[1] L. Abatangelo, V. Bonnaillie-Noël, C. Léna, P. Musolino: Asymptotic behavior of $u$-capacities and singular perturbations for the Dirichlet-Laplacian, ESAIM Control Optim. Calc. Var. 27 (2021), suppl., Paper No. S25, 43 pp.
[2] Y. Aharonov, J. Behrndt, F. Colombo, P. Schlosser: Green's function for the Schrödinger equation with a generalized point interaction and stability of superoscillations, J. Differential Equations 277, (2021), 153-190.
[3] D. Alpay, F. Colombo, I. Sabadini: Superoscillations and Analytic Extension in Schur Analysis, J. Fourier Anal. Appl. 27(2), (2021), 28.
[4] D. Alpay, F. Colombo, S. Pinton, I. Sabadini, D.C. Struppa: Infinite-order Differential Operators Acting on Entire Hyperholomorphic Functions, J. Geom. Anal., in press.
[5] G. Arioli, F. Gazzola, H. Koch: Uniqueness and bifurcation branches for planar steady Navier-Stokes equations under Navier boundary conditions, J. Math. Fluid. Mech. 23:49, (2021)
[6] G. Arioli, H.Koch: A Hopf Bifurcation in the Planar Navier–Stokes Equations, J. Math. Fluid Mech. 23:70, (2021)
[7] A. Aspri, E. Beretta, A. Gandolfi, E. Wasmer: Mortality containment vs. Economics Opening: Optimal policies in a SEIARD model, J. Math. Econom. 93, (2021), 102490.
[8] A. Aspri, E. Beretta, M. De Hoop, A.L. Mazzucato: Detection of dislocations in a 2D anisotropic elastic medium, Rend. Mat. Appl. 42(3), (2021), 183-195.
[9] T. Bartsch, R. Molle, M. Rizzi, G. Verzini: Normalized solutions of mass supercritical Schrödinger equations with potential, Comm. PDE, in press
[10] V. Barutello, R. Ortega, G. Verzini: Regularized variational principles for the perturbed Kepler problem, Adv. Math. 383 (2021), 1-64
[11] E. Berchio, A. Falocchi, M. Garrione: On the stability of a nonlinear nonhomogeneous multiply hinged beam, SIAM J. Appl. Dyn. Syst. 20 (2021), 908-940
[12] E. Beretta, M.C. Cerutti, L. Ratti: Lipschitz stable determination of small conductivity inclusions in a semilinear equation from boundary data, Math. Eng. 3(1), (2021), 1-10.
[13] S. Biagi, A. Bonfiglioli, M. Bramanti: Global estimates in Sobolev spaces for homogeneous Hörmander sum of squares. Journal of Math. Anal. and Appl. Volume 498, Issue 1, 1 June 2021. Published online on January 13, 2021.
[14] S. Biagi, F. Esposito, E. Vecchi: Symmetry and monotonicity of singular solutions of double phase problems, J. Differential Equations 280 (2021), 435-463.
[15] S. Biagi, A. Pinamonti, E. Vecchi: Pohozaev-type identities for differential operators driven by homogeneous vector fields, NoDEA Nonlinear Differential Equations Appl. 28(1), (2021), 25 pp.
[16] E. Bonetti, C. Cavaterra, F. Freddi, M. Grasselli, R. Natalini: Chemomechanical degradation of monumental stones: Preliminary results, Springer INDAM Series 41, (2021), 59-72.
[17] D. Bucur, I. Fragalà: Symmetry results for variational energies on convex polygons, ESAIM Control Optim. Calc. Var. 27, (2021), 3.
[18] D. Bucur, I. Fragalà, A. Giacomini: Multiphase free discontinuity problems: Monotonicity formula and regularity results, Ann. Inst. H. Poincare (C) Anal. Non Lineaire, in press.
[19] F. Camilli, G. Cavagnari, R. De Maio, B. Piccoli: Superposition principle and schemes for measure differential equations, Kinet. Relat. Models 14(1), (2021), 89-113.
[20] M. Capolli, A. Maione, A.M. Salort, E. Vecchi: Asymptotic Behaviours in Fractional Orlicz–Sobolev Spaces on Carnot Groups, J. Geom. Anal. 31(3), (2021), 3196-3229.
[21] D. Castorina, G. Catino, C. Mantegazza: A triviality result for semilinear parabolic equations, Math. Eng. 4(1), (2021).
[22] G. Catino, D.D. Monticelli, F. Punzo: The Poisson equation on Riemannian manifolds with weighted Poincaré inequality at infinity, Ann. Mat. Pura Appl. 200(2), (2021), 791-814.
[23] G. Catino, F. Gazzola, P. Mastrolia:
A conformal Yamabe problem with potential on the Euclidean space, Ann. Mat. Pura Appl. 200, 2021, 1987-1998
[24] L. Cherfils, H. Fakih, M. Grasselli, A. Miranville: A convergent convex splitting scheme for a nonlocal Cahn-Hilliard-Oono type equation with a transport term, ESAIM: Mathematical Modelling and Numerical Analysis 55, (2021), S225-S250.
[25] F. Colombo, I. Sabadini, D.C. Struppa, A. Yger: Gauss sums, superoscillations and the Talbot carpet, J. Math. Pures Appl. 147, (2021), 163-178.
[26] M. Conti, L. Liverani, V. Pata: A note on the energy transfer in coupled differential systems, Commun. Pure Appl. Anal. 20(5), (2021), 1821-1831.
[27] M. Conti, V. Danese, V. Pata: Aging of viscoelastic materials: A mathematical model, Springer INDAM Series 41, (2021), 135-146.
[28] E. Davoli, M. Kružík, P. Piovano, U. Stefanelli: Magnetoelastic thin films at large strains, Contin. Mech. Thermodyn. 33(2), (2021), 327-341.
[29] F. Dell'Oro: On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction, J. Differential Equations 281 (2021), 148-198
[30] F. Dell'Oro, Y. Mammeri: Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction, Appl. Math. Optim. 83(2), (2021), 813-831.
[31] F. Dell'Oro, V. Pata: Second Order Linear Evolution Equations with General Dissipation, Appl. Math. Optim. 83(3), (2021), 1877-1917.
[32] S. Dipierro, B. Pellacci, E. Valdinoci, G. Verzini: Time-fractional equations with reaction terms: fundamental solutions and asymptotics, Discrete Contin. Dyn. Syst. 41(1), (2021), 257–275.
[33] P. Dulio, E. Laeng: Generalization of Heron’s and Brahmagupta’s equalities to any cyclic polygon, Aequationes Math., in press.
[34] V. Felli, B. Noris, R. Ognibene: Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region, Calc. Var. Partial Differential Equations 60(1), (2021), 12.
[35] S. Frigeri, C.G. Gal, M. Grasselli: Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility, J. Differential Equations 287, (2021), 295-328.
[36] M. Garrione: Beams with an intermediate pier: spectral properties, asymmetry and stability, Math. Eng. 3(2), (2021), Paper no. 16, 21 pp.
[37] M. Garrione: Vanishing diffusion limits for planar fronts in bistable models with saturation, Trans. Amer. Math. Soc. 374 (2021), 3999-4021
[38] F. Gazzola: An optimal control problem for virus propagation and economic loss, Rendiconti Sem. Mat. Univ. Pol. Torino 97, 2021, 1-23
[39] F. Gazzola, E.M. Marchini: The moon lander problem revisited, Math. Eng. 3(5), (2021), 1-14
[40] F. Gazzola, G. Sperone:
Bounds for Sobolev embedding constants in non-simply connected planar domains, In: Geometric Properties for Parabolic and Elliptic PDEs, V. Ferone et al. (eds.), Springer INdAM Series 47, 2021, 103-125
[41] U. Gianazza, S. Salsa: On the Harnack inequality for non-divergence parabolic equations, Math. Eng. 3(3), (2021), Paper no. 20, 11 pp.
[42] G. Grillo, G. Meglioli, F. Punzo: Smoothing effects and infinite time blowup for reaction-diffusion equations: An approach via Sobolev and Poincaré inequalities, J. Math. Pures Appl. 151, (2021), 99-131.
[43] G. Grillo, G. Meglioli, F. Punzo: Global existence of solutions and smoothing effects for classes of reaction–diffusion equations on manifolds, J. Evol. Equ., in press.
[44] L.C. Kreutz, P. Piovano: Microscopic validation of a variational model of epitaxially strained crystalline films, SIAM J. Math. Anal. 53(1), (2021), 453-490.
[45] E. Maluta: Diametral points and diametral pairs in Banach spaces, J. Math. Anal. App. 494(2), (2021), 124648.
[46] G. Meglioli, F. Punzo: Blow-up and global existence for solutions to the porous medium equation with reaction and fast decaying density, Nonlinear Anal. 203, (2021), 112187.
[47] G. Meglioli, F. Punzo: Blow-up and global existence for the inhomogeneous porous medium equation with reaction, Rend. Mat. Appl. 42(3-4), (2021), 271-292.
[48] E. Moreira dos Santos, G. Nornberg, N. Soave: On unique continuation principles for some elliptic systems, Ann. Inst. H. Poincare (C) Anal. Non Lineaire, in press.
[49] M. Muratori: Some recent advances in nonlinear diffusion on negatively-curved Riemannian manifolds: from barriers to smoothing effects, Boll. Unione Mat. Ital. 14(1), (2021), 69-97.
[50] M. Muratori, A. Roncoroni: Sobolev-Type Inequalities on Cartan-Hadamard Manifolds and Applications to some Nonlinear Diffusion Equations, Potential Anal., in press.
[51] B. Pellacci, A. Pistoia, G. Vaira, G. Verzini: Normalized concentrating solutions to nonlinear elliptic problems, J. Differential Equations 275 (2021), 882-919
[52] D. Pierotti, N. Soave, G. Verzini: Local minimizers in absence of ground states for the critical NLS energy on metric graphs, Proc. R. S. Edinb. A 151 (2021), 705-733
[53] F. Punzo: Global Solutions of Semilinear Parabolic Equations on Negatively Curved Riemannian Manifolds, J. Geom. Anal. 31(1), (2021), 543-559.
Politecnico di Milano - Dipartimento di Matematica