2021 |
[1] |
L. Abatangelo, V. Bonnaillie-Noël, C. Léna, P. Musolino:
Asymptotic behavior of $u$-capacities and singular perturbations for the Dirichlet-Laplacian, ESAIM Control Optim. Calc. Var. 27 (2021), suppl., Paper No. S25, 43 pp.
|
[2] |
B. Abbondanza, S. Biagi:
Riesz-type representations formulas for subharmonic functions in sub-Riemannian settings, Comm. Pure and Appl. Anal 20 (2021), 3143-3174.
|
[3] |
Y. Aharonov, J. Behrndt, F. Colombo, P. Schlosser:
Green's function for the Schrödinger equation with a generalized point interaction and stability of superoscillations, J. Differential Equations 277, (2021), 153-190.
|
[4] |
Y. Aharonov, F. Colombo, I. Sabadini, T. Shushi, D. C. Struppa, J. Tollaksen:
A new method to generate superoscillating functions and supershifts, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 477(2249) (2021)
|
[5] |
D. Alpay, F. Colombo, K. Diki, I. Sabadini:
On a Polyanalytic Approach to Noncommutative de Branges–Rovnyak Spaces and Schur Analysis, Integral Equations Operator Theory 93(4) (2021)
|
[6] |
D. Alpay, F. Colombo, S. Pinton, I. Sabadini:
Holomorphic functions, relativistic sum, Blaschke products and superoscillations, Anal. Math. Phys. 11(3) (2021)
|
[7] |
D. Alpay, F. Colombo, S. Pinton, I. Sabadini, D.C. Struppa:
Infinite-order Differential Operators Acting on Entire Hyperholomorphic Functions, J. Geom. Anal. 31, (2021), no. 10, 9768-9799.
|
[8] |
D. Alpay, F. Colombo, I. Sabadini:
Superoscillations and Analytic Extension in Schur Analysis, J. Fourier Anal. Appl. 27(2), (2021), 28.
|
[9] |
G. Arioli, F. Gazzola, H. Koch:
Uniqueness and bifurcation branches for planar steady Navier-Stokes equations under Navier boundary conditions, J. Math. Fluid. Mech. 23:49, (2021)
|
[10] |
G. Arioli, H.Koch:
A Hopf Bifurcation in the Planar Navier–Stokes Equations, J. Math. Fluid Mech. 23:70, (2021)
|
[11] |
G. Arioli, G. Valente:
What Is Really Quantum in Quantum Econophysics?, Philosophy of Science, 88 (2021) 665-685
|
[12] |
A. Aspri, E. Beretta, M. De Hoop, A.L. Mazzucato:
Detection of dislocations in a 2D anisotropic elastic medium, Rend. Mat. Appl. 42(3), (2021), 183-195.
|
[13] |
A. Aspri, E. Beretta, A. Gandolfi, E. Wasmer:
Mortality containment vs. Economics Opening: Optimal policies in a SEIARD model, J. Math. Econom. 93, (2021), 102490.
|
[14] |
T. Bartsch, R. Molle, M. Rizzi, G. Verzini:
Normalized solutions of mass supercritical Schrödinger equations with potential, Comm. PDE 46, (2021), no. 9, 1729-1756.
|
[15] |
V. Barutello, R. Ortega, G. Verzini: Regularized variational principles for the perturbed Kepler problem, Adv. Math. 383 (2021), 1-64
|
[16] |
E. Berchio, A. Falocchi, M. Garrione:
On the stability of a nonlinear nonhomogeneous multiply hinged beam, SIAM J. Appl. Dyn. Syst. 20 (2021), 908-940
|
[17] |
E. Berchio, A. Falocchi:
A positivity preserving property result for the biharmonic operator under partially hinged boundary conditions, Ann. di Mat. Pura ed Appl. 200 (2021), 1651-1681
|
[18] |
E. Berchio, A. Falocchi:
About symmetry in partially hinged composite plates, Appl. Math. Optim. 84 (2021), 2645-2669
|
[19] |
E. Berchio, A. Falocchi:
Maximizing the ratio of eigenvalues of non-homogeneous partially hinged plates, J. Spectr. Theory 11 (2021), 743-780
|
[20] |
E. Beretta, M.C. Cerutti, L. Ratti:
Lipschitz stable determination of small conductivity inclusions in a semilinear equation from boundary data, Math. Eng. 3(1), (2021), 1-10.
|
[21] |
E. Beretta, E. Francini, S. Vessella:
Lipschitz stable determination of polygonal conductivity inclusions in a two-dimensional layered medium from the dirichlet-to-neumann map, SIAM J. Math. Anal. 53(4) (2021), 4303-4327.
|
[22] |
S. Biagi, M. Bramanti:
Non-divergence operators structured on homogeneous Hörmander vector fields: heat kernels and global Gaussian bounds. Advances in Differential Equations. Volume 26, Numbers 11-12, November/December 2021
|
[23] |
S. Biagi, A. Bonfiglioli, M. Bramanti:
Global estimates in Sobolev spaces for homogeneous Hörmander sum of squares. Journal of Math. Anal. and Appl. 498(1) (2021)
|
[24] |
S. Biagi, M. Bramanti:
Global Gaussian Estimates for the Heat Kernel of Homogeneous Sums of Squares, Potential Anal. (2021)
|
[25] |
S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi:
Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. Roy. Soc. Edinburgh Sect. A 151(5) (2021), 1611-1641.
|
[26] |
S. Biagi, F. Esposito, E. Vecchi:
Symmetry and monotonicity of singular solutions of double phase problems, J. Differential Equations 280 (2021), 435-463.
|
[27] |
S. Biagi, A. Pinamonti, E. Vecchi:
Pohozaev-type identities for differential operators driven by homogeneous vector fields, NoDEA Nonlinear Differential Equations Appl. 28(1), (2021), 25 pp.
|
[28] |
E. Bonetti, C. Cavaterra, F. Freddi, M. Grasselli, R. Natalini:
Chemomechanical degradation of monumental stones: Preliminary results, Springer INDAM Series 41, (2021), 59-72.
|
[29] |
M. Bramanti:
Space regularity for evolution operators modeled on Hörmander vector fields with time dependent measurable coefficients, J. Evol. Equ. 21(2) (2021), 1419-1448.
|
[30] |
M. Bramanti, G. Cupini, E. Lanconelli, E. Priola:
Errata to "Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients", Math. Nachr. 286, No. 11-12, 1087 -1101 (2013). Math. Nachr. 2021, vol. 294: pp. 1839--1842.
|
[31] |
D. Bucur, I. Fragalà:
Symmetry results for variational energies on convex polygons, ESAIM Control Optim. Calc. Var. 27, (2021), 3.
|
[32] |
D. Bucur, I. Fragalà, A. Giacomini:
Multiphase free discontinuity problems: Monotonicity formula and regularity results, Ann. Inst. H. Poincare (C) Anal. Non Lineaire 38, (2021), no. 5, 1553-1582.
|
[33] |
F. Camilli, G. Cavagnari, R. De Maio, B. Piccoli:
Superposition principle and schemes for measure differential equations, Kinet. Relat. Models 14(1), (2021), 89-113.
|
[34] |
P. Cannarsa, F. Gazzola: Dynamic optimization for beginners - with prerequisites and applications, EMS, 2021
|
[35] |
M. Capolli, A. Maione, A.M. Salort, E. Vecchi:
Asymptotic Behaviours in Fractional Orlicz–Sobolev Spaces on Carnot Groups, J. Geom. Anal. 31(3), (2021), 3196-3229.
|
[36] |
D. Castorina, G. Catino, C. Mantegazza:
A triviality result for semilinear parabolic equations, Math. Eng. 4(1), (2021).
|
[37] |
G. Catino, F. Gazzola, P. Mastrolia:
A conformal Yamabe problem with potential on the Euclidean space, Ann. Mat. Pura Appl. 200, 2021, 1987-1998
|
[38] |
G. Catino, D.D. Monticelli, F. Punzo:
The Poisson equation on Riemannian manifolds with weighted Poincaré inequality at infinity, Ann. Mat. Pura Appl. 200(2), (2021), 791-814.
|
[39] |
G. Cavagnari, A. Marigonda, M. Quincampoix:
Compatibility of state constraints and dynamics for multiagent control system, J. Evol. Equ. 21(4) (2021), 4491-4537
|
[40] |
L. Cherfils, H. Fakih, M. Grasselli, A. Miranville:
A convergent convex splitting scheme for a nonlocal Cahn-Hilliard-Oono type equation with a transport term, ESAIM: Mathematical Modelling and Numerical Analysis 55, (2021), S225-S250.
|
[41] |
F. Colombo, D. Deniz González, S. Pinton:
The Noncommutative Fractional Fourier Law in Bounded and Unbounded Domains, Complex Anal. Oper. Theory 15(7) (2021)
|
[42] |
F. Colombo, J. Gantner, S. Pinton:
An Introduction to Hyperholomorphic Spectral Theories and Fractional Powers of Vector Operators, Adv. Appl. Clifford Algebr. 31(3) (2021)
|
[43] |
F. Colombo, I. Sabadini, D.C. Struppa, A. Yger:
Gauss sums, superoscillations and the Talbot carpet, J. Math. Pures Appl. 147, (2021), 163-178.
|
[44] |
M. Conti, L. Liverani, V. Pata:
The MGT-Fourier model in the supercritical case, J. Differential Equations 301 (2021), 543-567.
|
[45] |
M. Conti, V. Danese, V. Pata:
Aging of viscoelastic materials: A mathematical model, Springer INDAM Series 41, (2021), 135-146.
|
[46] |
M. Conti, L. Liverani, V. Pata:
A note on the energy transfer in coupled differential systems, Commun. Pure Appl. Anal. 20(5), (2021), 1821-1831.
|
[47] |
M. Conti, V. Pata, M. Pellicer, R. Quintanilla:
A new approach to mgt-thermoviscoelasticity, Discrete Contin. Dyn. Syst. 41(10) (2021), 4645 - 4666.
|
[48] |
G. Crasta, I. Fragalà:
On the supremal version of the Alt-Caffarelli minimization problem, Adv. Calc. Var. 14(3) (2021), 327-341.
|
[49] |
E. Davoli, M. Kružík, P. Piovano, U. Stefanelli:
Magnetoelastic thin films at large strains, Contin. Mech. Thermodyn. 33(2), (2021), 327-341.
|
[50] |
F. Dell'Oro:
On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction, J. Differential Equations 281 (2021), 148-198
|
[51] |
F. Dell'Oro, Y. Mammeri:
Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction, Appl. Math. Optim. 83(2), (2021), 813-831.
|
[52] |
F. Dell'Oro, V. Pata:
Second Order Linear Evolution Equations with General Dissipation, Appl. Math. Optim. 83(3), (2021), 1877-1917.
|
[53] |
M. Di Cristo, L. Rondi:
Interior decay of solutions to elliptic equations with respect to frequencies at the boundary, Indiana Univ. Math. J. 70(4) (2021), 1303-1334.
|
[54] |
M. Di Cristo, L. Rondi:
The distance from the boundary in a Riemannian Manifold: Regularity up to a conformal change of the metric, Indiana Univ. Math. J. 70(4) (2021), 1283-1302.
|
[55] |
S. Dipierro, B. Pellacci, E. Valdinoci, G. Verzini:
Time-fractional equations with reaction terms: fundamental solutions and asymptotics, Discrete Contin. Dyn. Syst. 41(1), (2021), 257–275.
|
[56] |
P. Dulio, E. Laeng:
Generalization of Heron’s and Brahmagupta’s equalities to any cyclic polygon, Aequationes Math. 95, (2021), no. 5, 941-952.
|
[57] |
V. Felli, B. Noris, R. Ognibene:
Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region, Calc. Var. Partial Differential Equations 60(1), (2021), 12.
|
[58] |
L. Fornari, E. Laeng, V. Pata:
A direct computation of a certain family of integrals, Arab J. Math. Sci. 27(2) (2021), 249-252
|
[59] |
S. Frigeri, C.G. Gal, M. Grasselli:
Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility, J. Differential Equations 287, (2021), 295-328.
|
[60] |
M. Garrione:
Beams with an intermediate pier: spectral properties, asymmetry and stability, Math. Eng. 3(2), (2021), Paper no. 16, 21 pp.
|
[61] |
M. Garrione:
Vanishing diffusion limits for planar fronts in bistable models with saturation, Trans. Amer. Math. Soc. 374 (2021), 3999-4021
|
[62] |
F. Gazzola:
An optimal control problem for virus propagation and economic loss, Rendiconti Sem. Mat. Univ. Pol. Torino 97, 2021, 1-23
|
[63] |
F. Gazzola, E.M. Marchini:
The moon lander problem revisited, Math. Eng. 3(5), (2021), 1-14
|
[64] |
F. Gazzola, E.M. Marchini:
A minimal time optimal control for a drone landing problem, ESAIM-COCV 27, 2021, 99
|
[65] |
F. Gazzola, A. Soufyane:
Long-time behavior of partially damped systems modeling degenerate plates with piers, Nonlinearity 34 (2021) 7705-7727
|
[66] |
F. Gazzola, G. Sperone: Bounds for Sobolev embedding constants in non-simply connected planar domains,In: Geometric Properties for Parabolic and Elliptic PDEs, V. Ferone et al. (eds.), Springer INdAM Series 47, 2021, 103-125
|
[67] |
F. Gazzola, G. Sperone:
Remarks on radial symmetry and monotonicity for solutions of semilinear higher order elliptic equations, Math. in Eng. 4(5), 2022, 1-24
|
[68] |
U. Gianazza, S. Salsa:
On the Harnack inequality for non-divergence parabolic equations, Math. Eng. 3(3), (2021), Paper no. 20, 11 pp.
|
[69] |
F. Giuliani:
Transfers of energy through fast diffusion channels in some resonant PDEs on the circle, §Discrete Contin. Dyn. Syst. 41(11) (2021), 5057-5085
|
[70] |
F. Giuliani, M. Guardia, P. Martin, S. Pasquali:
Chaotic resonant dynamics and exchanges of energy in Hamiltonian PDEs, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 32(1) (2021), 149-166
|
[71] |
F. Giuliani, M. Guardia, P. Martin, S. Pasquali:
Chaotic-Like Transfers of Energy in Hamiltonian PDEs, Comm. Math. Phys. 384(2) (2021), 1227-1290
|
[72] |
G. Grillo, G. Meglioli, F. Punzo:
Smoothing effects and infinite time blowup for reaction-diffusion equations: An approach via Sobolev and Poincaré inequalities, J. Math. Pures Appl. 151, (2021), 99-131.
|
[73] |
G. Grillo, G. Meglioli, F. Punzo:
Global existence of solutions and smoothing effects for classes of reaction–diffusion equations on manifolds, J. Evol. Equ. 21, (2021), no. 2, 2339-2375.
|
[74] |
G. Grillo, M. Muratori, F. Punzo:
Fast diffusion on noncompact manifolds: Well-posedness theory and connections with semilinear elliptic equations, Trans. Amer. Math. Soc. 374 (2021), 6367-6396
|
[75] |
T. Kawakami, M. Muratori:
Nonexistence of Radial Optimal Functions for the Sobolev Inequality on Cartan-Hadamard Manifolds, Springer INdAM Series 47 (2021), 183-203
|
[76] |
L.C. Kreutz, P. Piovano:
Microscopic validation of a variational model of epitaxially strained crystalline films, SIAM J. Math. Anal. 53(1), (2021), 453-490.
|
[77] |
A. Leaci, F. Tomarelli:
Bilateral Riemann-Liouville Fractional Sobolev spaces, Note di Matematica 14(2) (2021), 61-83
|
[78] |
F. Maddalena, D. Percivale, F. Tomarelli:
Elastic-brittle reinforcement of flexural structures, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 32(4) (2021), 691-724
|
[79] |
E. Maluta:
Diametral points and diametral pairs in Banach spaces, J. Math. Anal. App. 494(2), (2021), 124648.
|
[80] |
G. Meglioli, F. Punzo:
Blow-up and global existence for solutions to the porous medium equation with reaction and fast decaying density, Nonlinear Anal. 203, (2021), 112187.
|
[81] |
G. Meglioli, F. Punzo:
Blow-up and global existence for the inhomogeneous porous medium equation with reaction, Rend. Mat. Appl. 42(3-4), (2021), 271-292.
|
[82] |
E. Moreira dos Santos, G. Nornberg, N. Soave:
On unique continuation principles for some elliptic systems, Ann. Inst. H. Poincare (C) Anal. Non Lineaire 38, (2021), no. 5, 1667-1680.
|
[83] |
M. Muratori:
Some recent advances in nonlinear diffusion on negatively-curved Riemannian manifolds: from barriers to smoothing effects, Boll. Unione Mat. Ital. 14(1), (2021), 69-97.
|
[84] |
B. Pellacci, A. Pistoia, G. Vaira, G. Verzini:
Normalized concentrating solutions to nonlinear elliptic problems, J. Differential Equations 275 (2021), 882-919
|
[85] |
D. Pierotti, N. Soave, G. Verzini:
Local minimizers in absence of ground states for the critical NLS energy on metric graphs, Proc. Roy. Soc. Edinburgh Sect. A 151, (2021), 705-733
|
[86] |
F. Punzo:
Global Solutions of Semilinear Parabolic Equations on Negatively Curved Riemannian Manifolds, J. Geom. Anal. 31(1), (2021), 543-559.
|
[87] |
G. Verzini:
Foreword to the special issue Contemporary PDEs between theory and modeling, Math. Eng. 3(3) (2021), pp. I-IV.
|