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Abstract

We address the optimal consumption-investment-retirement problem
considering stochastic labor income. We study the Merton problem as-
suming that the agent has to take four different decisions: the retire-
ment date which is irreversible; the labor and the consumption rate and
the portfolio decision before retirement. After retirement the agent only
chooses the portfolio and the consumption rate. We confirm some clas-
sical results and we show that labor, portfolio and retirement decisions
interact in a complex way depending on the spanning opportunities.
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1 Introduction

We analyze the intertemporal optimal investment-consumption problem for an
agent choosing also the leisure rate during his working life and the retirement
date. Before retirement he has to choose the investment strategy, the consump-
tion rate and the leisure rate earning a stochastic wage; after retirement he
fully enjoys leisure, he cannot work (or go back to work), he only defines the
consumption rate and the portfolio of risky assets. We confirm some classical
results and we show that labor, portfolio and retirement decisions interact in a
complex way depending on the spanning opportunities.

Since the seminal contributions [Merton (1969), Merton (1971)], several pa-
pers have investigated optimal consumption and portfolio choices in an intertem-
poral setting. This paper is related to two independent strands of this literature
adapting the Merton model to the real life.

The first group of papers analyzes optimal consumption and portfolio choices
when the agent invests his wealth in financial assets and works earning a stochas-
tic wage, see [Bodie et al. (1992), Bodie et al. (2004), Duffie et al (1997)], and
[Henderson (2005), Koo (1998)]. [Duffie et al (1997), Henderson (2005)] and
[Koo (1998)] consider a stochastic labor income when the agent does not choose
the labor rate. Labor income is non tradable, i.e., markets are not complete and
labor income is driven by a Brownian motion that does not enter the stochastic
differential equations for asset prices. In this context the agent uses financial
assets to hedge the risk that comes from the stochastic wage. As a general re-
sult we have that the optimal portfolio is made up of two parts: the component
obtained through the classical optimization problem with only financial wealth
and the hedging component.

This class of models captures the interaction between financial wealth and
labor income. The analysis points out an important result - the use of financial
assets to hedge labor income risk - but leaves aside two peculiarities of the
agent’s intertemporal choices: flexibility on the participation to the labor market
during the active life and on the retirement decision. In [Bodie et al. (1992)]
the authors have addressed the first issue showing that labor rate flexibility
induces the agent to invest more in risky assets at the beginning of his life:
the opportunity to choose the labor effort in the future works as an insurance
opportunity against adverse investment outcomes, see also [Bodie et al. (2004)]
in the case of a fixed retirement date and [Viceira (2001)] assuming a random
retirement date and no flexibility in the labor supply.

A fixed or a random retirement date are not plausible assumptions to model
agent’s choices. As a matter of fact, modern welfare programs allow the agent to
choose the retirement date under constraints concerning the age or the wealth
accumulated in retirement plans. Flexibility in the retirement choice renders
the optimal consumption-investment problem much more complicated: it be-
comes a variational inequality problem. The literature has addressed the prob-
lem assuming a deterministic (constant) wage with a zero-one labor rate (after
and before retirement), see [Farhi and Panageas (2007)], a deterministic (con-
stant) wage with an endogenous choice in the labor rate before retirement, see
[Choi and Shim (2006), Choi et al. (2008), Zhang (2010)], or with a stochas-
tic wage but with no flexibility on the labor market before retirement, see
[Dybvig and Liu (2010)]. The analysis with a deterministic wage shows that
the agent optimally retires when the wealth reaches a critical level, the bound-
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ary is increasing in the wage.
This paper aims to fill the gap between these two strands of literature:

we consider a stochastic labor income and we allow the agent to choose both
the leisure-labor rate during his working life and the retirement date. The
optimal investment-consumption problem is solved assuming a borrowing con-
straint. Our setting is the one of [Dybvig and Liu (2010)] with flexibility in the
labor choice. As in [Bodie et al. (2004), Dybvig and Liu (2010)], we consider a
stochastic income driven by the same factors as asset prices (complete markets).
We develop our analysis in a general setting with many financial assets deriving
a variational inequality for the dual problem associated with the optimization
problem. Then, assuming a single risky asset and a lognormal process for the
wage we derive the solution of the problem. In this setting we also consider the
case of incomplete markets and we extend the analysis considering a fixed labor
supply. We show that flexibility in the labor supply affects in a complex way
both the portfolio and the retirement decision.

With a single risky asset we confirm results already obtained in the optimal
consumption literature and we obtain several interesting results. As in large
part of the literature with fixed labor supply and no retirement option, a more
risk averse agent prefers a smother consumption path, he consumes less today,
he dislikes risk and therefore he invests less in the risky asset and works more
to insure his financial investment. A permanent wage shock leads the agent to
consume more and to work more, the effect on the optimal portfolio depends
on the correlation between wage and asset return. As we move from perfect
negative correlation between wage and risky asset to perfect positive correlation
both labor supply and risky portfolio decrease because there are less insurance
opportunities and consumption goes up. In a market with restricted spanning
opportunities the agent acts in a myopic way consuming a lot.

For a large set of parameters the wealth to retire threshold is first decreasing
in risk aversion and wage and then increasing. The result comes from the
interaction between the working opportunity option and the endogenous labor
supply/portfolio choice with insurance and disutility effects. In an incomplete
market setting, the agent consumes less, works more and detains less of the risky
financial asset with respect to the complete market setting. He also decides to
retire earlier. As far as labor flexibility is concerned, we show that it helps to
dampen the effects of parameter changes on agent’s choices.

The paper is organized as follows. In Section 2 we introduce the financial
market model and the optimal investment-consumption and retirement problem.
In Section 3 we address the problem via a duality approach. In Section 4
we introduce the Bellman equation and the free boundary problem associated
with the optimal investment-consumption and retirement problem. Section 5
develops the numerical analysis. Section 6 is devoted to the analysis of our
problem with incomplete markets. In Section 7 we extend our analysis to the
case of a fixed labor supply. Finally, Section 8 concludes.
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2 The Optimal Consumption-Investment Prob-
lem

We consider a continuous time economy. The infinite horizon life of the agent is
divided in two parts: before retirement and after retirement. In the first part of
his life the agent consumes, invests in financial markets and chooses the labor
supply rate earning an exogenous stochastic income, after retirement he does
not work, he only consumes and invests his wealth in financial markets. After
retirement the agent cannot go back to work.

There are N + 1 assets: the risk-free asset with a constant instantaneous
interest rate r and N risky assets. Asset prices S(t) evolve as

dSn(t) = Sn(t)

(
bndt+

N∑
k=1

σnkdBk(t)

)
, Sn(0) = Sn0, n = 1, . . . , N, (1)

where b is the N dimensional vector of constant drifts of the risky asset prices,
σ is the N × N invertible constant volatility matrix; B(t) is a N -vector of
Brownian motions on the probability space (Ω,F , P ). By F = {Ft}∞t=0 we
denote the augmentation under P of the natural filtration generated by B(t).
In bold face we denote vectors or matrices of constants and of Brownian motions.

The labor income process Y (t) = Y (S(t), t) (wage) is exogenous and stochas-
tic. Its evolution is fully described by the risk factors affecting asset prices. More
specifically, we assume

dY (t) = µ1(t, Y )dt+ µ>2 (t, Y )dB(t), Y (0) = Y0 > 0, (2)

where µ1 is a scalar function and µ2 is a N -vector of functions, such that
Y (t) > 0, ∀t > 0. Labor income is not an additional source of risk, i.e., it is
tradable, and therefore markets are complete. Y (t) is progressively measurable
with respect to F and satisfies the condition

∫ t
0
Y (s)ds <∞, ∀t ≥ 0 a.s..

We denote by c(t), θ(t) and l(t) consumption, risky asset portfolio and leisure
processes, respectively. We make the following assumptions on these processes:

• c(t) is a non negative progressively process measurable with respect to F ,
such that

∫ t
0
c(s)ds <∞, ∀t ≥ 0 a.s.,

• θn(t) represents the amount of wealth invested in the n-th risky asset at
time t, n = 1, . . . , N , it is a progressively adapted process with respect to
F , such that

∫ t
0
|θ(s)|2ds <∞, ∀t ≥ 0 a.s.,

• l(t) ∈ [0, 1] is the rate of leisure at time t, l(t) is a process measurable
with respect to F .

Let τ ≥ 0 be the retirement date chosen by the agent, i.e., τ ∈ S, where S
denotes the set of all F-stopping time. The retirement decision is irreversible:
during his working life the agent chooses the leisure rate, after retirement he
fully enjoys leisure. At time t the agent is endowed with one unit of “time”,
before retirement he allocates his time between labor (1− l(t)) and leisure (l(t))
with the constraint that he has to work at least 1− L, after retirement he only
enjoys leisure:

0 ≤ l(t) ≤ L < 1 if 0 ≤ t < τ, l(t) = 1 if t ≥ τ.
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Let W (0) = W0 be the initial wealth. The consumption-investment-leisure
strategy (c, l,θ) is admissible if it satisfies the above technical conditions and
the wealth process W (t) satisfies the dynamic budget constraint

dW (t)=[(1− l(t))Y (t)−c(t)] dt+ θ>(t) (b dt+ σdB(t)) +

(
W (t)−

N∑
n=1

θn(t)

)
rdt

(3)
where (1 − l(t))Y (t)dt is the labor income received before retirement, i.e., for
0 ≤ t < τ , θ>(t) (b dt+ σdB(t)) refers to the financial wealth evolution and(
W (t)−

∑N
n=1 θn(t)

)
rdt to the wealth invested in the money market (risk-free

bond).
We impose a no borrowing condition

W (t) ≥ 0, ∀t ≥ 0 (4)

that is the agent cannot borrow money in the risk-free market against future
income.

The agent maximizes the expected utility over the infinite horizon: prefer-
ences are time separable with exponential discounting. The instantaneous utility
at time t is a function of consumption and leisure, i.e., u(c(t), l(t)). Therefore,
given the initial wealth W0 and the labor income process Y (t), we look for an
admissible process triplet (c, l,θ) and a stopping time τ ∈ S that maximize

E

[∫ +∞

0

e−βtu(c(t), l(t))dt
]
, (5)

subject to the budget constraint (3) and the no borrowing condition (4). β is
the subjective discount rate and the utility function is given by

u(c, l) =
1
α

(l1−αcα)1−γ

1− γ
, γ > 0, 0 < α < 1. (6)

The infinite horizon is a strong assumption that allows us to handle ana-
lytically the problem; to make the setting more plausible, we may allow for an
hazard rate of mortality as in [Dybvig and Liu (2010)] adding a positive coeffi-
cient to the discount factor β.

Given the initial wealth W0 and the labor income Y0, the agent maximizes
the expected utility (5):

J (W0, Y0; c, l,θ, τ) := E

[∫ +∞

0

e−βtu(c(t), l(t))dt
]

= E

[∫ τ

0

e−βtu(c(t), l(t))dt+
∫ +∞

τ

e−βtu(c(t), 1)dt
]

acting on (c, l,θ, τ) with τ ∈ S and subject to the budget constraint (3) and
the no borrowing condition (4). The value function is defined as

V(W0, Y0) := sup
(c,l,θ,τ)∈A

J (W0, Y0; c, l,θ, τ), (7)

where A denotes the set of admissible strategies, i.e., processes (c, l,θ, τ) that
satisfy (3) and (4), τ ∈ S, such that J (W0, Y0; c, l,θ, τ) < +∞.
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3 A dual approach

In this section we solve our problem through a duality approach, see, for in-
stance, [Choi et al. (2008), Dybvig and Liu (2010), Farhi and Panageas (2007),
He and Pages (1993)] and [Karatzas and Wang (2000)].
More in details, [He and Pages (1993)] solves via the duality method the op-
timal consumption-portfolio problem with a stochastic tradable labor income,
[Karatzas and Wang (2000)] addresses a mixed optimal stopping/control prob-
lem: the agent chooses the portfolio, the consumption rate and the horizon
of the problem deciding the final date as a stopping time. [Choi et al. (2008),
Dybvig and Liu (2010), Farhi and Panageas (2007)] adapt these techniques to
address the optimal consumption-portfolio-leisure problem allowing the agent to
choose the retirement date. In this paper we follow closely [Choi et al. (2008),
He and Pages (1993)]. For the proofs, we refer to Appendix B.

Let us define the market price of risk Θ := σ−1(b − r1), where 1 is the
N -vector (1, 1, . . . , 1)>, the state-price-density process (or pricing kernel)

H(t) := e−(r+ 1
2 |Θ|

2)t−Θ>B(t) = e−rte−Θ>B(t)− 1
2 |Θ|

2t

and, for a given t > 0, the equivalent risk neutral martingale measure

P (A) := E
[
e−Θ>B(t)− 1

2 |Θ|
2t1A

]
∀A ∈ Ft.

Under the risk neutral density we can redefine the budget and the no borrowing
constraint as static constraints. Following [Choi et al. (2008)], by the optional
sampling theorem we have that the budget constraint becomes

E

[∫ τ

0

H(t) (c(t) + Y (t)(l(t)− 1)) dt+H(τ)W (τ)
]
≤W0 (8)

and the no borrowing constraint (W (t) ≥ 0, ∀t, 0 ≤ t ≤ τ) is equivalent to

Et

[∫ τ

t

H(s)
H(t)

(c(s) + Y (s)(l(s)− 1)) ds+
H(τ)
H(t)

W (τ)
]
≥ 0 ∀ t : 0 ≤ t ≤ τ.

(9)
Note that the no borrowing constraint is never binding after retirement. The
objective function can be rewritten as

J (W0, Y0; c, l,θ, τ) = E

[∫ τ

0

e−βtu(c(t), l(t))dt+ e−βτ
∫ +∞

τ

e−β(t−τ)u(c(t), 1)dt
]

= E

[∫ τ

0

e−βtu(c(t), l(t))dt+ e−βτU(W (τ))
]
,

where

U(W (τ)) := sup
(c,θ)

E

[∫ +∞

τ

e−β(t−τ)u(c(t), 1)dt
]

(10)

is the optimal expected utility attainable at time τ with wealth W (τ): for t ≥ τ
the agent solves the classical optimal consumption-portfolio problem with initial
wealth W (τ) subject to the budget constraint. U(W (τ)) is the indirect utility
function associated with the maximization problem at time τ .
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Duality between the primal consumption-portfolio problem and the shadow
price problem allows us to establish an existence result of the individual in-
tertemporal problem when asset prices follow an Itô process. Then the dual
problem can be solved via dynamic programming techniques (Hamilton-Jacobi-
Bellman equation) when asset prices follow a Markov diffusion process.

We define the convex conjugate of the utility function u(c, l):

ũ(z, Y ) := max
c ≥ 0

0 ≤ l ≤ L

u(c, l)− (c+ Y l)z. (11)

In a similar way, we also define the convex conjugate of U :

Ũ(z) := sup
w≥0

U(w)− wz. (12)

If I denotes the inverse of U ′, i.e., I(z) = inf{w : U ′(w) = z}, then we also
have Ũ(z) = U(I(z))− zI(z).

Let ĉ and l̂ be the pair of processes that provides a solution to (11), then
the following proposition holds true.

Proposition 3.1. Let

z̃ =
(

α

1− α
Y

)α(1−γ)−1

L−γ . (13)

If z ≥ z̃, then

ũ(z, Y ) =
1
α

(l̂ 1−α ĉα)1−γ

1− γ
− (ĉ+ Y l̂)z, (14)

where

ĉ =
α

1− α
Y l̂ and l̂ = z−

1
γ

(
α

1− α
Y

)α(1−γ)−1
γ

. (15)

If z < z̃, then

ũ(z, Y ) =

(
ĉαL1−α)(1−γ)

α(1− γ)
− (ĉ+ Y L)z, (16)

where

ĉ =
(
zL(α−1)(1−γ)

) 1
α(1−γ)−1

. (17)

Let λ > 0 be a Lagrange Multiplier. We consider a non-increasing process
D(t) > 0 with D(0) = 1 to take into account the no bankruptcy constraint,
as in [Choi et al. (2008), He and Pages (1993)], i.e., D(t) is the integral of the
shadow price of the no bankruptcy constraint. Then, the following proposition
holds.

Proposition 3.2. Let

Ṽ (λ,D, τ, Y0) := E
[ ∫ τ

0

e−βt
(
ũ
(
λD(t)eβtH(t), Y (t)

)
+ λY (t)D(t)eβtH(t)

)
dt

+ e−βτ Ũ
(
λD(τ)eβτH(τ)

) ]
, (18)

then
J (W0, Y0; c, l,θ, τ) ≤ Ṽ (λ,D, τ, Y0) + λW0. (19)
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For a fixed stopping time τ ∈ S and initial wealth W0, we denote by Aτ the
set of admissible processes (c, l, θ). Thus we define

Vτ (W0, Y0) := sup
(c, l, θ)∈Aτ

J (W0, Y0; c, l,θ, τ). (20)

From Proposition 3.2, we obtain

Vτ (W0, Y0) ≤ inf
λ>0, D(t)>0

[
Ṽ (λ,D, τ, Y0) + λW0

]
. (21)

and the following result holds true.

Proposition 3.3. Equality in (21) holds if all the following conditions are
satisfied:
- for 0 ≤ t < τ

∂u

∂c
(c(t), l(t)) = λD(t)eβtH(t) and

∂u

∂l
(c(t), l(t)) = λY (t)D(t)eβtH(t) (22)

if l(t) ≤ L, otherwise

∂u

∂c
(c(t), L) = λD(t)eβtH(t) and l(t) = L; (23)

- it holds

W (τ) = I(λD(τ)eβτH(τ)),

E

[∫ τ

0

H(s)(c(s) + (l(s)− 1)Y (s))ds+H(τ)W (τ)
]

= W0;

- for any t ∈ [0, τ) such that D(t) is not constant, i.e., dD(t) 6= 0,

Et

[∫ τ

t

H(s)
H(t)

(c(s) + (l(s)− 1)Y (s))ds+
H(τ)
H(t)

W (τ)
]

= 0. (24)

Optimality conditions in (22-23) provide a relation between the optimal con-
sumption, the leisure process and the couple (λ, D(t)). Thus, once the optimal
multiplier λ∗ and the non-increasing process D∗(t) are computed, we can use
these conditions to obtain the optimal processes c∗(t) and l∗(t), as discussed in
Appendix A.
In order to compute the optimal couple (λ∗, D∗(t)), we proceed as follows. Let

Ṽ (λ, Y0) := sup
τ∈[0,+∞]

inf
D(t)>0

Ṽ (λ,D, τ, Y0).

Since (7) and (20) imply

V(W0, Y0) = sup
τ∈[0,+∞]

Vτ (W0, Y0),

then, under the conditions of Proposition 3.3, it holds

V(W0, Y0) = sup
τ∈[0,+∞]

inf
λ>0, D(t)>0

[
Ṽ (λ,D, τ, Y0) + λW0

]
(25)

= inf
λ>0

[
Ṽ (λ, Y0) + λW0

]
.
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Let us define the process

z(t) = λD(t)eβtH(t), z(0) = λ (26)

and

φ(t, z, y) := sup
τ>t

inf
D(t)>0

E
[∫ τ

t

e−βs{ũ(z(s), Y (s))+Y (s)z(s)} ds+e−βτ Ũ(z(τ))∣∣∣z(t) = z, Y (t) = y
]
. (27)

Since

φ(0, λ, Y0) = Ṽ (λ, Y0) = sup
τ∈[0,+∞]

inf
D(t)>0

Ṽ (λ,D, τ, Y0), (28)

once φ is computed, we can use (25) to obtain the value function V(W0, Y0)
and thus the optimal couple (λ∗, D∗(t)) andthe optimal strategies, as shown in
Appendix A.

4 The Bellman equation and the free boundary
problem

To address the optimization problem and to find out φ(·), we start from the dual
function Ũ . After retirement the optimal consumption-investment problem is a
classical Merton problem, considering the utility function (6), we have

U(W (τ)) = sup
(c,θ)

E

[∫ +∞

τ

e−β(t−τ) c
α(1−γ)

α(1− γ)
dt

]
,

subject to the dynamic budget constraint (3) without labor income, i.e., l(t) =
1 ∀t ≥ τ .

It follows from standard results (see [Karatzas and Shreve (1998), Chapter
3]) that

U(w) =
(

1
ξ

)Γ
w1−Γ

1− Γ

where Γ = 1− α(1− γ) and ξ = Γ−1
Γ

(
r + Θ2

2Γ

)
+ β

Γ .
In order to guarantee that the function U is well defined, we assume ξ > 0.

Thus, since U is known analytically, we can also compute Ũ in (12):

Ũ(z) =
Γ

ξ(1− Γ)
z

Γ−1
Γ .

Since by Itô’s formula we have

dz(t)
z(t)

=
dD(t)
D(t)

+ (β − r)dt−Θ>(t)dB(t), z(0) = λ,

in order to derive the Bellman equation, we follow [He and Pages (1993)] con-
trolling the decreasing process D. Assume that D is absolutely continuous with
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respect to t, i.e., there exists ψ ≥ 0 such that dD(t) = −D(t)ψ(t)dt. If φ is
twice differentiable with respect to z and y, then the Bellman equation becomes

min
ψ≥0

{
e−βt(ũ (z, y) + zy)− ψ(t)z

∂φ

∂z
+ Ltφ

}
= 0, (29)

where

Ltφ =
∂φ

∂t
+ (β − r)z ∂φ

∂z
+ µ1

∂φ

∂y
+

1
2
Θ2z2 ∂

2φ

∂z2
+

1
2
µ2

2

∂2φ

∂y2
−Θ>µ2z

∂2φ

∂z∂y

is the differential operator for the dual indirect utility function. Condition (29)
can be rewritten compactly as

min
{
Ltφ+ e−βt(ũ (z, y) + zy),−∂φ

∂z

}
= 0. (30)

Equation (30) divides the time-state space of the differential equation in two
different regions:

Ω1 =
{

(t, z, y) s.t.
∂φ

∂z
< 0
}
, Ω2 =

{
(t, z, y) s.t.

∂φ

∂z
= 0
}
.

Let ẑ(t, y) > 0 be the manifold that separates the space {z ≥ 0} into two halves
Ω1 and Ω2, with Ω1 being the lower half and Ω2 the upper one. The Bellman
principle suggests that if (t, z(t), y(t)) ∈ Ω1 then D must be constant at time t,
while D should jump if (t, z(t), y(t)) ∈ Ω2 until z reaches the critical boundary
ẑ(t, y(t)). Thus, if (0, z(0), y(0)) starts in the no-jump region Ω1, then the
process D will decrease only at time t such that (t, z(t), y(t)) hits the critical
boundary, at that time the borrowing constraint is binding and the wealth
becomes zero. For further details see [He and Pages (1993)] and Appendix A.

In order to solve our optimal stopping time problem, we need to consider
another free boundary associated with the retirement decision. We define z as
the manifold that divides the state price in the pre-retirement region and the
post-retirement region. Thus when the boundary is touched, the retirement is
optimal. As a consequence φ(t, z, y) = e−βtŨ(z) in the set{

(t, z, y) ∈ R+ × R+ ×
(
R+\{0}

)
: z(t) ≤ z(t, y)

}
,

i.e., in this region φ does not depend on the wage y and it is equal to the dual
function associated to the post-retirement utility. Note that z < ẑ, since we are
looking for a retirement strategy under the no-borrowing condition, which holds
only in Ω1. Finally, we recall that the value of the dual function ũ depends on
the fixed manifold z̃ (see Proposition 3.1), which satisfies the condition z ≤ z̃,
since this manifold belongs to the pre-retirement region.

Thus the optimal stopping time, consumption, investment and leisure prob-
lem can be rewritten as a free boundary value problem, considering the smooth
pasting conditions along the manifold ẑ and z, as in [Choi et al. (2008)] and
[Farhi and Panageas (2007)]: find the free boundaries z(t, y) : R+×(R+\{0})→
R+ and ẑ(t, y) : R+ × (R+\{0})→ R+ and the function

φ ∈ C1(R+ × R+ × (R+\{0})) ∩ C2 (R+ × (R+\ {z})× (R+\{0}))
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such that

∂φ

∂z
(t, z, y) = 0 if z ≥ ẑ(t, y),

∂φ

∂z
(t, z, y) ≤ 0 otherwise,

Ltφ(t, z, y) + e−βt (ũ(z, y) + zy) ≥ 0 if z ≥ ẑ(t, y),
Ltφ(t, z, y) + e−βt (ũ(z, y) + zy) = 0 if z(t, y) < z ≤ ẑ(t, y), (31)
Ltφ(t, z, y) + e−βt (ũ(z, y) + zy) ≤ 0 if 0 < z ≤ z(t, y),

φ(t, z, y) ≥ e−βtŨ(z) if z > z(t, y), φ(t, z, y) = e−βtŨ(z) otherwise,

Theorem 1 (Verification Theorem). If (ẑ(t, y), z(t, y), φ(t, y, z)) is a solution
of the variational inequality (31), then φ(t, y, z) satisfies (27).

Proof. This result is mainly an application of the Dynkin’s formula, see also
[Choi et al. (2008)][Theorem 5.1] and [He and Pages (1993)][Theorem 3].

Once the above free boundary value problem is solved, the optimal retire-
ment, consumption, investment and leisure processes can be computed as in
Appendix A.

4.1 Solving the free boundary value problem

As in [Choi et al. (2008), Farhi and Panageas (2007)], we can eliminate the
time-dependence of φ guessing a solution of the form

φ(t, z, y) = e−βtφ̂(z, y).

Thus (30) becomes

min

{
Lφ̂(z, y) + ũ (z, y) + zy, −∂φ̂

∂z
(z, y)

}
= 0, (32)

with

Lφ̂ = −βφ̂+(β−r)z ∂φ̂
∂z

+µ1
∂φ̂

∂y
+

1
2
Θ2z2 ∂

2φ̂

∂z2
+

1
2
µ2

2

∂2φ̂

∂y2
−Θ>µ2z

∂2φ̂

∂z∂y
. (33)

Notice that this implies that the free boundaries z and ẑ do not depend on the
time, and, instead of (31), we can solve a time-independent problem: find the
free boundaries z(y) : R+\{0} → R+ and ẑ(y) : R+\{0} → R+ and the function
φ̂ ∈ C1(R+ × (R+\ {0})) ∩C2 ((R+\ {z})× (R+\ {0})) such that

∂φ̂

∂z
(z, y) = 0 if z ≥ ẑ(y),

∂φ̂

∂z
(z, y) ≤ 0 otherwise,

Lφ̂(z, y) + ũ(z, y) + zy ≥ 0 if z ≥ ẑ(y),

Lφ̂(z, y) + ũ(z, y) + zy = 0 if z(y) < z ≤ ẑ(y),

φ̂(z, y) ≥ Ũ(z) if z > z(y), φ̂(z, y) = Ũ(z) otherwise.

In the following, we assume that there exists a unique solution (ẑ(y), z(y), φ̂(z, y)),
z(y) < z < ẑ(y), y ∈ R+\{0}, of the above variational problem. Existence and
uniqueness can be addressed via viscosity solution methods, see for example
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[Ceci and Bassan (2004), Pham (1998), Pham (2009)]; following this approach,
one should prove that the value function (27) is a viscosity solution of the vari-
ational problem associated with the Hamilton-Jacobi-Bellman problem (31). In
what follows we concentrate on agent’s behaviour dealing directly with the nu-
merical approximation of the solution.

To solve the PDE, we recall that the free boundary ẑ is defined by

∂φ̂

∂z
(ẑ(y), y) = 0 and

∂2φ̂

∂z2
(ẑ(y), y) = 0,

and z by

φ̂(z(y), y) = Ũ(z(y)) and
∂φ̂

∂z
(z(y), y) = Ũ ′(z(y)).

Thus, considering the regularity of φ̂, we have to solve the following free-
boundary problem

Lφ̂(z, y) + ũ(z, y) + zy = 0 if z < z < ẑ, (34)

with the boundary conditions

∂φ̂

∂z
(z, y) = 0 and

∂φ̂

∂y
(z, y) = 0 if z = ẑ(y), (35)

∂φ̂

∂z
(z, y) = Ũ ′(z) and

∂φ̂

∂y
(z, y) = Ũ ′(z)

∂z

∂y
if z = z(y), (36)

φ̂(z, y) = Ũ(z) if y → 0, (37)

∂φ̂

∂y
(z, y) = 0 if y → +∞, (38)

and the free boundary conditions (necessary to compute z and ẑ)

∂2φ̂

∂z2
(ẑ(y), y) = 0 and φ̂(z(y), y) = Ũ(z(y)). (39)

Conditions (35) and (36) are smooth-pasting conditions. Condition (37) comes
from the assumption that nobody works for free, i.e., wage equal to 0 implies
immediate retirement. Finally, Condition (38) is imposed assuming that when
the wage is large enough, then small changes in the wage do not affect the agent’s
strategy. The two last conditions are necessary for the numerical solution of the
variational problem, which we are dealing with in the next section.

5 Numerical analysis

In this section we present the numerical technique and the results of numerical
experiments concerning the solution of the free boundary problem assuming a
lognormal process for labor income:

dY (t) = M1Y (t)dt+M2
>Y (t)dB(t),
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i.e., µ1 = M1Y (t) and µ2 = M2Y (t) in (2). Thus, (33) becomes

Lφ̂(z, y)=−βφ̂+(β−r)z ∂φ̂
∂z

+M1y
∂φ̂

∂y
+

Θ2z2

2
∂2φ̂

∂z2
+
M2

2y2

2
∂2φ̂

∂y2
−Θ>M2zy

∂2φ̂

∂z∂y
.

The code for the numerical analysis is written in Matlab. All the computa-
tions have been performed using Matlab R2009b. More precisely, we consider
a finite element iterative algorithm performing the following steps: given a guess
domain,

1. create a triangular mesh using the distmesh generator [Person (2004)];

2. solve the PDE (34) with boundary conditions (35)-(38) by a finite element
method with piecewise continuous polynomial functions of degree 2;

3. compute new free boundaries using conditions (39), see [Crank (1984),
Section 8.2.2] for further details;

4. if the distance between the new free-boundaries and the previous ones
does not fall below a constant tolerance, return to step 1.

In our simulations, we consider a mesh with approximately 16, 000 elements,
and we truncate the domain to [ymin, ymax], with ymin = 0.1, ymax = 8. The
fixed tolerance is 0.001, and the distance between the new free-boundaries (say
zN and ẑN) and the old ones (zO and ẑO) is computed as

1
16

8∑
i=1

|zN(i)− zO(i)|+ |ẑN(i)− ẑO(i)| ,

i.e., it is computed in the points with ordinate y = i, i = 1, · · · , ymax.
Our experiments show that the optimal strategies computed with this nu-

merical procedure depend on the number of elements of the mesh: for example,
moving from 16,000 to 20,000 elements could lead to a variation of ±10% of
the numerical approximation of the optimal strategies. However with 16,000
elements we obtain numerical solutions which are accurate and stable enough
to study the optimal strategies in a reasonable computational time.

As shown in Appendix A, we have to compute the optimal strategy as
the derivative of φ̂. To this end, we consider piecewise quadratic finite ele-
ments. To obtain the values reported in the following tables and figures, we
compute the optimal initial consumption, leisure rate, portfolio and wealth
to retire threshold for initial wage Y0 = {0.5, 1, 1.5, · · · , 5.5, 6} and for γ =
{2.5, 3, 3.5, 4, · · · , 9, 9.5, 10}. If necessary, we address approximation errors by
smoothing the numerical approximation of these strategies using a spline inter-
polation technique.

We deal with the following set of parameters: risk-free rate r = 0.02, a
single risky asset with drift b = 0.07 and volatility σ=0.15, the discount factor is
β = 0.015, the weight determining utility of consumption and leisure is α = 0.6.
The labor income is assumed to follow a lognormal process

dY (t) = 0.05Y (t)dt+M2Y (t)dB(t), Y (0) = Y0,

with M1 = 0.05. Moreover we set S0 = 1 and L = 0.8, i.e., during the working
life the agent has to work at least 1/5 of the day. Risk aversion γ and initial
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wage Y0 vary between 3 and 10 and between 1 and 6, respectively. We are in
a complete market setting, i.e., the Brownian motion driving the wage is the
one of the asset. We consider the case of perfect positive or negative correlation
with volatility of wage M2 equal to −0.1, −0.05, 0.05 and 0.1. Thus, we assume
that the financial asset is riskier than labor income with a higher premium: the
drift and the volatility of the asset price are smaller than those of the asset
price. In the first two cases, correlation is negative and therefore labor provides
insurance to risky asset holding reducing the variance of wealth, in the others
labor and the risky asset are the same asset with different volatility (labor is
safer than the security). Note that the agent cannot sell short leisure.

The analysis is organized as follows. First, we discuss how consumption,
leisure, portfolio, retirement threshold vary with the risk aversion coefficient
and with the initial wage Y0, then we discuss the role of correlation and of
volatility.

Figure 1: Optimal Consumption and Leisure Rate. M2 = 0.1.

We compute numerically the initial consumption, initial leisure rate, the
initial portfolio and the wealth to retire threshold. Initial wealth is W0 = 1.
In Figure 1 we plot optimal consumption and optimal leisure for M2 = 0.1.
Numerical experiments show that the consumption and the leisure rate decrease
as risk aversion goes up. Instead, as the initial wage Y0 goes up we observe that
the consumption increases and that the leisure rate decreases. This pattern is
confirmed for all the values of M2 considered in our analysis (for positive and
negative perfect correlation).

These numerical experiments confirm some theoretical results established in
different settings and provide a theoretical explanation to some empirical evi-
dence. The negative relation between consumption and risk aversion coefficient
confirms the theoretical prediction contained in the literature mainly with a
fixed labor supply, e.g. see [Deaton (1992)]: as the relative risk aversion co-
efficient goes up we have that the saving rate increases - the agent chooses a
smoother consumption rate - and the actual consumption rate decreases. As
far as the reaction to the wage rate is concerned, we have that consumption is
increasing in this variable. Actually an increase of the initial wage Y0 represents
an increase of the expected wage for the future and therefore is permanent. Our
analysis confirms that the agent consumes more when he faces a non tempo-
rary increase in wage. This effect is associated with the labor supply of the
agent: as the wage goes up the agent decides to work more, a result that has
been observed empirically in many papers, e.g. see [Abowd and Card (1989),
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Domeij and Floden (2006)]. Labor supply is also increasing in risk aversion as
observed in [Tallarini (2000)] and in [Marcet et al. (2007)] with incomplete mar-
kets: labor activity has a low volatility, provides (perfect) insurance to the finan-
cial asset and therefore a more risk averse agent works more. This result holds
true both with negative and positive correlation between wage and risky as-
set. Finally, confirming classical results, see [Henderson (2005), Merton (1969),
Merton (1971)], the optimal portfolio decreases as the risk aversion coefficient
goes up, see Figure 2.

The rationale for these effects is quite simple. A more risk averse agent
prefers a smother consumption path and aims to reduce volatility: he consumes
less today, he invests less in the risky asset and more in the risk-free asset, he
works more to insure his financial investment because wage is safer than the
financial asset (|M2| < σ). This interpretation holds true independently of the
correlation between wage and financial asset.

Figure 2: Optimal Portfolio. M2 = −0.1 (left) and M2 = 0.1 (right).

In Figure 2 we show the optimal portfolio for M2 = ±0.1. As observed
above, the optimal portfolio strategy is decreasing with respect to γ in both
cases. As Y0 goes up, the behavior of the optimal portfolio depends on the cor-
relation: decreasing in case of perfect positive correlation, increasing otherwise.
A decreasing path is also observed for M2 = 0.05, while for M2 = −0.05, in
some cases the optimal portfolio is first increasing and then decreasing, see Ta-
ble 2. The rationale is that with negative correlation the financial asset provides
insurance to labor income, this is not the case when correlation is positive. As
discussed above, the agent works more when the wage goes up, as a consequence
to reduce the wealth volatility he holds more of the financial asset in case of
negative correlation and less in case of positive correlation.

In Figure 3, we report the wealth to retire threshold for M2 = 0.1. To fully
understand the optimal retirement decision we have to evaluate the working life
option (expected wage): leaving aside the insurance effect on the risky portfolio,
i.e., wage and asset price are correlated, we have that the value of the option
increases in Y0, M1 and decreases in M2. Numerical experiments show that the
wealth to retire is first decreasing and then increasing in the initial wage Y0,
see also Tables 1 and 2. As far as risk aversion is concerned, for a low level
of initial wage the threshold is decreasing in γ, for a high enough initial wage
the behavior is first decreasing and then increasing in γ, see Figure 3. The
result on risk aversion is different from the one obtained in [Choi et al. (2008),
Farhi and Panageas (2007)] for a constant wage allowing the agent to borrow
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Figure 3: Wealth to Retire. M2 = 0.1.

against the value of future income: they show that the threshold is increasing in
the coefficient of relative risk aversion. The rationale is that the non retirement
condition offers an insurance opportunity to the agent (working life option) and
therefore a strongly risk averse agent abandons the working life only when he
reaches a high enough wealth.

Let us consider the wealth to retire shape as risk aversion changes in our
setting. The argument described above in favor of higher threshold as risk
aversion goes up also works when the wage is stochastic but there are other
mechanisms at work. As risk aversion goes up, the agent works more and
detains a smaller portfolio of the risky asset, these choices induce disutility of
labor and a smaller insurance need. These effects lead the agent to retire early
(when a small level of wealth is reached). Note that the value of the working
option is high when Y0 is large. Our analysis suggests that for a small Y0 this
second argument prevails and the threshold is decreasing in risk aversion, for a
large enough Y0 the first effect prevails for a high risk aversion.

As far as an initial wage increase is concerned, the agent works more and this
leads to a higher disutility and to the decision to retire earlier with a smaller
wealth, see [Matsuyama (2008)] for a similar effect. On the other hand a higher
Y0 renders more valuable the working option inducing an increasing wealth to
retire threshold. Figure 3 shows that the first effect prevails for a very low
risk aversion (the working option has a little value), for a high enough risk
aversion the second becomes predominant, and the U-shaped pattern becomes
less evident.

It is interesting to compare the agent’s choices as the volatility of the wage
and the correlation of the wage with the risky asset price change. In Tables 1
and 2 we report the optimal consumption, leisure rate, portfolio and wealth to
retire threshold as M2 goes from −0.1 to 0.1 for different values of Y0 with γ = 3
and γ = 6, respectively. Note that we have both a variance effect (riskiness of
labor decreases going from −0.1 to −0.05 and increases going from 0.05 to 0.1)
and a correlation effect.

We observe that as M2 goes up consumption increases, except from M2 =
−0.05 to M2 = 0.05 for a low level of wage. The optimal portfolio is always
decreasing and the leisure rate is increasing. The wealth to retire instead is
hump shaped with the maximum in M2 = −0.05. Similar results hold true for
other values of γ.

These results are puzzling and deserve a careful analysis. As M2 goes from
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Table 1: Optimal Strategies. γ = 3.
Y0 1.5 2.5 3.5 4.5 1.5 2.5 3.5 4.5
M2 Consumption Leisure Rate
-0.1 2.5844 2.6888 2.9409 3.1447 0.8000 0.7170 0.5602 0.4659
-0.05 4.7479 4.7496 4.7621 4.9143 0.8000 0.8000 0.8000 0.7280
0.05 4.0666 4.2060 4.4300 5.2838 0.8000 0.8000 0.8000 0.7828
0.1 4.3712 4.4020 4.7631 5.6438 0.8000 0.8000 0.8000 0.8000
M2 Portfolio Wealth to Retire
-0.1 1173.5 1577.9 1920.8 2067.0 397.24 394.43 395.12 397.21
-0.05 826.96 919.21 994.05 1055.4 474.51 426.45 457.56 463.74
0.05 122.42 99.48 92.36 90.31 354.20 341.44 332.16 340.73
0.1 111.45 82.36 77.63 56.21 288.45 290.34 298.18 308.44

Table 2: Optimal Strategies. γ = 6.
Y0 1.5 2.5 3.5 4.5 1.5 2.5 3.5 4.5
M2 Consumption Leisure Rate
-0.1 2.3209 2.5276 2.8262 3.0419 0.8000 0.6740 0.5383 0.4506
-0.05 2.4638 2.6303 2.9420 3.1233 0.8000 0.7014 0.5604 0.4627
0.05 2.1992 2.6676 3.0305 3.4362 0.8000 0.7114 0.5772 0.5091
0.1 2.4467 2.7232 3.1173 3.5770 0.8000 0.7262 0.5938 0.5299
M2 Portfolio Wealth to Retire
-0.1 344.73 504.53 630.48 735.63 162.79 145.77 134.17 162.33
-0.05 245.47 258.44 261.02 118.14 184.30 169.58 158.17 169.39
0.05 135.15 85.76 45.91 21.47 160.91 140.83 132.81 161.82
0.1 124.76 40.82 36.08 19.07 127.26 119.84 129.51 160.65

−0.05 to 0.1 insurance opportunities shrink because labor stops to provide in-
surance to the financial asset and becomes riskier. As a consequence, the agent
works less and invests less in the financial asset. This result is confirmed isolat-
ing the correlation effect, i.e., comparing the case M2 = −0.1 to M2 = 0.1 and
M2 = −0.05 to M2 = 0.05. On this phenomenon see also [Bodie et al. (1992),
Dybvig and Liu (2010), Guiso et al. (1996), Heaton and Lucas (2000a)] and
[Henderson (2005), Viceira (2001)]. The rationale is simple; passing from a
perfect negative correlation to a perfect positive correlation with an increasing
volatility, labor doesn’t provide anymore insurance to financial risk and be-
comes riskier, therefore the agent decides to invest less in the risky asset. Also
the labor supply decreases as the risky investment is smaller. The variance ar-
gument induces a different effect in case of perfect negative correlation: going
from M2 = −0.05 to M2 = −0.1 we have that labor income is more risky and
the agent reacts taking more risk both in the financial market and in the labor
market, on this effect see [Floden (2006), Parker et al. (2005)]. The rationale is
that in case of negative correlation as wage volatility goes up the agent detains
a larger portfolio of the financial asset in a significant way and therefore he has
to work more to “insure” his investment.

The behavior of consumption is more intriguing. It seems that when cor-
relation is negative the agent reacts to a smaller wage volatility consuming
more, instead when correlation is positive the agent reacts to a higher volatil-
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ity consuming more. Note that as correlation goes from negative to positive,
consumption goes up when risk aversion is high enough. It seems that when
financial and insurance opportunities become the same and riskier the agent
reacts consuming more today.

Going from the negative correlation to the positive correlation case (from
M2 = −0.1 to M2 = 0.1, as well as from M2 = −0.05 to M2 = 0.05), the
wealth necessary to retire decreases: the volatility of the wage (|M2|) is the
same, but in the negatively correlated case the agent chooses to retire only with
a high value of wealth because the working opportunity has a great value as
it reduces financial risk. The threshold is hump shaped with a maximum in
M2 = −0.05, actually for this parameter (small volatility and perfect negative
correlation with the risky asset) the working life option has the highest value
and therefore the agent waits to reach a high level of wealth before retirement.

6 Incomplete Markets

In this section we deal with our problem assuming incomplete markets, i.e.,
considering the single risky asset case, the wage evolves as

dY (t) = µ1(t, Y (t))dt+ µ2(t, Y (t))dB̃(t).

We denote by ρ the correlation between B̃(t) and the Brownian motion B(t)
introduced in (1). We stress that ρ = 1 (-1) corresponds to the perfectly positive
(negative) correlated setting. In this case, applying the Ito’s Lemma as in
Section 4, we obtain

Ltφ =
∂φ

∂t
+ (β − r)z ∂φ

∂z
+ µ1

∂φ

∂y
+

1
2

Θ2z2 ∂
2φ

∂z2
+

1
2
µ2

2

∂2φ

∂y2
− ρΘµ2z

∂2φ

∂z∂y

+
1
2

√
1− ρ2µ2z

∂2φ

∂z∂y
− (1− ρ2)µ2

2

(
∂2φ
∂z∂y

)2

∂2φ
∂z2

,

and thus (31) becomes

Lφ̂ = −βφ̂+ (β − r)z ∂φ̂
∂z

+ µ1
∂φ̂

∂y
+

1
2

Θ2z2 ∂
2φ̂

∂z2
+

1
2
µ2

2

∂2φ̂

∂y2
− ρΘµ2z

∂2φ̂

∂z∂y

+
1
2

√
1− ρ2µ2z

∂2φ̂

∂z∂y
− (1− ρ2)µ2

2

(
∂2φ̂
∂z∂y

)2

∂2φ̂
∂z2

.

In Table 3 we assume again a lognormal process for the labor income, con-
sidering the same parameters as in Section 5, and we report the optimal con-
sumption, leisure rate, portfolio and wealth to retire for γ = 7 and M2 = 0.1.

Comparing row ρ = −0.5 to row ρ = −1 and row ρ = 0.5 to row ρ = 1 in
Table 3, we observe that in an incomplete market setting the agent consumes
less, works more and detains less of the risky financial asset with respect to
the complete market setting. This observation holds true independently of the
sign of the correlation between the risky asset and the wage. The result on con-
sumption confirms what has been observed in [Aiyagari (1994), Huggett (1997),
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Table 3: Optimal Strategies. γ = 7 and M2 = 0.1.
Y0 1.5 2.5 3.5 4.5 1.5 2.5 3.5 4.5
ρ Consumption Leisure Rate
-1 2.2632 2.4864 2.7903 3.0345 0.8000 0.6630 0.5315 0.4501

-0.5 2.2630 2.4762 2.7070 2.9633 0.8000 0.6603 0.5156 0.4390
0.5 1.8854 2.3173 2.5164 2.7123 0.8000 0.6176 0.5608 0.4952
1 2.2131 2.5681 2.9688 3.3744 0.8000 0.6848 0.5655 0.4999
ρ Portfolio Wealth to Retire
-1 336.53 423.08 474.69 546.59 143.11 132.60 132.86 163.62

-0.5 217.63 228.51 198.69 188.23 133.20 116.70 132.22 163.36
0.5 43.83 10.73 8.56 4.52 102.55 101.56 121.97 150.81
1 55.18 31.54 29.19 18.02 109.30 107.11 131.55 163.46

Marcet et al. (2007)]. As far as the optimal portfolio is concerned our result con-
firms the analysis contained in [Heaton and Lucas (2000), Henderson (2005)].
For the same reason also the wealth to retire threshold is smaller in an incom-
plete than in a complete market setting: as the labor market doesn’t provide
perfect insurance to the risky asset, the agent decides to retire earlier.

We cannot interpret our results only along the market completeness/incomple-
teness dimension, we have also to consider the volatility of labor income per se.
From the above Table we observe that all the variables have a U -shaped pattern:
the minimum for consumption, leisure, risky asset portfolio and wealth to retire
threshold is obtained in the incomplete market case with positive correlation
(ρ = 0.5), that is the worst case from an insurance point of view.

7 Fixed vs. flexible labor supply

In this section we assume a fixed leisure rate LF, i.e., l(t) = LF before retirement
and l(t) = 1 after. The convex conjugate of the utility function (11) becomes

ũ(z, Y ) = max
c≥0

u(c, LF)− (c+ Y LF)z,

and Proposition 3.1 is replaced by

ũ(z, Y ) =

(
ĉαL1−α

F

)(1−γ)

α(1− γ)
− (ĉ+ Y LF)z,

where

ĉ =
(
zL

(α−1)(1−γ)
F

) 1
α(1−γ)−1

.

Thus, once the free boundary value problem is solved considering the above
convex conjugate utility function in the r.h.s. of the partial differential equation
(33), the optimal consumption strategy is computed as in Appendix A, i.e.,

• for 0 ≤ t < τ∗

c∗(t) =
(
z∗(t)L(α−1)(1−γ)

F

) 1
α(1−γ)−1

and l∗(t) = LF;
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• for t ≥ τ∗

c∗(t) = z∗(t)
1

α(1−γ)−1 and l∗(t) = 1.

In Tables 4 and 5 we report the optimal consumption and portfolio for
different values of γ and of the initial wage Y0, considering the perfect positively
correlated case, i.e., M2 = 0.05 and M2 = 0.1, and a fixed leisure rate equal to
LF = 0.6.

Table 4: Optimal Strategies. M2 = 0.05.
Y0 1.5 2.5 3.5 4.5 1.5 2.5 3.5 4.5
γ Consumption Portfolio
3 3.9721 4.0909 4.1648 4.4028 317.47 178.12 153.21 66.67
4 3.2700 3.3230 3.4202 3.6209 199.41 142.91 54.20 30.19
5 3.1002 3.1713 3.2685 3.4471 174.42 126.99 34.93 23.00
6 2.7773 2.8228 2.9085 3.0529 162.09 92.45 25.39 16.14
7 2.5699 2.5990 2.6690 2.8003 153.66 70.90 23.19 12.25

Table 5: Optimal Strategies. M2 = 0.1.
Y0 1.5 2.5 3.5 4.5 1.5 2.5 3.5 4.5
γ Consumption Portfolio
3 4.9159 5.1020 5.4048 6.7869 315.73 127.32 83.45 28.22
4 3.8356 3.9562 4.1193 4.8718 230.13 81.99 52.91 18.56
5 3.2193 3.3115 3.4083 3.8612 172.32 59.96 38.71 16.14
6 2.6304 2.8080 2.9642 3.3082 158.48 51.10 33.42 15.54
7 2.6003 2.6644 2.7094 2.9094 114.68 48.89 25.79 14.61

We observe that the behavior of the optimal strategies as the parameters
change is the same as in the case in which the agent is free to choose his leisure
rate, i.e., both consumption and portfolio are decreasing in the risk aversion
coefficient and increasing in the wage rate.

Comparing the case in which the agent is free to choose the leisure rate with
the case in which the leisure rate is fixed, i.e., comparing Tables 1-3 with Tables
4-5, we observe that, as the risk aversion decreases or the wage rate increases, the
increase in consumption with a fixed labor supply is smaller than that observed
with a flexible labor rate. This result confirms that labor flexibility provides
insurance and allows the agent to consume more.

It is difficult to compare the consumption rate in the two settings because
the labor supply is different. However, there is some evidence that flexibility
leads to a higher consumption rate and a higher investment in the risky asset,
specially when the flexible leisure rate is smaller than LF, confirming results
provided in [Floden (2006), Low (2002), Benitez-Silva (2003)].

8 Conclusions

In this article we have presented an analysis of optimal consumption, labor
supply and portfolio when the agent is free to choose when to retire. The wage
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is assumed to be stochastic, and we have considered the case of perfect (and
non perfect) positive and negative correlation between the wage and the risky
asset. In the lognormal case, we have provided a detailed analysis of the agent’s
strategies, considering different values of the risk aversion parameter, as well as
of the volatility of the wage.

We confirm several results already shown in a simpler setting and we provide
some new insights. We confirm classical results on wage, risk aversion and
consumption, labor supply, portfolio. We shed light on the complexity of the
retirement decision that is not only driven by insurance motivations (working
opportunity option) but also by portfolio and labor supply decisions. We show
that the agent may react to a shrink in insurance opportunities in a myopic way
consuming more. Finally we show that benefits of market completeness and of
labor flexibility are relevant also with a stochastic wage and flexible retirement
date.

The framework is rich enough to address several interesting issues. Future
research includes optimal choices assuming a life annuity and social security
design.
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A Optimal Retirement, Consumption, Invest-
ment and Leisure Processes

Once φ(t, z, y) and the free boundaries ẑ(y) and z(y) are computed, from (28)
we obtain

Ṽ (λ, Y0) = φ(0, λ, Y0)

23



and the value function is given by (25)

V(W0, Y0) = inf
λ>0

[
Ṽ (λ, Y0) + λW0

]
(40)

= Ṽ (λ∗, Y0) + λ∗W0 = φ(0, λ∗, Y0) + λ∗W0.

From (18) and (25) we also obtain

V(W0, Y0) = sup
τ∈[0,+∞]

inf
D(t)>0

[
Ṽ (λ∗, D, τ, Y0)

]
+ λ∗W0

= Ṽ (λ∗, D∗, τ∗, Y0) + λ∗W0,

where we denote with τ∗ the optimal retirement time. As in [He and Pages (1993)]
and [Farhi and Panageas (2007)], we obtain the following characterization for
the process D∗ (and thus z∗) and for the optimal stopping time τ∗.

Let us define ẑ∗(t) = ẑ(Y (t)) and z∗(t) = z(Y (t)); D∗ decreases only when
z∗ touch the barrier ẑ∗, otherwise it remains constant; thus, since D∗(0) = 1, it
holds

D∗(t) = min
(

1, inf
0≤s≤t

ẑ∗(s)
λ∗eβsH(s)

)
,

and, from (26), we can define the optimal process

z∗(t) = λ∗D∗(t)eβtH(t), z(0) = λ∗.

Moreover, Theorem 1 implies

τ∗ = inf {t ≥ 0 such that z∗(t) = z∗(t)} .

Considering (22-23), the optimal strategies of consumption (c∗) and leisure
(l∗) are given by Proposition 3.1: for 0 ≤ t < τ∗, if z∗ ≥ z̃

c∗(t)=
(

α

1− α
Y (t)

)(α−1)(1−γ)
γ

z∗(t)−
1
γ and l∗(t)=

(
α

1− α
Y (t)

)(α−1)(1−γ)
γ −1

z∗(t)−
1
γ ,

otherwise

c∗(t) =
(
z∗(t)L(α−1)(1−γ)

) 1
α(1−γ)−1

and l∗(t) = L.

For t ≥ τ∗ it holds

∂u

∂c
(c∗(t), 1) = z∗(t) and l∗(t) = 1,

and thus

c∗(t) = z∗(t)
1

α(1−γ)−1 and l∗(t) = 1.

Moreover, considering (12), the wealth at retirement satisfies

Ũ(z∗(τ∗)) = U(W ∗(τ∗))−W ∗(τ∗)z∗(τ∗)

and thus

W ∗(τ∗) = −Ũ ′(z∗(τ∗)).
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Moreover, due to (22-23), we also have

W ∗(τ∗) = I(z∗(τ∗)).

In order to compute the optimal portfolio strategy, we first of all need to
define the optimal wealth. Before retirement, i.e., for 0 < t < τ∗, it holds

W ∗(t) = − ∂

∂z
φ(0, z∗(t), Y (t)); (41)

in fact, since for any t such that 0 < t < τ∗ (25) implies

V(W ∗(t), Y (t)) = inf
λ>0

[
Ṽ (λ, Y (t)) + λW ∗(t)

]
(42)

= Ṽ (z∗(t), Y (t)) + z∗(t)W ∗(t) = φ(0, z∗(t), Y (t)) + z∗(t)W ∗(t),

and thus, differentiating (42) with respect to z, we obtain condition (41).

Remark 2. Since z∗ ∈ Ω1, then ∂φ
∂z < 0, i.e., Condition (41) implies a positive

wealth according to the no-borrowing constraint.

Once the optimal wealth is computed, given W (0) and condition (3), the
optimal portfolio θ∗ is such that∫ t

0

θ∗>(s) (b ds+ σdB(s)) +
∫ t

0

(
W ∗(s)−

N∑
n=1

θ∗i (s)

)
rds

= W ∗(t)−W (0)−
∫ t

0

[(1− l∗(s))Y (s)− c∗(s)] ds.

We can split the optimal portfolio strategy before retirement in two com-
ponents, θ∗M and θ∗H : the first component is the classical Merton investment
strategy, which does not depend on the stochastic labor income, θ∗H can be inter-
preted as intertemporal hedging demand and is hedging the inflow of stochastic
labor income. Thus

θ∗t = θ∗M + θ∗H

= −σ−1Θ
∂WV(W (t), Y (t))
∂WWV(W (t), Y (t))

− σ−1µ2(Y (t), t)
∂WY V(W (t), Y (t))
∂WWV(W (t), Y (t))

= −σ−1Θ
z∗(t)

∂W z∗(t)
− σ−1µ2(Y (t), t)

∂Y z
∗(t)

∂W z∗(t)

because of (42).
The optimal portfolio and wealth after retirement, i.e., t ≥ τ∗, are computed
according to a classical Merton problem (see Section 4), i.e.,

θ∗(t) = −σ−1Θ
U ′(W ∗(t))
U ′′(W ∗(t))

,

and W ∗(t) is equal to

W ∗(τ∗)−
∫ t

τ∗
c∗(s)ds+

∫ t

τ∗
θ∗>(s)(bds+σdB(s)) +

∫ t

τ∗

(
W ∗(s)−

N∑
n=1

θ∗i (s)

)
rds,

see [Choi et al. (2008)] and [Karatzas and Shreve (1998), Section 3] for further
details.
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B Proofs

B.1 Proposition 3.1

Proof. Necessary and sufficient conditions for the unconstrained optimal prob-
lem (11) are

∂

∂c
u(c, l)|(c,l)=(ĉ,l̂) = z, i.e., l̂(t)(1−γ)(1−α)ĉ(t)α(1−γ)−1 = z(t), (43)

and
∂

∂l
u(c, l)|(c,l)=(ĉ,l̂) = zY, i.e., l̂(t)(1−γ)(1−α)−1ĉ(t)α(1−γ) =

α

1− α
z(t)Y (t). (44)

By the hypotheses on the utility function, positivity constraints on c and l are
always satisfied, instead we have to take care of the constraint from above on l.

Let z̃ be defined as in (13). It is easy to show that if z ≥ z̃, then l̂ and ĉ in
(15) are obtained from first order conditions (43)-(44) and are admissible, i.e.,
ĉ ≥ 0 and 0 ≤ l̂ ≤ L. Moreover, ũ(z, Y ) defined in (14) is the optimal convex
conjugate utility. Instead, if z < z̃, then the optimal leisure rate is l̂ = L and
condition (43) leads to the optimal consumption (17) and to the optimal convex
conjugate utility (16).

B.2 Proposition 3.2

Proof. Considering (11) and (12), it holds

J (W0, Y0; c, l,θ, τ)=E
[∫ τ

0

e−βt
{
u(c(t), l(t))−λD(t)eβtH(t)(c(t)+Y (t)l(t))

}
dt

+e−βτ
{
U(W (τ))− λD(τ)eβτH(τ)W (τ)

} ]
+λE

[∫ τ

0

D(t)H(t)(c(t) + Y (t)l(t))dt+D(τ)H(τ)W (τ)
]

≤ E
[∫ τ

0

e−βt ũ
(
λD(t)eβtH(t), Y (t)

)
dt+ e−βτ Ũ

(
λD(τ)eβτH(τ)

)]
+λE

[∫ τ

0

D(t)H(t)(c(t) + Y (t)l(t))dt+D(τ)H(τ)W (τ)
]
. (45)

Exploiting the constraints (8), (9) and being D(t) non increasing such that
D(0) = 1 we obtain

E

[∫ τ

0

D(t)H(t)(c(t)+Y (t)l(t))dt+D(τ)H(τ)W (τ)
]

= E

[∫ τ

0

D(t)H(t)(c(t)+(l(t)−1)Y (t))dt+D(τ)H(τ)W (τ)+
∫ τ

0

Y (t)D(t)H(t)dt
]

= E

[∫ τ

0

Y (t)D(t)H(t)dt
]

+ E

[
H(τ)W (τ)+

∫ τ

0

H(t)(c(t)+(l(t)−1)Y (t))dt
]

+E
[∫ τ

0

H(t)Et

[
H(τ)
H(t)

W (τ)+
∫ τ

t

H(s)
H(t)

(c(s)+(l(s)−1)Y (s))ds
]
dD(t)

]
≤ E

[∫ τ

0

Y (t)D(t)H(t)dt
]

+W0. (46)
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Thus inequality (19) holds true.

B.3 Proposition 3.3

Proof. Equality in (21) holds if and only if equalities in (45) and (46) hold true.
Let us start with (45): this equality holds if

u(c(t), l(t))− λD(t)eβtH(t)(c(t) + Y (t)l(t)) = ũ
(
λD(t)eβtH(t), Y (t)

)
U(W (τ))− λD(τ)eβτH(τ)W (τ) = Ũ

(
λD(τ)eβτH(τ)

)
.

By Proposition 3.1, this is equivalent to set for 0 ≤ t < τ

∂u

∂c
(c(t), l(t)) = λD(t)eβtH(t) and

∂u

∂l
(c(t), l(t)) = λY (t)D(t)eβtH(t)

if l(t) ≤ L, otherwise

∂u

∂c
(c(t), L) = λD(t)eβtH(t) and l(t) = L;

and, reasoning as above for the utility function U , to impose

U ′(W (τ)) = λD(τ)eβτH(τ),

i.e., W (τ) = I(λD(τ)eβτH(τ)).
Now we deal with inequality (46): it becomes an equality if

E

[
H(τ)W (τ) +

∫ τ

0

H(t)(c(t) + (l(t)− 1)Y (t))dt
]

= W0, (47)

E

[∫ τ

0

H(t)Et

[
H(τ)
H(t)

W (τ)+
∫ τ

t

H(s)
H(t)

(c(s) + (l(s)− 1)Y (s))ds
]
dD(t)

]
= 0, (48)

and the last condition is equivalent to (24).
Notice that (47) and (48) imply (8) and (9), respectively. See [Choi et al. (2008)]
for further details.
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