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Abstract

Inspired by works on information transmission through quantum chan-
nels, we propose the use of a couple of mutual entropies to quantify the
efficiency of continual measurement schemes in extracting information on
the measured quantum system. Properties of these measures of informa-
tion are studied and bounds on them are derived.

1 Quantum measurements and entropies

We speak of quantum continual measurements when a quantum system is taken
under observation with continuity in time and the output is not a single ran-
dom variable, but rather a stochastic process [1, 2]. The aim of this paper is
to quantify, by means of entropic quantities, the effectiveness of a continual
measurement in extracting information from the underlying quantum system.

Various types of entropies and bounds on informational quantities can be
introduced and studied in connection with continual measurements [3–5]. In
particular, in Ref. [5] the point of view was the one of information transmission:
the quantum system is a channel in which some information is encoded at an
initial time; the continual measurement represents the decoding apparatus. In
this paper, instead, we consider the quantum system in itself, not as a trans-
mission channel, and we propose and study a couple of mutual entropies giving
two indexes of how good is the continual measurement in extracting information
about the quantum system.

1.1 Algebras, states, entropies

From now on H will be a separable complex Hilbert space, the space where our
quantum system lives.
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1.1.1 Von Neumann algebras and normal states

A normal state on L(H) (bounded linear operators on H) is identified with a
statistical operator, T (H) and S(H) ⊂ T (H) are the trace-class and the space
of the statistical operators on H, respectively.

Let (Ω,F , Q) be a measure space, where Q is a σ-finite measure. We consider
the W ∗-algebras L∞(Ω,F , Q) and L∞

(
Ω,F , Q;L(H)

)
' L∞(Ω,F , Q)⊗ L(H).

Let us note that a normal state on L∞(Ω,F , Q) is a probability density with
respect to Q, while a normal state σ on L∞

(
Ω,F , Q;L(H)

)
is a measurable

function ω 7→ σ(ω) ∈ T (H), σ(ω) ≥ 0, such that Tr{σ(ω)} is a probability
density with respect to Q.

1.1.2 Relative entropy

The general definition of the relative entropy S(Σ|Π) for two states Σ and Π is
given in [6]; here we give only some particular cases of the general definition.

Let us consider two quantum states σ, τ ∈ S(H) and two classical states
qk on L∞(Ω,F , Q) (two probability densities with respect to Q). The von
Neumann entropy, the quantum relative entropy and the classical one are

Sq(τ) := −Tr{τ ln τ}, Sq(σ‖τ) = Tr{σ(lnσ − ln τ)}, (1)

Sc(q1‖q2) =
∫

Ω

Q(dω) q1(ω) ln
q1(ω)
q2(ω)

. (2)

Let us consider now two normal states σk on L∞
(
Ω,F , Q;L(H)

)
and set

qk(ω) := Tr{σk(ω)}, %k(ω) := σk(ω)/qk(ω) (these definitions hold where the de-
nominators do not vanish and are completed arbitrarily where the denominators
vanish). Then, the relative entropy is

S(σ1‖σ2) =
∫

Ω

Q(dω) Tr
{
σ1(ω)

(
lnσ1(ω)− lnσ2(ω)

)}
= Sc(q1‖q2) +

∫
Ω

Q(dω) q1(ω)Sq

(
%1(ω)‖%2(ω)

)
.

(3)

We are using a subscript “c” for classical entropies, a subscript “q” for
purely quantum ones and no subscript for general entropies, eventually of a
mixed character. Having used the natural logarithm in these definitions, the
entropies are in nats. To obtain entropies in bits one has to divide by ln 2.

The following result is very useful ( [6] Corollary 5.20 and Eq. (5.22)).

Proposition 1. Let Π1 ⊗ Π2 and Σ12 be normal states of the tensor product
von Neumann algebra M1 ⊗M2 and let Σi = Σ12

∣∣
Mi

, i = 1, 2. Then,

S(Σ12‖Π1 ⊗Π2) = S(Σ1‖Π1) + S(Σ12‖Σ1 ⊗Π2)
= S(Σ1‖Π1) + S(Σ2‖Π2) + S(Σ12‖Σ1 ⊗ Σ2)

(4)

The quantity S(Σ12‖Σ1 ⊗Σ2) is the relative entropy of a state with respect
to its marginals; this is what we call mutual entropy.
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1.2 Instruments and channels

1.2.1 Channels

Let M1 and M2 be two W ∗-algebras. A linear map Λ∗ from M2 to M1 is
said to be a channel ([6] p. 137) if it is completely positive, unital (i.e. identity
preserving) and normal (or, equivalently, weakly∗ continuous).

Due to the equivalence [7] of w∗-continuity and existence of a preadjoint Λ,
a channel is equivalently defined by: Λ is a norm-one, completely positive linear
map from the predual M1∗ to the predual M2∗. Let us note also that Λ maps
normal states on M1 into normal states on M2.

A key result which follows from the convexity properties of the relative en-
tropy is Uhlmann monotonicity theorem ([6], Theor. 1.5 p. 21), which implies
that channels decrease the relative entropy.

Theorem 2. If Σ and Π are two normal states on M1 and Λ is a channel from
M1∗ →M2∗, then S(Σ‖Π) ≥ S(Λ[Σ]‖Λ[Π]).

1.2.2 Instruments and POV measures

The notion of instrument is central in quantum measurement theory; an instru-
ment gives the probabilities and the state changes [8, 9].

Let (Ω,F) be a measurable space. An instrument I is a map valued measure
such that (i) I(F ) is a completely positive, linear, bounded operator on T (H),
∀F ∈ F , (ii) I(Ω) is trace preserving, (iii) for every countable family {Fi} of
disjoint sets in F one has

∑
i Tr {a I(Fi)[ρ]} = Tr {a I (

⋃
i Fi) [ρ]}, ∀ρ ∈ T (H),

∀a ∈ L(H).
The map F 7→ I(F )∗[1] turns out to be a positive operator valued (POV)

measure (the observable associated with the instrument I). For every ρ ∈ S(H)
the map F 7→ Pρ(F ) := Tr{I(F )[ρ]} is a probability measure: the probability
that the result of the measurement be in F when the pre-measurement state is ρ.
Moreover, given the result F , the post-measurement state is

(
Pρ(F )

)−1I(F )[ρ].

1.2.3 The instrument as a channel

Given an instrument I with value space (Ω,F) it is always possible to find a
σ-finite measure on (Ω,F) (or even a probability measure), such that all the
probabilities Pρ, ρ ∈ S(H), are absolutely continuous with respect to Q.

Theorem 3 ( [10], Theorem 2). Let I be an instrument on the trace-class of a
complex separable Hilbert space H with value space (Ω,F) and let Q be a σ-finite
measure on (Ω,F) such that Tr{I(•)[ρ]} � Q, ∀ρ ∈ S(H). Then, there exists
a unique channel ΛI from T (H) into L1

(
Ω,F , Q; T (H)

)
such that

EQ

[
f Tr {aΛI [ρ]}

]
=
∫

Ω

f(ω) Tr {a I(dω)[ρ]} (5)

∀ρ ∈ T (H), ∀a ∈ L(H), ∀f ∈ L∞(Ω,F , Q).

Viceversa, a channel Λ from T (H) into L1
(
Ω,F , Q; T (H)

)
defines a unique

instrument I by

I(F )[ρ] = EQ

[
1F Λ[ρ]

]
, ∀ρ ∈ T (H), ∀F ∈ F . (6)
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1.2.4 A posteriori states

When ρ ∈ S(H), then ΛI [ρ] is a normal state on L∞
(
Ω,F , Q;L(H)

)
. Let us

normalize the positive trace-class operators ΛI [ρ](ω) by setting

πρ(ω) :=

{
(TrH {ΛI [ρ](ω)})−1 ΛI [ρ](ω) if TrH {ΛI [ρ](ω)} > 0
ρ̃
(
ρ̃ ∈ S(H), fixed

)
if TrH {ΛI [ρ](ω)} = 0

(7)

Then, we have∫
F

πρ(ω)Pρ(dω) = I(F )[ρ] , ∀F ∈ F , (Bochner integral). (8)

According to Ozawa [11], πρ is a family of a posteriori states for the instrument
I and the pre-measurement state ρ. The interpretation is that πρ(ω) is the state
just after the measurement to be attributed to the quantum system if the result
of the measurement has been exactly ω.

Let us note that pρ := Tr {ΛI [ρ]} and πρ :=
∫
Ω

Pρ(dω)πρ(ω) = I(Ω)[ρ]
are the marginals of the state ΛI [ρ] on the algebras L∞(Ω,F , Q) and L(H),
respectively. Then, S (ΛI [ρ]‖pρπρ) is a first example of a mutual entropy. From
Eqs. (3) and (1) we get

S (ΛI [ρ]‖pρπρ) =
∫

Ω

Sq

(
πρ(ω)‖πρ

)
Pρ(dω) = Sq(πρ)−

∫
Ω

Sq

(
πρ(ω)

)
Pρ(dω).

(9)
Quantities like this one are used in quantum information transmission and are
known as Holevo capacities or χ-quantities [12–14]; Eq. (9) gives the χ-quantity
of the ensemble of states {Pρ, πρ}.

2 Continual measurements

Quantum continual measurement theory can be formulated in different equiv-
alent ways. To construct our entropic measures of efficiency, we need two ap-
proaches to continual measurements: the one based on positive operator valued
measures, instruments, quantum channels [1,5,15] and the one based on classi-
cal stochastic differential equations (SDE’s), known also as quantum trajectory
theory [2, 4, 16].

The SDE approach to continual measurements is based on a couple of sto-
chastic equations, a linear one for random trace-class operators and a non-linear
one for random statistical operators. The two equations are linked by a change
of normalization and a change of probability measure. Both equations have a
Hilbert space formulation, particularly suited for numerical computations. We
shall use a simplified version of SDE’s for continual measurements as presented
in [2].

2.1 The linear equation

Let H(t), Ll(t), Rj(t), V r
k (t), Jk(t) be bounded operators onH; their time depen-

dence is taken to be continuous from the left and with limits from the right in
the strong topology. The indices k, l, j take a finite number of values; the index
r can take infinitely many values, but in this case the series

∑
r V r

k (t)∗V r
k (t) is
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strongly convergent. Let the operator H(t) be self-adjoint, H(t) = H(t)∗, and
let us define (∀ρ ∈ T (H))

Jk(t)[ρ] :=
∑

r

V r
k (t)ρV r

k (t)∗ , Jk(t) := Jk(t)∗[1] =
∑

r

V r
k (t)∗V r

k (t) , (10)

L(t) := L0(t) + L1(t) + L2(t), (11)

L0(t)[ρ] := −i[H(t), ρ] +
∑

l

(
Ll(t)ρLl(t)∗ −

1
2
{Ll(t)∗Ll(t), ρ}

)
, (12)

L1(t)[ρ] :=
∑

j

(
Rj(t)ρRj(t)∗ −

1
2
{Rj(t)∗Rj(t), ρ}

)
, (13)

L2(t)[ρ] :=
∑

k

(
Jk(t)[ρ]− 1

2
{Jk(t), ρ}

)
. (14)

By [ , ] we denote the commutator and by { , } the anticommutator.
Then, we introduce a probability space (Ω,F , Q) where the Poisson processes

Nk(t), of intensity λk, and the standard (continuous) Wiener processes Wj(t)
are defined. All the processes are assumed to be independent from the other
ones. We introduce also the two-times natural filtration of such processes:

Fs
t = σ{Wj(u)−Wj(s), Nk(v)−Nk(s), u, v ∈ [s, t], j, k = 1, . . .}. (15)

Having all these ingredients, we can introduce the linear equation of contin-
ual measurement theory, for the a trace-class valued process σt:

dσt = L(t)[σt− ]dt +
∑

j

(
Rj(t)σt− + σt−Rj(t)∗

)
dWj(t)

+
∑

k

(
1
λk

Jk(t)[σt− ]− σt−

)
(dNk(t)− λkdt) . (16)

The initial condition is taken to be a non-random statistical operator: σ0 ≡
σ0− ∈ S(H).

The notation σt− means that, in case there is a jump in the noise at time
t, the value just before the jump σt− of σ has to be taken. More precisely, if
the augmented natural filtration of the noises is considered, the solution can be
taken to be continuous from the right and with limits from the left and σt− is
just the limit from the left. We prefer not to add the null sets to the natural
filtration and by σt we mean some F0

t -adapted version of the solution.

Properties of the solution. Let us consider now, for 0 ≤ s ≤ t, the von Neu-
mann algebra L∞

(
Ω,Fs

t , Q;L(H)
)
' L∞(Ω,Fs

t , Q) ⊗ L(H) (cf. Section 1.1.1)
and let us give a name to the set of normal states on this algebra:

Ss
t :=

{
τ ∈ L1

(
Ω,Fs

t , Q; T (H)
)

: τ(ω) ≥ 0 ,

∫
Ω

Tr{τ(ω)}Q(dω) = 1
}

. (17)

• First of all, it is possible to prove that σt ∈ S0
t ; we can say that the

solution at time t of Eq. (16) is a kind of quantum/classical state.

• The marginals of σt are (cf. Section 1.2.4):
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– The probability density pt := Tr{σt}. The probability measure
pt(ω)Q(dω) will be the physical probability.

– The a priori state at time t ηt := EQ[σt] ∈ S(H). This is the state
to be attributed at time t to the system when no selection is done
and the result of the measurement has not been taken into account.

• Moreover, we define the random a posteriori state at time t ρt =
1
pt

σt.

This is the state to be attributed at time t to the system known the result
of the measurement up to t.

Note that p0 = 1, ρ0 = σ0 = η0, ηt− = ηt = ηt+ .

2.2 Physical probabilities

A very important property of Eq. (16) is that pt is a mean one Q-martingale,
which implies that

Pt(dω) := pt(ω)Q(dω)
∣∣
F0

t
(18)

is a consistent family of probabilities, i.e., if 0 ≤ t < T , PT (F ) = Pt(F ),
∀F ∈ F0

t . These are taken as physical probabilities.
From Eq. (16) we have that pt satisfies the Doléans equation

dpt = pt−

{∑
j

mj(t) dWj(t) +
∑

k

(
µk(t)
λk

− 1
)(

dNk(t)− λk dt
)}

, (19)

where

mj(t) = Tr
{
(Rj(t) + Rj(t)∗) ρt−

}
, µk(t) = Tr

{
Jk(t)ρt−

}
. (20)

The solution of this equation, with p0 = 1, is

pt = exp
{∑

j

[∫ t

0

mj(s) dWj(s)−
1
2

∫ t

0

mj(s)2 ds

]

+
∑

k

[∫ t

0

ln
µk(s)
λk

dNk(s) +
∫ t

0

(λk − µk(s)) ds

]}
. (21)

Remark 1. 1. The output of the continual measurement is the set of pro-
cesses Wj(t), Nk(t), 0 ≤ t ≤ T , under the physical probability PT ; T
is a completely arbitrary large time. By the consistency of the proba-
bilities (18), PT can be substituted by Pt in any expectation involving
F0

t -measurable random variables (for t < T ).

2. By Girsanov theorem and its generalizations for situations with jumps, we
have that, under the physical probability, the processes

Ŵj(t) = Wj(t)−
∫ t

0

mj(s) ds (22)

are independent, standard Wiener processes and Nk(t) is a counting pro-
cess of stochastic intensity µk(t)dt.
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3. Expressions for the moments of the outputs can be given; in particular we
have the mean values

EPt
[Wj(t)] =

∫ t

0

nj(s) ds , EPt
[Nk(t)] =

∫ t

0

νk(s) ds , (23)

where

nj(t) = Tr {(Rj(t) + Rj(t)∗) ηt} = EPt
[mj(t)], (24a)

νk(t) = Tr {Jk(t)ηt} = EPt
[µk(t)]. (24b)

2.3 The non-linear SDE

Under the physical law PT , the a posteriori states ρt satisfy the non-linear SDE

dρt = L(t)[ρt− ]dt +
∑

j

(
Rj(t)ρt− + ρt−Rj(t)∗ −mj(t)ρt−

)
dŴj(t)

+
∑

k

(
1

µk(t)
Jk(t)[ρt− ]− ρt−

)
(dNk(t)− µk(t)dt) . (25)

Let us stress that for the a priori states we have

ηt = EQ[σt] = EPt
[ρt] (26)

and that they satisfy the master equation

d
dt

ηt = L(t)[ηt]. (27)

2.4 The fundamental matrix and the instruments

To apply the notions of Section 1 to continual measurements, we need to see
how such a theory is connected to instruments and channels [2–5]. This is done
by introducing the fundamental matrix Λs

t of (16). This operator is defined by
stipulating that Λs

t [|ui〉〈uj |] satisfies (16) with initial condition Λs
s[|ui〉〈uj |] =

|ui〉〈uj |, where {ui i = 1, . . .} is a c.o.n.s. in H. It turns out that Λs
t is a

channel from T (H) into L1
(
Ω,Fs

t , Q; T (H)
)
, or, by trivial ampliation, from

L1
(
Ω,Fr

s , Q; T (H)
)

into L1
(
Ω,Fr

t , Q; T (H)
)
, 0 ≤ r ≤ s ≤ t. Then, we have

Λs
t [σs] = σt , Λs

t = Λu
t ◦ Λs

u , 0 ≤ s ≤ u ≤ t . (28)

The instrument associated to this channel is

Is
t (F )[ρ] = EQ [1F Λs

t [ρ]] ≡
∫

F

Λs
t (ω)[ρ]Q(dω), ∀F ∈ Fs

t . (29)

The time evolution of the quantum states is the one generated by L(t) and we
have

U(t, s)[ρ] = Is
t (Ω)[ρ] = EQ [Λs

t [ρ]] , (30)

U(t, s)[ηs] = ηt , U(t, s) = U(t, u) ◦ U(u, s) , 0 ≤ s ≤ u ≤ t . (31)

According to the definitions of Section 1.2.4, the random statistical operator
ρt is the a posteriori state for the instrument I0

t and the pre-measurement state
ρ0 ≡ η0.
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Another important property is

EQ[σt|Fs
t ] = Λs

t [ηs] ∈ Ss
t . (32)

Indeed, by the first of (28) and the fact that Λs
t is Fs

t -measurable, we have
EQ[σt|Fs

t ] = Λs
t

[
EQ[σs|Fs

t ]
]
. By the fact that all the noises have independent

increments, we have that σs is independent from Fs
t and EQ[σs|Fs

t ] = EQ[σs] =
ηs. This gives Eq. (32).

3 Mutual entropies and information gains

3.1 The information embedded in the a posteriori states

The quantity σt is a state on L∞
(
Ω,F0

t , Q;L(H)
)

= L∞(Ω,F0
t , Q)⊗L(H) and

its marginals on L∞(Ω,F0
t , Q) and L(H) are pt and ηt, respectively. The mutual

entropy S(σt‖ptηt) is the “information” contained in the joint state with respect
to the product of these marginals; more explicitly we have (compare with (9))

S(σt‖ptηt) =
∫

Ω

Pt(dω) Tr
{
ρt(ω)

(
ln ρt(ω)− ln ηt

)}
and we can write

S(σt‖ptηt) = EPt
[Sq(ρt‖ηt)] = Sq(ηt)− EPt

[Sq(ρt)]. (33)

This mutual entropy is a sort of quantum information embedded by the mea-
surement in the a posteriori states. When the measurement is not informative,
we have ρt(ω) = ηt and S(σt‖ptηt) = 0. It is zero also if for any reason it
happens that ηt is a pure state. For instance, if U(t, 0) has a unique equilibrium
state which is pure, then limt→+∞ S(σt‖ptηt) = 0 even if the measurement is
“good”.

Let us note that from Eq. (33) we have the bound

S(σt‖ptηt) ≤ Sq(ηt). (34)

When the von Neumann entropy of the a priori state is not zero, an instan-
taneous index of “goodness” of the measurement could be S(σt‖ptηt)

/
Sq(ηt),

while a “cumulative” index could be
∫ T

0
S(σt‖ptηt)

Sq(ηt)
dt .

3.2 A classical continual information gain

3.2.1 Product densities

Let us consider any time s in the time interval (0, t) and let us decompose
the von Neumann algebra L∞(Ω,F0

t , Q) as L∞(Ω,F0
t , Q) = L∞(Ω,F0

s , Q) ⊗
L∞(Ω,Fs

t , Q). Now, the density pt can be seen as a state on L∞(Ω,F0
t , Q) and

we can consider its marginals p0
s and ps

t on the two factors L∞(Ω,F0
s , Q) and

L∞(Ω,Fs
t , Q), respectively. These marginals are given by

p0
s = EQ[pt|F0

s ], ps
t = EQ[pt|Fs

t ]. (35)

By using the fact that {pt, t ≥ 0} is a martingale and by taking the trace of Eq.
(32), we get

p0
s = ps , ps

t = Tr{Λs
t [ηs]} . (36)
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By comparing the last equality with pt = Tr{σt} = Tr{Λ0
t [η0]}, we see that ps

t

is similar to pt, but with s as initial time, instead of 0, and with ηs as initial
state, instead of η0. By this remark and Eq. (21), we get

ps
t = exp

{∑
j

[∫ t

s

mj(u; s) dWj(u)− 1
2

∫ t

s

mj(u; s)2 du

]

+
∑

k

[∫ t

s

ln
µk(u; s)

λk
dNk(u) +

∫ t

s

(λk − µk(u; s)) du

]}
, (37)

where

mj(t; s) = Tr
{

(Rj(t) + Rj(t)∗) ρs
t−

}
, µk(t; s) = Tr

{
Jk(t)ρs

t−

}
, (38)

ρs
t =

1
ps

t

Λs
t [ηs]. (39)

The random state ρs
t is the a posteriori state for the instrument Is

t and the
pre-measurement state ηs; it satisfy the non-linear SDE (25).

Then, we can consider the mutual entropy Sc(pt‖p0
sp

s
t ). But the significance

of this quantity is dubious, because the time s is completely arbitrary and,
moreover, we could divide the time interval in more pieces. For instance, we
can take the decomposition L∞(Ω,F0

t , Q) = L∞(Ω,F0
r , Q) ⊗ L∞(Ω,Fr

s , Q) ⊗
L∞(Ω,Fs

t , Q) and we recognize that p0
rp

r
sp

s
t is the product of the marginals of

pt related to this decomposition. Taking a finer generic partition of (0, t) with
t0 = 0 and tn = t, we recognize that

∏n
j=1 p

tj−1
tj

is again a product of marginals
of pt. To eliminate arbitrariness, let us consider finer and finer partitions and
let us go to a continuous product of marginals.

Let us note that we have

lim
s↑t

mj(t; s) = nj(t), lim
s↑t

µk(t; s) = νk(t), a.s.

Then, for an infinitesimal interval we get

ps
s+ds = exp

{∑
j

[
nj(s) dWj(s)−

1
2

nj(s)2ds

]

+
∑

k

[
νk(s)
λk

dNk(s) + (λk − νk(s)) ds

]}
(40)

and, so, the following density qt is the continuous product of marginals of pt:

qt = exp
{∑

j

[∫ t

0

nj(s) dWj(s)−
1
2

∫ t

0

nj(s)2 ds

]

+
∑

k

[∫ t

0

ln
νk(s)
λk

dNk(s) +
∫ t

0

(λk − νk(s)) ds

]}
. (41)

Notice that nj(t) and νk(t) are deterministic functions. Under the proba-
bility qT (ω)Q(dω), the processes Wj(t)−

∫ t

0
nj(s) ds are independent, standard

Wiener processes and Nk(t) is a Poisson process of time dependent intensity
νk(t).
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Under qT (ω)Q(dω), the processes Wj , Nk have independent increments as
under Q (so they can be interpreted as noises), but the means have been changed
and made equal to the means they have under PT .

The fact that it is possible to consider a “continuous product of marginals”
is not so unexpected; indeed, the theory of continual measurements is connected
to infinite divisibility [15].

We have already seen that the marginals of pt with respect to the decompo-
sition of the time interval (0, t) into (0, s) and (s, t) are p0

s = ps and ps
t given by

Eq. (37). The analogous marginals for qt are q0
s = qs and

qs
t = exp

{∑
j

[∫ u

t

nj(s) dWj(s)−
1
2

∫ u

t

nj(s)2 ds

]

+
∑

k

[∫ u

t

ln
νk(s)
λk

dNk(s) +
∫ u

t

(λk − νk(s)) ds

]}
=

qt

qs
. (42)

3.2.2 The classical mutual entropy Sc(pt‖qt)

The density qt is no more dependent on some arbitrary choice of intermedi-
ate times and the measure qT (ω)Q(dω) has a distinguished role and can be
considered as a reference measure. So, we can introduce the relative entropy

Sc(pt‖qt) = EPt

[
ln

pt

qt

]
.

Being qt a product of marginals of pt, this quantity is a mutual entropy and,
being qt the finest product of marginals, we can interprete Sc(pt‖qt) as a mea-
sure of the classical information on the measured system extracted in the time
interval (0, t). Other reasons can be given to reinforce this interpretation.

By Eqs. (21), (37), (41), (42) we have p0
t = pt, q0

t = qt, qu = qtq
t
u. By

Proposition 1 or by direct computation, we get

Sc(pt‖qt)− Sc(ps‖qs) = Sc(pt‖psq
s
t ), 0 ≤ s ≤ t . (43)

Firstly, by the positivity of relative entropies, this equation says that

0 ≤ Sc(ps‖qs) ≤ Sc(pt‖qt), (44)

i.e. that Sc(pt‖qt) is non negative and not decreasing in time, as should be for a
measure of an information gain in time. Moreover, the increment of information
in the time interval (s, t) can be written as

Sc(pt‖psq
s
t ) = EQ

[
ps EQ

[
pt

ps
ln

pt/ps

qt/qs

∣∣∣∣F0
s

]]
. (45)

This expression can be interpreted as a conditional relative entropy ( [17] pp.
22–23). The quantity EQ

[
pt

ps
ln pt/ps

qt/qs

∣∣∣F0
s

]
has the same structure as Sc(pt‖qt),

but it refers to the interval (s, t) and it is constructed with the conditional
densities. We can say that Eq. (43) expresses in a consistent way a kind of
“additivity property” of our measure of information.

Having the explicit exponential forms of the densities pt and qt, we can
compute the explicit expression of the information gain.

10



Proposition 4. The explicit expression of the classical mutual entropy Sc(pt‖qt)
is

Sc(pt‖qt) =
1
2

∑
j

∫ t

0

VarPt
[mj(s)]ds +

∑
k

∫ t

0

EPt

[
µk(s) ln

µk(s)
νk(s)

]
ds (46)

Proof. By Eqs. (21) and (41) we get

ln
pt

qt
=
∑

j

[∫ t

0

(
mj(s)− nj(s)

)
dWj(s)−

1
2

∫ t

0

(
mj(s)2 − nj(s)2

)
ds

]

+
∑

k

[∫ t

0

ln
µk(s)
νk(s)

(
dNk(s)− λk ds

)
+
∫ t

0

(
λk ln

µk(s)
νk(s)

− µk(s) + νk(s)
)

ds

]
=
∑

j

[∫ t

0

(
mj(s)− nj(s)

)(
dWj(s)−mj(s)ds

)
+

1
2

∫ t

0

(
mj(s)− nj(s)

)2 ds

]

+
∑

k

[∫ t

0

ln
µk(s)
νk(s)

(
dNk(s)− µk(s) ds

)
+
∫ t

0

µk(s)
(

νk(s)
µk(s)

− ln
νk(s)
µk(s)

− 1
)

ds

]
.

By point 2 in Remark 1, the first term in the j sum and the first term in the
k sum have zero mean under PT (or under Pt, by consistency). Therefore, Eq.
(46) follows by taking the Pt-mean of ln pt/qt and by taking into account Eqs.
(24).

Remark 2. 1. By (24b) and Jensen inequality applied to the convex function
x lnx, we have that both integrands in formula (46) are non-negative and,
so, we have

d
dt

Sc(pt‖qt) =
1
2

∑
j

VarPt
[mj(t)] +

∑
k

EPt

[
µk(t) ln

µk(t)
νk(t)

]
≥ 0. (47)

The positivity of this time derivative follows also from Eq. (44).

2. By the properties of relative entropy EPT
[Sq(ρt‖ηt)] = 0 is equivalent to

ρt = ηt, PT -a.s. By Eqs. (24), (47), this last relation implies the vanishing
of the quantity (47). So, we have

EPT
[Sq(ρt‖ηt)] = 0 ⇒ d

dt
Sc(pt‖qt) = 0 . (48)

3. From Eqs. (20), (24), (47) we see that

• if Rj(t) + Rj(t)∗ ∝ 1, then VarPt
[mj(t)] = 0,

• if Jk(t) ∝ 1, then ln µk(t)
νk(t) = 0.

This says that when both conditions hold for all j and k, no information
is extracted from the system, whatever the initial state is.
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3.3 A quantum/classical mutual entropy

The two mutual entropies introduced in Sections 3.1 and 3.2.2 can be obtained
from a unique mutual entropy

S(σt‖qtηt) =
∫

Ω

Q(dω) Tr
{
σt(ω)

(
lnσt(ω)− ln qt(ω)ηt

)}
. (49)

Indeed, by Proposition 1 or by direct computation, we get

S(σt‖qtηt) = S(σt‖ptηt) + Sc(pt‖qt) = EPt
[Sq(ρt‖ηt)] + Sc(pt‖qt). (50)

4 An upper bound on the increments of Sc(pt‖qt)

4.1 The main bound

By Proposition 1 and Eqs. (21), (37), (41), (42), the increment of information
in the time interval (t, u) can be expressed as

Sc(pu‖qu)− Sc(pt‖qt) = Sc(pu‖ptp
t
u) + Sc(pt

u‖qt
u). (51)

Lemma 5. For 0 ≤ t ≤ u, we have the bound

0 ≤ Sc

(
pu‖ptp

t
u

)
≤ EPu

[
Sq (ρt‖ηt)− Sq

(
ρu‖ρt

u

)]
. (52)

Proof. Consider the mutual entropy S(σt‖ptηt) introduced in Section 3.1 and
apply to both states the channel Λt

u. By Theorem 2 and the definition (39) we
get the inequality

EPt [Sq (ρt‖ηt)] = S (σt‖ptηt) ≥ S
(
Λt

u[σt]‖Λt
u[ptηt]

)
= S

(
σu‖ptσ

t
u

)
= S

(
puρu‖ptp

t
uρt

u

)
= EPu

[
Tr
{
ρu

(
ln pu + ln ρu − ln

(
ptp

t
u

)
− ln ρt

u

)}]
= Sc

(
pu‖ptp

t
u

)
+ EPu

[
Sq

(
ρu‖ρt

u

)]
,

and this gives (52).

Apart from the different notations, Eq. (52) is the bound (29) in Ref. [5].
From Eqs. (40) and (42) we get immediately

lim
u↓t

Sc (pt
u‖qt

u)
u− t

= 0 . (53)

Then, the second summand in the expression (51) of the increment of informa-
tion becomes negligible with respect to the first when u ↓ t. Therefore, from
Lemma 5 we have immediately the following theorem.

Theorem 6 (The bound on the derivative of Sc(pt‖qt)). The following bound
holds:

0 ≤ d
dt

Sc(pt‖qt) ≤ − d
du

EPT
[Sq(ρu‖ρt

u)]
∣∣∣
u=t+

≡ d
dt

EPT
[Sq(ρt)]−

d
du

EPT
[Sq(ρt

u)]
∣∣∣
u=t+

. (54)
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Remark 3. We already saw in Remark 2 that EPT
[Sq(ρt‖ηt)] = 0 is equivalent

to ρt = ηt, PT -a.s.; but this implies ρu = ρt
u, PT -a.s., because in this case these

two quantities, which satisfy the same equation, have the same initial condition
at time t. Therefore we have EPT

[Sq(ρu‖ρt
u)] = 0, ∀u ≥ t, and

EPT
[Sq(ρt‖ηt)] = 0 ⇒ − d

du
EPT

[Sq(ρu‖ρt
u)]
∣∣∣
u=t+

= 0. (55)

4.2 Explicit computation of the bound

All the derivatives can be elaborated and from Eq. (54) we get the following
explicit form of the difference between the bound and the time derivative in
which we are interested in.

Proposition 7. By computation of all the terms appearing in Eq. (54) we get

0 ≤ d
dt

EPT
[Sq(ρt)]−

d
du

EPT
[Sq(ρt

u)]
∣∣∣
u=t+

− d
dt

Sc(pt‖qt)

=
∑

k

EPT

[
Tr
{
Jk(t)ρt (ln ρt − ln ηt)− Jk(t)[ρt] (lnJk(t)[ρt]− lnJk(t)[ηt])

}]
+

1
2

∑
j

EPT

[ ∫ +∞

0

du Tr
{

ηt

u + ηt
(Rj(t) + Rj(t)∗)

ηt

u + ηt
(Rj(t) + Rj(t)∗)

− ρt

u + ρt
(Rj(t) + Rj(t)∗)

ρt

u + ρt
(Rj(t) + Rj(t)∗)

}]
+
∑

l

EPT

[
Tr
{
Ll(t)ηt

[
Ll(t)∗, ln ηt

]
− Ll(t)ρt

[
Ll(t)∗, ln ρt

]}]
. (56)

Proof. Let us start with the term d
du EPT

[Sq(ρt
u)]
∣∣∣
u=t+

. By recalling that ρt
u

satisfies in u the non-linear SDE with initial condition ηt at u = t and that
ηt + L(t)[ηt]dt = ηt+dt, we get

ρt
t+dt − ηt+dt =

∑
j

Aj(t)dW̌j(t) +
∑

k

(τk(t)− ηt) (dNk(t)− νk(t)dt) ,

where

Aj(t) := Rj(t)ηt + ηtRj(t)∗ − nj(t)ηt , τk(t) :=
1

νk(t)
Jk(t)[ηt],

dW̌j(t) := dWj(t)− nj(t)dt .

By setting also

B(t) := −1
2

∑
k

{Jk(t)− νk(t), ηt}+ L0(t)[ηt] + L1(t)[ηt],

we can write

ηt+dt =

(
1−

∑
k

νk(t)dt

)
ηt +

∑
k

νk(t)τk(t)dt + B(t)dt .
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Moreover, by the properties of the increments of the counting processes, we have

ρt
t+dtdNk(t) = τk(t)dNk(t),

(
1−

∑
k

dNk(t)

)
ρt

t+dt

=

(
1−

∑
k

dNk(t)

)ηt + B(t)dt +
∑

j

Aj(t) dW̌j(t)

 .

By putting these things all together and by using the rules of stochastic
calculus, we get

ρt
t+dt ln ρt

t+dt − ηt ln ηt =
∑

k

[
τk(t) ln τk(t)− ηt ln ηt

]
dNk(t)

+ ηt

ln

ηt + B(t)dt +
∑

j

Aj(t) dW̌j(t)

− ln ηt

+
∑

j

Aj(t) ln ηt dW̌j(t)

+ B(t)dt ln ηt +
∑

j

Aj(t)
[
ln
(
ηt + Aj(t) dW̌j(t)

)
− ln ηt

]
dW̌j(t).

It exists a nearly obvious and very useful integral representation of the log-
arithm of an operator ( [6] p. 51):

lnA =
∫ +∞

0

(
1

1 + t
− 1

t + A

)
dt.

By iterating this formula we get also

ln(A + B)− lnA =
∫ +∞

0

1
t + A

B
1

t + A + B
dt

=
∫ +∞

0

1
t + A

B
1

t + A

(
1−B

1
t + A + B

)
dt .

These two formulae and stochastic calculus rules allow to write

EPT

[
Tr
{
ρt

t+dt ln ρt
t+dt − ηt ln ηt

}]
=
∑

k

[
Sq(ηt)− Sq

(
τk(t)

)]
νk(t)dt

− dt
∑

j

∫ +∞

0

du Tr
{

ηt

(u + ηt)2
Aj(t)

1
u + ηt

Aj(t)
}

+ dt
∑

j

∫ +∞

0

du Tr
{

1
u + ηt

Aj(t)
1

u + ηt
Aj(t)

}

+ dt Tr
{

B(t)
(

ln ηt +
∫ +∞

0

ηt

(u + ηt)2
du

)}
.
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By computing the integral we get

Tr
{

B(t)
(

ln ηt +
∫ +∞

0

ηt

(u + ηt)2
du

)}
= Tr {B(t) (ln ηt + 1)}

= Tr {B(t) ln ηt} =
∑

k

Tr {[νk(t)− Jk(t)] ηt ln ηt}

+
∑

j

Tr {[Rj(t)ηtRj(t)∗ −Rj(t)∗Rj(t)ηt] ln ηt}

+
∑

l

Tr {[Ll(t)ηtLl(t)∗ − Ll(t)∗Ll(t)ηt] ln ηt}

and by using the integration by parts with 1
(u+ηt)2

= − d
du

1
u+ηt

we have also

∑
j

∫ +∞

0

du Tr
{

1
u + ηt

Aj(t)
1

u + ηt
Aj(t)−

ηt

(u + ηt)2
Aj(t)

1
u + ηt

Aj(t)
}

=
∑

j

∫ +∞

0

du Tr
{

Aj(t)
1

(u + ηt)2
Aj(t)

u

u + ηt

}

=
∑

j

∫ +∞

0

du Tr
{

Aj(t)
ηt

(u + ηt)2
Aj(t)

1
u + ηt

}

=
1
2

∑
j

∫ +∞

0

du Tr
{

1
u + ηt

Aj(t)
1

u + ηt
Aj(t)

}
.

From the previous formulae we get

− d
du

EPT
[Sq(ρt

u)]
∣∣∣
u=t+

=
∑

k

Tr
{
Jk(t)[ηt] ln

Jk(t)[ηt]
νk(t)

− Jk(t)ηt ln ηt

}
+
∑

j

Tr
{
Rj(t)ηt

[
Rj(t)∗, ln ηt

]}
+
∑

l

Tr
{
Ll(t)ηt

[
Ll(t)∗, ln ηt

]}
+

1
2

∑
j

(∫ +∞

0

du Tr
{

Rj(t)∗
ηt

u + ηt
Rj(t)∗

ηt

u + ηt
+

ηt

u + ηt
Rj(t)

ηt

u + ηt
Rj(t)

+
2

u + ηt
Rj(t)

ηt
2

u + ηt
Rj(t)∗

}
− nj(t)2

)
.

But we have

Tr
{
Rj(t)ηt

[
Rj(t)∗, ln ηt

]}
+
∫ +∞

0

du Tr
{

1
u + ηt

Rj(t)
ηt

2

u + ηt
Rj(t)∗

}
=
∫ +∞

0

du Tr
{

1
u + ηt

Rj(t)
ηt

2

u + ηt
Rj(t)∗ −

1
u + ηt

Rj(t)ηtRj(t)∗

+
1

u + ηt
Rj(t)

ηt

u + ηt
Rj(t)∗

}
=
∫ +∞

0

du Tr
{
− u

u + ηt
Rj(t)

ηt

u + ηt
Rj(t)∗ +

1
u + ηt

Rj(t)
ηt

u + ηt
Rj(t)∗

}
=
∫ +∞

0

du Tr
{

ηt

u + ηt
Rj(t)

ηt

u + ηt
Rj(t)∗

}
.
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Then, we have the final expression

− d
du

EPT
[Sq(ρt

u)]
∣∣∣
u=t+

=
∑

k

Tr
{
Jk(t)[ηt] ln

Jk(t)[ηt]
νk(t)

− Jk(t)ηt ln ηt

}
+

1
2

∑
j

(∫ +∞

0

du Tr
{

ηt

u + ηt
(Rj(t) + Rj(t)∗)

ηt

u + ηt
(Rj(t) + Rj(t)∗)

}

− nj(t)2
)

+
∑

l

Tr
{
Ll(t)ηt

[
Ll(t)∗, ln ηt

]}
. (57)

Analogously we get

d
dt

EPT
[Sq(ρt)] = −

∑
k

EPT

[
Tr
{
Jk(t)[ρt] ln

Jk(t)[ρt]
µk(t)

− Jk(t)ρt ln ρt

}]
− 1

2

∑
j

EPT

[ ∫ +∞

0

du Tr
{

ρt

u + ρt
(Rj(t) + Rj(t)∗)

ρt

u + ρt
(Rj(t) + Rj(t)∗)

}

−mj(t)2
]
−
∑

l

EPT

[
Tr
{
Ll(t)ρt

[
Ll(t)∗, ln ρt

]}]
. (58)

By (57), (58), (47) we get the statement of the Proposition.

Corollary 8. A sufficient condition to have the equality in the main bound

d
dt

Sc(pt‖qt) =
d
dt

EPT
[Sq(ρt)]−

d
du

EPT
[Sq(ρt

u)]
∣∣∣
u=t+

(59)

is to have PT -a.s. in ω (T ≥ t), ∀r, k, j, l,

[V r
k (t), ρt(ω)] = 0 , [Rj(t) + Rj(t)∗, ρt(ω)] = 0 , [Ll(t), ρt(ω)] = 0 . (60)

Proof. By the commutation relations (60) we get

Jk(t)ρt (ln ρt − ln ηt)− Jk(t)[ρt] (lnJk(t)[ρt]− lnJk(t)[ηt])
= Jk(t)ρt (ln ρt − ln ηt − lnJk(t)ρt + lnJk(t)ηt) = 0

and the first term in Eq. (56) vanishes.
By Eq. (60) also the last term in Eq. (56) is zero because it explicitly involves

vanishing commutators.
Finally, let us consider one of the terms in the j-sum. We have

EPT

[ ∫ +∞

0

du Tr
{
−Rj(t)∗

ρt

u + ρt
Rj(t)∗

ρt

u + ρt

}]
= −EPT

[ ∫ +∞

0

du Tr
{

Rj(t)∗2
ρt

2

(u + ρt)2

}]
= −EPT

[
Tr
{
Rj(t)∗2ρt

}]
= −Tr

{
Rj(t)∗2ηt

}
.

The opposite result comes out from the corresponding term with η and the
j-sum vanishes too.
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