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Abstract

In this article, a novel mathematical and computational model is proposed for the nu-
merical simulation of Voltage Operated ionic Channels (VOC) in Nano-Bio-Electronics ap-
plications. This is a first step towards a multi—physics description of hybrid bio—electronical
devices such as bio—chips. The model consists of a coupled system of nonlinear partial differ-
ential equations, comprising a Poisson-Nernst-Planck system to account for electro-chemical
phenomena, and a Navier—Stokes system to account for fluid—-mechanical phenomena. Suit-
able functional iteration techniques for problem decoupling and finite element methods for
discretization are proposed and discussed. Numerical results on realistic VOCs illustrate
the validity of the model and its accuracy by comparison with relevant computed channel

equivalent electrical parameters with measured data.

Keywords: Nanotechnology; hybrid bio—artificial systems; ionic—electrical coupling; ionic chan-

nels; mathematical modeling; numerical simulation.



1 Introduction

In this article, we deal with the study of charge transport in Voltage Operated ionic Channels
(VOCGs) [11, 1] for application in Bio-Electronics [20, 25]. The differential mathematical model
of a VOC consists of a coupled system comprising a Poisson-Nernst-Planck (PNP) system for the
electro—chemical part [24, 21, 2], and of a Navier—Stokes (NS) system for the fluid-mechanical
part [17]. The highly nonlinear structure of the system has a strong resemblance to the hydro-
dynamical equations used to model charge flow in semiconductor devices [12]. Such resemblance
suggests adopting proper functional iteration techniques for system decoupling and lineariza-
tion [12], as well as accurate and stable finite element formulations, combining exponential
fitting, Mixed-Hybrid (MH) and Discontinuous Galerkin (DG) approaches, for the numerical
approximation of the resulting linearized differential subproblems [3, 4, 7]. All of these ad-
vanced mathematical techniques are the basic ingredients of a sophisticated computational tool,
that has been developed for the two—dimensional numerical simulation of VOCs and, in perspec-
tive, of complex coupled hybrid bio-artificial systems such as Nanoscale Biological Chips (NBC)
[20, 25].

A summary of the contents of the article is as follows. In Sect. 2 a schematical example
of an NBC device and of its functional properties is provided. Then, the attention is focused
on the characterization of ionic charge flow that is exchanged between the biological (cell) and
electronic component of the NBC device throughout the Voltage Operated Channels (VOCs)
that are largely present on the cell membrane. In Sect. 3 the mathematical model of charge
transport in a single VOC, including electro—chemical and fluid—mechanical forces, is discussed
in detail, while in Sect. 4 the functional and numerical techniques adopted for linearization and

discretization are briefly illustrated. Finally, the physical validity of the model, and the accuracy



of computational techniques are illustrated in Sect. 5 on the numerical simulation of a realistic
single VOC under several working conditions and on the comparison with relevant computed
electrical equivalent parameters with measured data. Some concluding remarks and prospective

directions are addressed in Sect. 6.

2 An Example of A Hybrid Device: The EOSFET

This section has the aim of introducing the simplest example of a bio-chip, the so-called EOSFET

(Electrolyte Oxide Field Effect Transistor), a schematic of which is shown in Fig. 1. The
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Figure 1: A coupled hybrid device (reprinted from [20]).

EOSFET structure is a transistor device where the gate contact is constituted by an electrolyte
solution instead of a metal interconnection, as in a standard semiconductor technology. Integra-
tion of cell and chip is made possible by proper control of the flow of ionic charges exchanged
between the cell and the semiconductor component, in such a way that the hybrid device can
function under two different modes of operation. In the first mode, the cell gates the transis-
tor and regulates the electronic current flowing into the transistor conducting channel. In the
second mode, which is the reversal case, the cell acts as the receiver of a signal coming from a

microelectronical network (see also [9], [20] and [25]).



The structural difference between the EOSFET and the conventional MOSFET (Metal-Oxide
Field Effect Transistor) device implies a radical change in the nature of the charges which control
the transistor. In the case of a MOSFET, the conducting channel is gated by the electric field
generated by electrons in the gate contact, while in the case of an EOSFET the gating process
is operated by ionic charges coming from the cell towards the semiconductor.

Tonic charges are injected through thin passages, called Voltage Operated ionic Channels
(VOCs), which are largely present on the cellular membrane [11]. Ionic channels are the con-

nection between the cytoplasm and the extra-cellular environment, and:

o regulate and maintain the dynamical electro-chemical equilibrium between the cell-surrounding

environment and the intracellular milieu;

o supervise fundamental biological processes, such as nervous transmission, muscle contrac-

tivity and secretion;

e are characterized by a specific geometry and selectivity and gating properties.

A first step towards the implementation of a reliable and effective simulation tool of an

EOSFET device consists of devising:

e Mathematical models for charge transport in ionic channels in the presence of large gra-

dients of ion concentration and action potential (see [11, 14, 13, 12, 5]).

e Efficient functional iteration techniques [12] and accurate and stable finite element meth-

ods [3, 4], for system decoupling and linearization and subsequent numerical discretization.



3 Mathematical Model for Ionic Channels

In this section, we discuss the mathematical model for the electrical and fluid description of
transport in a single ionic channel, and the boundary and initial conditions to be supplied to

close the differential problem.

3.1 The Ingredients of the Model

Tonic charges flow throughout the channel in a moving aqueous electrolyte medium and subject

to the following forces:

o clectrical or drift forces;

e thermodynamical or diffusion forces;

o fluid-mechanical forces.

The electrical force is due to the voltage difference between the inside and the outside of
the cell. The diffusion force is due to the concentration drop across the membrane and obeys
the standard Fick’s law. The fluid-mechanical force is due to the presence of a fluid in motion
(the aqueous electrolyte) under the action of a given pressure difference across the channel and
of the electric pressure exerted by the flowing ions. As a matter of fact, biological arguments
show a significant decrease of (effective) diffusion between the end regions of the channel and
the wider regions (cf. Fig. 2). This reduction of the diffusive mechanism gives rise to a highly
convection—dominated flow in the narrow regions of the channel, which in turn requires appro-
priate modeling. To properly describe the above three kinds of forces, two different sets of PDEs

must be considered:

1. the Poisson-Nerst-Planck (PNP) equations;



Schematic view of K channel structure
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Figure 2: Ionic transport in and out of a single K channel (reprinted from [10]).

2. the Navier-Stokes (NS) equations.

The PNP system of equations accounts for the electrical and diffusion forces, while the NS system
of equations accounts for the fluid-mechanical forces. The two sets of PDEs constitute a highly
nonlinear coupled problem, and suitable solution algorithms are needed to compute a consistent
solution. The presence of the Navier-Stokes equations in the model is a novel contribution of the
present work, compared to existing literature [5, 21, 2, 8, 10]. Previous examples of modeling

and simulation of ionic flow in biological channels can be found in [24],[5], [21, 2], [8] and [6].

3.2 The Scaled PNP Equations

The PNP system in scaled form reads:

[ Ony )

O'Z'W + div JZ =0
M

NdivE =) oini+d

$ i=1 (1)
Ji = (E +[oiau])n; — i Vn;

{ E =—-Vo.

The variables of the system are the concentration n; of the i-th ionic species, with: =1,... , M,

M > 1, the associated current density J; and the electric field E, that is related to the electric



potential ¢ by (1)4. The velocity of the electrolyte fluid w is assumed here to be a given function.
The quantities o; and u;, denote the sign and the mobility of the i-th ionic species, respectively.
The function d is a given function which represents a fixed concentration in the channel. We
notice that a classical DD-like constitutive equation is used for the current density J; in (1)s,
with the addition of a boxed term o; aun;, which acts as a correction to the drift term and
is responsible for the coupling between electro—chemical forces and fluid-mechanical forces in

(1). Two parameters, A and «, enter the scaled PNP system (1). The first parameter is defined

Ee P 1/2
ANV

x

as \ = = l%e, where @, 7 and T are the scaling factors for potential, concentrations
and spatial coordinates, respectively, while ¢ and ¢, are the electron charge and the electrolyte
permittivity, respectively. The parameter A can be interpreted as a scaled Debye length [15] of
the electrolyte. It is relevant to observe that if A> < 1, the PNP system exhibits a singularly
perturbed character (see [18]), and the corresponding solutions may exhibit internal and/or
boundary layers, depending on the form of d and the given boundary conditions. In the problem
at hand, a typical value of the above parameter is A2 = 2. 10~ 2, which demonstrates that the
PNP problem is singularly perturbed. The second parameter is defined as a = Z—fll, where %y,
e
and T are the scaling factors of the fluid velocity (in the NS model) and of the drift velocity
(in the PNP model), respectively. It is relevant to notice that « is a multiplication factor of the

coupling term between the electro—chemical and fluid-mechanical subsytems, and in the problem

at hand we have o ~ 56.



3.3 The scaled NS Equations

The scaled NS equations in conservative form read:

.
divu =0

M
ou . .
n + div(u ® u) — div g(u,p) = | ;UiniE

o(u,p) = ppoew) ~ o

(w) = 5(Vuu + (Va)"),

\

where g is the stress tensor, ¢ is the strain rate tensor, w is the fluid velocity and p is the
pressure. The boxed term at the right-hand side of the momentum balance equation (2) is the
electric pressure exerted by the ionic charges on the electrolyte fluid, and is responsible for the

coupling between the NS system (2) and the PNP system (1). Two parameters, S and Re, enter
— E .
the scaled system (2). The first parameter is defined as § = an , where E is the scaling factor
fl

for electric field and f F1= Pe ﬂ}l / T, pe being the fluid density. It is relevant to notice that £ is

a multiplication factor of the coupling term between the fluid-mechanical and electro—chemical

subsytems, and in the problem at hand we have § ~ 10. The second parameter is the Reynolds

number of the electrolyte fluid (see [22]), and is defined as Re = Tun

, where ve = pie/pe is
Ve

the kinematic viscosity of the fluid, y. denoting its shear viscosity. Using realistic data, the

estimated value of Re is O(10~!), which means that the fluid can be considered in the fully

laminar regime. This allows simplifying the fluid-mechanical model into a much easier Stokes

(ST) problem, where the nonlinear convective term div(u ® u) is neglected. By doing so, the

computational work of the numerical solver is reduced, still retaining a sound physical accuracy.



3.4 Geometry, Boundary and Initial Conditions

In this section, we define the computational domain and provide proper boundary and initial
conditions for the PNP and ST subsystems. With this aim, Fig. 3 (left) shows a 2D cross—section
of a single ionic channel, while Fig. 3 (right) shows the simplified geometrical description of the
physical environment adopted in the present work.

From now on, we denote by  C R? the computational channel domain, and by I its
boundary, with I' = I'y UT'; UT'3 UTy. For each boundary segment I'j, j = 1,...,4, an
appropriate boundary condition (of Dirichlet, Neumann or Robin type) can be imposed (see

[22]), according to either the user need or physical adherence.
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Figure 3: A 2D cross-section of the membrane and of a single ionic channel (left). Simplified

geometrical description (right).

We also denote by T't;,, > 0 the (scaled) duration of the temporal evolution of system (1)—(2),

and we set T;;, = +o0o if steady-state conditions are investigated.
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3.4.1 Boundary and Initial Conditions for the PNP system

The boundary and initial conditions for the PNP system (1) can be written as follows:

r
© = Py on Ty
=10, on I'y
Vo-nr =0 onI'y U3

{ ni= M2 on I'y, (3)
N; = Ny 4 on I'y,
Ji-nr =o00;r(n; —m;r) onI'yUTS3,

\ ni(z,0) = nd(x) in 0,

where @; is the electric potential of side 7, in particular of the cytoplasm and of the extracellular
mean, 7; ; is a given concentration of the ionic species ¢ (intracellular and extracellular) on
side I'j, while n?(z) is the initial concentration in the ionic channel at time ¢ = 0 for the i-th
ionic species. Conditions (3);_o enforce a given voltage drop across the channel, conditions
(3)4—5 enforce a given concentration gradient across the channel, and condition (3)3 express the
fact that the channel is electrically self-contained. Condition (3)g expresses the possibility for
an ionic current to flow (by osmosis) from the membrane into the ionic channel and to add
it to the electrical current in the channel. The inclusion of such a boundary condition in the
PNP formulation increases the portability of the model to other possible uses and applications
where an osmotic component of the current might be of interest (for example, bio-hydraulics,

micro-and-nano fluidics, plasma-dynamics, see [13]).

3.4.2 Boundary and Initial Condition for the NS System

The boundary and initial conditions for the NS (ST) system are:

11



u=20 on Fl U F3
o(u,p)nr =pynr on Iy
ag(u,p)nr =p,nr only

u(z,0) = u'(z) in .

\

Relation (4); is the adherence condition, relations (4), and (4)3 enforce a pressure drop between
the inside and the outside of the cell, while relation (4), states the fact that at time t = 0 the

velocity of the fluid is known in all the domain (typically, we set u°(z) = 0).

4 Functional Iterations and Numerical Approximation

In order to deal with the numerical approximation of the PNP/ST differential system discussed
in the previous sections, we need to introduce a suitable iterative procedure which allows the
successive solution of the two model sub-blocks (1) and (2). Then, proper finite element formu-

lations must be used for the discretization of the resulting decoupled problems.

4.1 A Staggered Algorithm

The staggered algorithm for the successive solution of the PNP and ST subsystems is organized
as follows. For each time level t™, set ngo) =n;", E© = E™ and «(® = u™. Then, for each
k > 0, solve successively:

e a linearized PNP system with a given velocity field u(¥). This provides in output the

updated densities nz(kﬂ) and electric field E(*+1);

e a linear ST system with a given electric field E**1). This provides in output the updated

velocity u+1);

12



e let k* be the value of k at which self-consistency is achieved for the time level ™. Then,
set n" T = nz(-k*), u™tl = o) gt — BKY) and then set ¢ = ¢t
Each decoupled sub-block of the above iteration can be solved by resorting to suitable
linearization. In the case of the PNP system, the classical Gummel’s map that is widely employed
in contemporary semiconductor device simulation can be profitably employed [12]. In the case

of possible convective dominance in the electrolyte fluid motion, an Oseen—type formulation can

be adopted to treat the nonlinear term in the momentum balance equation (see [23]).

4.2 Finite Element Approximation

As previously anticipated, the solutions of the PNP and ST subsystems can exhibit a markedly
singularly perturbed character (see [12]). Moreover, due to the common structure in divergence
form, conservation of flux and tensor quantities is an important issue for the computed solution.
As a matter of fact, it is well-known that flux/stress post—processing may lead to a degradation
in the accuracy, due to numerical differentiation. Moreover, standard displacement—based finite
element formulations do not provide interelement continuity of normal flux and stress, which
constitutes a violation of the action—reaction principle on the discrete level. Therefore, in view

of the finite element approximation of the PNP and ST subsytems, we use:

e Mixed-Hybrid finite element formulations that allow a flexible enforcement of the consti-
tutive relations for vector and tensor quantities, as well as of the associated conservation

and equilibrium equations (see [4]);

e Exponentially Fitted Mixed Finite Volume schemes (see [19, 3]) in the discretization of
the continuity equations in the PNP model. In the case where a full NS problem must be

solved for the fluid motion, a suitable Discontinuous Galerkin upwinding treatment of the

13



convective terms in the NS system should be adopted (see [7]).

5 Numerical Results

In this section, we provide a validation of the PNP/ST model and of the related computational
procedures, in the simulation of a realistic single KT ionic channel under several working con-

ditions. The following assumptions are introduced in all the subsequent numerical experiments:

1. the considered ionic channel is ideally selective, which means that ionic transport of only

one species is allowed, while ionic transport of any other species is prohibited;

2. only static computations are performed, because gating and action potentials act on the
scale of milliseconds, whereas transient phenomena in channels and devices seem to occur

on the order of nanoseconds or even smaller units (see [14], Chapt. 3).

According to a hierarchical approach, we start studying the static current-voltage (I-V)
characteristics of the single VOC using the sole PNP model in Sect. 5.1, because this allows a
more immediate calibration of the model parameters through a direct comparison with available
results in the literature [14, 9]. Then, the complete PNP-ST model is used in Sect. 5.2 for
simulation and comparison. In all the reported numerical experiments, the channel current I,
expressed in A, is computed as I, = I op W, where I, op is the current per unit length
flowing throughout the 2D domain €, expressed in Am ™', and W is the width W of the channel
in the direction perpendicular to the domain itself. In our tests, we take W = 2nm, which is

equivalent to assuming that the channel has a square cross-section of 2 x 2nm?.

14



5.1 I-V Characteristics Computed With the PNP model

The values of intra and extra-cellular K ionic concentration, and the values of ionic mobility
used in the simulations are 7y = 400 mM, Ty = 20mM and p = 7.2 - 1078 m?V—1s~1, respec-
tively [16]. It is important to notice that in the mentioned reference, mobility is evaluated by
performing a molecular dynamics simulation, assuming an infinite dilution for the ions, and
then neglecting interionic interactions. Moreover, the viscous nature of the force exerted by the
electric field on the ions is due to the presence of the dielectric and hydrodynamical frictions,
where the electrolyte dielectric permittivity is that of water (e, = 80.4). Two different triangu-
lations of the channel domain are used, one consisting of 288 elements (T1), the other consisting
of 1152 elements (T2). The voltage drop across the membrane ranges from —120mV to 20 mV'.

Before discussing the numerical results, it is useful to provide an equivalent representation
for the ionic current density J. Setting u = 0 in (1)3, the ionic flux density can be written in

the following gradient form
Ji = —pini Von,, (5)

where ¢y, is the electrochemical potential associated with the ¢-th ionic species.

A first check on the accuracy of the simulation results consists of comparing the theoretical
value of the Nernst potential Vi with its computed estimate, Vi being defined as the potential
drop across the channel in correspondance of which J = 0, this implying from (5) that the
electrochemical potential ¢, is a constant quantity in the channel. The expression for Vy is (see

[14], Sect. 2.6.1)

Ny

Vv = Vi In ( ) ~ —80mV, (6)

n2

where Vy, is the thermal voltage equal approximately to 26 mV at room temperature.

15



This is shown in Fig. 4, which represents the I-V curve of the channel computed on T1,
where the black circle indicates the (approximate) computed value of Viy. The obtained result is
in very good agreement with the predicted value (6), with a discrepancy of 5 percent. A better

resolution can be obtained by performing computations on the finer grid T2. A second significant

Current [pA]
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Voltage [V]

Figure 4: I-V curve of a single K* channel.

check on the accuracy of the simulation concerns the evaluation of the channel conductance g.p,

which is an equivalent electrical parameter of the channel [9], and is defined as

_ d1.p
9ech = av., (7)

where dV,,, denotes an infinitesimal voltage drop across the membrane. Assuming, as usual in
biological applications (see [14]), as reference potential the one of the extracellular environment,
an extrapolation of g, from Fig. 4 yields g., = 67.6 pS, which is in excellent agreement with
tabulated ranges of measured data in [9] and with numerical simulations performed in [10].
A third concluding check on the accuracy of the simulation concerns the computation of the
electrochemical potential in two different biasing conditions. The aim is to verify that the profile

of ¢, tends to a constant value, as soon as the applied potential drop gets closer to the Nernst

16



potential Vi, in accordance with the flux density constitutive equation (5). Fig. 5 shows the
distributions of ¢, in the case of A ps o = —A o4 = 20mV (left) and A g4 = —80mV (right),
this latter biasing condition being very close to the theoretical value of Vy. Comparing the two
plots, it can be seen that in the second case the variation of ¢, is negligible compared to the

first case, consistently with the previous expectations.

0.02

S -0.02
-0.04
-0.06
-0.08

X107 [m]

Figure 5: Electrochemical potential of a single K+ channel.

5.2 I-V Characteristics with the PNP-ST Model

In this section, we perform a comparison between the full model and the sole PNP model on the
same test case as in Sect. 5.1. In order to provide a quantitative estimate of the net contribution
of the fluid-mechanical current to the total ionic flux density, we carry out two sets of numerical
studies as a function of an external pressure drop A ps s = Py — Dy, the varying parameter being
the value of the ionic mobility x. The main difficulty is the choice of proper pressure values
on the external (I'e) and internal (I'y) sides of the channel. This is a nontrivial issue, because
of the lack of precise specific data, except for those referring to osmotic pressure theory [14],
which states that the pressure difference Ap, 2 across the membrane is related to the difference

between the chemical potentials of the electrolyte in the cytoplasm and in the cleft, and, as

17



consequence, of the corresponding ionic concentrations, according to the relation
Apsz = qVin ([K']e — [KT)i),

where [-]. and [-]; are the external and internal concentrations expressed in m™3 and ¢ =
1.602 - 10719 C is electron charge.

We start studying the I-V characteristics of the KT channel as a function of Aps s in the
cases Apyo = 10bar (a) and Apyo = 50bar (b), with g = 7.2- 108 m?V "1s7! as in Sect. 5.1,
case (b) representing an extreme operating condition because typical values of Apy o are in the

range [1, 10] bar. The results are illustrated in Fig. 6. In case (a), we notice that the computed

10

® sole PNP
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Current [pA]
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Figure 6: I-V curve as a function of pressure drop: Aps o = 10bar (dashed line), Apy o = 50 bar

(solid line). The black dots refer to the computation with the sole PNP model.

current (dashed line) is in excellent agreement with the analysis done using the sole PNP model
(black dots). In case (b), the comparison between the PNP-ST model (solid line) with the sole
PNP model (dashed line) demonstrates the importance of the Stokes fluid contribution to the
ionic current flux.

Then, we study the I-V characteristics of the KT channel as a function of Aps 2 in the cases
Apso = 1bar (a), Apyo = 10bar (b) and Apso = 50bar (c), with p = 1078 m2V~1s~1. This
modified value of the ionic mobility attempts to simulate:

18



1. an effective diffusion reduction due to the presence of narrowing regions (cf. Sect. 3.1 and

Fig. 2);

2. the interionic interactions which have been neglected in Ref. [16].

The results are illustrated in Fig. 7. In case (a), we notice that the computed current (dotted

% PNP-ST, 1 bar +
6 |-o-PNP-ST, 10 bar o
-+-PNP-ST, 50 bar L
5r A b
—sole PNP R

Current [pA]

1
0.05 0.1

Figure 7: I-V curve as a function of pressure drop: Apso = 1bar (asterisks), Apso = 10 bar
(circles) and Apy o = 50 bar (crosses). The solid line (without symbols) refers to the computation

with the sole PNP model.

line) exhibits a significant deviation with respect to the computation with the sole PNP model
(solid line, no symbols) for a negative value of the applied bias, whilst a similar behaviour can be
noticed for the computed current in case (b) for a positive value of the applied bias (solid line,
circles). These results demonstrate that the fluid forces significantly contribute to determine
ionic transport in the channel and, as a consequence, to the total ionic current flux, for a wide
range of admissible pressure drops. The fluid-mechanical contribution is furtherly enhanced in

(the unrealistic) case (c), compared to the same simulation performed with the higher value of

19



the ionic mobility and reported in Fig. 6.

6 Conclusions and Future Perspectives

In this article, we have schematically illustrated a possible scenario for interdisciplinary descrip-
tion of complex systems in Human Sciences and Bio—Nanotechnologies.

The considered mathematical setting is based on a nonlinearly coupled system of partial
differential equations, comprising a PNP model for the electro-chemical analysis, and a NS (ST)
model for the fluid-mechanical part. Appropriate boundary and initial conditions have been
supplied to the problem at hand, and suitable functional iteration techniques and computational
finite element methodologies have been proposed to numerically solve the resulting equations.
Models and algorithms have then been validated on the simulation of a realistic VOCs under

several working conditions. The numerical results are:

1. in very good agreement with tabulated data and ranges predicted by theory and experi-

mental measurements;

2. obtained with a dramatic reduction of computational time compared to the Molecular—

Dynamics simulations of [8].
Forthcoming issues that we intend to investigate are:

e a more realistic description of the channel geometry, with possible full 3D computations.
In particular, a more faithful definition of channel narrowing should automatically account
for (effective) diffusion reduction, and, in turn, require the replacement of the ST model

with the NS model;
e the inclusion of gating channel mechanisms, which should require including in the model

20



the elastic deformation of the membrane;

e the implementation of the reduced-order model proposed in [9], supplied with the quan-
titative evaluation of g., given by the present work, for the numerical simulation of the

EOSFET device;

e the possibility of extending the use of the PNP-ST model to describe ionic flow in the

electrolyte cleft;

e a mathematical analysis of the PNP/NS (ST) model (well-posedness, asymptotics and

convergence of the functional iteration map and the related discretization schemes).
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