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Abstract

In this article, we continue our mathematical study of organic photovoltaic
device models started off in [12] focusing on the issue of accurately modeling
the impact of the interface morphology on device performance. To this end,
we propose a multi-dimensional model for bilayer organic solar cell devices with
arbitrary interface geometries derived by averaging the mass balance equations
across the interface thickness. This yields a system of incompletely parabolic
nonlinear PDEs to describe mass transport in the materials, coupled with ODEs
localized at the heterojunction. We perform the numerical approximation of the
differential system in stationary conditions and we apply it to the simulation of
a variety of devices with different morphologies.

Keywords: Organic photovoltaic devices; solar cells; reaction-diffusion systems
with electrostatic convection; numerical simulation; finite element method.

1. Introduction and Motivation

Research on photovoltaic energy conversion has recently received great im-
pulse due to the growing demand for low carbon dioxide emission energy sources.
In particular, the high manufacturing cost of crystalline silicon and the latest
advancements on semiconducting polymer design and synthesis in recent years
have directed the attention of the scientific community towards Organic Solar
Cells (OSCs), i.e. solar cells based on organic materials [8, 15, 16, 26, 27, 29, 31],
especially because of the very limited thermal budget required for the produc-
tion of such materials and of their amenability to be deposited on large areas,
which is fundamental in light harvesting applications.

One of the main peculiarities of OSCs is that most physical phenomena that
are critical for charge photogeneration occur at the interface between the two
materials that constitute the active layer of such devices. In order to increase cell
efficiencies, currently of the order of about 8% [22, 17], the optimization of the
morphology of such interface is considered by device designers to be an issue at
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least as important as the optimization of the donor and acceptor optoelectronic
characteristics.

For this reason, in this article we continue our mathematical study of organic
photovoltaic device models started off in [12] focusing on the issue of accurately
modeling the impact of the interface morphology on device performance. To
this end, we present an extension of the one-dimensional model for bilayer OSC
devices proposed in [3] to the case of arbitrary interface geometries.

Compared to previously proposed multidimensional models [6, 33, 20], our
approach is characterized by a systematic use of the average across the interface
thickness of the mass balance system equations. This amounts to “lumping”
the equations describing the interface phenomena into suitable flux transmission
conditions. The multiscale perspective of the proposed formulation is similar
to model-reduction techniques used in porous media with thin fractures [25]
and has the advantage of simplifying the discrete computational domain while
allowing, at the same time, to easily include in the model a local dependency of
the coefficients on the orientation of the electric field.

The present paper is structured as follows. In Section 2 we start by briefly
describing the sequence of physical phenomena that lead from photon absorbtion
to current harvesting in an OSC. In Section 3 we present the system of equations
to model charge generation and transport, initially considering an interface of
finite thickness (Section 3.2), and then deducing simplified transmission condi-
tions to be enforced at the material separation interface (Section 3.3). Section 4
details the numerical methods adopted for the solution of the model equations,
while Section 5 is devoted to presenting and discussing some simulation results.
Finally, in Section 6 we draw some conclusions and skecth possible directions to
be followed in further research on this topic.

2. Basic Principles of Photocurrent Generation in OSCs

In this section, we describe the basic principles of photocurrent generation
in OSCs only to the extent strictly needed for understanding the naming con-
ventions adopted in the following sections. For a more thorough introduction
to the subject, we refer the interested reader to [15, 29, 26].

A schematic representation of the typical structure of an OSC is shown
in Fig. 1. The photoactive layer of the device consists of two materials, one
with higher electron affinity (the “acceptor”, for example F8BT) and one with
lower electron affinity (the “donor”, for example PFB), sandwiched between two
electrodes, one of which is transparent to allow light to enter the photoactive
layer while the other is reflecting in order to increase the light path through the
device.

The sequence of physical phenomena that leads from photon absorption to
current harvesting at the device contacts is represented in Fig. 2.

Absorption of a photon in either material produces an electron-hole pair,
usually referred to as an exciton whose binding energy is of the order of about
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(b) Device with disordered interface morphology

Figure 1: Structure of an organic solar cell.
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Figure 2: Flow-chart of the photoconversion mechanisms in an OSC.

0.5÷ 1 eV. Excitons may diffuse through the device until they either recombine
or reach the interface between the donor and acceptor phases. If this latter
event occurs, the exciton may get trapped at the interface in such a way that
its electron component lays in the high electron affinity region while the hole
component lays in the low electron affinity region. Such a trapped excited state
is referred to as a polaron pair or geminate pair [3, 33] and has a lower binding
energy compared to that of the exciton state, as the Coulomb attraction between
the electron and hole is reduced by the chemical potential drop between the two
materials. The polaron binding force may be overcome by the electric field
induced by the small built-in voltage between the contact metals thus leading
to the formation of two independent charged particles (one electron and one
hole), otherwise the polaron pair may return to the untrapped exciton state
or recombine. Free charge carriers move by drift and diffusion mechanisms
and, unless they are captured along their path by the coulombic attraction of
an oppositely charged particle and recombine at the interface to form a new
polaron pair, they eventually reach the contacts thus producing a measurable
external current.
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3. Mathematical Model

In this section we propose a multiscale PDE/ODE model of photoconver-
sion and charge transport mechanisms in an OSC which represents a consistent
generalization of the approach proposed in [3, 32, 33]. To present our model
we proceed through four steps. In Section 3.1, we introduce the geometrical
model of the device which consist of two bulk regions (the acceptor and donor
phases) separated by an interface region of (finite) thickness 2H. In Section 3.2,
we introduce the conservation laws that govern transport of the various species
throughout the device and the generation and recombination mechanisms that
occur in each area of the domain. In Section 3.3, we obtain the final model equa-
tions by performing an integration along the interface thickness. This leads to a
mathematical description of an OSC where charge dissociation and recombina-
tion mechanisms turn out to be “lumped” into suitable transmission conditions
across the surface separating the two material phases. Finally, in Section 3.4 we
illustrate and discuss a model for the polaron pair dissociation rate as a function
of the electric field at the material interface.

3.1. Geometry

A schematic 3D picture of the OSC is illustrated in Fig. 3(a).

Γ
Ωn

Ωp

?

6

?

6

XXXXXX©©©©©X
XXXXX©©©©©

XXXXXX©©©©©

XXXXXX

(a) 3D OSC

s

Ωn

Ωp

ΓC

ΓA

Γn Γn

Γp Γp

Γ
¤
¤º ν

(b) 2D cross-section

Figure 3: Geometry of the cell bulk.

The device structure Ω is a parallelepiped divided into two distinct subre-
gions, Ωn (acceptor) and Ωp (donor), separated by a regular oriented surface
Γ = ∂Ωn∩∂Ωp [10] on which, for each x ∈ Γ, we can define a unit normal vector
ν(x) directed from Ωp into Ωn. The top and bottom surfaces of the structure
are the cell electrodes, cathode and anode, denoted as ΓC and ΓA, respectively,
in such a way that ∂Ωn = ΓC ∪ Γ ∪ Γn and ∂Ωp = ΓA ∪ Γ ∪ Γp (see Fig. 3(b)).

Following [3, 32, 33], it is convenient, for modeling purposes, to associate
with the interface Γ the subregion ΩH ⊂ Ω depicted in Fig. 4(a) and defined as
follows. For each point x ∈ Γ, let tx = {x + ξν (x) : |ξ| < H} be the “thickness”
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associated with x. Then, set

ΩH =
⋃

x∈Γ

tx = {y ∈ Ω : dist(y,Γ) < H} . (1)
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Figure 4: Geometry of the cell bulk and interface region.

The subregion ΩH is thus a 3D thin layer of thickness 2H surrounding Γ and
represents the device volumetric portion where the dissociation and recombina-
tion mechanisms of Section 2 are assumed to occur. Based on the definition (1),
we can introduce the two portions Ω′

n = Ωn \ ΩH and Ω′
p = Ωp \ ΩH , in such

a way that Ω = Ω′
n ∪ ΩH ∪ Ω′

p (see Fig. 4(b)). Consistently, we also introduce
the boundary portions Γ′

n and Γ′
p and set Γ± = {x ±Hν (x) : x ∈ Γ}, in such

a way that ∂Ω′
n = ΓC ∪Γ+∪Γ′

n, ∂Ω′
p = ΓA∪Γ−∪Γ′

p and ∂ΩH = Γ+∪Γ−∪ΓH ,
where ΓH = (Γn ∪ Γp) \ (Γ′

n ∪ Γ′
p).

3.2. Governing Equations

Let us denote by e, n, p and P the volumetric densities of (singlet) excitons,
electrons, holes and polaron pairs, respectively. Such quantities satisfy, for each
time t > 0, a set of coupled conservation laws. In particular, excitons in the
bulk regions obey

∂e

∂t
+ ∇ ·Je = Q−

e

τe
in Ω′

n ∪ Ω′
p (2a)

Je and τe being the exciton flux density and lifetime, respectively. The term Q
in (2a) denotes the rate at which excitons are generated by photon absorption
and is henceforth assumed to be a given function of time and position. In the
interface region additional dissociation and recombination mechanisms must be
taken into account, therefore the conservation equation for excitons in such
region reads

∂e

∂t
+ ∇ ·Je = Q−

e

τe
−

e

τdiss
+ ηkrecP in ΩH (2b)
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where τ−1
diss is the rate at which excitons transition to the polaron state, while

ηkrec is the rate at which polarons transition back to the exciton state. In par-
ticular krec denotes the total rate of polaron recombination events and 0 < η ≤ 1
the fraction of such events which produce a singlet exciton. Finally, as excitons
have zero net charge, their flux is driven by diffusion forces only, i.e. the flux
density may be expressed as

Je = −De∇e in Ω (2c)

De being the exciton diffusion coefficient.
As we assume that electrons (holes) are not able to penetrate the donor

(acceptor) material beyond the interface layer ΩH , the following equations hold
for electrons in the bulk:





∂n

∂t
−

1

q
∇ ·Jn = 0 in Ω′

n

n ≡ 0 in Ω′
p

(3a)

and for holes in the bulk:




p ≡ 0 in Ω′
n

∂p

∂t
+

1

q
∇ ·Jp = 0 in Ω′

p

(3b)

where Jn (Jp) denotes the electron (hole) current density and q is the quantum
of charge. Notice that the right-hand-side of (3a)1 and (3b)2 are both iden-
tically zero as electrons and holes can only recombine with each other, so no
recombination occurs where either of the two species is missing. In the interface
region both electrons ad holes exist so the current continuty equations in such
region read

∂n

∂t
−

1

q
∇ ·Jn = kdissP − γnp in ΩH (3c)

and
∂p

∂t
+

1

q
∇ ·Jp = kdissP − γnp in ΩH , (3d)

where kdiss is the polaron dissociation rate (see Section 3.4 for the model) and
γ is the bimolecular recombination rate, for which a Langevin-type relation is
used [3]. As electrons and holes each bear a non-zero net charge, their flux is
driven by both diffusion and electric drift forces [19], therefore:

{
Jn = q(Dn∇n+ µnnE) in Ω′

n ∪ ΩH

Jp = q(−Dp∇p+ µppE) in Ω′
p ∪ ΩH

(3e)

where Dn, µn and Dp, µp are the diffusion coefficient and mobility for electrons
and holes, respectively, that are assumed to satisfy the Einstein relations

Dn = (KbT/q)µn, Dp = (KbT/q)µp (3f)
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Kb and T being Boltzmann’s constant and absolute temperature, respectively.
Neglecting the effect of energetic disorder, as in [3], mobilities can be assumed
to depend only on the electric field magnitude, according to the Poole-Frenkel
model [14, 18].

The electric field E in (3e) is connected by

E = −∇ϕ in Ω (4a)

to the electric potential ϕ, which in turn satisfies the following Poisson equation
in the two bulk regions:

{
−∇ · (ε∇ϕ) = −q n in Ω′

n

−∇ · (ε∇ϕ) = +q p in Ω′
p

(4b)

while in the interface region we have

−∇ · (ε∇ϕ) = q(p− n) in ΩH . (4c)

The electric permittivity ε = εrε0, εr and ε0 being the relative material and
vacuum permittivities, respectively, is assumed constant in each material but
may be discontinuous across the interface Γ.

As for the polarons, they only exist in the interface region where they are
trapped in and are not allowed to move, therefore they satisfy the following
ODE in the interface region

∂P

∂t
=

e

τdiss
+ γnp− (kdiss + krec)P in ΩH (5a)

while their density is identically zero in the bulk

P ≡ 0 in Ω′
n ∪ Ω′

p. (5b)

3.3. Lumping of the Interface Equations

The equation system (2)-(5) constitutes a full model of photocurrent gen-
eration in an heterojunction OSC. The domain partitioning required by such
model, though, may turn out to be quite unpractical for numerical simulation,
in particular when devices with complex interface morphology are to be consid-
ered. For this reason, we proceed in this section to a modification of the model
which, at the cost of a few physically reasonable approximations, allows us to
get rid of all equations set in the domain ΩH by replacing them with suitable
interface conditions to be enforced on the surface Γ itself. Mathematically, this
procedure consists of neglecting the thickness H of the physical interface region
in the “bulk” equations (2a), (3a), (3b), (4b) and integrating the “interface”
equations (2b), (3c), (3d), (4c), (5a) along the direction normal to the surface
Γ. With this aim, let us start by introducing the following new dependent
variable

P̃ (t,x) =

∫ H

−H

P (t,x + ξν (x)) dξ, x ∈ Γ. (6)
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This quantity physically represents the areal concentration of polaron pairs over
the surface Γ. We can derive from (5a) an evolution equation for P̃ as follows:

∂

∂t
P̃ (t,x) =

∫ H

−H

1

τdiss
e (t,x + ξν (x)) dξ

+

∫ H

−H

γn (t,x + ξν (x)) p (t,x + ξν (x)) dξ (7)

−

∫ H

−H

(kdiss + krec)P (t,x + ξν (x)) dξ.

Eq. (7) may be simplified using the approximations:

∫ H

−H

1

τdiss
e (t,x + ξν (x)) dξ ≃

2H

τdiss
e (t,x) (8a)

∫ H

−H

γn (t,x + ξν (x)) p (t,x + ξν (x)) dξ ≃ 2Hγn (t,x) p (t,x) (8b)

∫ H

−H

krec P (t,x + ξν (x)) dξ ≃ krec P̃ (t,x) (8c)

∫ H

−H

kdiss P (t,x + ξν (x)) dξ ≃ kdiss P̃ (t,x) (8d)

which lead to the following equation for the areal polaron density

∂P̃

∂t
=

2H

τdiss
e+ 2Hγnp− (kdiss + krec) P̃ on Γ. (9)

In what follows, for any function f : Ω → R, we indicate by fn and fp the
restrictions of f on Γ from the acceptor and donor sides of the interface, and
denote by [[f ]] := fn − fp the jump of f across Γ.

Neglecting the thickness of the interface region in (2a) we obtain

∂e

∂t
+ ∇ ·Je = Q−

e

τe
in Ω \ Γ. (10)

Integrating (2b) across the thickness H and using again (8a) and (8c), we get

∫ H

−H

(
∂e

∂t
+ ∇ ·Je −Q+

e

τe

)
dξ = ηkrecP̃ −

2H

τdiss
e. (11)

In order to simplify the integral in (11), we let 0 < δ < H and ∀x ∈ Γ we make
use of the following splitting

∫ H

−H

=

∫ −δ

−H

+

∫ δ

−δ

+

∫ H

δ

. (12)
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The first and third term in the splitting are identically zero due to (10), while,
as δ → 0, ∫ δ

−δ

(
∂e

∂t
−Q+

e

τe

)
dξ → 0

and

∫ δ

−δ

∇ ·Je dξ = +ν (x) ·Je (t,x + δν (x)) − ν (x) ·Je (t,x − δν (x))

so that, using (12) in (11) and letting δ → 0 yields

[[ν ·Je]] = ηkrecP̃ −
2H

τdiss
e on Γ. (13)

A similar procedure may be applied to the continuity equations (3). We first
rewrite (3a) and (3b) neglecting the thickness of ΩH , obtaining:





∂n

∂t
−

1

q
∇ ·Jn = 0 in Ωn

n ≡ 0 in Ωp

(14)

and 



p ≡ 0 in Ωn

∂p

∂t
+

1

q
∇ ·Jp = 0 in Ωp.

(15)

Then, by integrating (3c) and (3d) across the thickness H, using the split-
ting (12), the approximation (8b) and (8d) we end up with

1

q
ν ·Jp =

1

q
ν ·Jn = −kdissP̃ + 2H γnp on Γ. (16)

The same averaging technique as above can be used to treat the Poisson
equation (4b) and (4c).

This completes the derivation of the multiscale version of the governing
equations of the OSC model which, for sake of convenience, we summarize below
dropping from now on the superscript ˜ from the variable P̃ :
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∂P

∂t
=

2H

τdiss
e+ 2Hγnp− (kdiss + krec)P on Γ, (17a)





∂e

∂t
−∇ · (De∇e) = Q−

e

τe
in Ωn ∪ Ωp ≡ Ω \ Γ

[[e]] = 0, [[−ν ·De∇e]] = ηkrecP −
2H

τdiss
e on Γ,

(17b)





∂n

∂t
−∇ · (Dn∇n− µnn∇ϕ) = 0 in Ωn

ν · (Dn∇n− µnn∇ϕ) = −kdissP + 2Hγnp on Γ,
(17c)





∂p

∂t
−∇ · (Dp∇p+ µpp∇ϕ) = 0 in Ωp

−ν · (Dp∇p+ µpp∇ϕ) = −kdissP + 2Hγnp on Γ,
(17d)





−∇ · (ε∇ϕ) = −q n in Ωn

−∇ · (ε∇ϕ) = +q p in Ωp

[[ϕ]] = [[ν · ε∇ϕ]] = 0 on Γ.

(17e)

Eqs. (17) must be supplemented by appropriate boundary conditions and initial
data for e, n, p and P . Referring to [12] and [32] for the physical details,
we merely notice that Dirichlet boundary conditions are enforced for e and
ϕ on ΓC and ΓA, Robin-type conditions are given for n and p on ΓC and
ΓA, respectively, while homogeneous Neumann conditions are assumed on the
remaining boundary Γn ∪ Γp.

3.4. Model for the Polaron Dissociation Rate

We devote this section to describing the model for the polaron dissociation
rate kdiss as a function of the electric field at the material interface, since this
parameter turns out to have a significant impact on the cell photoconversion
efficiency as documented in Section 5.

Referring to Fig. 5 for the geometrical notation, we let

kdiss(E) = kdiss(0)

∫ 2π

0

dψ

∫ π/2

0

w(θ, ψ) β (E ·v) dθ, (18)

where kdiss(0) is the zero-field dissociation rate constant, v is the escape direc-
tion of the electron part of the polaron at the point x ∈ Γ, w is a nonnegative

weight such that
∫ 2π

0
dψ

∫ π/2

0
w(θ, ψ) dθ = 1, and β is an enhancement/suppres-

sion factor given by the Poole-Frenkel formula

β(z) =

{
e−Az z ≥ 0

e2
√
−Az z < 0,

(19)
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Figure 5: Polaron dissociation at the material interface.

having set A = (4πε)−1q3(Kb T )−2. The product E ·v can be expressed in terms
of the normal component En and the tangential component Et of the electric
field as

E ·v = En cos θ + Et sin θ cosψ.

Upon assuming that v forms a maximum angle θmax with ν, the weight w can
be expressed as:

w(θ, ψ) =





sin θ

2π(1 − cos θmax)
0 < θ ≤ θmax

0 θmax < θ ≤
π

2
.

Two limits are of particular interest, θmax = π/2 and θmax → 0+. In the first
case, Eq. (18) becomes

kdiss(E) = kdiss(0)

∫ 2π

0

dψ

∫ π/2

0

sin θ

2π
β (E ·v) dθ, (20)

which, in the special case where Et = 0, coincides with Eqs. (17)-(21) of [3]. In
the second case, it can be checked that

kdiss(E) = kdiss(0) β (En) . (21)

Fig. 6 shows the dissociation rate constant (normalized to kdiss(0)) computed
by model (20) (left) and (21) (right) for several values of the angle between E

and ν and having set T = 300K and εr = 4. We notice that the dissociation
rate computed by model (20) has a significantly smaller range of variability than
predicted by model (21). If the electric field lies in the tangent plane at point
x of Γ (angle = 90◦, En = 0), the resulting curve from model (20) is an even
function of Et, similarly to what predicted by classical Onsager’s dissociation
theory [28, 5], while in the case of model (21) the normalized dissociation does
not depend on the electric field because β(En) = 1. A discussion of the impact
of (20) and (21) on the model predictions will be carried out in Section 5.

11



−1 −0.5 0 0.5 1

x 10
7

10
−2

10
−1

10
0

10
1

10
2

Electric Field [V m
−1
]

k
d
is
s
(E
)/
k
d
is
s
(0
)
[−
]

angle = 0°

angle = 30°

angle = 45°

angle = 60°

angle = 90°

(a) Model (20)

−1 −0.5 0 0.5 1

x 10
7

10
−2

10
−1

10
0

10
1

10
2

Electric Field [V m
−1
]

k
d
is
s
(E
)/
k
d
is
s
(0
)
[−
]

angle = 0°

angle = 30°

angle = 45°

angle = 60°

angle = 90°

(b) Model (21)

Figure 6: Comparison between models (20) and (21) for various angles between E and ν.

4. Numerical Approximation

In this section we describe the numerical techniques used to solve the math-
ematical model introduced in Section 3.3. As the focus of the computational
simulations illustrated in Section 5 is on the steady state analysis of heterojunc-
tion cell performance, we drop out all partial derivatives with respect to time t
in system (17) in such a way that Eq. (9) reduces to an algebraic constraint.
Should the simulation of the model in the transient regime be of future inter-
est, it is straightforward to adapt to the case at hand the numerical method
described in [12] based on Rothe’s method and on the use of adaptive Backward
Differencing Formulas.

The numerical strategy adopted in the present paper is basically composed
of three steps:

1. Linearization
2. Spatial discretization
3. Solution of the linear algebraic system

Step (1)
For model linearization, we adopt a quasi-Newton approach similar to that used
in [12] that can be described as follows. Denote by U = [ϕ, n, p, e, P ]T the
state vector and introduce the nonlinear operator F defined by

F (U) = [Fϕ (U) , Fn (U) , Fp (U) , Fe (U) , FP (U)]
T

where the i-th element of F is the nonlinear (differential) operator associated
with the i-th equation of system (17). Given U(0), the k-th step of the Newton
iterative method can be written as:

• Step (1)1

Compute δU(k) by solving

J(U(k))δU(k) = −F
(
U(k)

)
(22)

12



• Step (1)2

Update U(k) to U(k+1) by

U(k+1) = U(k) + δU(k) (23)

where J (U) = [jmn (U)] denotes the Jacobian matrix of F (U) and each of its
entries jmn (U) is given by the Frechét derivative of the m-th entry of F with
respect to the n-th entry of U. As the computation of all the derivatives in
J (U) may get quite cumbersome if the electric field dependent models for the
mobilities, dissociation and recombination coefficients introduced in Section 3
are used, we modify Step (1)1 by replacing J (U) with an approximate Jacobian

J̃ (U) in which the derivatives of the model coefficients with respect to the state

vector are neglected. Possible ill-conditioning of J̃ can be avoided by a proper
choice of adimensionalization coefficients (see, e.g., [24, 19]).

Step (2)
Similarly to [12], for the spatial discretization of the sequence of linear systems
of PDEs stemming from Step (1) we adopt the Galerkin-Finite Element Method
(G-FEM) stabilized by means on an Exponential Fitting technique [2, 13, 34, 23]
in order to deal with possibly dominating drift terms in the continuity equa-
tions. A peculiarity of the heterojunction model (17) as compared to the ho-
mogenized model of [12] is the presence of non-trivial interface conditions at the
donor-acceptor interface, which are taken care of by means of the substructur-
ing techniques described, e.g., in [30] which turn out to be of straightforward
implementation in the adopted G-FEM method.

Step (3)
Unlike the framework of Domain Decomposition Methods, where substructuring
is usually implemented by means of subdomain iterations [30], our choice here
is to solve the linear algebraic systems by means of direct methods. Although
this approach has proven faster and more robust in the 1- and 2D cases we have
considered thus far, it may be necessary to abandon it for large 3D problems
where memory consumption becomes the stronger constraint.

5. Simulation Results

In this section we carry out a validation of the model proposed in Section 3.3
by comparison with available results in the literature, showing the effectiveness
of our approach in the case of complex internal morphologies without the need
of particular meshing techniques. We also investigate the impact of the model
for the polaron pair dissociation rate proposed in Section 3.4 on the simulated
device performance. We consider a device made of F8BT and PFB, acting as
acceptor and donor material respectively, as previously considered in [32, 33, 9]
to which we refer for all the details about material parameters and data. The
numerical schemes of Section 4 have been implemented in Octave using the
Octave-Forge package bim [11] for matrix assembly.
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5.1. Model Validation through Comparison with Existing Simulation Data

In this section, we aim to compare the predictions of our model to those
of [32, 33]. The device morphology, shown in Figure 7, is an interpenetrating
rod-shaped structure of donor and acceptor materials with Lcell = 150 nm,
Lelec = 50 nm, LR = 79 nm and WR = 6.25 nm. Throughout this section, we
denote by y the direction between the two electrodes ΓC and ΓA.
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Figure 7: Internal morphology with rod-shaped donor-acceptor interface.

In [32, 33] an optical model has been used to determine the exciton genera-
tion term Q. Here, instead, we follow a simpler approach by considering Q to be
constant in the entire device structure and equal to the value obtained averaging
the result in [32, 33]. Moreover, simplified Dirichlet boundary conditions are
enforced on the free carrier densities at the device electrodes, which amounts to
neglecting the dependence of charge injection on the electric field.
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(a) Q = 1.53 · 1023 m−3 s−1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

Applied Potential [V]

C
u
rr
e
n
t
D
e
n
s
it
y
[m
A
m
−
2
]

model (A)

model (B)

model (C)

(b) Q = 1.53 · 1025 m−3 s−1

Figure 8: Comparison of the current-voltage characteristic lines with two different values for
the exciton generation rate.

Figure 8(a) shows the current density-voltage characteristics in the case of
an exciton generation rate Q = 1.53 · 1023 m−3 s−1. The three curves correspond
to the use of three different expressions for the polaron dissociation rate kdiss,

14



identified as follows: (A) the model proposed in [32, 33] with Ey = |Γ|
−1∫

Γ
Ey dx

as the driving parameter for polaron pair dissociation (solid line); (B) the
model (20) (dash-dotted line); (C) the model (21) (dashed line). The result
computed using model (A) is in excellent agreement with that of Figure 7(right)
in [33] despite the above mentioned modeling differences. Model (A) does not
account for the orientation of the electric field with respect to the donor-acceptor
interface and is expected to overestimate dissociation in the case where E ·ν ≃ 0.
This is confirmed by the curve for model (B). As a matter of fact, in this case
all the dissociation directions are assumed to be equally likely and the com-
puted output current density before flat-band condition occurs (Vappl ≤ 0.6 V)
is smaller than predicted by the solid line curve. For Vappl > 0.6 V a non-
monotonic behavior is observed, this most probably to be ascribed to a too
important contribution of the tangential component of the electric field Et that
still leads (20) to overestimate polaron dissociation at the material interface. If,
instead, model (C) is used, the obtained output current density characteristics
is the dashed line in Figure 8(a). We observe a smoother trend than in previous
cases for all applied voltages, and close to short circuit condition we note that
the current density is further reduced since dissociation is assumed to occur
only in the normal direction and on a significant portion of the interface En is
almost vanishing. In all the considered cases, the nonsmooth behavior at flat
band conditions (Vappl = 0.6 V) is to be ascribed to the discontinuity of ∂β/∂z
at z = 0 in (19).

Figure 8(b) shows the results of the same analysis as above in the case of an
exciton generation rate Q = 1.53 · 1025 m−3 s−1. The shape of the characteristics
is very similar to those with low light up to a scaling factor of about 100, this
suggesting a linearity between the output current density and the illumination
intensity. Notice the absence of the bump for Vappl > 0.6 V in the case of model
(B). This is a consequence of the increased magnitude of the charge carrier densi-
ties compared to the previously considered illumination that in turn determines
stronger Coulomb attraction forces and hence more recombination phenomena.
With reduced attractions, instead, charge carriers have more chances to escape
from the interface following concentration gradients.

In Figure 9 we show the charge carrier densities in a device with geometrical
data set to Lcell = 150 nm, Lelec = 440 nm, LR = 79nm and WR = 55nm, at
short circuit condition with exciton generation rate Q = 1.53 · 1025 m−3 s−1. We
first observe that computed charge carrier distributions in Figure 9(left) are in
very good agreement with those of Figure 3(i) in [32] except near the electrodes
where different boundary conditions are applied, and show the same peaks close
to the vertical sides of the donor-acceptor interface. It is interesting to notice
that the total number of holes in the donor material is higher than the number of
electrons in the acceptor material because of the significantly different values of
their respective mobilities. Negative charges can move through the device faster
to be finally extracted at the cathode so that an overall positive charge builds-
up in the device. The charge densities computed using models (B) and (C)
exhibit a qualitatively similar profile with a gradual reduction of the magnitude
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Figure 9: Charge carrier densities [m−3] at short circuit condition with
Q = 1.53 · 1025 m−3 s−1 using models (A) (left), (B) (right) and (C) (bottom), respec-
tively.

compared to the result of model (A). This behavior is completely consistent
with the previous analysis of the current-voltage characteristics predicted by
the three models of kdiss.

We conclude this preliminary validation of model (17) by illustrating in Fig-
ure 10 the open circuit voltage Voc and short circuit current density Jsc of a
device with the same characteristics as in the previous set of simulations for val-
ues of exciton generation rate in the range from 1.53 · 1020 to 1.53 · 1030 m−3 s−1.
Figure 10(a) is in excellent agreement with Figure 6(right) of [33], and indicates
that models (A), (B) and (C) predict a linear behavior of Voc with respect to
the logarithm of the exciton generation rate, as already pointed out in [32, 33].
Figure 10(b) illustrates the current density Jsc that can be extracted from the
device at short circuit condition. The log-scale plot indicates that Jsc increases
linearly in a wide range of illumination regimes until values of the order of
1028 m−3 s−1. With more intense irradiation the increase becomes sublinear,
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Figure 10: Open circuit voltage and short circuit current density as functions of the exciton
generation rate.

suggesting that saturation of the device occurs due to more relevant excitonic
and electron-hole recombination phenomena which in turn are a consequence of
the increased densities.

5.2. The Role of Interface Morphology

In this section, we aim to investigate the role of interface configuration in
affecting the OSC performance. Referring to Figure 7, we set Lcell = Lelec =
150 nm and LR = 75nm, and we analyze the importance of interfacial length
by considering devices with an increasing density of interpenetrating structures,
starting from a biplanar device and then taking decreasing values for the rod
width WR. Model parameters are the same as in the previous simulations and
the exciton generation rate is Q = 1.53 · 1025 m−3 s−1.
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Figure 11: Short circuit current density as a function of interface length.

Figure 11 illustrates the computed short circuit current density as a function
of the interfacial length for the various polaron pair dissociation rate models
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we previously considered in this section. In all cases, current saturation is
predicted for high densities of nanostructures due to the depletion of excitons in
the interface area that in turn is a consequence of the abundance of dissociation
sites. Computed saturation levels greatly differ among the three choices of the
model for kdiss, in accordance with the analysis of Section 5.1. Figure 11 also
shows that when a biplanar device is considered, using model (C) a higher
short circuit current density is obtained compared to the other approaches. An
explanation of this result is that the electric field in this case is actually vertically
directed and this fact, combined with the assumption that dissociation occurs
only in the normal direction, brings to overestimate its rate (cf. the solid lines
in Figure 6). Qualitatively similar results have been obtained in [6, 32, 33].

Also the orientation of the interface is expected to play a role in determining
device operation and the following set of simulations aims to investigate this
issue. This is a distinctive feature of our model that, to our knowledge, has not
been treated in previous works. For a proper analysis, we allow the orientation
of the donor-acceptor interface to change while its overall length remains almost
constant, in order to single out the effect of the former and analyze it.
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Figure 12: Internal morphology with nanorods with a varying incidence angle α.

The considered device geometry is shown in Figure 12, where the number of
rods is kept constant to four for each material but the incidence angle α is varied
in a range from 90◦ to 77◦ 11′. The geometric data are Lcell = Lelec = 150 nm,
LR = 75nm and WR = 37.5 nm.

Since the changes in the amplitude for α are small, the interface length
does not vary significantly (as demonstrated by Figure 13(a)) and we expect
model (A) to be quite insensitive to such small modifications since Ey mainly
depends on the potential drop across the electrodes. Concerning with model (B),
we again do not expect a relevant sensitivity to such variations in the interface
morphology since the changes in En and Et should balance in the overall con-
tribution. We instead expect model (C) to be most sensitive since the normal
field that is screened at the interface may experience significant variations as a
function of the angle α.

Our expectations are confirmed by the results in Figure 13(b), showing that

18



90 88 86 84 82 80 78
700

720

740

760

780

800

α [degrees]

In
te

rf
a
c
e
 L

e
n

g
th

 [
n

m
]

(a) Interface length

90 88 86 84 82 80 78

40

50

60

70

80

90

100

α [degrees]

S
h
o
rt

C
ir

c
u
it

C
u
rr

e
n
t
D

e
n
s
it
y

[m
A

m
−
2
]

model (A)

model (B)

model (C)

(b) Short circuit current density

Figure 13: Interface length and short circuit current density as functions of α.

the performance of the device in terms of computed short circuit current den-
sity does not vary with α when models (A) and (B) are considered, while if
model (C) is used, an increase of the short circuit current density is observed
as soon as the inclination of the nanorod structure is modified with respect to
the initial configuration. This behavior can be explained as follows. The choice
of model (21) predicts an increase of the dissociation for negative values of the
normal electric field that is higher than the reduction for positive values of En.
Since at short circuit the electric field can be reasonably assumed to be directed
along the y axis (i.e., from the cathode to the anode), the sides of each rod ex-
perience opposite normal fields. As a result, the overall effect is dominated by
the contribution of the sides with negative fields and dissociation is enhanced.

5.3. The Case of A Complex Interface Morphology

In this concluding section, we test the versatility of the model proposed in
the present article in dealing with a very complex internal morphology as that
shown in Figure 14. In this regard, it is important to notice that the use of
the full-scale model (2)-(5) would require an extremely fine grid resolution to
accurately describe the volumetric terms in the active layer around the donor-
acceptor interface, while the use of the multiscale lumped model (17) has the
twofold advantage of considerably simplifying the design of the computational
mesh and reducing the size of the nonlinear algebraic system to be solved.

Figure 15(a) illustrates the computed charge carrier density at short circuit
(Vappl = 0) for the geometry of Figure 14, where the domain is a square 150 nm
sided, with exciton generation rate Q = 1.53 · 1025 m−3 s−1 and using model (B)
for kdiss. Notice in particular that the densities assume much higher magnitudes
compared to those of Figure 9. This is a consequence of the complexity of the
geometry, where donor and acceptor form dead-end areas in which the charges
are trapped and experience recombination. In Figure 15(b) we show again
a comparison of the current-voltage characteristics obtained using the three
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Figure 14: The computational mesh used to numerically solve the model of Section 3.3 in the
case of a complex geometry.
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Figure 15: Log-plot of charge carrier density [m−3] and current-voltage characteristics for a
device with very complex internal structure.

different polaron dissociation rate models. The differences among the obtained
characteristic lines are reduced with respect to the previous simulated cases. In
particular the computed short circuit current densities attain closer values with
respect to more regular morphologies, such as that of Figure 7, for comparable
values of the interface length (approximately 900 nm), see Figure 11. This is
probably to be ascribed to the tortuosity of device internal morphology which
makes interface recombination effects more significant than in the case of a more
regular internal structure.

6. Concluding Remarks and Future Perspectives

The research activity object of the present article is a continuation of the
mathematical study of organic photovoltaic devices started off in [12], and is
focused to:

- the accurate and computationally efficient modeling of the photoconversion
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mechanisms occurring in the material bulk and, above all, at the material
interface separating the acceptor and donor layers;

- the investigation of the impact of the interface morphology and of polaron
pair dissociation on device performance.

To the purpose of achieving the above objectives, we first propose a full-scale
multi-dimensional model for bilayer organic solar cell devices with arbitrary
interface geometries. Then, we carry out a suitable averaging process of the
mass balance system equations across the interface thickness, which amounts
to “lumping” the equations describing the interface phenomena into suitable
flux transmission conditions. The resulting mathematical model consists of
a system of incompletely parabolic nonlinear PDEs in drift-diffusion form to
describe mass transport in the materials, coupled with ODEs localized at the
heterojunction.

The approach proposed here to deal with photoconversion mechanisms in
heterogeneous organic solar cells, has a distinctive multiscale flavour and is
similar to model-reduction techniques used in porous media with thin frac-
tures [25]. Our formulation, compared to previously proposed multi-dimensional
models [6, 33, 20], has the advantage to simplify the discrete computational do-
main while allowing, at the same time, to easily include in the model a local
dependency of the coefficients on the orientation of the electric field.

This latter issue is thoroughly addressed in the numerical simulations of
two-dimensional realistic device structures aimed to investigating the principal
device design parameters (short circuit current and open circuit voltage) as
functions of material interface morphology. In particular, a novel approach
to consistently account for interface electric field orientation in the polaron
dissociation rate is proposed and successfully compared to previously existing
(simplified) expressions depending on a suitable average of the electric field.

Research topics currently under scrutiny include:

- application of the proposed computational model to the study of more complex
three-dimensional morphologies, as considered in [21];

- inclusion of time dependency in the computational experiments, in order to
extend to bilayer OSCs the analysis carried out in [12];

- development of an existence and well-posedness analysis of the solution of
the proposed equation system (17) in both stationary and time-dependent
regimes.

Future efforts will be devoted to investigating more advanced models for
carrier mobilities and polaron dissociation rate, as well as to considering other
material blends currently employed in the fabrication of up-do-date organic solar
cells (see, e.g., [1, 4, 7]).
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