logo del seminario matematico e fisico di milano
Seminario Matematico e Fisico di Milano
Piazza Leonardo da Vinci, 32 - 20133 Milano
Direttore: Paolo Stellari
      
Vice Direttore: Gabriele Grillo
      
Segretario: Daniele Cassani

Home / Archivio conferenze

È disponibile il canale youtube del Seminario
youtube

Cerca:

ENRICO VALDINOCI, Università di Milano
A FRACTIONAL FRAMEWORK FOR PERIMETERS AND PHASE TRANSITIONS
Lunedì 05 Novembre 2012, ore 17:00
Dipartimento di Matematica del Politecnico, Aula Consiglio
Abstract
 
THOMAS SPENCER, Institute for Advanced Study, Princeton
SYMMETRY, STATISTICAL MECHANICS AND RANDOM MATRICES
Lunedì 15 Ottobre 2012, ore 16:30
Università di Milano, Dipartimento di Matematica, Via Saldini
Abstract
 
WALTER NOLL, Carnegie Mellon University
PHYSICS AND MATHEMATICS WITHOUT COORDINATES
Giovedì 04 Ottobre 2012, ore 17:00
Politecnico di Milano, Dipartimento di Matematica, Sala del Consiglio VII piano
Abstract
 
RONALD DEVORE, Texas A & M University
DOES IT PAY TO BE GREEDY ?
Martedì 03 Luglio 2012, ore 16:30
Università di Milano, Dipartimento di Matematica, Via Saldini
 
VLADIMIR MAZ YA, University of Liverpool, Department of Mathematical Sciences
HIGHER ORDER ELLIPTIC PROBLEMS IN NON-SMOOTH DOMAINS
Giovedì 28 Giugno 2012, ore 17:00
Politecnico di Milano, Dipartimento di Matematica, Aula VII piano
Abstract
We discuss sharp continuity and regularity results for solutions of the polyharmonic equation in an arbitrary open set. The absence of information about geometry of the domain puts the question of regularity properties beyond the scope of applicability of the methods devised previously, which typically rely on specific geometric assumptions. Positive results have been available only when the domain is sufficiently smooth, Lipschitz or diffeomorphic to a polyhedron. The techniques developed recently allow to establish the boundedness of derivatives of solutions to the Dirichlet problem for the polyharmonic equation under no restrictions on the underlying domain and to show that the order of the derivatives is maximal. An appropriate notion of polyharmonic capacity is introduced which allows one to describe the precise correlation between the smoothness of solutions and the geometry of the domain.
 
S.R.S. VARADHAN, Courant Institute of Mathematical Sciences – New York University
LARGE DEVIATION THEORY. A GENERAL SURVEY WITH SOME RECENT UNUSUAL APPLICATIONS
Mercoledì 13 Giugno 2012, ore 16:30
Università di Milano, Dipartimento di Matematica, Via Saldini