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APPROXIMATING INFINITE DELAY WITH FINITE DELAY

MONICA CONTI, ELSA M. MARCHINI, VITTORINO PATA

Abstract. Equations with infinite delay commonly face the philosophical objection of
being “unphysical”, since a memory of infinite duration conflicts with reality. Indeed,
besides common sense, experimental observations on concrete physical models tell that
effects from the far past cannot possibly influence the current dynamics of a given system.
On the other hand, infinite delay arises quite naturally in the mathematical description
of several relevant phenomena. In this note, we propose a possible conceptual solution,
showing that infinite delay can be recovered as a limiting case of finite delay on a large
time-scale, along with a quantitative control of the discrepancy.

1. Introduction

The mathematical description of materials with memory is an important issue which
attracted the attention of several authors. The origins of modern viscoelasticity and,
more generally, of the so-called hereditary systems, trace back to the works of Boltzmann
and Volterra [1, 2, 22, 23], who first introduced the notion of memory in connection with
the analysis of elastic bodies. The key assumption in the hereditary theory of elasticity is
that the deformation of the mechanical system is due both to the instantaneous stress and
to the past stresses. Such a behavior is modelled by the so-called equations with memory,
influenced by the past values of the variables in play (cf. [10, 21]). In abstract form, the
equation of linear viscoelasticity at a given time t > 0 (t = 0 being understood as the
initial time) reads

(E) ü(t) + A
[
u(t)−

∫ ∞

0

µ(s)u(t− s) ds
]
= 0.

Here, A is a densely defined selfadjoint strictly positive linear operator on a real Hilbert
space H, while the memory kernel µ : R+ → [0,∞) is a nonincreasing summable function
of total mass

κ =

∫ ∞

0

µ(s) ds ∈ (0, 1).

Equation E is supplemented with the “initial conditions”

u(0) = α, u̇(0) = β, u(−s)|s>0 = γ(s),

where α, β and the function γ, representing the past history of u, are prescribed data.
Indeed, the convolution integral in E requires u to be assigned for all negative times,
where need not solve the equation.

The longterm memory appearing in the model raised some criticism in the scientific
community from the very beginning, due to the conceptual difficulty in accepting the idea
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2 M. CONTI, E.M. MARCHINI, V. PATA

of a past history defined on an infinite time-interval. Volterra [22, 23] circumvented the
problem by merely assuming a vanishing past history before some fixed time (convention-
ally, the initial time t = 0), obtaining the particular instance of E

(1.1) ü(t) + A
[
u(t)−

∫ t

0

µ(s)u(t− s) ds
]
= 0,

whose solutions are uniquely determined by the knowledge of u(0) and u̇(0). In the
Sixties, Coleman and Mizel [4, 5] answered the infinite delay question through the notion
of fading memory; namely, they introduced the further assumption that the values of the
deformation history of a material in the far past produce negligible effects on the value of
the present stress. Still, the philosophical objection of a memory having infinite duration
remains open. A natural way out is considering the somehow more physical model

ü(t) + A
[
u(t)−

∫ 1

ε

0

µ(s)u(t− s) ds
]
= 0, ε > 0,

where the memory kernel acts only on the finite time-interval (0, 1
ε
). Introducing the

truncated kernel

µ̂ε(s) = µ(s)χ(0, 1
ε
)(s),

the above equation can be given the equivalent formulation

(1.2) ü(t) + A
[
u(t)−

∫ ∞

0

µ̂ε(s)u(t− s) ds
]
= 0.

It is then interesting to clarify whether or not (1.2) provides a satisfactory approximation
of E for small values of ε. This is exactly the aim of the present paper. More generally,
we will consider a class of perturbation kernels µε, depending on a parameter ε > 0,
converging (in a suitable sense) from below to the limiting kernel µ when ε → 0. As a
particular case, we will recover the truncated kernels µ̂ε. We should mention that dealing
with this kind of perturbations is rather nontrivial, since minimal changes in the memory
kernel may dramatically affect the behavior of the corresponding solutions (see [17] for
related examples).

2. Setting of the Problem

In order to carry out this project, we consider in place of E the family of equations

(Eε) üε(t) + A
[
uε(t)−

∫ ∞

0

µε(s)uε(t− s) ds
]
= 0,

depending on ε ≥ 0 small. For ε = 0, we agree to denote u0 = u and µ0 = µ, recovering
the original equation E .

Within a natural notion of convergence µε → µ, the goal is establishing the uniform-
in-time closeness of the corresponding trajectories of Eε to those of E originating from
identical initial data. Accordingly, the same initial conditions

(2.1) uε(0) = α, u̇ε(0) = β, uε(−s)|s>0 = γ(s)

are understood to hold for every ε ≥ 0.
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2.1. Assumptions on the memory kernels. Along the whole paper, the kernels µε

are required to comply with the following assumptions.

• µε : R
+ → [0,∞) is nonincreasing, piecewise absolutely continuous and summable

with total mass

κε =

∫ ∞

0

µε(s) ds ∈ (0, 1).

• The inequality

µε(s) ≤ µ(s)

holds for every ε > 0 and almost every s > 0. In particular, this entails

0 < κε ≤ κ < 1.

Therefore, the kernels are differentiable almost everywhere with µ′
ε ≤ 0. Nonetheless,

they are allowed to possess (even infinitely many) discontinuities (i.e. jumps), and can be
unbounded in a neighborhood of zero.

2.2. Functional setting. Given a Banach space X, we call L(X) the space of bounded
linear operators on X. We denote by ‖ · ‖ and 〈·, ·〉 the norm and the inner product in H,
respectively. For ı = 1, 2, we introduce the higher-order Hilbert spaces

H ı = dom(A
ı

2 ), 〈u, v〉ı = 〈A
ı

2u,A
ı

2 v〉, ‖u‖ı = ‖A
ı

2u‖.

Then, for any ε ≥ 0, we define the L2-space (we will omit the index ε whenever zero)

Mε = L2
µε

(R+;H1), 〈η, ξ〉Mε
=

∫ ∞

0

µε(s)〈η(s), ξ(s)〉1 ds,

along with the product space

Hε = H1 ×H ×Mε

endowed with the norm

‖(u, v, η)‖2Hε

= (1− κε)‖u‖
2
1 + ‖v‖2 + ‖η‖2Mε

.

In light of the assumptions, for any ε > 0 we have the continuous inclusion

M ⊂ Mε ⇒ H ⊂ Hε

with norm inequality

‖z‖Hε
≤ λ‖z‖H, ∀z ∈ H,

where, here and in the sequel, we agree to set λ = 1√
1−κ

.

Remark 2.1. If the support of µε is strictly contained in the support of µ, the inclusion
M ⊂ Mε is to be correctly interpreted as M|supp(µε) ⊂ Mε.
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3. Statements of the Results

For every ε ≥ 0 and any given set of initial data (α, β, γ) ∈ Hε, equation Eε with initial
conditions (2.1) is known to possess a unique weak solution (see e.g. [3, 17])

uε ∈ C([0,∞), H1) ∩ C1([0,∞), H).

The closeness of Eε to the limiting equation E will be established in terms of the difference

ω(ε) =

∫ ∞

0

[µ(s)− µε(s)] ds = κ− κε.

To this aim, further assumptions on the memory kernels are needed. In fact, the conver-
gence result is obtained by requiring suitable decay properties

(i) either for the limiting kernel µ,
(ii) or for the family of kernels µε for ε > 0.

As far as (i) is concerned, we have the following theorem.

Theorem 3.1. Let there exist a set of positive measure P ⊂ R
+ and two constants K ≥ 1

and δ > 0 such that

(3.1) µ′(s) < 0, ∀s ∈ P,

and

(3.2) µ(t+ s) ≤ Ke−δtµ(s),

for every t ≥ 0 and almost every s > 0. If

(3.3) lim
ε→0

ω(ε) = 0,

the uniform-in-time convergence

(3.4) lim
ε→0

[
sup
t≥0

{
‖u(t)− uε(t)‖1 + ‖u̇(t)− u̇ε(t)‖

}]
= 0

holds for every set of initial data (α, β, γ) ∈ H.

Remark 3.2. The recent work [18] shows that (3.1)-(3.2) imply the (uniform) exponential
decay of the solutions to E , being necessary as well when H is infinite dimensional. If
K = 1, it is easily verified that (3.2) boils down to the well-known sufficient (and much
stronger) condition of exponential stability

µ′(s) + δµ(s) ≤ 0 for a.e. s > 0,

widely adopted in the literature (e.g. [3, 7, 8, 9, 12, 13, 14, 15, 16]).

The next result deals with (ii).

Theorem 3.3. For any ε > 0, let there exist δε > 0 such that

(3.5) µ′
ε(s) + δεµε(s) ≤ 0 for a.e. s > 0.

If

(3.6) lim
ε→0

1 + δε
δε

√
ω(ε) = 0,

the convergence (3.4) holds for every set of initial data (α, β, γ) ∈ H.
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For the Volterra equation (1.1), Theorem 3.3 can be improved.

Theorem 3.4. Assuming (3.5) true, the convergence (3.4) occurs for every set of initial

data in H of the form (α, β, 0) whenever

(3.7) lim
ε→0

1 + δε
δε

ω(ε) = 0,

in place of the more restrictive (3.6).

One might ask if the convergence (3.4) can be rendered uniform with respect to bounded
set of initial data. This issue will be addressed in the final §6. Before giving the proofs of
the theorems, carried out in §5, we briefly discuss some features of the convergence results
stated above.

4. Remarks and Comments

I. The comparison between the theoretical model E and its finite delay approximation (1.2)
follows directly by considering the equations Eε corresponding to the truncated kernels
µ̂ε. In which case,

ω(ε) =

∫ ∞

1

ε

µ(s) ds.

Thus (3.3) is automatically satisfied, whereas the quantity δε appearing in (3.5) reads

δε = −ess inf
{
µ′(s)/µ(s) : s ∈ (0, 1

ε
)
}
.

II. The sole convergence µε → µ in the L1-norm is not enough in order to establish ap-
proximation results. Even more, any kind of convergence (without additional hypotheses)
may not suffice in ensuring the closeness of trajectories in the longterm. To see that, just
consider the one-step kernel

(4.1) µ(s) = χ(0,x)(s), x ∈ (0, 1).

According to [3], there exist particular values of x (depending on the eigenvalues of A)
for which the corresponding equation E admits periodic solutions. In other words, the
system exhibits a purely elastic behavior. On the other hand, a minimal change in the
kernel shape eliminates this resonant phenomenon, and all the solutions to the perturbed
equation converge to zero.

III. In connection with Theorems 3.3 and 3.4, we remark that condition (3.5), which
implies the exponential decay of solutions, is assumed only for ε > 0. Indeed, it is possible
to approximate a kernel µ, whose associated solutions do not decay exponentially, with a
family µε satisfying (3.5)-(3.6). For example, the truncated kernels µ̂ε obtained from

µ(s) =
1

(1 + s)p
, p > 3,

meet the hypotheses of Theorem 3.3 with

δε =
pε

1 + ε
.

For this choice of µ the solutions to E do not decay exponentially (cf. [6, 11, 17]).
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IV. For the family of Volterra equations corresponding to µ̂ε, we observe that Theorem 3.4
allows to consider kernels

µ(s) ∼
1

sp
(s → ∞)

with p > 2, whereas Theorem 3.3 requires a polynomial decay rate p > 3. The result is
somehow optimal, since a decay rate p ≤ 2 is rather meaningless from the physical point
of view. This is due to the fact that, in most concrete situations (e.g. viscoelasticity), the
kernel µ is formally obtained as the derivative of a summable convex kernel.

V. Assumption (3.7) in Theorem 3.4 is sharp and cannot be weakened by asking, for
instance,

lim
ε→0

1 + δε
δε

[ω(ε)]q = 0, q > 1.

Indeed, consider the kernel (4.1) for a resonant value x, and define the approximating
kernels

µε(s) = e−εsµ(s).

Then E admits solutions departing from initial data (α, β, 0) that do not decay, contrary
to the solutions to Eε (see [6]). At the same time, (3.5) is fulfilled with δε = ε and

lim
ε→0

1 + ε

ε
[ω(ε)]q = lim

ε→0

1 + ε

ε

(
x+

e−εx − 1

ε

)q

= 0.

5. Proofs

5.1. The history framework. In view of our scopes, it is more convenient viewing Eε as
an ODE on a Hilbert space accounting for the past history of the variable uε. Following
a celebrated idea of C.M. Dafermos [8], this is done by adding an auxiliary variable
ηε = ηtε(s), formally defined as

ηtε(s) = uε(t)− uε(t− s), t ≥ 0, s > 0.

Then, introducing the three-component vector

Uε(t) = (uε(t), u̇ε(t), η
t
ε),

equation Eε supplemented with initial conditions (2.1) for data (α, β, γ) ∈ Hε turns out
to be completely equivalent to the linear differential equation on Hε

(5.1)
d

dt
Uε(t) = AεUε(t)

subject to the initial condition

(5.2) Uε(0) = (α, β, α− γ),

where
Aε(u, v, η) = (v,−A

[
(1− κε)u+

∫∞
0

µε(s)η(s) ds
]
,−η′ + v),

the prime being the distributional derivative, is a linear operator on Hε, whose domain is
implicitly defined by its action (see [3, 17] for more details). Equation (5.1) is known to
generate a linear contraction semigroup Sε(t) on Hε, i.e.

‖Sε(t)‖L(Hε) ≤ 1, ∀t ≥ 0.
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Besides, the third component of the solution Uε(t) to the Cauchy problem (5.1)-(5.2)
admits the explicit representation formula (see [19])

(5.3) ηtε(s) =

{
uε(t)− uε(t− s) 0 < s ≤ t,

uε(t)− γ(s− t) s > t.

5.2. Difference of solutions. We now consider the difference U(t)− Uε(t) between the
solutions to (5.1)-(5.2) corresponding to ε = 0 and an arbitrarily fixed ε > 0, respectively.
Defining the three-component vector

Fε(t) = (0,

∫ ∞

0

[µ(s)− µε(s)]A[u(t)− ηt(s)] ds, 0),

we are led by subtraction to the differential equation in Hε

(5.4)
d

dt
[U(t)− Uε(t)] = Aε[U(t)− Uε(t)] + Fε(t)

with initial value
U(0)− Uε(0) = 0.

Here we used the fact that A = Aε on H.

5.3. More regular data. For further scopes, we need to introduce the higher-regularity
spaces

Kε = L2
µε

(R+;H2) ⊂ Mε and Vε = H2 ×H1 ×Kε ⊂ Hε.

Remark 5.1. Since we are dealing with an arbitrary operator A, all the results stated in
Hε hold without changes in Vε. Indeed, Vε is the space that naturally arises by replacing
A with its square A2.

In particular, S(t) is a contraction semigroup on V . Accordingly, for data (α, β, γ) ∈ V ,
we obtain the relation

(5.5) ‖Fε(t)‖Hε
≤

∫ ∞

0

[µ(s)− µε(s)]‖u(t)− ηt(s)‖2 ds,

which easily entails Fε ∈ L∞(R+;Hε) for every fixed ε. Therefore (cf. [20]), the solution
to (5.4) can be expressed in the Duhamel integral form

(5.6) U(t)− Uε(t) =

∫ t

0

Sε(t− y)Fε(y) dy.

5.4. Proof of Theorem 3.1. Firstly, we prove the convergence (3.4) for data (α, β, γ)
in the more regular space V . The general case will be subsequently established by means
of an approximation argument. In what follows, we agree to set z = (α, β, α− γ), which
allows us to write

Uε(t) = Sε(t)z.

It is apparent that the map (α, β, γ) 7→ z is an isomorphism both in H and in V.

Lemma 5.2. Within (3.1)-(3.2), there exists a constant C > 0 such that the inequality

‖S(t)z − Sε(t)z‖Hε
≤ C

{
ω(ε) +

√
ω(ε)

}
‖z‖V

holds for every z ∈ V and every t > 0.
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Proof. According to [18], assumptions (3.1)-(3.2) imply the exponential stability of S(t)
in V . Namely, there exist M ≥ 1 and ν > 0 such that

‖S(t)‖L(V) ≤ Me−νt.

Hence, setting for short

%(ε) = ω(ε) +
√

ω(ε),

we infer from (5.5) and the Hölder inequality that

‖Fε(t)‖Hε
≤ ω(ε)‖u(t)‖2 +

√
ω(ε)

(∫ ∞

0

[µ(s)− µε(s)]‖η
t(s)‖22 ds

) 1

2

≤ %(ε)
(
‖u(t)‖2 + ‖ηt‖K

)

≤ 2Mλ%(ε)‖z‖V e
−νt.

Then, recalling that Sε(t) is a contraction semigroup on Hε, formula (5.6) leads to

‖S(t)z − Sε(t)z‖Hε
≤

∫ t

0

‖Fε(y)‖Hε
dy ≤

2Mλ

ν
%(ε)‖z‖V ,

as claimed. �

In order to deal with the general case z ∈ H, select any sequence zn ∈ V converging to
z in the norm of H. Defining the map

Λ : (u, v, η) 7→ (u, v, 0),

by virtue of the previous Lemma 5.2 we deduce the inequality

‖ΛS(t)z − ΛSε(t)z‖H ≤ ‖S(t)zn − Sε(t)zn‖Hε
+ ‖S(t)(z − zn)‖H + ‖Sε(t)(zn − z)‖Hε

≤ C
{
ω(ε) +

√
ω(ε)

}
‖zn‖V + ‖z − zn‖H + ‖zn − z‖Hε

.

Therefore, on account of (3.3),

lim sup
ε→0

‖ΛS(t)z − ΛSε(t)z‖H ≤ (1 + λ)‖z − zn‖H,

and letting n → ∞ we obtain

lim
ε→0

‖ΛS(t)z − ΛSε(t)z‖H = 0,

which is exactly the thesis of Theorem 3.1.

5.5. Proof of Theorems 3.3 and 3.4. Here, we lean on the exponential decay of Sε(t)
ensured by the sufficient condition (3.5).

Lemma 5.3. Let (3.5) hold. Assume also that

(5.7) inf
ε∈(0,1]

κε > 0.

Then, for every ε ∈ (0, 1], there exist constants M ≥ 1 and νε > 0 such that

‖Sε(t)‖L(Hε) ≤ Me−νεt.
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Moreover,

νε =
cδε

1 + δε
,

for some c > 0 independent of ε.

We omit the proof of the lemma, which is basically entirely contained in [17]. We just
mention that the constant M can be taken independent of ε thanks to the inequality
µε ≤ µ.

As in the previous case, we first prove the result for more regular initial data.

Lemma 5.4. Within (3.5)-(5.7), there exists a constant C > 0 such that the inequality

‖S(t)z − Sε(t)z‖Hε
≤

C(1 + δε)

δε

{
ω(ε)‖z‖V +

√
ω(ε) ‖γ‖K

}

holds for every z = (α, β, α− γ) ∈ V, every t > 0 and every ε ∈ (0, 1].

Proof. Making use of the representation formula (5.3) for ηt, we rewrite (5.5) in the
equivalent form

‖Fε(t)‖Hε
≤

∫ t

0

[µ(s)− µε(s)]‖u(t− s)‖2 ds+

∫ ∞

t

[µ(s)− µε(s)]‖γ(s− t))‖2 ds.

Since S(t) is a contraction semigroup on V ,

∫ t

0

[µ(s)− µε(s)]‖u(t− s)‖2 ds ≤ λω(ε)‖z‖V ,

while the second term is estimated by exploiting the Hölder inequality and the mono-
tonicity of µ as

∫ ∞

t

[µ(s)− µε(s)]‖γ(s− t))‖2 ds ≤
√
ω(ε)

(∫ ∞

t

µ(s)‖γ(s− t)‖22 ds

) 1

2

≤
√

ω(ε) ‖γ‖K.

In summary, we get

‖Fε(t)‖Hε
≤ λω(ε)‖z‖V +

√
ω(ε) ‖γ‖K.

In light of Lemma 5.3, we deduce from (5.6) the estimate

‖S(t)z − Sε(t)z‖Hε
≤ Mλ

{
ω(ε)‖z‖V +

√
ω(ε) ‖γ‖K

}∫ t

0

e−νεy dy,

yielding the desired conclusion. �

The general case z ∈ H is carried out exactly as in the proof of Theorem 3.1, with the
only care of choosing an approximating sequence zn ∈ V of the form zn = (αn, βn, αn) in
the proof of Theorem 3.4, so that (3.7), in place of the more restrictive (3.6), suffices to
draw the required convergence.
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6. Uniformity with Respect to Initial Data

We finally discuss the uniformity of the convergence (3.4) with respect to initial data. In
fact, Lemma 5.2 and Lemma 5.4 tell that the conclusions of Theorems 3.1, 3.3 and 3.4
hold true uniformly with respect to bounded sets of initial data in the more regular space
V introduced in §5.3.

A natural question is then what happens for bounded sets of initial data in the original
phase-space H. We limit ourselves to consider the more interesting case of Theorem 3.1.
To this aim, we focus on the following conjecture, which improves the theorem in the
desired direction.

Conjecture. Let µ satisfy (3.1)-(3.2). Then, for every bounded set B ⊂ H, there exists

a continuous function Q = QB vanishing at zero such that the inequality

(6.1) ‖u(t)− uε(t)‖1 + ‖u̇(t)− u̇ε(t)‖ ≤ Q(ω(ε))

is satisfied for every t ≥ 0 and every initial data (α, β, γ) ∈ B.

Up to redefining Q, we preliminary observe that (6.1) implies the stronger inequality

(6.2) ‖S(t)z − Sε(t)z‖Hε
≤ Q(ω(ε)), z = (α, β, α− γ).

Indeed, on account of the representation formula (5.3), the third component ξt of the
difference S(t)z − Sε(t)z reads

ξtε(s) =

{
u(t)− uε(t)− u(t− s) + uε(t− s) 0 < s ≤ t,

u(t)− uε(t) s > t.

Thus, assuming (6.1), we readily obtain the uniform bound

‖ξtε(s)‖Mε
≤ 2Q(ω(ε)),

so establishing (6.2).

Unfortunately, such a conjecture is false in the general case. To see that, for an ar-
bitrarily given µ complying with (3.1)-(3.2), let us consider a family µε satisfying (3.3)
along with the additional constraint

µ(s) ≤ 2µε(s), ∀s > 0.

Lemma 6.1. Assuming the conjecture true, the semigroups Sε(t) are exponentially stable

for all ε > 0 sufficiently small.

Proof. For these particular µε, the reverse inclusion Hε ⊂ H holds with an embedding
constant independent of ε. Hence, for an arbitrary z in the unit ball ofHε, exploiting (6.2)
and the exponential stability of S(t), we draw the inequality

‖Sε(t)z‖Hε
≤ ‖S(t)z − Sε(t)z‖Hε

+ ‖S(t)z‖Hε
≤ Q(ω(ε)) + Ce−νt,

for some strictly positive constants C, ν. Indeed, it is apparent that any such z can be
written in the form z = (α, β, α − γ), for some (α, β, γ) in a bounded set B ⊂ H. Thus,
for any ε > 0 sufficiently small, there exists a time tε > 0 such that

‖Sε(t)‖L(Hε) < 1, ∀t > tε.
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By a classical argument of the theory of linear semigroups (see e.g. [20]), we infer the
exponential decay of Sε(t) on Hε. �

On the other hand, we can easily construct a family of approximating kernels µε of the
above kind made by step functions, i.e. with µ′

ε = 0 almost everywhere. In that case,
as shown in [3], the semigroups Sε(t) are never exponentially stable (at least for a quite
general class of operators A), against the conclusions of the lemma.
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