2023 |
[1] |
H. Abels, H. Garcke, A. Giorgini:
Global regularity and asymptotic stabilization for the incompressible Navier–Stokes-Cahn–Hilliard model with unmatched densities, Math. Ann. (2023)
|
[2] |
D. Alpay, F. Colombo, K. Diki, I. Sabadini, D. C. Struppa:
Hörmander’s $L^2$-Method, $\partial^-$-Problem and Polyanalytic Function Theory in One Complex Variable, Complex Anal. Oper. Theory 17(3) (2023)
|
[3] |
D. Alpay, F. Colombo, K. Diki, I. Sabadini, D. C. Struppa:
A Hörmander–Fock space, Complex Var. Elliptic Equ. (2023)
|
[4] |
P. F. Antonietti, L. Liverani, V. Pata:
Lack of superstable trajectories in linear viscoelasticity: a numerical approach, Numer. Math. 153(4) (2023), 611–633
|
[5] |
G. Arioli, H. Koch:
Validated numerical solutions for a semilinear elliptic equation on some topological annuli in the plane, J. of Differential Equations 353 (2023) 420–436
|
[6] |
J. Behrndt, F. Colombo, P. Schlosser, D. Struppa::
Integral representation of superoscillations via complex Borel measures and their convergence. Trans. Amer. Math. Soc., 376 (2023), 6315-6340.
|
[7] |
E. Beretta, M.C. Cerutti, D. Pierotti, L. Ratti:
On the Reconstruction of Cavities in a Nonlinear Model Arising from Cardiac Electrophysiology, ESAIM Control Optim. Calc. Var. 29 (2023)
|
[8] |
S. Biagi, A. Bonfiglioli:
Global heat kernels for parabolic homogeneous hörmander operators, Israel J. Math (2023)
|
[9] |
S. Biagi, M. Bramanti:
Global Gaussian estimates for the heat kernel of homogeneous sums of squares. Potential Analysis. 59 (2023), no. 1, 113-151.
|
[10] |
S. Biagi, A. Calamai, G. Infante:
Nonzero positive solutions of fractional Laplacian systems with functional terms, Math. Nachr. 296(1) (2023), 102–121
|
[11] |
S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi:
A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math. (2023)
|
[12] |
S. Biagi, F. Esposito, E. Vecchi:
Symmetry of intrinsically singular solutions of double phase problems, Differential Integral Equations 36(3-4) (2023), 229–246
|
[13] |
S. Biagi, F. Punzo:
A Liouville-type theorem for elliptic equations with singular coefficients in bounded domains, Calc. Var. Partial Differential Equations 62(2) (2023)
|
[14] |
E. Bocchi, F. Gazzola: Asymmetric equilibrium configurations of a body immersed in a 2d laminar flow, Z. Angew. Math. Phys. 74:180 (2023)
|
[15] |
E. Bonetti, C. Cavaterra, F. Freddi, M. Grasselli, R. Natalini:
A nonlinear model for marble sulphation including surface rugosity and mechanical damage, Nonlinear Anal. Real World Appl. 73 (2023)
|
[16] |
W. Borrelli, A. Maalaoui, V. Martino:
Conformal Dirac–Einstein equations on manifolds with boundary, Calc. Var. Partial Differential Equations 62(1) (2023)
|
[17] |
A. Boscaggin, F. Colasuonno, B. Noris, T. Weth:
A supercritical elliptic equation in the annulus, Ann. Inst. H. Poincaré Anal. Non Linéaire 40(1) (2023), 157–183
|
[18] |
A. Braides, M. Caroccia:
Asymptotic Behavior of the Dirichlet Energy on Poisson Point Clouds, J. Nonlinear Sci. 33(5) (2023)
|
[19] |
M. Bramanti, L. Brandolini:
Hörmander operators. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2023. xxviii+693 pp.
|
[20] |
D. Bucur, I. Fragalà:
Rigidity for measurable sets, Adv. Math. 414 (2023)
|
[21] |
D. Bucur, I. Fragalà:
Alexandrov theorem for general nonlocal curvatures: The geometric impact of the kernel, J. Math. Pures Appl. (9) 169 (2023), 82–108
|
[22] |
M. Caroccia:
A compactness Theorem for functions on Poisson point clouds, Nonlinear Anal. 231 (2023)
|
[23] |
M. Caroccia, G. Saracco:
Isoperimetric Sets and $p$-Cheeger Sets are in Bijection, J. Geom. Anal. 33(4) (2023)
|
[24] |
G. Catino, P. Mastrolia, D. D. Monticelli:
Rigidity of critical metrics for quadratic curvature functionals, J. Math. Pures Appl. (9) 171 (2023), 102–121
|
[25] |
G. Cavagnari, G. Savaré, G. E. Sodini:
Dissipative probability vector fields and generation of evolution semigroups in Wasserstein spaces, Probab. Theory Related Fields 185 (3-4) (2023), 1087–1182
|
[26] |
P. Cerejeiras, F. Colombo, U. Käehler, I. Sabadini:
Quaternionic triangular linear operators, Math. Methods Appl. Sci 46(2) (2023), 2093–2116
|
[27] |
F. E. G. Cipriani:
The Emergence of Noncommutative Potential Theory, Springer Proceedings in Mathematics and Statistics 377 (2023), 41–106
|
[28] |
F. Colasuonno, B. Noris:
Asymptotics for a high-energy solution of a supercritical problem. Nonlinear Analysis, volume 227 (2023) 113166.
|
[29] |
F. Colasuonno, B. Noris:
Asymptotics for a high-energy solution of a supercritical problem, Nonlinear Anal. 227 (2023)
|
[30] |
F. Colombo, A. De Martino, S. Pinton, I. Sabadini:
The Fine Structure of the Spectral Theory on the S-Spectrum in Dimension Five, J. Geom. Anal. 33(9) (2023)
|
[31] |
P. Colli, G. Gilardi, A. Signori, J. Sprekels,:
Cahn–Hilliard–Brinkman model for tumor growth with possibly singular potentials, Nonlinearity 36 (2023), 4470-4500.
|
[32] |
P. Colli, G. Gilardi, A. Signori, J. Sprekels:
Optimal temperature distribution for a nonisothermal Cahn–Hilliard system with source term, Appl. Math. Optim. 88 (2023), Online first.
|
[33] |
F. Colombo, A. De Martino, S. Pinton, I. Sabadini:
Axially Harmonic Functions and the Harmonic Functional Calculus on the S-spectrum, J. Geom. Anal. 33(1) (2023)
|
[34] |
F. Colombo, A. De Martino, I. Sabadini:
The F-Resolvent Equation and Riesz Projectors for the F-Functional Calculus, Complex Anal. Oper. Theory 17(2) (2023)
|
[35] |
F. Colombo, A. De Martino, I. Sabadini:
Towards a general F-resolvent equation and Riesz projectors, J. Math. Anal. Appl. 517(2) (2023)
|
[36] |
F. Colombo, D. P. Kimsey:
A Survey on the Recent Advances in the Spectral Theory on the S-Spectrum, Oper. Theory Adv. Appl. 290 (2023), 115–170
|
[37] |
F. Colombo, E. Pozzi, I. Sabadini, B. D. Wick:
Evolution of superoscillations for spinning particles, Proc. Amer. Math. Soc. 10 (2023), 129–143
|
[38] |
M. Conti, L. Liverani, V. Pata:
On the Moore-Gibson-Thompson Equation with Memory with Nonconvex Kernels, Indiana Univ. Math. J. 72(1) (2023), 1–27
|
[39] |
G. Crasta, I. Fragalà:
On a geometric combination of functions related to Prékopa–Leindler inequality, Mathematika 69(2) (2023), 482–507
|
[40] |
F. Dell'Oro, L. Liverani, V. Pata:
On the regularized Moore-Gibson-Thompson equation, Discrete Contin. Dyn. Syst. Ser. S 16 (2023), 2326-2338
|
[41] |
F. Dell'Oro, V. Pata:
A hierarchy of heat conduction laws, Discrete Contin. Dyn. Syst. Ser. S 16 (2023), 2636-2648
|
[42] |
F. Dell'Oro, L Paunonen, D. Seifert:
Optimal decay for a wave-heat system with Coleman–Gurtin thermal law, J. Math. Anal. Appl. 518(2) (2023)
|
[43] |
F. Dell’Oro, V. Pata:
On the analyticity of the abstract MGT-Fourier system, Meccanica 58(6) (2023), 1053–1060
|
[44] |
M. de Miranda, M. de Miranda, A. Falocchi, A. Ferrero, L. Marinini:
Elasticity solution for a hollow cylinder under axial end loads: Application to a blister of a stayed bridge, ZAMM Z. Angew. Math. Mech. (2023)
|
[45] |
A. Falocchi, F. Gazzola:
The evolution Navier-Stokes equations in a cube under Navier boundary conditions: rarefaction and uniqueness of global solutions, Calc. Var. 62, 215 (2023)
|
[46] |
H. Franowska, E. M . Marchini, M. Mazzola:
Second-order necessary conditions in optimal control of evolution systems, J. Evol. Equ., 23(5) (2023), 1-43
|
[47] |
C. G. Gal, A. Giorgini, M. Grasselli:
The separation property for 2D Cahn-Hilliard equations: Local, nonlocal and fractional energy cases, Discrete Contin. Dyn. Syst. 43(6) (2023), 2270–2304
|
[48] |
H. Garcke, K. F. Lam, R. Nürnberg, A. Signori:
Phase field topology optimisation for 4D printing, ESAIM Control Optim. Calc. Var. 29 (2023)
|
[49] |
H. Garcke, K. F. Lam, R. Nürnberg, A. Signori:
Overhang Penalization in Additive Manufacturing via Phase Field Structural Topology Optimization with Anisotropic Energies, Appl. Math. Optim. 87(3) (2023)
|
[50] |
M. Garrione, E. Sovrano:
Stationary fronts and pulses for multistable equations with saturating diffusion, Nonlinear Differ. Equ. Appl. NoDEA 30, 31 (2023), 1-29.
|
[51] |
F. Gazzola, M. Jleli, B. Samet:
A new detailed explanation of the Tacoma collapse and some optimization problems to improve the stability of suspension bridges, Math. Eng. 5(2) (2023), 1-35
|
[52] |
A. Giorgini, P. Knopf:
Two-Phase Flows with Bulk–Surface Interaction: Thermodynamically Consistent Navier–Stokes–Cahn–Hilliard Models with Dynamic Boundary Conditions, J. Math. Fluid Mech. 25(3) (2023)
|
[53] |
M. Grasselli, N. Parolini, A. Poiatti, M. Verani:
Non-isothermal non-Newtonian fluids: The stationary case, Math. Models Methods Appl. Sci. 33(9) (2023), 1747–1801
|
[54] |
M. Grasselli, L. Scarpa, A. Signori:
On a phase field model for RNA-Protein dynamics, SIAM J. Math. Anal. 55(1) (2023), 405–457
|
[55] |
G. Grillo, G. Meglioli, F. Punzo:
Blow-up versus global existence of solutions for reaction–diffusion equations on classes of Riemannian manifolds, Ann. Mat. Pura Appl. (4) 202(3) (2023), 1255–1270
|
[56] |
G. Grillo, G. Meglioli, F. Punzo:
Global existence for reaction-diffusion evolution equations driven by the $p$-Laplacian on manifolds, Math. Eng. 5(3) (2023)
|
[57] |
G. Grillo, M. Muratori, F. Punzo:
The porous medium equation with large data on Cartan-Hadamard manifolds under general curvature bounds, Discrete Contin. Dyn. Syst. 43(3-4) (2023), 1469–1498
|
[58] |
M. Kampschulte, S. Schwarzacher, G. Sperone:
Unrestricted deformations of thin elastic structures interacting with fluids, J. Math. Pures Appl. (9) 173 (2023), 96–148.
|
[59] |
A. Leaci, F. Tomarelli:
Symmetrised Fractional Total Variation for Signal and Image Analysis, ADV. CONT. DISCR. MOD. (2023) 14.
|
[60] |
A. Leaci, F. Tomarelli:
Symmetrized fractional total variation for signal and image analysis, Advances in Continuous and Discrete Models 2023(1) (2023)
|
[61] |
P. Leonetti, T. Russo, J. Somaglia:
Dense lineability and spaceability in certain subsets of $\ell_\infty$, Bull. Lond. Math. Soc. (2023)
|
[62] |
C. Marchionna, S. Panizzi:
Transfer of Energy from Flexural to Torsional Modes for the Fish-Bone Suspension Bridge Model, Milan J. Math. 91(1) (2023), 131–154
|
[63] |
G. Meglioli, F. Punzo:
Uniqueness for fractional parabolic and elliptic equations with drift, Commun. Pure Appl. Anal. 22(6) (2023), 1962–1981
|
[64] |
P. Piovano, I. Velcic:
Microscopical justification of the Winterbottom problem for well-separated lattices, Nonlinear Anal. 231 (2023)
|
[65] |
A. D. Primio, M. Grasselli, H. Wu:
Well-posedness of a Navier–Stokes–Cahn–Hilliard system for incompressible two-phase flows with surfactant, Math. Models Methods Appl. Sci. 33(4) (2023), 755–828
|
[66] |
E. Rocca, G. Schimperna, A. Signori:
On a Cahn–Hilliard–Keller–Segel model with generalized logistic source describing tumor growth, J. Differential Equations 343 (2023), 530–578
|
[67] |
J. Rondoš, J. Somaglia:
Isomorphisms of $\mathcal{C}(K,E)$ spaces and height of $K$, Mediterr. J. Math. 20, 194 (2023)
|
[68] |
T. Russo, J. Somaglia:
Banach spaces of continuous functions without norming Markushevich bases, Mathematika 69 (2023), 992-1010
|
[69] |
G. Sperone:
Homogenization of the steady-state Navier-Stokes equations with prescribed flux rate or pressure drop in a perforated pipe, J. Differential Equations 375 (2023), 653-681
|