2021 | |
[1] | L. Abatangelo, V. Bonnaillie-Noël, C. Léna, P. Musolino: Asymptotic behavior of $u$-capacities and singular perturbations for the Dirichlet-Laplacian, ESAIM Control Optim. Calc. Var. 27 (2021), suppl., Paper No. S25, 43 pp. |
[2] | B. Abbondanza, S. Biagi: Riesz-type representations formulas for subharmonic functions in sub-Riemannian settings, Comm. Pure and Appl. Anal 20 (2021), 3143-3174. |
[3] | Y. Aharonov, J. Behrndt, F. Colombo, P. Schlosser: Green's function for the Schrödinger equation with a generalized point interaction and stability of superoscillations, J. Differential Equations 277, (2021), 153-190. |
[4] | Y. Aharonov, F. Colombo, I. Sabadini, T. Shushi, D. C. Struppa, J. Tollaksen: A new method to generate superoscillating functions and supershifts, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 477(2249) (2021) |
[5] | D. Alpay, F. Colombo, K. Diki, I. Sabadini: On a Polyanalytic Approach to Noncommutative de Branges–Rovnyak Spaces and Schur Analysis, Integral Equations Operator Theory 93(4) (2021) |
[6] | D. Alpay, F. Colombo, S. Pinton, I. Sabadini: Holomorphic functions, relativistic sum, Blaschke products and superoscillations, Anal. Math. Phys. 11(3) (2021) |
[7] | D. Alpay, F. Colombo, S. Pinton, I. Sabadini, D.C. Struppa: Infinite-order Differential Operators Acting on Entire Hyperholomorphic Functions, J. Geom. Anal. 31, (2021), no. 10, 9768-9799. |
[8] | D. Alpay, F. Colombo, I. Sabadini: Superoscillations and Analytic Extension in Schur Analysis, J. Fourier Anal. Appl. 27(2), (2021), 28. |
[9] | G. Arioli, F. Gazzola, H. Koch: Uniqueness and bifurcation branches for planar steady Navier-Stokes equations under Navier boundary conditions, J. Math. Fluid. Mech. 23:49, (2021) |
[10] | G. Arioli, H.Koch: A Hopf Bifurcation in the Planar Navier–Stokes Equations, J. Math. Fluid Mech. 23:70, (2021) |
[11] | G. Arioli, G. Valente: What Is Really Quantum in Quantum Econophysics?, Philosophy of Science, 88 (2021) 665-685 |
[12] | A. Aspri, E. Beretta, M. De Hoop, A.L. Mazzucato: Detection of dislocations in a 2D anisotropic elastic medium, Rend. Mat. Appl. 42(3), (2021), 183-195. |
[13] | A. Aspri, E. Beretta, A. Gandolfi, E. Wasmer: Mortality containment vs. Economics Opening: Optimal policies in a SEIARD model, J. Math. Econom. 93, (2021), 102490. |
[14] | T. Bartsch, R. Molle, M. Rizzi, G. Verzini: Normalized solutions of mass supercritical Schrödinger equations with potential, Comm. PDE 46, (2021), no. 9, 1729-1756. |
[15] | V. Barutello, R. Ortega, G. Verzini: Regularized variational principles for the perturbed Kepler problem, Adv. Math. 383 (2021), 1-64 |
[16] | E. Berchio, A. Falocchi, M. Garrione: On the stability of a nonlinear nonhomogeneous multiply hinged beam, SIAM J. Appl. Dyn. Syst. 20 (2021), 908-940 |
[17] | E. Berchio, A. Falocchi: A positivity preserving property result for the biharmonic operator under partially hinged boundary conditions, Ann. di Mat. Pura ed Appl. 200 (2021), 1651-1681 |
[18] | E. Berchio, A. Falocchi: About symmetry in partially hinged composite plates, Appl. Math. Optim. 84 (2021), 2645-2669 |
[19] | E. Berchio, A. Falocchi: Maximizing the ratio of eigenvalues of non-homogeneous partially hinged plates, J. Spectr. Theory 11 (2021), 743-780 |
[20] | E. Beretta, M.C. Cerutti, L. Ratti: Lipschitz stable determination of small conductivity inclusions in a semilinear equation from boundary data, Math. Eng. 3(1), (2021), 1-10. |
[21] | E. Beretta, E. Francini, S. Vessella: Lipschitz stable determination of polygonal conductivity inclusions in a two-dimensional layered medium from the dirichlet-to-neumann map, SIAM J. Math. Anal. 53(4) (2021), 4303-4327. |
[22] | S. Biagi, M. Bramanti: Non-divergence operators structured on homogeneous Hörmander vector fields: heat kernels and global Gaussian bounds. Advances in Differential Equations. Volume 26, Numbers 11-12, November/December 2021 |
[23] | S. Biagi, A. Bonfiglioli, M. Bramanti: Global estimates in Sobolev spaces for homogeneous Hörmander sum of squares. Journal of Math. Anal. and Appl. 498(1) (2021) |
[24] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi: Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. Roy. Soc. Edinburgh Sect. A 151(5) (2021), 1611-1641. |
[25] | S. Biagi, F. Esposito, E. Vecchi: Symmetry and monotonicity of singular solutions of double phase problems, J. Differential Equations 280 (2021), 435-463. |
[26] | S. Biagi, A. Pinamonti, E. Vecchi: Pohozaev-type identities for differential operators driven by homogeneous vector fields, NoDEA Nonlinear Differential Equations Appl. 28(1), (2021), 25 pp. |
[27] | E. Bonetti, C. Cavaterra, F. Freddi, M. Grasselli, R. Natalini: Chemomechanical degradation of monumental stones: Preliminary results, Springer INDAM Series 41, (2021), 59-72. |
[28] | M. Bramanti: Space regularity for evolution operators modeled on Hörmander vector fields with time dependent measurable coefficients, J. Evol. Equ. 21(2) (2021), 1419-1448. |
[29] | M. Bramanti, G. Cupini, E. Lanconelli, E. Priola: Errata to "Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients", Math. Nachr. 286, No. 11-12, 1087 -1101 (2013). Math. Nachr. 2021, vol. 294: pp. 1839--1842. |
[30] | D. Bucur, I. Fragalà: Symmetry results for variational energies on convex polygons, ESAIM Control Optim. Calc. Var. 27, (2021), 3. |
[31] | D.Bucur, I. Fragalà: Symmetry results for variational energies on convex polygons, ESAIM: Control Optim. Calc. Var. 27 (2021), 16 pp |
[32] |
D. Bucur, I. Fragalà, A. Giacomini:
Multiphase free discontinuity problems: monotonicity formula and regularity results, Ann. Inst. H. Poincaré Anal. Non Linéaire (2021), 1553-1582 |
[33] | D. Bucur, I. Fragalà, A. Giacomini: Multiphase free discontinuity problems: Monotonicity formula and regularity results, Ann. Inst. H. Poincare (C) Anal. Non Lineaire 38, (2021), no. 5, 1553-1582. |
[34] | F. Camilli, G. Cavagnari, R. De Maio, B. Piccoli: Superposition principle and schemes for measure differential equations, Kinet. Relat. Models 14(1), (2021), 89-113. |
[35] | P. Cannarsa, F. Gazzola: Dynamic optimization for beginners - with prerequisites and applications, EMS, 2021 |
[36] | M. Capolli, A. Maione, A.M. Salort, E. Vecchi: Asymptotic Behaviours in Fractional Orlicz–Sobolev Spaces on Carnot Groups, J. Geom. Anal. 31(3), (2021), 3196-3229. |
[37] | M. Caroccia, S. Ciani: Dimensional lower bounds for contact surfaces of Cheeger sets. Journal De Mathematiques pures et appliquees, vol. 157, p. 1-44, ISSN: 0021-7824, doi: 10.1016/j.matpur.2021.11.010 |
[38] | D. Castorina, G. Catino, C. Mantegazza: A triviality result for semilinear parabolic equations, Math. Eng. 4(1), (2021). |
[39] | G. Catino, F. Gazzola, P. Mastrolia: A conformal Yamabe problem with potential on the Euclidean space, Ann. Mat. Pura Appl. 200, 2021, 1987-1998 |
[40] | G. Catino, D.D. Monticelli, F. Punzo: The Poisson equation on Riemannian manifolds with weighted Poincaré inequality at infinity, Ann. Mat. Pura Appl. 200(2), (2021), 791-814. |
[41] | G. Cavagnari, A. Marigonda, M. Quincampoix: Compatibility of state constraints and dynamics for multiagent control system, J. Evol. Equ. 21(4) (2021), 4491-4537 |
[42] | L. Cherfils, H. Fakih, M. Grasselli, A. Miranville: A convergent convex splitting scheme for a nonlocal Cahn-Hilliard-Oono type equation with a transport term, ESAIM: Mathematical Modelling and Numerical Analysis 55, (2021), S225-S250. |
[43] | F. Colombo, D. Deniz González, S. Pinton: The Noncommutative Fractional Fourier Law in Bounded and Unbounded Domains, Complex Anal. Oper. Theory 15(7) (2021) |
[44] | F. Colombo, J. Gantner, S. Pinton: An Introduction to Hyperholomorphic Spectral Theories and Fractional Powers of Vector Operators, Adv. Appl. Clifford Algebr. 31(3) (2021) |
[45] | F. Colombo, I. Sabadini, D.C. Struppa, A. Yger: Gauss sums, superoscillations and the Talbot carpet, J. Math. Pures Appl. 147, (2021), 163-178. |
[46] | M. Conti, L. Liverani, V. Pata: The MGT-Fourier model in the supercritical case, J. Differential Equations 301 (2021), 543-567. |
[47] | M. Conti, V. Danese, V. Pata: Aging of viscoelastic materials: A mathematical model, Springer INDAM Series 41, (2021), 135-146. |
[48] | M. Conti, L. Liverani, V. Pata: A note on the energy transfer in coupled differential systems, Commun. Pure Appl. Anal. 20(5), (2021), 1821-1831. |
[49] | M. Conti, V. Pata, M. Pellicer, R. Quintanilla: A new approach to mgt-thermoviscoelasticity, Discrete Contin. Dyn. Syst. 41(10) (2021), 4645 - 4666. |
[50] | G. Crasta, I. Fragalà: On the supremal version of the Alt-Caffarelli minimization problem, Adv. Calc. Var. 14(3) (2021), 327-341. |
[51] | G. Crasta, I. Fragalà: On the supremal version of the Alt--Caffarelli minimization problem, Adv. Calc.Var. 14 (2021), 327-341. |
[52] | G. Crasta, I. Fragalà: Concavity properties of solutions to Robin problems, Camb. J. Math. (2021), 177-212 |
[53] | E. Davoli, M. Kružík, P. Piovano, U. Stefanelli: Magnetoelastic thin films at large strains, Contin. Mech. Thermodyn. 33(2), (2021), 327-341. |
[54] | G. B. De Luca, N. De Ponti, A. Mondino, A. Tomasiello: Cheeger bounds on spin-two fields, Journal of High Energy Physics, volume 2021, Article number: 217 (2021). |
[55] | N. De Ponti, A. Mondino: Sharp Cheeger-Buser type inequalities in RCD(K,∞) spaces, The Journal of Geometric Analysis, 31, (2021), pp. 2416–2438. |
[56] | N. De Ponti, A. Mondino, D. Semola: The equality case in Cheeger's and Buser's inequality on RCD spaces, Journal of Functional Analysis, volume 281, Issue 3, (2021). |
[57] | F. Dell'Oro: On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction, J. Differential Equations 281 (2021), 148-198 |
[58] | F. Dell'Oro, Y. Mammeri: Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction, Appl. Math. Optim. 83(2), (2021), 813-831. |
[59] | F. Dell'Oro, V. Pata: Second Order Linear Evolution Equations with General Dissipation, Appl. Math. Optim. 83(3), (2021), 1877-1917. |
[60] | M. Di Cristo, L. Rondi: Interior decay of solutions to elliptic equations with respect to frequencies at the boundary, Indiana Univ. Math. J. 70(4) (2021), 1303-1334. |
[61] | M. Di Cristo, L. Rondi: The distance from the boundary in a Riemannian Manifold: Regularity up to a conformal change of the metric, Indiana Univ. Math. J. 70(4) (2021), 1283-1302. |
[62] | S. Dipierro, B. Pellacci, E. Valdinoci, G. Verzini: Time-fractional equations with reaction terms: fundamental solutions and asymptotics, Discrete Contin. Dyn. Syst. 41(1), (2021), 257–275. |
[63] | P. Dulio, E. Laeng: Generalization of Heron’s and Brahmagupta’s equalities to any cyclic polygon, Aequationes Math. 95, (2021), no. 5, 941-952. |
[64] | V. Felli, B. Noris, R. Ognibene: Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region, Calc. Var. Partial Differential Equations 60(1), (2021), 12. |
[65] | V. Felli, B. Noris, R. Ognibene: Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region. Calc. Var. Partial Differential Equations 60, 12 (2021). |
[66] | L. Fornari, E. Laeng, V. Pata: A direct computation of a certain family of integrals, Arab J. Math. Sci. 27(2) (2021), 249-252 |
[67] | S. Frigeri, C.G. Gal, M. Grasselli: Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility, J. Differential Equations 287, (2021), 295-328. |
[68] | M. Garrione: Beams with an intermediate pier: spectral properties, asymmetry and stability, Math. Eng. 3(2), (2021), Paper no. 16, 21 pp. |
[69] | M. Garrione: Vanishing diffusion limits for planar fronts in bistable models with saturation, Trans. Amer. Math. Soc. 374 (2021), 3999-4021 |
[70] | F. Gazzola, E.M. Marchini: The moon lander problem revisited, Math. Eng. 3 (5), (2021), 1-14 |
[71] | F. Gazzola: An optimal control problem for virus propagation and economic loss, Rendiconti Sem. Mat. Univ. Pol. Torino 97, 2021, 1-23 |
[72] | F. Gazzola, E.M. Marchini: A minimal time optimal control for a drone landing problem, ESAIM-COCV 27, 2021, 99 |
[73] | F. Gazzola, A. Soufyane: Long-time behavior of partially damped systems modeling degenerate plates with piers, Nonlinearity 34 (2021) 7705-7727 |
[74] | F. Gazzola, G. Sperone: Bounds for Sobolev embedding constants in non-simply connected planar domains,In: Geometric Properties for Parabolic and Elliptic PDEs, V. Ferone et al. (eds.), Springer INdAM Series 47, 2021, 103-125 |
[75] | F. Gazzola, G. Sperone: Remarks on radial symmetry and monotonicity for solutions of semilinear higher order elliptic equations, Math. in Eng. 4(5), 2022, 1-24 |
[76] | U. Gianazza, S. Salsa: On the Harnack inequality for non-divergence parabolic equations, Math. Eng. 3(3), (2021), Paper no. 20, 11 pp. |
[77] |
A. Giorgini: Well-posedness of the two-dimensional Abels-Garcke-Gr\"{u}n model for two-phase flows with unmatched densities, Calc. Var. Partial Diff. Equ. 60:100 (2021), 40 pp. |
[78] | F. Giuliani: Transfers of energy through fast diffusion channels in some resonant PDEs on the circle, §Discrete Contin. Dyn. Syst. 41(11) (2021), 5057-5085 |
[79] |
F. GIULIANI:
Transfers of energy through fast diffusion channels in some resonant PDEs on the circle , Discrete and Continuous Dynamical Systems-Series A, 41 (11), 5057-5085
|
[80] |
F. GIULIANI, M. GUARDIA, P. MARTIN, S. PASQUALI:
Chaotic-like transfers of energy in Hamiltonian PDEs, Communications in Mathematical Physics, 384, 1227-1290
|
[81] | F. Giuliani, M. Guardia, P. Martin, S. Pasquali: Chaotic resonant dynamics and exchanges of energy in Hamiltonian PDEs, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 32(1) (2021), 149-166 |
[82] | F. Giuliani, M. Guardia, P. Martin, S. Pasquali: Chaotic-Like Transfers of Energy in Hamiltonian PDEs, Comm. Math. Phys. 384(2) (2021), 1227-1290 |
[83] | G. Grillo, G. Meglioli, F. Punzo: Smoothing effects and infinite time blowup for reaction-diffusion equations: An approach via Sobolev and Poincaré inequalities, J. Math. Pures Appl. 151, (2021), 99-131. |
[84] | G. Grillo, G. Meglioli, F. Punzo: Global existence of solutions and smoothing effects for classes of reaction–diffusion equations on manifolds, J. Evol. Equ. 21, (2021), no. 2, 2339-2375. |
[85] | G. Grillo, M. Muratori, F. Punzo: Fast diffusion on noncompact manifolds: Well-posedness theory and connections with semilinear elliptic equations, Trans. Amer. Math. Soc. 374 (2021), 6367-6396 |
[86] | T. Kawakami, M. Muratori: Nonexistence of Radial Optimal Functions for the Sobolev Inequality on Cartan-Hadamard Manifolds, Springer INdAM Series 47 (2021), 183-203 |
[87] | L.C. Kreutz, P. Piovano: Microscopic validation of a variational model of epitaxially strained crystalline films, SIAM J. Math. Anal. 53(1), (2021), 453-490. |
[88] | A. Leaci, F. Tomarelli: Bilateral Riemann-Liouville Fractional Sobolev spaces, Note di Matematica 14(2) (2021), 61-83 |
[89] |
A. Leaci, F. Tomarelli:
Bilateral Riemann Liouville Fractional Sobolev spaces, NOTE MAT. 41 (2) (2021), 61-83.
|
[90] | F. Maddalena, D. Percivale, F. Tomarelli: Elastic-brittle reinforcement of flexural structures, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 32(4) (2021), 691-724 |
[91] |
F. Maddalena, D. Percivale, F. Tomarelli:
Elastic-brittle reinforcement of flexural structures (dedicated to Guido Stampacchia), REND. LINCEI MAT. APPL. 32 (4) (2021) 691-724.
|
[92] | E. Maluta: Diametral points and diametral pairs in Banach spaces, J. Math. Anal. App. 494(2), (2021), 124648. |
[93] | G. Meglioli, F. Punzo: Blow-up and global existence for solutions to the porous medium equation with reaction and fast decaying density, Nonlinear Anal. 203, (2021), 112187. |
[94] | G. Meglioli, F. Punzo: Blow-up and global existence for the inhomogeneous porous medium equation with reaction, Rend. Mat. Appl. 42(3-4), (2021), 271-292. |
[95] | E. Moreira dos Santos, G. Nornberg, N. Soave: On unique continuation principles for some elliptic systems, Ann. Inst. H. Poincare (C) Anal. Non Lineaire 38, (2021), no. 5, 1667-1680. |
[96] | M. Muratori: Some recent advances in nonlinear diffusion on negatively-curved Riemannian manifolds: from barriers to smoothing effects, Boll. Unione Mat. Ital. 14(1), (2021), 69-97. |
[97] | B. Pellacci, A. Pistoia, G. Vaira, G. Verzini: Normalized concentrating solutions to nonlinear elliptic problems, J. Differential Equations 275 (2021), 882-919 |
[98] | D. Pierotti, N. Soave, G. Verzini: Local minimizers in absence of ground states for the critical NLS energy on metric graphs, Proc. Roy. Soc. Edinburgh Sect. A 151, (2021), 705-733 |
[99] | D.Pierotti, N.Soave, G.Verzini: Local minimizers in absence of ground states for the critical NLS energy on metric graphs, Proceedings of the Royal Society of Edinburgh Section A: Mathematics., Vol.151(2), pp. 705-733, (2021). |
[100] | F. Punzo: Global Solutions of Semilinear Parabolic Equations on Negatively Curved Riemannian Manifolds, J. Geom. Anal. 31(1), (2021), 543-559. |
[101] | G. Verzini: Foreword to the special issue Contemporary PDEs between theory and modeling, Math. Eng. 3(3) (2021), pp. I-IV. |