2024
[1] L. Abatangelo, C. Léna, P. Musolino: Asymptotic behavior of generalized capacities with applications to eigenvalue perturbations: The higher dimensional case, Nonlinear Analysis 238 (2024) 113391
[2] L. Abatangelo, R. Ognibene: Sharp behavior of Dirichlet-Laplacian eigenvalues for a class of singularly perturbed problems, SIAM Journal of Mathematical Analysis, Vol. 56, no.1, pp. 474-500
[3] G. Arioli, R. Lucchetti, G. Valente: Changing behaviour under unfairness: An evolutionary model of the Ultimatum Game, Intern. J. of Approx. Reasoning 164 (2024) 109078
[4] E. Berchio, A. Falocchi, C. Patriarca: On the long-time behaviour of solutions to unforced evolution Navier–Stokes equations under Navier boundary conditions, Nonlinear analysis: real world applications, 79, (2024), pp. 1-22
[5] E. Berchio, D. Bonheure, P. Galdi, F. Gazzola, S. Perotto:
Equilibrium configurations of a symmetric body immersed in a stationary Navier-Stokes flow in a planar channel, SIAM J. Math. Anal. 56, 2024, 3759-3801
[6] S. Biagi, M. Bramanti: Schauder estimates for Kolmogorov-Fokker-Planck operators with coefficients measurable in time and Hölder continuous in space. Journal of Mathematical Analysis and Applications. 533 (2024), no. 1, Paper No. 127996.
[7] M. Carriero, A. Leaci, F. Tomarelli:

Almansi Decomposition and Expansion of a Polyharmonic Function near a crack-tip, Journal of Convex Analysis, Volume 31 (2024), No. 2, 379–409

[8] C.A. De Bernardi, J. Somaglia: Rotund Gateaux smooth norms which are not locally uniformly rotund, Proc. Amer. Math. Soc. 152 (2024), 1689-1701
[9] A. Falocchi, F. Gazzola: The kernel of the strain tensor for solenoidal vector fields with homogeneous normal trace. In: Beirão da Veiga, H., Minhós, F., Van Goethem, N., Sanchez Rodrigues, L. (eds) Nonlinear Differential Equations and Applications. PICNDEA 2022. CIM Series in Mathematical Sciences, vol. 7. Springer, Cham, 75-89 (2024)
[10] G. Feltrin, M. Garrione: Homoclinic and heteroclinic solutions for non-autonomous Minkowski-curvature equations, Nonlinear Anal. 239 (2024) 113419
[11] H. Frankowska, E.M. Marchini, M. Mazzola: Second-order sufficient conditions in optimal control of evolution systems, J. Evol. Equ., 24 (40) (2024), 1-34  
[12] M. Garrione: Asymptotic study of critical wave fronts for parameter-dependent Born–Infeld models: physically predicted behaviors and new phenomena, Nonlinearity 37 (2024) 025009
[13] M. Garrione, E. Pastorino: Long-time behaviour for solutions of systems of PDEs modelling suspension bridges. In: Beirão da Veiga, H., Minhós, F., Van Goethem, N., Sanchez Rodrigues, L. (eds) Nonlinear Differential Equations and Applications. PICNDEA 2022. CIM Series in Mathematical Sciences, vol 7. Springer, Cham, 107-122 (2024)
[14] F. Gazzola, V. Pata, C. Patriarca : Attractors for a fluid-structure interaction problem in a time-dependent phase space, J. Functional Analysis 286, (2024), 110199
[15] F. Maddalena, D. Percivale, F. Tomarelli:

Signorini problem as a variational limit of obstacle problems in nonlinear elasticity, Mathematics in Engineering, 6(2): 261–304. DOI:10.3934/mine.2024012

[16] C. Marchionna, S. Panizzi: Instability results for a Hill equation coupled with an asymmetrically nonlinear oscillator, COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, vol.23 (2) (2024), 304-324
[17] V. Racic, F. Gazzola: Model of coordinated crowd dynamics, J. Physics Conf. Series. 2647, 25, 10pp. 252015, 2024
Politecnico di Milano - Dipartimento di Matematica