincides with a first-order predictor step used to provide
an approximation of the conservative variables at the intermediate time.

Now, we consider discretization in space by using the finite element method to
recover the fully discrete scheme. We partition domain Ω by means of a family,
{Dh}, of quadrilateral structured meshes with spacing h. We associate with Dh two
discrete spaces, namely the space Q0 of the (discontinuous) piece-wise constant
polynomials to discretize the first step in (10), and the space Q1 of the continuous
piece-wise bilinear polynomials for the discretzation of the second step. In particu-
lar, Qn+ 1

2 is approximated in space Q0, while both Qn and Qn+1 are chosen in Q1.
Spaces Q0 and Q1 are endowed with a basis, given by {ϕ(0)

j , j = 1, . . . ,M} and

{ϕ(1)
i , i = 1, . . . , N}, respectively, after denoting by M the number of quadrilat-

eral elements in Dh and by N the number of mesh nodes. Thus, the fully-discrete
weak form reads

(Qn+ 1
2 , ϕ

(0)
j ) = (Qn, ϕ

(0)
j )− ∆t

2
(∇ · Fn, ϕ

(0)
j )− ∆t

2
(Bn∇Zn, ϕ

(0)
j ),

(Qn+1, ϕ
(1)
i ) = (Qn, ϕ

(1)
i ) + ∆t (F∗,n+ 1

2 ,∇ϕ
(1)
i )−∆t (Bn+ 1

2∇Zn+ 1
2 , ϕ

(1)
i ),

(11)

for j = 1, . . . ,M , i = 1, . . . , N , where (·, ·) indicates the L2(Ω)-scalar product,
while F∗,n+ 1

2 is a discretization flux that we define below and n is the outward
unit normal vector to the domain Ω. We note that, in this fully discrete weak-form,
we have neglected the boundary integrals to be computed on the boundary of the
computational domain ∂Ω, i.e. the integral

∫
∂ΩF∗,n+ 1

2 n ϕ
(1)
i dΣ. It is over there

that we apply boundary conditions. A complete study of boundary conditions for
hyperbolic problems is beyond the study of the present work, here we consider
non-reflecting boundary conditions, the reader can refer e.g. to [37] for details.
Following the work [38], in the second step of the Equation (11) we rely on the
mass lumping technique to avoid the inversion of the consistent mass matrix. This
choice makes the method particularly suited to a parallel implementation since
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each computation in the second step can be performed node-wise. Moreover, we
highlight two further difficulties related to the computation of this step, i.e., the
evaluation of the integral of the non-conservative product and the design of a high-
order discretization flux, able to ensure both the well-balancing and the positivity-
preserving property.

Let us focus on the former issue. We rely on the PC theory that is able to
provide an analytical meaningful interpretation of the non-conservative products in
a weak sense [10]. The adoption of a PC approach allows us to modify the scheme
to ensure the well-balancing property by selecting an appropriate path. Even if
the PC strategy has been widely applied in the literature in discrete settings like
in the context finite volumes [19, 39] and DG discretizations [40], to the authors
knowledge it has never been applied in a continuous finite element setting and
especially in the framework of the TG2 scheme. Here, we provide an application
in the continuous finite element space. It is worth noting that the PC method could
suffer from controversial aspects. This has been widely addressed in [41] where the
authors show that the PC method is not always capable to reproduce the solution
expected by the conservative numerical solver.
We define a path

Ψ = Ψ(Z
n+ 1

2
− , Z

n+ 1
2

+ , s) = Z
n+ 1

2
− + s(Z

n+ 1
2

+ − Z
n+ 1

2
− ), (12)

which connects two orography states, Z
n+ 1

2
− and Z

n+ 1
2

+ , related to two mesh el-
ements sharing the same edge e, with s the parameter spanning the path, for
0 ≤ s ≤ 1. We choose a standard linear path. As stated in [20], the motivation
behind the specific choice of the path is the simplicity, together with the fact that
the path is expected to guarantee the resulting scheme to be exactly well-balanced
for water at rest solutions of shallow-water type equations. Let us call Ei the set
of the edges e that share the node i. Then, the PC nodal formulation for the non-
conservative product in the second step of (11) becomes

(Bn+ 1
2∇Zn+ 1

2 , ϕ
(1)
i ) =

∑
e∈Ei

∫
e
ϕ
(1)
i dl

∫ 1

0
B
(
Ψ(Z

n+ 1
2

− , Z
n+ 1

2
+ , s)

)
ne ∂sΨds,

(13)
where ne is the unit normal to the edge, such that ne · (x+ − x−) > 0 with x+

and x− the coordinates of the barycenter of two elements sharing edge e, while
∂sΨ denotes the derivative along the selected path. Finally, the two integrals are
numerically computed with the trapezoidal quadrature rule.

Proposition 3.1. The fully discrete weak-form appearing in Equation (11) with the
non-conservative products appearing in the second step of the method computed
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with Equation (13) is exact in the modeling of the lake-at-rest condition, at the
discrete level.

Proof. A numerical method then is called well-balanced if it satisfies at the dis-
crete level the Equation (9). To simplify the presentation, we prove that the well-
balancing condition is satisfied by illustrating what happens just for the material
height and for the momentum equation along the x-direction. For this reason, we
consider a one-dimensional motion in a two-dimensional domain.
Moreover, we make notation easier by neglecting the temporal index in the discrete
variables. Thus, a discrete quantity associated with the barycenter of a quadrilateral
cell refers to time tn+

1
2 and belongs to space Q0. A discrete quantity associated

with a node refers to time tn and belongs to space Q1. To make an example,
Hi,j denotes the space-time discrete counterpart of the material height, H , at the
node with coordinates (i, j) and at time tn, while one-half coordinates, such as
(i+ 1

2 , j +
1
2), identify the degrees of freedom characterizing the space Q0 at time

tn+
1
2 . In particular, the discrete well-balancing equation at the generic coordinate

(i, j) will be denoted by WBH
(i,j) for the material height and by WBUx

(i,j) for the
mass flux along the x-direction.

We start by considering the first step of the TG2-PC method. We take a quadri-
lateral element with extension ∆x × ∆y and we compute the one-half solution
Qn+ 1

2 at the node with coordinates (i + 1
2 , j +

1
2) (see Figure 1). We denote by

(𝑖 + !
"
,𝑗 + !

"
)

(𝑖 + 1,𝑗)

(𝑖,𝑗) (𝑖,𝑗 + 1)

(𝑖 + 1,𝑗 + 1)

Figure 1: Quadrilateral element centered at (i+ 1
2
, j + 1

2
). The degrees of freedom associated with

space Q1 are red-highlighted; the black cross (i.e., the barycenter of the quad) corresponds to the
degree of freedom of the space Q0.

Hn,2 the square of the space-time discrete material height at time tn, and we select
it in Q1. By integrating exactly the balancing integrals in the first step of the TG2-
PC method, we obtain the following well-balancing condition for the mass flux Ux

at the node (i+ 1
2 , j +

1
2),

WBUx

i+ 1
2
,j+ 1

2

=

(
1

2
g∂xH

n,2, ϕ
(0)

i+ 1
2
,j+ 1

2

)
+

(
gHn∂xZ

n, ϕ
(0)

i+ 1
2
,j+ 1

2

)
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=

(
gHn∂xH

n, ϕ
(0)

i+ 1
2
,j+ 1

2

)
+

(
gHn∂xZ

n, ϕ
(0)

i+ 1
2
,j+ 1

2

)

=

(
gHn∂x(H

n + Zn), ϕ
(0)

i+ 1
2
,j+ 1

2

)
= 0. (14)

This chain of equalities is obtained by exploiting the hypothesis of null mass flux
Un
x = 0 at time tn, together with the relation Hn + Zn = constant. These hy-

potheses are true since the generic time tn does initially coincide with the initial
condition. We can conclude that the first step of the TG2-PC scheme is exactly
well-balanced. Indeed, considering again Un

x = 0, one obtains WBH
i+ 1

2
,j+ 1

2

=

(∂xU
n
x , ϕ

(0)

i+ 1
2
,j+ 1

2

) = 0. Moreover, we have exploited the fact that we can com-

pute the spatial partial derivative in the element with cell center (i + 1
2 , j + 1

2)
since functions in Q1 are linear with respect to the spatial coordinates. In this
way, the first step of the TG2-PC method does not add any particular complication
and serves just as an input to the second step, according to a predictor/corrector
paradigm [22, 21].

We now check whether the well-balancing property is satisfied in the second
step of the TG2-PC scheme. To this aim, we consider the four elements with exten-
sion ∆x×∆y sharing the generic internal node (i, j) (see Figure 2), where internal
means that it is not a boundary node (i.e., it does not belong to ∂Ω). We compute
the value of the updated solution Qn+1 at node (i, j). In particular, in the figure,
we identify in magenta the edges where we compute the PC integral. Denoting

(𝑖,𝑗)

(𝑖 + !
"
,𝑗 + !

"
)

(𝑖 − !
"
,𝑗 + !

"
)

(𝑖 + !
"
,𝑗 − !

"
)

(𝑖 − !
"
,𝑗 − !

"
)

(𝑖,𝑗 − 1)

(𝑖 + 1,𝑗 − 1) (𝑖 + 1,𝑗) (𝑖 + 1,𝑗 + 1)

(𝑖,𝑗 + 1)

(𝑖 − 1,𝑗 − 1) (𝑖 − 1,𝑗) (𝑖 − 1,𝑗 + 1)

𝑒"

𝑒!

Figure 2: Elements sharing node (i, j) (in blue). The other degrees of freedom associated with space
Q1 are red-highlighted; the degrees of freedom of space Q0 are depicted with the black cross. Two
edges e1, e2 are highlighted in magenta needed for the PC method.

by Hn+ 1
2
,2 the square of the space-time discrete quantity Hn+ 1

2 belonging to Q0

and at time tn+
1
2 , after integrating exactly the conservative flux and by using the

trapezoidal rule to integrate the PC formulation for the continuous space Q1, we

10



obtain the following well-balancing property at the discrete level,

WBUx
i,j =

(
1

2
gHn+ 1

2
,2, ∂xϕ

(1)
i,j

)
−
(
gHn+ 1

2∂xZ
n+ 1

2 , ϕ
(1)
i,j

)
=

∫ ∆x

0

∫ ∆y

0

1

∆x

y

∆y

1

2
gH2

i+ 1
2
,j− 1

2

dxdy

+

∫ ∆x

0

∫ ∆y

0

−1

∆x

y

∆y

1

2
gH2

i+ 1
2
,j+ 1

2

dxdy

+

∫ ∆x

0

∫ ∆y

0

1

∆x

(
1− y

∆y

)
1

2
gH2

i− 1
2
,j− 1

2

dxdy

+

∫ ∆x

0

∫ ∆y

0

−1

∆x

(
1− y

∆y

)
1

2
gH2

i− 1
2
,j+ 1

2

dxdy

−
∑
k=1,2

∫
ek

1

2
dy

∫ 1

0
gHn+ 1

2 (Ψ(s)) ∂sΨds

=
∆y

2

(
1

2
gH2

i− 1
2
,j− 1

2

+
1

2
gH2

i+ 1
2
,j− 1

2

)

−∆y

2

(
1

2
gH2

i− 1
2
,j+ 1

2

+
1

2
gH2

i+ 1
2
,j+ 1

2

)
−∆y

2

1

2
g
(
Hi− 1

2
,j− 1

2
+Hi− 1

2
,j+ 1

2

)(
Zi− 1

2
,j+ 1

2
− Zi− 1

2
,j− 1

2

)
−∆y

2

1

2
g
(
Hi+ 1

2
,j− 1

2
+Hi+ 1

2
,j+ 1

2

)(
Zi+ 1

2
,j+ 1

2
− Zi+ 1

2
,j− 1

2

)
=

1

2
g
∆y

2

(
Hi− 1

2
,j− 1

2
+Hi− 1

2
,j+ 1

2

)(
Hi− 1

2
,j− 1

2
+ Zi− 1

2
,j− 1

2

)
− 1

2
g
∆y

2

(
Hi− 1

2
,j− 1

2
+Hi− 1

2
,j+ 1

2

)(
Hi− 1

2
,j+ 1

2
+ Zi− 1

2
,j+ 1

2

)
+

1

2
g
∆y

2

(
Hi+ 1

2
,j− 1

2
+Hi+ 1

2
,j+ 1

2

)(
Hi+ 1

2
,j− 1

2
+ Zi+ 1

2
,j− 1

2

)
− 1

2
g
∆y

2

(
Hi+ 1

2
,j− 1

2
+Hi+ 1

2
,j+ 1

2

)(
Hi+ 1

2
,j+ 1

2
+ Zi+ 1

2
,j+ 1

2

)
= 0. (15)

We note that WBUx
i,j is zero at the discrete level, being the first step of the TG2-PC

scheme well-balanced. Indeed, since the well-balancing condition is satisfied in the
first step, we have Hī,j̄+Zī,j̄ = constant for ī = i− 1

2 , i+
1
2 and j̄ = j− 1

2 , j+
1
2 that
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causes WBUx
i,j to be zero. In addition, since we do not have any non-conservative

products in the mass equation, we trivially get WBH
i,j = (U

n+ 1
2

x , ∂xϕ
(1)
i,j ) = 0,

which is satisfied thanks to the well-balancing property of the first step. This is suf-
ficient to prove that the well-balancing condition is satisfied also at the second step
of the TG2-PC method. To obtain expression (15), we have assumed a null momen-
tum flux at time tn+

1
2 , being the first step of the numerical scheme exactly well-

balanced; moreover, we have used the algebraic relation a2 − b2 = (a+ b)(a− b),
with a, b ∈ R.
Finally, we remark that we have omitted the Rusanov flux contribution. In gen-
eral, this term might deteriorate the well-balancing property of the PC method.
Thus, particular care has to be taken to design a diffusive flux able to preserve this
condition (we refer to the end of Section 3.1 for more details).

We now address the design of a high-order discretization flux F∗,n+ 1
2 . The

TG2 scheme is neither monotone nor positivity-preserving, being second order
space-time accurate [42]. Here, we adopt the Zalesak’s multidimensional Flux
Corrected Transport (FCT) (see [43, 44, 45] for more details), in order to prevent
the rise of spurious oscillations near discontinuities, i.e., the Gibbs phenomenon, so
to maintain an oscillation-free positivity-preserving physical solution. As already
underlined in the work [6], to this aim we adopt the Rusanov first-order monotone
discretization flux weighted by the correction flux-limiting coefficient. However,
we remark that the FCT strategy does not preserve the well-balanced property of
the numerical scheme. This is a common feature of flux limiters, which has been
already addressed in the case of a DG discretization [46]. Below, we adopt a pro-
cedure similar to the one used in this work for the approximation of shallow water
equations with a DG approach.
To formalize the adopted well-balanced FCT method, let us consider a single
quadrilateral element, Q, of the domain discretization with resolution ∆x × ∆y
and consider the variable v = Uq, with

U =


1 0 0 u
0 1 0 0
0 0 1 0
0 0 0 0

 (16)

and u = u(H − Hmin) the Heaviside step function. Then, the Rusanov anti-
diffusive flux is defined as,

δFn
Q = max

(∆x
∆t

,∆y
∆t )

1

2∆t
(∇Vn, ϕ

(0)
Q ), (17)
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with ϕ
(0)
Q the Q0-basis function associated with element Q and Vn the time dis-

crete counter-part of the variable v, i.e., Vn = UnQn. The exact integration in
(17) results in an anti-diffusive flux, coinciding with a linear function of the ra-
tios ∆x

∆t and ∆y
∆t . Thanks to the CFL condition, these ratios are upper bounded by

the maximum simple wave speed modulus in Q, along the x- and y-direction, re-
spectively. The simple waves correspond to the eigenvalues of the full semi-linear
system, namely the system that contains both conservative and non-conservative
contributions. Finally, the discrete flux in the element Q is given by

F
∗,n+ 1

2
Q = (F

n+ 1
2

Q − δFn
Q) + αQδF

n
Q, (18)

where αQ ∈ Q0 denotes the piece-wise constant FCT coefficient defined according
to the well-known Zalesak procedure [43, 44, 45] (for the specific implementation,
we refer to [6]). Considering that the Zalesak procedure provides a positivity-
preserving approximation only if the low order scheme is positivity-preserving. In
particular, for the low order discretization flux we are considering, the following
proposition hold,

Proposition 3.2. The low order TG2-PC scheme produces a positivity-preserving
discretization of the free surface height.

Proof. To consider the low order scheme, we set on the single element QF
∗,n+ 1

2
Q =

F
n+ 1

2
Q −δFn

Q. To ease the presentation, as hypothesis we consider the case of a one-
dimensional motion, i.e., we set Uy known and equal to zero. Further, we consider
the same convention on the symbols as introduced to demonstrate the Proposition
(3.1). By considering a bottom topography Z(x) = 0, the TG2 scheme if applied
to the frictionless shallow water equations, reads

Hn+1
i,j = Hn

i,j +
∆t

∆x
(U

n+ 1
2

x,i− 1
2
,j− 1

2

− U
n+ 1

2

x,i− 1
2
,j+ 1

2

),

U
n+ 1

2

x,i− 1
2
,j− 1

2

=
Un
x,i,j + Un

x,i,j−1

2
+

∆t

2∆x
(Fn

i,j−1 − Fn
i,j),

U
n+ 1

2

x,i− 1
2
,j+ 1

2

=
Un
x,i,j + Un

x,i,j+1

2
+

∆t

2∆x
(Fn

i,j − Fn
i,j+1),

where F = Hw2
x +

1
2gH

2. Then, the material height update reads,

Hn+1
i,j = Hn

i,j(1− w2,n
x,i,j ν̄

2 − gHn
i,j

ν̄2

2
)

+Hn
i,j−1(w

2,n
x,i,j−1

ν̄2

2
+ gHn

i,j−1

ν̄2

4
+ wn

x,i,j−1

ν̄

2
)
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+Hn
i,j+1(w

2,n
x,i,j+1

ν̄2

2
+ gHn

i,j+1

ν̄2

4
− wn

x,i,j+1

ν̄

2
), (19)

where ν̄ = ∆t
∆x and it is linked to the nodal CFL number ν through the relation

ν = ν̄λ where λ is the maximum eigenvalue in modulus. Regarding the λ, we omit
the nodal subscript but it is the maximum nodal wave-speed. In the following, we
omit any temporal superscript and spatial subscript to ease the presentation. After
simple algebra we can conclude that the TG2 method is not positivity-preserving,
indeed by recasting the last two lines in Equation (19), we obtain

ν ± wx|wx|+ wxc

w2
x + c2/2

≥ 0

to ensure positivity of the updated material height. Note that above we have omitted
the subscripts for the velocity and for the celerity c =

√
gH . By considering that

in the limit of high velocities the equation above reduces to

ν ± 1 ≥ 0

we can conclude that the TG2 method is not positivity-preserving being the limit
case ν ≥ 1 violating the classical stability constraint of the TG2 scheme.
If now we consider the extra numerical diffusion given by the Rusanov flux in
Equation (17), we obtain that the low-order solution is positivity-preserving if the
following conditions are satisfied

1− w2
xν̄

2 − c2
ν̄2

2
− ν ≥ 0,

w2
x

ν̄2

2
+ c2

ν̄2

4
± wx

ν̄

2
+

ν

2
≥ 0,

(20)

where again we have omitted any temporal superscript and spatial subscript for
simplicity. After simple algebra and in the limit case of high velocities, we can
simplify the second equation above as

ν + 1± wx
ν

λ
+ ν ≥ 0, (21)

by exploiting the fact that ν = ∆t
∆x(|wx| + c) we can conclude that the Equa-

tion (21) is always satisfied being c positive for hypothesis. Regarding the first line
in Equation (20), by noting that the condition,

ν2 > ν̄2(w2
x + c2/2),
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holds in every flow condition, we can state the following restrictive simplification
of this equation,

1− ν2 − ν ≥ 0, (22)

that leads to the conditions on the CFL number,

−1−
√
5

2
≤ ν ≤ −1 +

√
5

2
.

While the conditions on the left is always satisfied being it negative, the condition
on the right provides a more restrictive condition with respect to the CFL number
required by stability, indeed −1+

√
5

2 ≈ 0.6. This is however an estimation of the
most restrictive positivity condition, if this condition is satisfied, thanks to the FCT
strategy the method is able to produce a positivity-preserving second-order solu-
tion.
In the more general case of a non planar orography, the positivity-preserving prop-
erty can be proved just on the nodal free surface height ηn+1

i,j . Thanks to a constant
orography profile, i.e., ∂tZ(x) = 0, we can sum to the updated mass equation
Hn+1

i,j the quantity Zn
i,j . This leads to an updated equation for the variable ηn+1

i,j . In
particular, we can recognize two contributions, a first one, which has been already
analyzed in the case of Z(x) = 0, and another one, which is a function of the
quantities Zn

i,j−1, Zn
i,j , Z

n
i,j+1. We report here the new contribution we call contr2,

contr2 =
ν̄2

2
(Zn

i,j−1c̄
2
l − Zn

i,j(c̄
2
l + c̄2r) + Zn

i,j+1c̄
2
r),

where c̄2l =
g(Hn

i,j+Hn
i,j−1)

2 , c̄2r =
g(Hn

i,j+Hn
i,j+1)

2 . By considering now the well-
balancing correction of the limiter, i.e. the Equation (17), we note that the nodal
free surface height results positive if the following condition on the coefficient
multiplying Zn

i,j holds,
1− ν2 − ν ≥ 0.

To obtain the inequality above we have exploit the fact that ν2 ≥ ∆t2

2∆x2 c̄
2. We note

that we obtain the same condition obtained in case of null orography profile, i.e.,
the Equation (22).

3.2. The second order IMEX-RKC finite element scheme

To face the stiffness of the diffusion and source terms, we resort to a second
order space-time Implicit–Explicit Runge–Kutta–Chebyshev (IMEX-RKC) finite
element scheme. This method avoids to build a global matrix, as in case of implicit
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schemes, while maintaining the node-wise operation structure suited to a parallel
implementation.

With this aim, we start from a diffusion-reaction equation (i.e., we neglect
the hyperbolic contribution in model (1) coinciding with the terms depending on
F and B), and we consider the corresponding spatial discretization based on the
finite element space Q1 associated with the quadrilateral structured partition Dh of
Ω, 

d
dtVi = FD(t,VNi) + FR(t,Vi),

FD(t,VNi) = (G,∇ϕ
(1)
i ),

FR(t,Vi) = (r, ϕ
(1)
i ),

(23)

for i = 1, . . . , N , and where Vi = (q, ϕ
(1)
i ) is a vector function of time discretiz-

ing the conserved variable q at the node i, being the integral computed with a mass
lumping approach. Accordingly, FD(t,VNi) and FR(t,Vi) provide the spatial
discretizations of the diffusive fluxes and of the reaction term, respectively. The
symbol VNi denotes the discretizations of q in the set of nodes of the elements
containing node i.
Finally, we note that, in this semi-discrete formulation, we have omitted the bound-
ary conditions on the diffusive flux, we have set

∫
∂ΩGn ϕ

(1)
i dΣ = 0. Again, a

complete treatment of boundary conditions, in this case for purely diffusive prob-
lems, is beyond the scope of the present work. We consider null boundary fluxes
for simplicity and considering also that most of the influence is due to the transport
fluxes in an advection dominated problem.

It is well-known that a spatial discretization through linear finite elements of
the diffusive fluxes leads to a space-discrete operator whose eigenvalues lie on
the real axis and are all negatives. To this aim we consider the IMEX-RKC time
integration scheme [23]. Which is an extension of the RKC scheme designed for
the time integration of diffusion problems [24] and that has been already applied in
the framework of linear finite elements in the work [27]. The second-order IMEX-
RKC scheme can be formalized in such a way: given the numerical solution Vn

i at
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time tn, the updated solution, Vn+1
i , is computed by:

W0
i = Vn

i ,

W1
i − µ̃1∆tF1

R(W
1
i ) = W0

i + µ̃1∆tF0
D(W0

Ni
),

Wj
i − µ̃1∆tFj

R(W
j
i ) = (1− µj − νj)W

0
i + µjW

j−1
i + νjW

j−2
i

+ µ̃j∆tFj−1
D (Wj−1

Ni
) + γ̃j∆tF0

D(W0
Ni
)

+ (γ̃jµ̃1µj/µ̃j − (1− µj − νj)µ̃1)∆tF0
R(W

0
i )

− νjµ̃1∆tFj−2
R (Wj−2

i ), j = 2, . . . ,m,

Vn+1
i = Wm

i ,
(24)

where W0
i , . . . ,W

m
i are intermediate vectors in the node i, fluxes Fj

D(Wj
Ni
),

Fj
R(W

j
i ) stand for FD(tn + cj∆t,Wj

Ni
),FR(t

n + cj∆t,Wj
i ) respectively, with

0 = c0 < c1 < · · · < cm = 1. Again, Wj
Ni

refers to the set of vectors Wj
k,

k = 1, . . . , N defined on the set of nodes belonging to the set of elements sharing
the node i with the node i itself. The number m of stages required to stabilize
the second-order RKC method depends on the stiffness of the diffusion term. As
derived in [23], we set

m = 1 +

⌈(
1 +

∆t σJ
0.653

) 1
2

⌉
, (25)

with σJ the spectral radius of the Jacobian matrix associated with the space-discrete
diffusion operator FD. In particular, we estimate σJ with the Gershgorin circle the-
orem, while we compute numerically the derivatives involved in the definition of
the Jacobian matrix. Note that, in applications where the diffusion term is very stiff,
the spectral radius may become very large and, consequently, the RKC scheme few
effective in practice, since requiring a significant number of internal stages to stabi-
lize. Vice versa, formula (25) preserves a meaning in case of a mildly stiff diffusion
operator and severely stiff reaction terms, as for the problem we are dealing with
in this paper.
Concerning the several coefficients involved in (24), we adopt the definitions pro-
vided in [23], that we supply here for completeness. With this aim, we introduce:
the Chebyshev polynomials of the first kind, defined by the recursive relation

T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x)− Tj−2(x), (26)

for 2 ≤ j ≤ m and x ∈ R, where index j keeps trace of the polynomial degree;
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the positive real parameter ϵ, known as dumping parameter, that we set to 2/13 in
order to ensure a second order scheme as underlined in [24, 23]; quantities

ω0 = 1 +
ϵ

m2
, ω1 =

T
′
m(ω0)

T ′′
m(ω0)

; b0 = b1 = b2, bj =
T

′′
j (ω0)[

T
′
j (ω0)

]2 .
Thus, coefficients µj , νj , µ̃j , γ̃j and cj are computed by

µj =
2bjω0

bj−1
, νj =

−bj
bj−2

, µ̃j =
2bjω1

bj−1
with µ̃1 = b1ω1,

γ̃j = −(1− bj−1Tj−1(ω0))µ̃j , cj =
T

′
m(ω0)

T ′′
m(ω0)

T
′′
j (ω0)

T
′
j (ω0)

with c0 = 0, c1 =
c2
4ω0

,

with 2 ≤ j ≤ m.
We observe that the explicit treatment of the diffusion term in (24) leads to a

nonlinear algebraic system of equations that is not coupled in space. Thus, at each
mesh node and at each internal stage of the IMEX-RKC method, a single nonlinear
equation has to be solved. This represents a key aspect in a parallel implementa-
tion, since leading to a fully decoupled system as for the TG2 scheme. Since the
mass conservation equation is independent on the diffusion term, the RKC inter-
nal stages are performed just for the momentum equation. Furthermore, the bed
friction term included in FR depends on the x- and y-mass fluxes, separately (see
the rheology law in (6)), so that the non-linearity on each mesh node can be tack-
led with a scalar semi-smooth Newton method along both the x- and y-direction
without requiring a matrix inversion. The semi-smooth Newton method adopted is
similar to the one described in the works [47, 48, 49] for contact problems. The
choice for a semi-smooth scheme is due to the fact that the bed friction is a func-
tion of the absolute value of the velocity components thus resulting in a piece-wise
differentiable function, and to the presence of a signum function. In particular, we
consider a linear relaxation of the signum function in (6) to ensure the piece-wise
differentiability. Thus, for x ∈ R, we replace sgn(x) with the linear relaxation

sgnγ(x) =


1 if x > γ,

−1 if x < −γ,
x

γ
otherwise,

(27)

such that sgn(x) = limγ→0 sgnγ(x), with γ a strictly positive relaxation parameter
set to 10−2 in the simulation we present here.

The selected time discretization in the presence of a Q1 spatial finite element
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discretization leads to a numerical scheme which is second order in space and time.

3.3. Strang splitting IMEX-RKC TG2-PC method

In this section, we establish the approximation scheme we adopt for the nu-
merical assessment in the next section. The basic remark is that in model (1) the
transport and the diffusion-reaction contributions exhibit completely different char-
acteristics from a numerical point of view. This justifies the adoption of a splitting
method [8, 7] in order to achieve an efficient integration in time, so that each term
can be integrated using the most suitable scheme. In this work, we resort to the
Strang splitting which is second-order accurate and strongly stable [8].

To simplify the presentation, we define the transport and the diffusion-reaction
continuous operators as T (q) = −∇ · F − B∇Z and D(q,∇q) = r − ∇ · G,
respectively. The Strang splitting method coincides with the following three-step
procedure: given qn,

∂tq
(1) = T (q(1)) with q(1)(x, tn) = qn,

∂tq
(2) = D(q(2),∇q(2)) with q(2)(x, tn) = q(1)

(
x, tn +

∆t

2

)
,

∂tq
(3) = T (q(3)) with q(3)

(
x, tn +

∆t

2

)
= q(2)(x, tn +∆t),

qn+1 = q(3)(x, tn +∆t),

for n ≥ 0. Then, we integrate the first and third step with the TG2-PC method,
while we use the IMEX-RKC finite element scheme for the integration of the sec-
ond step which involves the stiff reaction-diffusion operator. Hereafter we call this
scheme as Split IMEX-RKC TG2-PC method.

Note that, for stability reasons, the complete scheme is only subject to the
Courant–Friedrichs–Lewy (CFL) condition of the transport operator. Indeed, the
IMEX-RKC finite element scheme is unconditionally stable thus does not require
any time step restriction for stability. To this aim, we compute the time step restric-
tion based on the time step ∆t. It is then clear that, for stability reasons, the CFL
condition can be maximum equal to 2 considering that the first and third step of
the Strang splitting procedure advancing of a time step ∆t

2 . This constitutes a key
difference with respect to the TG2 method [36, 5, 4, 6], where a more restrictive
time step is usually necessary to cope with the stiffness of the reaction term as well
as to satisfy the time step restriction induced by the diffusion term that scales as
h−2, with h the mesh spacing.
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4. Numerical results

We present the results of some simulations performed to assess the perfor-
mance of the numerical scheme presented in the previous section. We will also
compare the proposed scheme with a standard explicit TG2 method in terms of
computational efficiency, in the context of fast landslides modeling [36, 5, 4, 6]. In
more detail, in Section 4.1 we discuss the reliability of the Split IMEX-RKC TG2-
PC method, by investigating the accuracy and the well-balancing of the numerical
scheme. The efficiency of the implementation is analyzed in Section 4.2, where we
present three idealized tests with increasing complexity. Finally, in Section 4.3 we
consider a real case study, by resorting to a space wet-dry interface tracking mesh
adaptation procedure.

The numerical framework has been implemented using the parallel library,
bim++ [50, 51, 6], written in C++, which implements partial differential operator
discretization, recovery–based error estimators and metric-based mesh adaptation
procedures on hierarchical quadtree meshes. In particular, in bim++ mesh refine-
ment, coarsening, balancing and partitioning make use of functionalities offered
by the library p4est [52]. For more details about the adopted space adaptation pro-
cedure, the reader can refer to [50, 6]. Concerning the time discretization, we vary
the time step based on the Courant–Friedrichs–Lewy (CFL) condition, by setting,
if not otherwise stated, the CFL value to 0.9 so that the positivity-preserving con-
straint on the free surface is guaranteed on the first and third Strang splitting steps.
In an example we show results of the proposed discretization method considering
a CFL number considerably greater than one.
We define by Lx and Ly respectively the x- and y-extensions of the computational
domain Ω.
From a computational viewpoint, we set the threshold, Hmin = 10−5 m, on the
material height, such that under this threshold we have a null velocity. Finally, as
mentioned in Section 3.2, we numerically compute the spectral radius, σJ , of the
Jacobian matrix of the space-discrete diffusive fluxes in (25) needed to provide an
estimation of the number of stages required by the RKC scheme. Since the result-
ing space-discrete diffusion operator is a function of just the momentum fluxes, we
consider an increment on Ux and Uy, set to 10−8 for both the components. Finally,
we perform all the calculations in double precision.

We run the simulations presented in Sections 4.2.2, 4.2.3, 4.3 on the same
supercomputer architecture used in [6], the CINECA GALILEO100. In particular,
we perform the compilation and linking steps with gcc-10 and OpenMPI 4.1.1. For
all the others experiments we use a laptop with an Intel i7 CPU having 2.60GHz
clock frequency and 16GB of RAM.
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4.1. Reliability assessment

In the first set of numerical examples, we provide numerical evidence about the
accuracy and well-balancing of the Split IMEX-RKC TG2-PC method.

4.1.1. Accuracy tests
In the first test, we provide a simulation of the viscous dam break problem

without bed friction. We consider a uniform material height H = 1m, a null initial
condition for Uy, and an initial mass flux profile along the x-direction, given by

Ux(x, 0) =

{
1 if x ≤ L/2,

0.5 if x > L/2,
(28)

with L = Lx = Ly = 5m. Here, we set the following simulation parameters
ρ = 1kg/m3, µ = 0.05Pa·s, τY = 0Pa, T = 0.3s, g = 9.81m/s2.

In Figure 3 we show the results of the test by gradually increasing the mesh

0 1 2 3 4 5
1

1.02

1.04

1.06

1.08

1.1

a)
0 1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1

b)

0 1 2 3 4 5
0

1

2

3

4

5

0.5

0.6

0.7

0.8

0.9

c)

Figure 3: Accuracy tests. Viscous dam-break problem. Panels a), b): comparison between the ana-
lytical inviscid solution (in green) and the Split IMEX-RKC TG2-PC viscous solution (in black), for
various levels of mesh refinement (the arrows highlight the increasing values of l); Panel c): isolines
of H , with black-highlighted the line y = Ly/2 along which we compute the one-dimensional solu-
tion shown in panels a), b).
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refinement. In more detail, if l denotes the refinement level, the number of cells
used to discretize the domain in both the x- and y-direction turns out to be equal
to 2l. Panels a), b) gather the analytical inviscid solution (in green) along the line
y = Ly/2 (see panel c)) and at time T , together with the corresponding Split
IMEX-RKC TG2-PC viscous solution (in black), when varying l from 5 to 11.
The comparison is carried out in terms of the velocity component Ux (panel a))
and of the material height H (panel b)). As expected, the higher l, the sharper the
approximation.
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Figure 4: Accuracy tests. Smooth solution. Panels a), b): solutions of the Split IMEX-RKC TG2-PC
scheme for various level of mesh refinement (the arrows highlight the increasing values of l); Panel
c): convergence trend with respect to L2(Ω)-norm, where the reference solution refers to l = 9;
Panel d): isolines of H for l = 9, with black-highlighted the line y = Ly/2 along which we
compute the one-dimensional solution shown in panels a), b).

In a second test, we provide numerical evidence of the expected second-order
convergence rate, by considering a smooth configuration. We take into account the
smoothly-varying domain identified by the orography profile

Z(r) = 1 +
1

10
exp

(
− 50

L2
r2
)
, with r2 =

(
x− L

2

)2

(29)
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and L = Lx = Ly = 5m, and we set ρ = 1kg/m3, µ = 0.5Pa·s, τY = 0Pa,
T = 0.1s, g = 9.81m/s2. We assign a null initial mass flux and

H(r, 0) = Z(r) (30)

as the initial material profile. We keep the CFL fixed to 0.9 in all the simula-
tions. Finally, we consider a set of refinement levels from 4 to 9. In particular, the
L2(Ω)-norm of the error is computed with respect to the solution associated with
the highest level (i.e., l = 9).
Figure 4 gathers the results of such a convergence analysis. Panels a), b) provide
the Split IMEX-RKC TG2-PC numerical solutions for the different refinement lev-
els, computed along the line y = Ly/2 (see panel d)) and at time T . Panel c)
displays the convergence trend of the error. We experience a sharp second-order
convergence for the mass flux, while the material height reaches a value of 1.68.
In Table 1, we collect the number of RKC stages when increasing the number l of
refinement levels.

l 4 5 6 7 8 9

#stages RKC 2 3 4 6 9 12

Table 1: Accuracy tests. Smooth solution. Number of stages of the RKC method (#stages RKC) for
different values of l.

Finally, in Figure 5 we compare the Split IMEX-RKC TG2-PC scheme with the
TG2 method, when varying l from 4 to 8 (we refer to [6] for the specific TG2
scheme used for the comparison). We notice that the two approximate solutions
approach each other when refining the mesh, in accordance with the expectations.
A comparison between the Split IMEX-RKC TG2-PC and the TG2 approaches
will be carried out in terms of CPU time in Section 4.2.

4.1.2. Well-balancing test
The purpose of this test problem is to verify that the Split IMEX-RKC TG2-

PC scheme maintains the well-balancing property over a non-flat bottom. With
this aim, we consider the same configuration described in [53], namely a domain
extension L = Lx = Ly = 10m, a final time T = 0.5s and two different functions
to model the bottom orography, i.e.,

Z(x) = Z1(x) = 5e−
2
5
(x−5)2 , (31)
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Figure 5: Accuracy tests. Smooth solution. Panels a), b): comparison between the Split IMEX-RKC
TG2-PC and the TG2 schemes for various levels of refinement, from 4 to 8.

which is smooth, and

Z(x) = Z2(x) =

{
4 if 4 ≤ x ≤ 8

0 otherwise
(32)

characterized by discontinuity. The initial condition coincides with the stationary
solution,

H + Z(x) = 10, [Ux, Uy]
⊤ = 0. (33)

This steady-state configuration is expected to be preserved exactly by the numeri-
cal scheme. We consider a discretization of the domain with a level of refinement
l equal to 8. Table 2 provides the L1(Ω)- and L∞(Ω)-norm of the error associ-
ated with the two components of the velocity and the material height for both the
considered orographies. All errors are close to the round-off independently of the
selected bed profile, thus verifying the well-balancing property of the split IMEX-
RKC TG2-PC method.

L1(Ω)-norm of the error L∞(Ω) -norm of the error

H Ux Uy H Ux Uy

Z1 1.67e-13 4.87e-12 1.48e-12 8.88e-15 1.77e-13 1.21e-13

Z2 1.54e-15 2.78e-13 1.52e-13 3.55e-15 4.48e-14 5.76e-14

Table 2: Well-balancing test. L1(Ω)- and L∞(Ω)-norm of the error for the stationary solution in the
presence of a smooth and of a discontinuous bed orography.
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4.2. Efficiency assessment
In this section we verify the efficiency of the implementation of the Split

IMEX-RKC TG2-PC scheme, by comparing the proposed method with the stan-
dard TG2 approach [4, 5, 6].
This analysis is performed on three case studies. In the first one, we consider a flat
plane and a null yield shear stress τY , i.e., we deal with a Newtonian rheology; in
the second test we still have a flat plane, but we consider bed friction with a Bing-
ham fluid [31]; in the last configuration, we analyze the flow of a Bingham fluid
with bed friction over an inclined plane orography. The comparison with the TG2
scheme is carried out in terms of time step selection for all the three cases, and of
parallel performance for the second and third settings.

4.2.1. Example 1
We consider a flat plane, a null yield shear stress, a frictionless bed, a final

simulation time T = 0.2s in a square domain with extensions L = Lx = Ly =
5m, for both the TG2 and Split IMEX-RKC TG2-PC scheme. We set null initial
conditions on the mass fluxes, while selecting as initial material profile,

H(r, 0) =

{
2 if r ≤ 1

2 ,

1 if r > 1
2 ,

(34)

where r is the radial distance from the barycenter of the square domain Ω, i.e,
r =

√
(x− L/2)2 + (y − L/2)2. This is equivalent to considering a radial dam

break problem with a gravitational field g = 9.81m/s2, a density ρ = 1kg/m3 and
a fluid viscosity µ = 0.1Pa·s.

∆x TG2 Split IMEX-RKC TG2-PC #stages RKC

0.1 6.86646 · 10−3 3.33623 · 10−2 4

0.05 1.71661 · 10−3 1.63593 · 10−2 4

0.025 4.29153 · 10−4 8.1052 · 10−3 6

0.0125 1.07288 · 10−4 4.05579 · 10−3 8

Table 3: Example 1. Time steps in seconds for the TG2 and for the Split IMEX-RKC TG2-PC
method and the number of stages required by the RKC method #stages RKC for the Split IMEX-
RKC TG2-PC method, for the different minimum linear resolutions considered ∆x.

We consider a space adaptation procedure as described in the work [6] carried
out at each time step with a tolerance on the recovery based estimator equal to τ =
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Figure 6: Example 1. Plot of the CPU-time against the resolution ∆x for both the TG2 and the Split
IMEX-RKC TG2-PC method, the y-axis is in semilogarithmic scale.

10−5m. In particular, we consider a set of minimum linear resolutions in the wet
region equal to {0.1, 0.05, 0.025, 0.0125}m. The numerical results are obtained
using 4 processors. We consider a CFL number, which we recall is calculated on
the time step ∆t, equal to 0.9 and 1.8 on the TG2 and on the Split IMEX-RKC
TG2-PC, respectively. In this way, for the Split IMEX-RKC TG2-PC method, we
recover a CFL number equal to 0.9 in the single TG2-PC procedure. In Figure 6
and Table 3 we compare the TG2 and the Split IMEX-RKC TG2-PC approaches
by providing, for the different linear resolutions considered, the plot of the CPU-
time and the time step, respectively. We can observe that the method here proposed
enables the use of a considerably larger time step compared to the TG2 method.
This reflects also on the CPU-time, which ranges from the almost the same CPU
time of the TG2 scheme in case of ∆x = 0.1m to a CPU time that is roughly 3%
of the CPU time required by the standard TG2 scheme in case of ∆x = 0.0125m.
This is a considerably greater improvement over the standard TG2 method. Finally,
in Figure 7, first in panel a) we report the final time mesh in case of ∆x = 0.025m
together with the isolines of the material height H and in white the line over which
we exctract the one-dimensional solution that we present in panels b), c). There, we
show the final time solutions obtained in case of ∆x = 0.0125m by the TG2 and
the Split IMEX-RKC TG2-PC method. We particularly note that, the classical TG2
scheme results to be more dissipative than the proposed Split IMEX-RKC TG2-
PC approach. Indeed, as one can notice, the Split IMEX-RKC TG2-PC method
produces almost the same solution of the most refined solution of the TG2 scheme
in case of ∆x = 0.05m and a CFL number equal to 0.2, see the magenta dashed
line.
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Figure 7: Example 1. a) shows the isolines of the material height together with the mesh and in
white the line over which we extract the one-dimensional solution we present in panels b), c); b),
c) final time mass flux and material height for the TG2 and the Split IMEX-RKC TG2-PC methods.
The magenta dashed line is the solution obtained by the Split IMEX-RKC TG2-PC in case of ∆x =
0.05m and a CFL number equal to 0.2.

4.2.2. Example 2
We consider the same configuration as in the previous section. We change the

following simulation parameters, ρ = 1300kg/m3, µ = 50Pa·s, and we consider a
Bingham fluid with τY = 103Pa.

In Figure 8 we show some results of the simulation obtained with a level of
refinement l = 10, which corresponds to a space resolution of roughly 5 · 10−3m
in both directions. In particular, panels a), b) provide the trend of the material
height and of the mass flux extracted along the x-direction at the final time T . The
numerical scheme is capable of detecting both the rarefaction and the shock waves.
Panels c), d) collect computational information, namely, the number of RKC stages
against time and the speedup gained when increasing the number of processors,
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Figure 8: Example 2. a) Material height and b) mass flux along the x-direction at the final time; c)
RKC number of stages against time; d) speedup of the strong scaling analysis in a log2-log2 plot.

from 16 to 512. We reach a parallel efficiency around 80%, even though we have
over 300 RKC number of stages for all the simulation time. This confirms the
efficiency of the implementation since the RKC method is a completely data-local
method, and the number of RKC stages does not affect the parallel performances.

4.2.3. Example 3
This example involves a granular sliding mass along a planar orography profile

so that the source term plays a role. The slope of the profile is approximately
equal to 22◦ along the x axis. We choose the following parameters: gravitational
field g = 9.81m/s2, simulation time T = 5s, density ρ = 1400 kg/m3, viscosity
µ = 50Pa·s, yield shear stress τY = 2 · 103Pa, turbulent coefficient ξ = 10m/s2,
bed friction angle δ = 23◦, pS = 0Pa, domain extension L = Lx = Ly = 1000m.
We consider a material initially at rest, with an initial height

H(x, 0) =

{
max{0,min{500x/L− 200, 30}} for x ∈ V,

0 otherwise,
(35)
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where

V =

{
x ∈ R2 :

(x− L/2)2

L2
+
(x− L/2)2

L2
≤

[
0.2+0.01 sin

(
10

y − L/2

L

π

L

)]2}
.

a) b) c)

Figure 9: Example 3. a) Material height, b) x- and c) y-direction mass flux distribution in Ω at the
final time.

We adopt a space discretization with a level l of refinement equal to 10. Fig-
ure 9 offers qualitative results of the simulation, by providing the spatial distribu-
tion of the material height and of the x- and y-direction mass flux (from the left
to the right panel) at time T . It is evident the absence of the slope contribution
in panel c), while in panel b) we detect an offset due to the presence of the slope
along the x-direction. Figure 10 provides more quantitative information related to
the numerical algorithm, namely the number of RKC stages against time in panel
a), the time step size against time in panel b), the plot of the absolute stability re-
gion for three different numbers of stages in panel c), and the speedup of a strong
scaling analysis using a number of processors from 16 to 512 in panel d). The
RKC number of stages, as well as the time step, are decreasing during the simula-
tion. This is compliant with the expectation since the problem is stiffer during the
first movement of the material; then, the transport fluxes assume more importance
leading to an advection-dominated setting. Panel c) highlights the increment of the
stability region when increasing the value of m. Regarding the speedup, we obtain
a parallel efficiency around 80%, analogously as for the previous test case.

4.3. A real case study

We focus now on a real case study simulation to show the capability of the Split
IMEX-RKC TG2-PC method to deal with real problems. We will prove that the
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Figure 10: Example 3. a) RKC number of stages against time; b) time step against time; c) absolute
stability region for a different number m of stages; d) speedup of the scaling analysis in a log2-
log2 plot.

implemented algorithm ensures some strong scaling results when set in the space-
time adaptive framework with quadtree interface tracking described in [6], where
mesh adaptation is driven by material height.

We consider the Bindo-Cortenova case study, namely a wide translational land-
slide, located in Valsassina (Lecco province, Lombardy, Italy) that underwent a
catastrophic failure in December 2002 (volume ca 1.2 · 106m3). We refer to [54]
for a complete explanation of the involved geological aspects. The 5m-resolution
Digital Terrain Model (DTM) with domain extent Lx = 820m, Ly = 870m is fur-
nished, together with the corresponding slope, in Figure 11, the mean slope angle
being approximately equal to 28◦. According to [55], the average thickness of the
slide is assumed to be equal to 38m, the material density is ρ = 1291kg/m3, the
bed friction angle is δ = 33.9◦ and the surface pressure is pS = 1atm. Regarding
the Bingham and Voellmy rheological models, we set the following coefficients
µ = 50Pa·s, τY = 2 · 103Pa, ξ = 103m/s2. We select a final time T = 10s, a cell
resolution of 0.25m in wet-dry interface regions and a 1m minimum resolution in
wet regions. Finally, the space adaptation is carried out every 0.5s, with a tolerance

30



a)
529600 529800 530000 530200 530400

50
94
60
0

50
95
00
0

50
95
40
0

slope magnitude (deg)

x (m)

y 
(m

)

0
10
20
30
40
50
60
70

b)

Figure 11: Real case study. a) Isolines of the DTM together with its corresponding slope magnitude
in degrees b).

on the recovery based estimator equal to τ = 10−5m (we refer to [6] for further
details).
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Figure 12: Real case study. Evolution of a) the time step and b) of the RKC number of stages as a
function of time; c) speedup of the scaling analysis in a log2-log2 plot.

Figure 12 shows the time evolution of the time step (panel a)) and of the number
of stages of the RKC method (panel b)), together with the speedup characterizing
the scaling analysis from 16 to 512 processors. The trend of ∆t exhibits several
peaks in correspondence with the spatial adaptation phases, although, on average,
the behaviour is very similar to the one in Figure 10 where, after the initial move-
ment of the material, the time step tends to reach a constant state when the landslide
behaves similarly to a Newtonian fluid. The oscillatory plot of the time step finds
a counterpart in the evolution characterizing the RKC number of stages. We note
that the maximum number of mesh nodes is of the order of half a million. This
results into a lower speedup (ranging between 60% and 70%) when compared with
the cases presented in the previous sections.
Finally, in Figure 13, we provide some sketches of the solution at the final time. In
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Figure 13: Real case study. a) Material height and b) absolute value of the mass flux distribution at
time T ; c) Newton iterations of the IMEX-RKC at the final stage and d) detail of the adapted mesh
at time T .

more detail, panel a) displays the material height colormap with, in black, the line
representing the final landslide material deposition according to geological obser-
vations; panel b) provides the absolute value of the mass flux distribution; panel c)
shows the isolines of the Newton iterations at the final stage of the RKC method;
panel d) offers an enlarged view of the adapted mesh overlapped to the material
height distribution. Panels a) and b) show that the landslide is reaching a steady
state (as confirmed by the small values of |U| along the falling mass boundary)
in contrast to, for instance, the configuration in Figure 9. This has an impact on
the small number (up to 4) of iterations demanded by the Newton scheme to con-
verge. Finally, we note the detection of the wet-dry interface guaranteed by the
front-tracking methodology fully described in [6].

5. Conclusions

We have proposed an efficient parallel second-order well-balanced space-time
numerical framework for simulating the run-out phase of rapid landslides.
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The method is characterized by a larger stability region when compared with
the standard TG2 scheme while preserving the locality of the implementation. The
new method, which we name Split IMEX-RKC TG2-PC, combines the TG2-PC
discretization with the IMEX-RKC approach through an operator-splitting strat-
egy. We have applied the Split IMEX-RKC TG2-PC scheme to the solution of
the single-phase depth-integrated model for fast-moving landslides, and showed it
to be exact when dealing with the lake-at-rest steady state solution. In particular,
the new numerical framework offers a more efficient tool when compared with the
standard TG2 method in the approximation of the single-phase model for the run-
out phase of fast-moving landslides.
The Split IMEX-RKC TG2-PC method has been numerically assessed in case of
both idealized and real DTM orography configurations. In particular, after some
reliability tests showing the accuracy and the numerical evidence of the well-
balancing property of the numerical scheme, we have carried out some compar-
isons against the TG2 method in terms of time step selection and parallel perfor-
mance and provided strong scaling results to show the efficiency of the parallel
implementation.

As for possible future developments, we mention the possibility of exploiting
the scalability of our code to perform simulation intensive tasks such as an uncer-
tainty quantification analysis applied to a real landslide run-out. This could be per-
formed, for instance, by using methods like the polynomial chaos expansion [56].
We also plan the extension of the proposed numerical simulation framework to
include the landslide initiation phase dynamics. This implies the addition of the
consolidation time process in the numerical model, which is the principal respon-
sible of long-term landslide dynamics.
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