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hi"November 5, 2010ABSTRACT: Blake-Zisserman fun
tional F g�;� a
hieves a �niteminimum for any pair of real numbers �, � su
h that 0 < � �� � 2� and any g 2 L2(0; 1).Uniqueness of minimizer does not hold in general. Nevertheless,in the 1D 
ase uniqueness of minimizer is a generi
 property forF g�;� in the sense that it holds true for almost all gray levels datag and parameters �, �: we prove that, whenever �� =2 Q , theminimizer is unique for any g belonging to a GÆ subset of L2(0; 1)dependent on � and �.Contents1 Introdu
tion 12 Euler equations 43 Notation and preliminary results 64 An auxiliary variational problem 345 CW stru
ture of the set of data with vanishing ex
ess fE = 0g 376 CW stru
ture of the set fE = 0g \ fE = 0g of all data exhibiting non uniqueness ofminimizer with same 
ardinality of singular sets and di�erent arrangement 417 Proof of the main theorem 608 Appendix A: CW 
omplexes and Transversality 681 Introdu
tionImage segmentation plays an important role in 
omputer vision and in theunderstanding of biologi
al vision. The �rst variational model for image seg-mentation was proposed by D.Mumford & J.Shah [21℄, [22℄ and studied by1



several authors ([16℄, [17℄, [18℄, [20℄). Blake & Zisserman showed some in
on-venient related to Mumford & Shah approa
h and introdu
ed an alternativeway ([3℄) to translate image segmentation task into a variational formulationwhi
h a
tually is a free gradient dis
ontinuity problem. Blake & Zissermanapproa
h was studied in [5℄, [6℄, [7℄, [8℄, [9℄, [10℄, [13℄, [12℄, [15℄.Here we fo
us the question of uniqueness restri
ting the analysis to the 1dimensional Blake & Zisserman fun
tional F g�;� de�ned as follows.Given g 2 L2(0; 1), �; � 2 R and u 2 H2 we set F g�;� : H2 ! [0;+1)F g�;�(u) = Z 10 j�u(x)j2 dx+Z 10 ju(x)� g(x)j2 dx+� ℄ (Su)+� ℄ (S _unSu). (1.1)Here and in the sequel for all u 2 L2(0; 1), _u denotes the absolutely 
ontin-uous part of the distributional derivative u0 of u, �u denotes the absolutely
ontinuous part of ( _u)0, Su � (0; 1) denotes the approximate dis
ontinuity set([1℄) of u and S _u � (0; 1) the approximate dis
ontinuity set of _u, H2 denotesthe set of v 2 L2(0; 1) su
h that Sv and S _v are �nite sets and v 2 H2(I) forany interval I � (0; 1)n (Sv[S _v), eventually ℄ denotes the 
ounting measure.We will 
all singular set of u the set Su [ S _u. We setmg(�; �) = inffF g�;�(u) 8u 2 H2g,argminF g�;� = fu 2 H2 : F g�;�(u) = mg(�; �)g.We re
all that argminF g�;� 6= ; whenever the two following 
onditions aresatis�ed ([15℄): 0 < � � � � 2� (1.2)g 2 L2(0; 1). (1.3)Nevertheless minimizers are not unique in general. In [4℄ Se
tion 3 we exhibitexamples of g 2 L2(0; 1) and �, � ful�lling (1.2) su
h that F g�;� has morethan one minimizer (see Counterexample 3.1, 3.2, 3.3 of [4℄). Moreover wegive an example of a non empty open subset N � L2(0; 1) su
h that forany g 2 N there are � and � satisfying (1.2) and ℄ (argminF g�;�) � 2 (seeCounterexample 3.4 of [4℄). Anyway mg(�; �) 
ontinuously depends on g, �,� ([4℄, Theorem. 2.3).The main result of this paper is the following:Theorem 1.1 For any � and � with 0 < � � � � 2� and �� =2 Q , there is aGÆ set (
ountable interse
tion of dense open sets) E�;� � L2(0; 1) su
h thatfor any g 2 E�;� we have ℄ (argminF g�;�) = 1.2



As usual we denote by GÆ the interse
tion of at most 
ountably many denseopen sets. Sin
e the 
omplement in L2(0; 1) of a GÆ subset and the 
omple-ment in R2 of the set f(�; �) 2 R2 : �=� =2 Qg are sets of �rst 
ategory,Theorem 1.1 says that uniqueness for minimizers of F g�;� is a generi
 property.The whole pi
ture we obtain about generi
 uniqueness and 
ounterexamplesis 
oherent with the presen
e of instable patterns, ea
h of them 
orrespond-ing to a bifur
ation of optimal segmentation under variation of parameters:this fa
t is natural sin
e suitable 
ombinations of alfa and beta are relatedto 
ontrast threshold, 
rease dete
tion, \luminan
e sensitivity", resistan
e tonoise and double-edge dete
tion (see [BZ℄).The absolutely 
ontinuous part of fun
tional (1.1) will be denoted byFg(u) = Z 10 j�u(x)j2 dx+ Z 10 ju(x)� g(x)j2 dx. (1.4)Uniqueness of solution and its 
oin
iden
e with the datum are shown in 
aseof pie
ewise aÆne datum g, under suitable smallness assumption on �, �(Lemma 3.7). In the general 
ase the dis
ussion about uniqueness of min-imizers is outlined as follows. We identify partitions fqigQi=0 of the interval(0; 1) with ve
tors q = (qi)Qi=1 su
h that 0 < q1 < ::: < qQ < 1. In 
ase of apartition asso
iated to a singular set (fqigQi=0 = Su[S _u) the ve
tor q is 
alledlo
ation of the singular set and the ordered attribute of belonging to Su orS _u is 
alled quality (see De�nition 3.1). Theorem 3.2 states that if u is aminimizer of F g�;� then it is the unique minimizer of F g�;�(w) among w in H2ful�lling Sw = Su and S _w = S _u; Euler equations (re
alled in Theorem 2.1)may la
k uniqueness (see Counterexamples 3.1-3.4 in [4℄), moreover even with�xed singular set the whole system of Euler equations is overdetermined. Forthese reasons we introdu
e Problem 3.3, related to a sele
tion of Euler equa-tions, where we pres
ribe two parameters (still 
alled lo
ation and quality,see (3.3)) asso
iated to suitable transition 
onditions: this is motivated bythe fa
t that in 
ase of minimizers the two notions of lo
ation and quality forfun
tion and Problem 3.3 
oin
ide). Theorems 3.8, 3.9, 3.11 prove that sys-tem (3.2) has unique solution b whi
h depends linearly on g and has energyFg(b) quadrati
 on g. Theorem 3.14 shows analyti
 dependen
e of energy(1.4) with respe
t to lo
ation of singular set (varying on open 
ells of CWstru
ture indu
ed by pie
ewise aÆne datum g). Lemma 3.19 shows 
ontinu-ous dependen
e for solution b of Problem 3.3 with respe
t to perturbationsof the singular set of a pie
ewise aÆne datum g. In Se
tion 4 we introdu
etwo auxiliary problems: Problem 4.2, whi
h is equivalent to minimization offun
tional (1.1) in 
ase of 
ontinuous pie
ewise aÆne datum g, and Problem4.4 whi
h is related to a di�erent sele
tion of Euler equations, in su
h a waythat 
ommon solutions of Problems 3.3 and 4.4 ful�ll the whole system of3



Euler equations (i)-(iv),(vi) in Theorem 2.1. In Se
tion 5 we introdu
e theex
ess fun
tional E whi
h vanishes only on 
ommon solutions of both Prob-lems 3.3 and 4.4; by exploiting this tool, for suitable integers m and n, wede�ne subsets of Rm � Rn measuring how many pairs (g; t) exist su
h thatg is a 
ontinuous pie
ewise aÆne fun
tion with no more than m 
reases andt 2 Rn is the ordered singular set of a solution of Problem 4.2 with datumg: we prove (Theorem 5.4) that these subsets are �nite CW 
omplexes ofdimension m. In Se
tion 6 we prove that the set of all aÆne data related tosuitably re�ned partitions and exhibiting non uniqueness of minimizer withdi�erent arrangement and same pres
ribed 
ardinality of singular set has nullm dimensional Lebesgue measure (Theorem 6.4) where m = Q+ 2 and Q isthe 
ardinality of the partition.In Se
tion 7 the main result (Theorem 1.1) is dedu
ed as a 
onsequen
e ofthe following intermediate 
laim (Theorem 7.2): for any �, � ful�lling (1.2)and �=� irrational, the set of data g with uniqueness of minimizer for F g�;�is dense in L2. Theorem 7.2 is a
hieved by exploiting several te
hni
al stepsproven in Se
tions 3 - 7: the idea is to show that, for suÆ
iently �ne parti-tions q = (qi)Qi=1 of (0; 1), the set of 
ontinuous pie
ewise linear fun
tions gasso
iated to q su
h that F g�;� has more than one minimizer is small; heresmall means that its (Q + 2)-dimensional Lebesgue measure is zero, afteridenti�
ation of 
ontinuous pie
ewise linear fun
tions asso
iated to the par-tition q and the eu
lidean spa
e RQ+2 .We emphasize that, with 
ontinuous pie
ewise aÆne datum g, jump and
rease points of minimizers are not ne
essarily lo
alized among those of g(see Se
tion 4 of [4℄): hen
e the te
hniques used for proving the generi
uniqueness for Mumford-Shah fun
tional in [2℄ 
annot be applied to Blake-Zisserman fun
tional. For this reason we follow a di�erent strategy, by 
are-fully exploiting some interse
tion properties between real analyti
 varieties.2 Euler equationsIn this se
tion we re
all the whole set of Euler equations and the 
omplian
eidentity for minimizers of the fun
tional F g�;� (Theorems 2.1, 2.1 of [4℄). Forthe multidimensional situation (n � 2) we refer to [7℄, [10℄ and [12℄.Theorem 2.1 (Euler equations) If (1.2) and (1.3) hold true then every
4



u whi
h minimizes (1.1) in H2 is also a solution of the following system:8>>>>>>><>>>>>>>:
(i) u0000 + u = g on (0; 1) n (S _u [ Su)(ii) �u+ = �u� = 0 on S _u [ Su [ f0; 1g(iii) ...u+ = ...u� = 0 on Su [ f0; 1g(iv) ...u+ = ...u� on S _u(v) 12(u+ + u�) = g on Su \ f
ontinuity points of ggIn (ii) and (iii) we 
onventionally set �u�(0) = �u+(1) = 0 = ...u+(1) = ...u�(0).If, in addition to (1.2) and (1.3), g is 
ontinuous pie
ewise aÆne then(iii),(iv) improve as follows(vi) ...u+ = ...u� = 0 on (Su [ S _u [ f0; 1g) n S _gIf, in addition to (1.2) and (1.3), � = � then (iii),(iv) improve as follows(vii) ...u+ = ...u� = 0 on Su [ S _u [ f0; 1g .By summarizing:(viii) �u 2 H2(0; 1) and (�u)00 + u = g in D0(0; 1).Proof. Properties (i)-(v), (vii), (viii) are proven in [4℄ Se
tion 2 Theorem2.1. Property (vi) is a straightforward 
onsequen
e of (iii) and of (3.24)whi
h will be proved in Lemma 3.18. �Theorem 2.2 (Complian
e identity) Assume (1.2) and (1.3). Then wehave, for any u 2 H2 ful�lling the Euler equations (i)-(iv) of Theorem 2.1:Fg(u) = Z 10 (g2 � gu) dx, Z 10 j�uj2 dx = Z 10 (gu� u2) dx (2.1)and F g�;�(u) = Z 10 (g2 � gu) dx + � ℄ (Su) + � ℄ (S _u n Su). (2.2)In parti
ular any u minimizingF g�;� over H2 ful�lls (2.1) and (2.2).Theorem 2.3 For any possibly dis
ontinuous pie
ewise aÆne fun
tion gwith Sg [ S _g 6= ? we introdu
e the subset S[g℄ of H2 as follows:v 2 S[g℄ if and only if, either(i)( ℄ (S _v n Sv) < ℄ (S _g n Sg)℄ (Sv) < ℄ (Sg) + ℄ (S _g n Sg)� ℄ (S _v n Sv) ,5



or (ii)( ℄ (Sv) < ℄ (Sg)℄ (S _v n Sv) < ℄ (S _g n Sg) + 2(℄ (Sg)� ℄ (Sv)).Then S[g℄ 6= ? and infv2S[g℄Fg(v) > 0. (2.3)These results are proven in [4℄ Se
tion 2.3 Notation and preliminary resultsIn this se
tion we �x the notation used throughout the following se
tions inthe proof of generi
 uniqueness and show some preliminary results.Ln denotes the n-dimensional Lebesgue measure on Rn . For any x 2 Rnand r > 0 let Br(x) = fy 2 Rn : jy � xj < rg, for any A;B � Rn letdist(A;B) = inf fja� bj a 2 A; b 2 Bg, �A denotes the topologi
al bound-ary of A. We denote by L2(0; 1) the spa
e of all measurable square integrablereal valued fun
tions and by Su � (0; 1) the approximate dis
ontinuity set ofu whenever u 2 L2(0; 1); we setHk(a; b) = fv 2 L2(a; b) : v(h) 2 L2(a; b); 0 � h � kg,H2 = fv 2 L2 : Sv[S _v is �nite, v 2 H2(I) 8 interval I � (0; 1)n(Sv[S _v))g.For any u 2 H2 we 
all jump points the elements of Su � (0; 1) and 
reasepoints the elements of (S _u n Su) � (0; 1).Let 
j;
 be the set of all �j+
j � orderings of j+ 
 distin
t points in (0; 1) su
hthat j among them are (undistinguished jump points) marked with J, and
 among them are (undistinguished 
rease points) marked with C: for any� 2 
j;
, T = j+ 
, and l = 1; :::;T, we set �l = J if the l-th point is a jumppoint, �l = C if the l-th point is a 
rease point, moreover we set �0 = J and�T+1 = J by 
onvention.In this way ea
h element of u 2 H2 with j jump points and 
 
rease pointssingles out exa
tly one element of 
j;
, while several fun
tions inH2 (with thesame ordering of jumps and 
reases) may 
orrespond to one single elementof 
j;
.We are interested in elements ofH2 with �xed numbers j of jump points and 
of 
rease points whose lo
ation is free in (0; 1): for any integer T (representingthe sum T = j+ 
) we introdu
e the open 
onne
ted subset AT of (0; 1)T asAT = ft = (t1; :::; tT) 2 (0; 1)T : t1 < ::: < tTg.6



AT is identi�ed in a natural way with the set of partitions of (0; 1) with
ardinality T. Abusing notation, whenever needed, we write a 2 t to meana 2 ftigTi=1 while t0 = 0, tT+1 = 1 are always understood.We observe that ea
h u 2 H2 uniquely de�nes a pair(t; �) = (t(u); �(u)) 2 A℄ (Su[S _u) � 
℄ (Su);℄ (SunS _u)su
h thatSu [ S _u = t = ftl(u)g℄ (Su[S _u)l=1and tl(u) is a 
rease point if �l(u) = C and a jump point if �l(u) = J.De�nition 3.1 For any fun
tion u 2 H2 we 
all:� lo
ation of u: the ve
tor t = t(u) 2 AT asso
iated to Su [ S _u,� quality of u: the element � = �(u) 2 
j;
 des
ribing the ordered kind ofsingularity asso
iated to Su [ S _u,� arrangement of u: the pair (t(u); �(u)) lo
ation of u and quality of u.At �rst we deal with minimizers of F g�;� with exa
tly j jump points and 

rease points with pres
ribed arrangement. Then we will examine 
andi-date minimizers having arrangement 
ompatible with (possibly di�erent) apres
ribed arrangement.Theorem 3.2 Assume u 2 argminF g�;�. De�neH2u = fv 2 H2 : t(v) = t(u); �(v) = �(u)g,then uniqueness hold true on H2u:argminv2H2u F g�;� = fug.Moreover, for any �xed w 2 H2 with Sw � Su and S _w � Su [ S _u there isa 
onvex neighborhood U = U(w) of 0 in R su
h that the Euler equations(i)-(iv) of Theorem 2.1 are not satis�ed by any u+ �w with � 2 U n f0g.Proof. If w 2 H2 and Sw * Su or S _w * Su [ S _u then u + �w =2 H2u for any� 2 R n f0g.In order to perform variations in H2u we have to test only fun
tions w 2 H2with Sw � Su and S _w � Su [ S _u. Fix a w ful�lling these properties, thenthere is a �nite (possibly empty) set P = P (w) � R n f0g su
h thatu+ �w =2 H2u 8� 2 P7



be
ause of possible 
an
ellations in S _u+� _w [ Su+�w. Nevertheless 0 =2 P andu+ �w 2 H2u 8� in the open set R n P .Set '(�) = Fg(u+�w). Fg is stri
tly 
onvex inH2, hen
e ' is stri
tly 
onvexin R, hen
e ' is stri
tly 
onvex in the maximal open interval U = U(w) ofR nP 
ontaining 0. Then 0 belongs to the interior of U , hen
e 0 is the uniqueminimum point of ' in R n P , sayFg(u) = min�2RnPFg(u+ �w) = min�2RnP'(�) = '(0).Sin
e u 2 argminF g�;� andF g�;�(u+ �w) = Fg(u+ �w) + � ℄ (Su) + � ℄ (S _u n Su) 8� 2 R n Pthenmin�2RnPF g�;�(u+ �w) = min�2RnP ('(�) + � ℄ (Su) + � ℄ (S _u n Su)) = F g�;�(u),and the �rst part of the thesis is a
hieved.For any �xed w 2 H2u let P = P (w) and U = U(w) be de�ned as above and� 2 R n P : then  (�) := F g�;�(u + �w) = '(�) + � ℄ (Su) + � ℄ (S _u n Su) forany � 2 R n P sin
e ℄ (Su+�w) = ℄ (Su) and ℄ (S _u+� _w n Su+�w) = ℄ (S _u n Su)for any � 2 R n P .The previous argument entails that  is stri
tly 
onvex in U = U(w) and (�) has unique stri
t minimizer at � = 0 with respe
t to U hen
e there are�nite values of  0�(�) 6= 0 8� 2 U n f0g. (3.1)From (3.1) we dedu
e the se
ond part of the thesis. Arguing by 
ontradi
tion,we assume that for some �xed w 2 H2u and � 2 U(w) n f0g the fun
tionu + �w ful�lls the Euler equations (i)-(iv) of Theorem 2.1. Then u + �w 2H4((0; 1) n (Su [ S _u)) and by labelling tl, l = 1; :::;T, the ordered �nite setSu [ S _u, and t0 = 0, tT+1 = 1, we dedu
e the existen
e of  0(�): 0(�) = dd� �R 10 (�u(x) + � �w(x))2 dx + R 10 (u(x) + �w(x)� g(x))2 dx� =2 R 10 ��u(x) + � �w(x)� �w(x) dx+ 2 R 10 �u(x) + �w(x)� g(x)�w(x) dx =�2 R 10 �...u (x) + �...w(x)� _w(x) dx+ 2 R 10 �u(x) + �w(x)� g(x)�w(x) dx+TPl=0���u(tl+1) + � �w(tl+1)� _w(tl+1)� ��u(tl) + � �w(tl)� _w(tl)� =8



2 R 10 �....u (x) + �....w (x)�w(x) dx+ 2 R 10 �u(x) + �w(x)� g(x)�w(x) dx+��u�(1) + � �w�(1)� _w�(1)� ��u+(0) + � �w+(0)� _w+(0)+Xt2Su[S _u���u�(t) + � �w�(t)� _w�(t)� ��u+(t) + � �w+(t)� _w+(t)�+� TPl=0��...u (tl+1) + �...w(tl+1)�w(tl+1)� �...u (tl) + �...w(tl)�w(tl)� =2 R 10 �(....u (x) + �....w (x)) + (u(x) + �w(x))� g(x)�w(x) dx+��u�(1) + � �w�(1)� _w�(1)� ��u+(0) + � �w+(0)� _w+(0)+Xt2Su[S _u���u�(t) + � �w�(t)� _w�(t)� ��u+(t) + � �w+(t)� _w+(t)�+�...u+(0) + �...w+(0)�w+(0)� �...u�(1) + �...w�(1)�w�(1)+Xt2Su[S _u��...u+(t) + �...w+(t)�w+(t)� �...u�(t) + �...w�(t)�w�(t)�.Sin
e u+�w satis�es the Euler equations (i)-(iv) of Theorem 2.1, by substi-tution in the above identity we obtain the existen
e of  0(�) for the 
hosen� 2 U n f0g and  0(�) = 0, whi
h 
ontradi
ts (3.1). �We introdu
e and study the following auxiliary problem in order to over
omethe possible la
k of uniqueness of the solutions of Euler equations.Problem 3.3 Given T; j; 
 2 f0; 1; 2; :::g, T = j + 
, t 2AT, � 2 
j;
 andg 2 L2(0; 1), �nd b 2 H2(0; 1) s.t. b = bl on (tl; tl+1) where(i) b0000l + bl = g on (tl; tl+1) for l = 0; 1; :::;T(ii) b00l (tl) = b00l (tl+1) = 0 for l = 0; 1; :::;T(iii) b000l (tl) = 0 if l = 0 or (�l = J, l 2 f1; :::;Tg)(iv) b000l (tl+1) = 0 if l = T or (�l+1 = J, l 2 f1; :::;Tg)(v) b000l�1(tl) = b000l (tl) if l 2 f1; :::;Tg and �l = C(vi) bl�1(tl) = bl(tl) if l 2 f1; :::;Tg and �l = C
9>>>>>>>>>=>>>>>>>>>; (3.2)

t and � are 
alled respe
tively lo
ation and quality of Problem 3.3. (3.3)We emphasize that any solution b of Problem 3.3 is neither for
ed to havea jump at tl when �l = J, nor to have a 
rease when �l = C (though thismay happen at some or every tl). Nevertheless lo
ation and quality of thesolution b are 
ompatible with lo
ation and quality of Problem 3.3 in thefollowing sense: t(b) � t, Sb � fti : �i = Jg and S_b n Sb � fti : �i = Cg.9



For any 
hoi
e of t 2AT and of � 2 
j;
 with j+ 
 = T, Problem 3.3 amountsfor T + 1 fourth order O.D.E.s linked by 4(T + 1) boundary 
onditions: infa
t (ii) 
ontains 2(T+1) 
onditions, (iii) and (iv) together 
ontains 2(j+1)
onditions, (v) and (vi) together 
ontains 2
 
onditions. Problem 3.3 is notlinear in t, nevertheless b has a ni
e dependen
e on t as we will show inTheorem 3.14.A priori it is not obvious wether Problem 3.3 has a solution or not for any
hoi
e of g, �, t. Anyway for any �xed � 2 
j;
 and g 2 L2(0; 1) we will show(Lemma 3.6) the existen
e and the uniqueness of a solution for suÆ
ientlymany 
hoi
es of t 2 AT in order to 
ontinue the analysis (a
tually for anyt 2AT by Theorem 3.8).Remark 3.4 Obviously system (3.2) splits in several un
oupled systems atea
h point tl su
h that �l = J. Coupling do a
t only at ea
h tl s.t. �l = CWe show that the di�erential system (3.2) 
an be repla
ed by an algebrai
linear system whose blo
k stru
ture is fully des
ribed by the following pre-liminary lemma where the un
oupling of (3.2) at points of quality J (jump)is emphasized: the related de
omposition (3.5) of b will be exploited withseveral di�erent 
hoi
es of dl in Lemmas 3.11, 3.19, 3.20.Lemma 3.5 Fix T; j; 
 2 f0; 1; 2; :::g, T = j+
, t 2AT, � 2 
j;
, g 2 L2(0; 1)and a solution dl ofd0000l + dl = g on (tl; tl+1) for any l 2 f0; :::;Tg. (3.4)Then: T+ 1 � ℄ (Sb [ S_b [ f0; 1g) and1. any solution of Problem 3.3, if it exists, has the formbl = dl + 4Xi=1
l;iwi 8l 2 f0; :::;Tg (3.5)wherew1 = exp(�x=p2) 
os(x=p2) w2 = exp(x=p2) 
os(x=p2)w3 = exp(�x=p2) sin(x=p2) w4 = exp(x=p2) sin(x=p2) (3.6)are four linearly independent solutions of the homogeneous equation w0000+w =0 and 
l;i are real numbers su
h that2. 
 = (
0;1; 
0;2; 
0;3; 
0;4; :::; 
l;i; :::; 
T;1; 
T;2; 
T;3; 
T;4) 2 R4(T+1) is the solu-tion of a linear system U 
 = a (3.7)10



obtained by evaluating some derivatives of the sum (3.5) at (T + 2) pointsf0; t1; :::; tT; 1g asso
iated to partition t;3. a = a[g; t; �℄ 2 R4(T+1) depends on t; � and on g (only through dl) andhas the form
a4l+i=8>>>>>><>>>>>>:

d000l (tl)� d000l�1(tl) if i = 1 and �l = C�d000l (tl) if i = 1 and �l = J�d00l (tl) if i = 2,�d00l (tl+1) if i = 3,dl+1(tl+1)� dl(tl+1) if i = 4 and �l+1 = C�d000l (tl+1) if i = 4 and �l+1 = J 8l 2 f0; :::;Tg; (3.8)
4. U = U[t; �℄ is a 4(T+1)� 4(T+1) matrix depending only on � and on tthrough values of fwi; w00i ; w000i g4i=1 at t (U is a real analyti
 fun
tion of t forany �). Moreover U is a square blo
k diagonal matrix: ea
h square blo
k Ul1 ;l2(related to an un
oupled subsystem) is identi�ed by two 
onse
utive jumppoints tl1 , tl2 and possible intermediated 
reases (re
all that �0 = �T+1 = J)l1; l2 2 f0; :::; T + 1g : � �l1 = �l2 = J�l = C for l 2 fl1 + 1; :::; l2 � 1g,so that ea
h square blo
k Ul1 ;l2 of U takes the form

Ul1 ;l2[t; �℄ =
� � � �� � � �� � � �A� � � � � � � �� � � � � � � �� � � �� � � �B1� � � � � � � �� � � � � � � �� � � �� � � �B2

� � � � � � � �� � � � � � � �� � � �� � � �Bl2�l1�1� � � �Z?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

(3.9)
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where A = w0001 (tl1) w0002 (tl1) w0003 (tl1) w0004 (tl1)w001(tl1) w002(tl1) w003(tl1) w004(tl1)w001(tl1+1) w002(tl1+1) w003(tl1+1) w004(tl1+1)Bj =w1(tl1+j) w2(tl1+j) w3(tl1+j) w4(tl1+j) �w1(tl1+j) �w2(tl1+j) �w3(tl1+j) �w4(tl1+j)w0001 (tl1+j) w0002 (tl1+j) w0003 (tl1+j) w0004 (tl1+j) �w0001 (tl1+j) �w0002 (tl1+j) �w0003 (tl1+j) �w0004 (tl1+j)w001(tl1+j) w002(tl1+j) w003(tl1+j) w004(tl1+j)w001(tl1+j+1) w002(tl1+j+1) w003(tl1+j+1) w004(tl1+j+1)for j 2 f1; :::; l2 � l1 � 1gZ = w0001 (tl2) w0002 (tl2) w0003 (tl2) w0004 (tl2) .Proof. Claim about 
ardinality of singular set and Statement 1 are straight-forward. Statement 2-4 are dedu
ed by evaluation of (3.2)(ii�vi) as follows.Condition (3.2)(ii) gives4Pi=1
l;iw00i (tl) = �d00l (tl), 4Pi=1
l;iw00i (tl+1) = �d00l (tl+1) 8l 2 f0; :::;Tg.Conditions (3.2)(iii) and (3.2)(iv) give8>><>>: 4Pi=1
l;iw000i (tl) = �d000l (tl) if l = 0 or (�l = J, l 2 f1; :::;Tg)4Pi=1
l;iw000i (tl+1) = �d000l (tl+1) if l = T or (�l+1 = J, l 2 f1; :::;Tg).Condition (3.2)(v) givesd000l�1(tl) + 4Xi=1
l�1;iw000i (tl)� d000l (tl) + 4Xi=1
l;iw000i (tl)! = 0if l 2 f1; :::;Tg and �l = C,hen
e4Xi=1
l�1;iw000i (tl)� 4Xi=1
l;iw000i (tl) = d000l (tl)�d000l�1(tl) if l 2 f1; :::;Tg and �l = C.12



Condition (3.2)(vi) gives4Xi=1
l�1;iwi(tl)� 4Xi=1
l;iwi(tl) = dl(tl)�dl�1(tl) if l 2 f1; :::;Tg and �l = C. �Lemma 3.6 For any T; j; 
 2 f0; 1; 2; :::g, T = j + 
, � 2 
j;
 and g 2L2(0; 1), the setft 2 AT : Problem 3.3 is uniquely solvablegis independent of g.Then we 
an de�neA[�℄ = ft 2 AT : Problem 3.3 is uniquely solvableg.For any j, 
 and � 2 
j;
 the set A[�℄ is an open set.Moreover( for every g 2 L2(0; 1), �, � with (1.2) and u 2 argminF g�;�,we have t(u) 2 A[�(u)℄. (3.10)In parti
ularA[�(u)℄ 6= ? 8g 2 L2(0; 1), �, � with (1.2) and u 2 argminF g�;�. (3.11)Proof. Fix g, �, t su
h that Problem 3.3 has a solution. We 
hoose d =(d0; :::; dT) of Lemma 3.5 as a �xed parti
ular solution of the di�erentialequations (3:2:i) (without imposing (3:2:ii)-(3:2:vi)) as follows:e.g. d0000 + d = g on (0; 1); d(0) = d0(0) = d00(0) = d000(0) = 0 (3.12)in parti
ular d0000l + dl = g on (tl; tl+1) for l = 0; 1; :::;T. (3.13)Problem 3.3 is uniquely solvable for any g if and only if the matrix U[t; �℄of Lemma 3.5 is an invertible matrix. Then A[�℄ is an open subset of ATsin
e A[�℄ = ft 2 AT : det(U[t; �℄) 6= 0g. Condition det(U) 6= 0 doesnot depends on g sin
e wi solve the homogeneous equation. Hen
e A[�℄ isindependent of g.Eventually we show (3.10) and (3.11).For any g 2 L2(0; 1) and u 2 argminF g�;� (whi
h is a non empty set) thent(u) 2 A[�(u)℄, we de�ne bl = u on (tl; tl+1) for any l = 0; :::;T. By Eulerequations (i)-(iv) of Theorem 2.1, we obtain a solution of Problem 3.3 with� = �(u) and t = t(u). On
e � = �(u) and t = t(u) are �xed as above,13



uniqueness property would fail if and only if U[t; �℄ is not invertible; in this
ase all solutions of Problem 3.3 
ould be expressed as followsu + � TPl=0 4Pi=1 el;iwi �(tl;tl+1)8� 2 R; 8e = (el;i)l;i 2 R4(T+1) with U e = 0. 9>=>; (3.14)But (3.14) would be a violation of the last statement of Theorem 3.2: in fa
twi in C1, i = 1; :::; 4 entail that u+ � TPl=0 4Pi=1el;iwi�(tl;tl+1) 2 H2u for any � in asmall neighborhood of 0 2 R. �Lemma 3.7 For any pie
ewise aÆne (possibly dis
ontinuous) fun
tion g9Æ > 0: argminF g�;� = fgg 8�; � s.t. (1.2) and � ℄ (Sg) + � ℄ (S _g n Sg) < Æ.Proof. Set j = ℄ (Sg), 
 = ℄ (S _g n Sg). For any v 2 H2, by setting s = ℄ (Sv)and p = ℄ (S _v n Sv), at least one of the following (mutually ex
lusive) �ve
ases may o

ur:1) � s � jp � 
 2) � p < 
s � j+ 
� p 3) � p < 
s < j+ 
� p4) � s < jp � 
+ 2(j� s) 5) � s < jp < 
+ 2(j� s)(in fa
t either s � j or s < j ; if s � j then either s � j+ 
�p (and this alwayso

urs if p � 
) or s < j + 
 � p ; if s < j then only one among 
ases 4 and5 may o

ur). We show that F g�;�(v) > F g�;�(g) for any �, � satisfying (1.2)and v 2 H2, v 6= g in ea
h one of the �ve 
ases.Case 1) then F g�;�(v) > F g�;�(g) sin
e Fg(v) > 0 = Fg(g) and � s + � p �� j+ � 
.Case 2) F g�;�(v) > F g�;�(g) , sin
e Fg(v) > 0 hen
eF g�;�(v) = Fg(v) + � s + � p > � j+ � 
� � p+ � p =� j+ � 
+ (�� �) (
� p) � � j+ � 
 = F g�;�(g).Case 4) F g�;�(v) > F g�;�(g) , sin
e Fg(v) > 0 hen
eF g�;�(v) = Fg(v) + � s + � p > � s + � 
 + 2� j� 2� s =� j+ � 
+ (2� � �) (j� s) � � j+ � 
 = F g�;�(g).14



About 
ases 3) and 5) we observe that Sg [ S _g 6= ?, then by Theorem 2.30 < Æ = minfFg(v) : v 2 H2 belonging to 
ases 3 and 5g,hen
e in 3) and 5), for any �, � satisfying (1.2) and, in addition, so smallthat � j+ � 
 < Æ, we have F g�;�(v) > F g�;�(g) for any v in 
ases 3) and 5). �We know that the set A[�℄ is never empty, now we show its 
oin
iden
e withthe whole AT: by exploiting the property that A[�℄ is independent on thedatum g, we 
hoose pie
ewise aÆne g with quality � for Sg [ S _g, then weprove that g itself is the unique minimizer for F g�;� provided � and � aresuitably small.Theorem 3.8 Problem 3.3 admits unique solution, that is A[�℄ = AT forany T; j; 
 2 f0; 1; 2; :::g, T = j+ 
, t 2 AT, � 2 
j;
 and g 2 L2(0; 1).Proof. Fix j; 
 2 f0; 1; 2; :::g, � 2 
j;
 and t 2 AT. By Lemma 3.6, A[�℄is independent of g. Then in the de�nition of A[�℄ we 
hoose a pie
ewiseaÆne (possibly dis
ontinuous) g su
h that �(g) = � and t(g) = t. Lemma3.7 together with Theorem 2.1 and the se
ond 
laim in Theorem 3.2 entailthat, for any �xed �, t and pie
ewise aÆne g, Problem 3.3 admits a uniquesolution: in fa
t any solution di�erent from g must be of the form (3.14)with g plugged in pla
e of u and a suitable 
hoi
e e� 6= 0 plugged in pla
eof �; then g + � TPl=0 4Pi=1 el;i wi �(tl ;tl+1) would be a solution for any � 2 R bylinearity of 
onditions (3.3:ii)-(3.3:vi) whi
h 
ontradi
ts the se
ond statementof Theorem 3.2. �Theorem 3.9 If we �x a pie
ewise aÆne (possibly dis
ontinuous) fun
tion gand label its lo
ation by q = Sg[S _g and its quality by � = �(g), then Problem3.3 with data q, � and g admits g itself as unique solution: g = b[g;q; �℄.The same property holds true for Problem 3.3 with any data eq, e�, g suth thatthe arrangement (Sg [ S _g; �(g)) is 
ompatible with (eq; e�) i.e.: Sg [ S _g � eqand qualities e� and �(g) 
oin
ides on 
ommon points.Proof. The fa
t that g is a solution is trivial sin
e �g � 0. Uniqueness state-ment follows by Theorem 2.1, Lemma 3.7 and the fa
t that Euler equationsare independent on �, �. �Theorem 3.8 allow the introdu
tion of the following basi
 notation aboutsolution of Problem 3.3 and its related energy.De�nition 3.10 For any T; j; 
 2 f0; 1; 2; :::g, T = j + 
, t 2 AT, � 2 
j;
and g 2 L2(0; 1), set 15



1. b = b[g; t; �℄ is the unique fun
tion b = b(x) 2 H2 pie
ewise de�nedby the solutions fbl = bl[g; t; �℄ 2 H2(tl; tl+1)gTl=0 of Problem 3.3. Thedependen
e on right hand side g, lo
ation t and quality � will be droppedwhenever there is no risk of 
onfusion. For any l 2 f0; :::;Tg we denoteby b0l; b00l ; :::; b(r)l the �rst , se
ond, ..., r-th distributional derivative in(tl; tl+1) of bl with respe
t to x. Noti
e that b0l = _bl, b00l = �bl, ..., but band b00 may be di�erent from _b and �b due to singular part at tl.2. F(g; t; �) is the absolutely 
ontinuous part Fg of F g�;� evaluated at b[g; t; �℄:F(g; t; �) = Fg(b[g; t; �℄), (3.15)F(�; �; �) : L2(0; 1)� AT ! R.In the following proposition we list some properties of b and F.Theorem 3.11 Fix T; j; 
 2 f0; 1; 2; :::g, T = j+ 
 and � 2 
j;
, then1. the map g 7! b(g; t; �) is linear in g 2 L2(0; 1) for any t 2 AT,in parti
ular g � 0 entails b � 0;the map g 7! F(g; t; �) is 2-homogeneous with respe
t to g 2 L2(0; 1)for any t 2 AT;2. the map bl(�; t; �) : L2(0; 1)! H2(tl; tl+1), say g 7! bl(g; t; �)is 
ontinuous from L2(0; 1) to H2(tl; tl+1) where both spa
es are endowedwith the strong topology, for any t 2 AT and l = 0; :::;T;the map bl(�; �; �) : L2(0; 1)� AT ! L1(0; 1), say (g; t) 7! bl(g; t; �)is 
ontinuous from L2(0; 1) times AT endowed with the produ
t topology(strong L2(0; 1) times Eu
lidean topology of RT) to L1(0; 1) endowedwith the strong topology;3. the map F(�; �; �) : L2(0; 1)� AT ! Ris 
ontinuous on L2(0; 1) times AT endowed with the produ
t topology(strong L2(0; 1) times Eu
lidean topology of RT);4. for any g 2 L2(0; 1) and u 2 argminF g�;�, if u has j jump points, 

rease points and quality �, the fun
tion t 7�! F(g; t; �) a
hieves itsminimum with respe
t to t in Ak at t(u) = (t1(u); :::; tk(u)). MoreoverSu = ftl(u) : �l = Jg, S _u n Su = ftl(u) : �l = Cg, and b = u is theonly admissible minimizer of F in H2u.
16



Proof. Statement 1 follows by linearity in g of resolvent operator for Problem3.3 with pres
ribed arrangement (t; �), by (3.2.(i)) and 
omplian
e identity(Theorem 2.2).Choose d = (d0; :::; dT) ful�lling (3.12), hen
e (3.4) is trivially ful�lled andd 2 H4(0; 1) � C3(0; 1), the map g 7�! d is linear 
ontinuous from L2(0; 1)to H4(0; 1) and well de�ned by Theorem 3.8.The fun
tion b takes the form (3.5) with 
 = U�1a, (3.8), (3.9) hold trueand both invertible matrix U and ve
tor a are analyti
 fun
tions of t sin
eall entries of U and a are linear fun
tions of wi(tl), w00i (tl) and w000i (tl); hen
estatement 2 holds true.Statement 3 follows by statement 2 andF(g; t; �) = TXl=0 Z tl+1tl ����(�bl[g; t; �℄(x)���2 + j(bl[g; t; �℄(x)� g(x)j2� dx.Statement 4 follows by Theorems 2.1 and 3.2. �In Se
tions 3,4,5 and 6 we denote by q = (qi)Qi=1 the lo
ation (and by fqigQi=1the related partition) asso
iated to 
rease points S _g of 
ontinuous pie
ewiseaÆne datum g and we denote by t = (ti)Ti=1 the lo
ation asso
iated to thesingular set Sv [ S _v of the 
ompeting fun
tions v 2 H2. The lo
ation t ofsingular set of solution of Problem 3.3 and the lo
ation q (singular set ofthe datum) may be di�erent. Abusing notation, whenever needed, we writex 2 q to mean x 2 fqigQi=1, while q0 = 0, qQ+1 = 1 are always understood.Ea
h lo
ation q = (qi)Qi=1 indu
es a de
omposition of [0; 1℄T in 
ubes, this nat-urally gives to [0; 1℄T a �nite CW 
omplex stru
ture. For any d 2 f1; :::;Tg,a d-dimensional open 
ell W of [0; 1℄T is a d-dimensional open fa
e of a 
ubedQk=1[qik ; qik+1℄, a 0-dimensional open 
ell W of [0; 1℄T is a point (qi1 ; :::; qiT).For any i; d 2 f1; :::;Tg, any t 2 [0; 1℄T, and any d-dimensional open 
ell Wof [0; 1℄T, we say that ti is a free 
oordinate in W if and only if ti =2 q for anyt 2 W . Clearly a 0-dimensional 
ell of [0; 1℄T has no free 
oordinates.The set AT � [0; 1℄T is an open subset of a �nite CW 
omplex, with an abuseof language we introdu
e the following de�nition.De�nition 3.12 Whenever U is an open d-dimensional 
ell of [0; 1℄T su
hthat U \AT 6= ;, we 
all d-dimensional open 
ell of the CW stru
ture indu
edon AT by [0; 1℄T also the set W = U \ AT.The free 
oordinates of W = U \AT are exa
tly the same free 
oordinates ofU but they may have di�erent range when W $ U .A short summary of what is needed to know about CW 
omplexes 
an befound in the Appendix A. 17



Fig.1 provides a simple low dimensional visualization of 
ells in AT.

qi qi+1 qi+2 qi+3 qi+4qiqi+1
qi+2qi+3qi+4

0
�a

b

 d

Figure 1a: 0 
ell, no free 
oordinates;b: 1 
ell, t1 free 
oordinate, qi < t1 < qi+1;
: 2 
ell, t1, t2 free 
oordinates, qi < t1 < qi+1, qi+3 < t2 < qi+4;d: 2 
ell (abusing language), t1, t2 free 
oordinates.For any lo
ation q = (qi)Qi=1 we identify the spa
e RQ+2 with the spa
e A qof 
ontinuous pie
ewise aÆne fun
tions g with 
rease points at q. Pre
iselyfor any g = (g0; g1; :::; gQ+1) 2 RQ+2 the identi�
ation between the ve
torparameter g and the fun
tion g 2 L2(0; 1) is given by:8>>><>>>: g(x) = Q+1Pi=1 (gi(x� qi�1) + zi�1)�[qi�1;qi)(x) wherez0 = g0zl = gl(ql � ql�1) + zl�1 for l 2 f1; :::;Qg. (3.16)Noti
e that (3.16) indu
es a linear and inje
tive identi�
ation between gand g, hen
e A q is a ve
tor spa
e of dimension Q + 2:q 2 AQ , g 2 RQ+2 , g 2 A q ' RQ+2 . (3.17)Restri
tions of F(�; �; �) and b(r)l (�; �; �) to A q �AT play a fundamental role inthe following: the restri
tion of both F and of b(r)l to A q�AT 
an be 
onsidered18



as fun
tions de�ned on RQ+2 � AT through the identi�
ation between A qand RQ+2des
ribed by (3.16) and (3.17). A
tually (abusing notation) wespe
ialize De�nition 3.10 when g belongs to A q , as follows.De�nition 3.13 For any Q;T; j; 
 2 f0; 1; 2; :::g, T = j+ 
, t 2 AT, q 2 AQ,� 2 
j;
 and g 2 RQ+2 , de�neb(�; �; �) : RQ+2 � AT ! L2(0; 1) by b[g; t; �℄(x) = b[g; t; �℄(x) (3.18)F(�; �; �) : RQ+2 � AT ! R by F(g; t; �) = F(g; t; �) (3.19)where the right-hand sides are given by De�nition 3.10 and g 2 A q is asso-
iated by (3.16) and (3.17) to ve
tor g and singular set lo
ation q.We are going to show that both (3.18) and (3.19) are polynomials in g with
oeÆ
ients whi
h are 
ontinuous fun
tions of t 2 AT and their restri
tionsto RQ+2 �W are real analyti
 fun
tions of g and tl for any open 
ell W ofthe CW stru
ture indu
ed by q on AT and any tl free 
oordinate in the open
ell W .Theorem 3.14 Fix T; j; 
 2 f0; 1; 2; :::g, T = j+ 
 and � 2 
j;
, then1. The map g 7! b[g; t; �℄(x) is a linear fun
tion of Q+ 2 variables g forany t 2 AT;the map g 7! F(g; t; �) is a 2-homogeneous polynomial of Q+2 variables(the 
oordinates gi of g 2 RQ+2);2. for any Q; r 2 f0; 1; 2; :::g, q 2 AQ and any open 
ell W of the CWstru
ture indu
ed by q on AT, the restri
tions to A q �W of b(r)l andof F (e.g. fun
tions (3.18) and (3.19)) are real analyti
 fun
tions of gand tj where tj is a free 
oordinate of the open 
ell W .Proof. Statement 1 follows by Theorem 3.11(1) and identi�
ations (3.16)and (3.17). Statement 2 follows by the same argument used in the proofof point 2 of Theorem 3.11 and the simple remark that the map g 7�! dappearing in the proof is real analyti
 in the free 
oordinates of W wheneverg 2 A q . �Theorem 3.14 allows us to introdu
e the following notation.De�nition 3.15 For any Q;T; j; 
 2 f0; 1; 2; :::g, T = j+ 
, t 2 AT, q 2 AQ,� 2 
j;
 and f ; g;h 2 RQ+2 , referring to (3.16), (3.17) and De�nition 3.13,set �F�f = lim"!0F(g + "f ; t; �)� F(g; t; �)" (3.20)19



and �b(r)l�f = lim"!0b(r)l (g + "f ; t; �)� b(r)l (g; t; �)" , (3.21)moreover, for any open 
ell W of the CW stru
ture indu
ed by q on AT, andany a free 
oordinate ti of W we denote by �F�ti and by �b(r)l�ti the dire
tionalderivatives of F and of b(r)l with respe
t to the free 
oordinate ti of t.We are going to evaluate several derivatives of F.Lemma 3.16 For any Q;T; j; 
 2 f0; 1; 2:::g, T = j + 
, t 2 AT, q 2 AQ,� 2 
j;
 and f ; g;h 2 RQ+2, referring to (3.16),(3.17) and De�nition 3.13,the expli
it representation of mixed dire
tional derivatives with respe
t to the�rst variable is:�2F(g; t; �)�f�h =2 Z 10 �b[f; t; !℄(x)�b[g; t; �℄(x) + (b[f; t; �℄(x)� f(x))(b[g; t; �℄(x)� g(x)) dx.Proof. Sin
e bl[g; t; �℄ and b00l [g; t; �℄ are linear in g and b00l = �bl in (tl; tl+1)then the following equalities hold true: �g�f = f and�(bl[g; t; �℄� g)�f = bl[f; t; �℄� f , �(bl[g; t; �℄� g)�h = bl[h; t; �℄� h,��bl[g; t; �℄�f = �bl[f; t; �℄, ��bl[g; t; �℄�h = �bl[h; t; �℄,�2�bl[g; t; �℄�f�h � �2(bl[g; t; �℄� g)�f�h � 0.By Theorem 3.14(2), derivatives with respe
t to f , h 
ommute with theintegration in x. Then�2F(g; t; �)�f�h = TXl=0 Z tl+1tl �2�f�h�(�bl[g; t; �℄(x))2+(bl[g; t; �℄(x)� g(x))2� dx= 2 TXl=0 Z tl+1tl ��2�bl[g; t; �℄�f�h b00l [g; t℄ + ��bl[g; t; �℄�f ��bl[g; t; �℄�h +�2(bl[g; t; �℄� g)�f�h (bl[g; t; �℄� g) + �(bl[g; t; !℄� g)�f �(bl[g; t; �℄� g)�h � dx =2 Z 10 �b[f; t; �℄�b[h; t; �℄ + (b[f; t; �℄� f)(b[h; t; �℄� h) dx. �20



Lemma 3.17 Fix Q;T; j; 
; d2 f0; 1; 2; :::g, Q � d > 0, T= j + 
, t 2 AT,q 2 AQ, � 2 
j;
, any open d-
ell W of the CW stru
ture indu
ed by q onAT, and any free 
oordinate ti of W .Then the derivative of F with respe
t to ti exists in W � AT due to Theorem3.14, moreover referring to (3.16), (3.17) and De�nition 3.13, for any g 2 A qwe have�F(g; t; �)�ti = (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))�2b000i (ti)(b0i(ti)� b0i�1(ti)), (3.22)where b000i (ti) = b000i�1(ti) is understood.Proof. The variables g, t and ! in the argument of b(r)l are understood.We exploit the fa
ts: g and g depend on q but not on t ; ��b0l�ti�0 = �b00l�tithank to Theorem 3.14(2); the integrand b[g; t; �℄(x) analyti
ally depends onfree 
oordinate ti by Theorem 3.14(2), hen
e ��ti 
ommutes with integration;Theorem 2.1(i)-(iv).�F(g; t; �)�ti = ��ti TXl=0 Z tl+1tl �(b00l )2 + (bl � g)2� dx! =(b00i�1(ti))2 + (bi�1(ti)� g(ti))2 � (b00i (ti))2 � (bi(ti)� g(ti))2+ 2 TXl=0 Z tl+1tl �b00l �b00l�ti + (bl � g)�bl�ti� dx= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))+ 2 TXl=0 � Z tl+1tl b000l �b0l�ti dx + �b00l �b0l�ti �tl+1tl + Z tl+1tl (bl � g)�bl�ti dx!= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))+ 2 TXl=0 Z tl+1tl (b0000l + bl � g)�bl�ti dx� "b000l �bl�ti #tl+1tl !
= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))� 2 TXl=0"b000l �bl�ti#tl+1tl= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))�2 TXl=0�b000l (tl+1)�bl�ti (tl+1)� b000l (tl)�bl�ti (tl)� =
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= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))�2 TXl=1�b000l�1(tl)�bl�1�ti (tl)� b000l (tl)�bl�ti (tl)�= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))�2 TXl=1 b000l (tl)��bl�1�ti (tl)� �bl�ti (tl)�.If !l = J then b000l�1(tl) = b000l (tl) = 0.If !l = C we de�ne the fun
tion t 7! 'l(t) = bl�1(tl) � bl(tl); noti
e that'l(t) � 0 for any t due to (3.2.(vi)). By performing 
arefully derivative ofbl[g; t; �℄(x), sin
e � (bi(ti)) =�ti = b0i(ti) + (�bi=�ti) (ti) we get0 = �'l�ti (t) = ( �bl�1�ti (tl)� �bl�ti (tl) if l 6= i�bi�1�ti (ti)� �bi�ti (ti) + b0i�1(ti)� b0i(ti) if l = i.by substitution we get (3.22). �Lemma 3.18 For any Q 2 f0; 1; 2; :::g, q 2 AQ, g 2 A q and u 2 argminF g�;�,we have: 12(u+(t) + u�(t)) = g(t) for any t 2 Su (3.23)and ...u�(t) = 0 for any t 2 S _u n S _g (3.24)Proof. By Euler equations (i)-(iv) of Theorem 2.1 u is a solution of Problem3.3, F(g; �; �(u)) a
hieves its minimum at t(u) and � (F(g; t(u); �(u))) =�ti =0. Then by (3.2.(iii)), (3.22) we dedu
e (3.23) when ti 2 Su (property alreadyproven in a di�erent way in Theorem 2.1(v)); bi(ti) = bi�1(ti), b0i(ti) = b0i�1(ti)and (3.22) entails (3.24) when ti 2 S _u n (Su [ S _g). �In the following te
hni
al lemma we show that for any lo
ation t and quality!, if g is 
ontinuous pie
ewise aÆne with either only one ramp or only onejump (su
h that Sg [ S _g is 
ontained in ftigTi=0 and has quality 
ompatiblewith !) and h is a 
ontinuous ramp having singular set 
lose to the singularset of g, then the solution b[h; t; !℄ of Problem 3.3 with data h, t and ! is
lose to g in the pie
ewise C3 lagrangian norm.Lemma 3.19 Fix T; j; 
; l1; l2; k 2 f0; 1; 2; :::g, T = j + 
, t 2 AT, ! 2 
j;
su
h that l1 < l2; 0 � l1 � k � l2 � T+ 1,22



!l1 = !l2 = J; !l = C 8l 2 fl1 + 1; :::; l2 � 1g.We study perturbations of lo
ation t and quality ! of singular set for twokinds of datum g in Problem 3.3:either g(x) = x� tktk+1 � tk�[tk;tk+1℄(x) + �(tk+1;1℄(x) for k 6= l1; l2 (3.25)that is
//xtk tk+1

OOy1 lllllllllll

gor g(x) = �(tk ;1℄(x) for k = l1; l2 (3.26)that is
//xtk

OOy1 gPerturbation of datum is 
hosen as followsh(x)=h[r; s℄(x)= x� rs� r �[r;s℄(x)+�(s;1℄(x) with � tk�r<s� tk+1 if k 6= l1; l2,tl1�r<s� tl2 if k = l1; l2.Then there is C > 0 depending only on t s.t. (referring to De�nition 3.10):if k 6= l1; l2, then3Xa=0 



 dadxa (bl[h; t; !℄� g)



L1(tl;tl+1) + jb000l [h; t; !℄(tl)j �C (jr � tkj+ js� tk+1j) for 0 � l � T, (3.27)��b0l[h; t; !℄(tl)� b0l�1[h; t; !℄(tl)�� �� C (jr � tkj+ js� tk+1j) if l =2 fk; k + 1gC if l 2 fk; k + 1g, (3.28)the map (r; s) 7! b000k [h[r; s℄; t; !℄(tk) is analyti
, (3.29)the map (r; s) 7! b000k [h[r; s℄; t; !℄(tk) is not identi
ally zeroon f(r; s) 2 [tk; tk+1℄� [tk; tk+1℄ : r < sgand vanishes of order 1 as (r; s) ! (tk; tk+1); (3.30)if k = l1; l2, then3Xa=0 



 dadxa (bl[h; t; !℄� g)



L1(tl;tl+1) + jb000l [h; t; !℄(tl)j �C (jr � tkj+ js� tkj) for 0 � l � T, (3.31)23



��b0l[h; t; !℄(tl)� b0l�1[h; t; !℄(tl)�� �C (jr � tkj+ js� tkj) if l 2 fl1 + 1; :::; l2 � 1g. (3.32)�We emphasize that g = b[g; t; !℄ holds true in the above statement (due toTheorem 3.9), hen
e (3.27) and (3.31) express also 
ontinuous dependen
e ofb with respe
t to the perturbation h, i.e.kbl[h; t; !℄� bl[g; t; !℄kL1(tl;tl+1) � C (jr � tkj+ js� tk+1j) .Proof. The following three pi
tures represent the three admissible 
ases fordatum g together with the asso
iated perturbations h
//xtk r s tk+1

OOy1 lllllllllll

h g for k 6= l1; l2,
//xtl1 r s tl2

OOy1 h g for k = l1, //xtl1 r s tl2
OOy1 h g for k = l2.The unique solution of the Cau
hy problemu0000 + u = g on (x1; x2), u(x1) = u0(x1) = u00(x1) = u000(x1) = 0
an be represented through u(x) = R xx1 W (x� y)g(y) dy whereW (x) = p24 (w1(x)� w2(t) + w3(x) + w4(x)) = +1Xi=0 (�1)i(3 + 4i)!x3+4i, (3.33)w1 = exp(�x=p2) 
os(x=p2) w2 = exp(x=p2) 
os(x=p2)w3 = exp(�x=p2) sin(x=p2) w4 = exp(x=p2) sin(x=p2). (3.34)We set j = k if k < l2, j = k � 1 if k = l2. Then, by g00 = 0 on [tl; tl+1℄ forany l = 0; :::;T and Remark 3.9, we de�ne dl bydl[h; t; !℄(x) = 8><>: 0 8x 2 [tl; tl+1℄ if l < j,g(x)+ R xtj W (x� y)(h(y)� g(y)) dy 8x 2 [tj ; tj+1℄ if l = j,1 8x 2 [tl; tl+1℄ if l > j. (3.35)If b solves Problem 3.3 with data t, ! and h then dl ful�lls (3.4) of Lemma3.5. We 
hoose de
omposition (3.5) with this 
hoi
e of dl. We denote by24



d(a)l and W (a) the a-th distributional derivative in (tl; tl+1) of dl and of Wrespe
tively. For a = 1; 2; 3 we haved(a)j [h; t; !℄(x) =Z xtj W (a)(x�y)(h(y)�g(y)) dy+( 1= (tk+1 � tk) if k 6= l1; l2 and a = 10 if k = l1; l2 or a 6= 1.For a = 0; 1; 2; 3 we estimate ���R xtj W (a)(x� y)(h(y)� g(y)) dy��� uniformly onx 2 (tj; tj+1). To this aim we observe that maxa=f0;1;2;3g 

W (a)

L1(0;1) < +1.If k 6= l1; l2, by (3.35), g0 = (tk+1 � tk)�1 and g00 = g000 = 0 in [tk; tk+1℄ we getkh� gkL1(0;1) � max fr � tk; tk+1 � sgtk+1 � tk ,then we 
an 
hoose C0 = C0(t;W ) +1 su
h thatkh� gkL1(0;1) � C0 (jr � tkj+ js� tk+1j) ,jdk[h; t; !℄(x)� g(x)j � C0 (jr � tkj+ js� tk+1j) ,���d0k[h; t; !℄(x)� 1tk+1�tk ��� � C0 (jr � tkj+ js� tk+1j) ,���d(a)k [h; t; !℄(x)��� � C0 (jr � tkj+ js� tk+1j) for a = 2; 3. (3.36)If k = l1 or k = l2 we have kh� gkL1(0;1) = 1, spt(h�g) � [tl1 ; s℄[[r; tl2 ℄ thenby (3.35), in [tl1 ; tl2 ℄ we have either g = 0 or g = 1 and g0 = g00 = g000 = 0,and we 
an 
hoose C1 = C1(t;W ) < +1 su
h that�����Z xtj jW (x� y)(h(y)� g(y))j dy����� � C1 (jr � tkj+ js� tkj) ,jdj[h; t; !℄(x)� g(x)j � C1 (jr � tkj+ js� tkj) ,���d(a)j [h; t; !℄(x)��� � C1 (jr � tkj+ js� tkj) for a = 1; 2; 3. (3.37)Sin
e !l1 = !l2 = J, by Remark 3.4 system (3.2) splits into three separatesystems whi
h give b on [0; tl1℄, on [tl1 ; tl2 ℄ and on [tl2 ; 1℄ respe
tively. Sin
eh = 0 on [0; tl1 ℄ we have b = 0 on [0; tl1 ℄, sin
e h = 1 on [tl2 ; 1℄ we have b = 1on [tl2 ; 1℄, then we have to study b only on the interval [tl1 ; tl2℄ that is thesubsystem V 
 = � (3.38)25



of system (3.7) 
orresponding to the 4(l2 � l1) � 4(l2 � l1) square diagonalblo
k V = Ul1 ;l2 of the matrix U of Lemma 3.5.Hen
e, by denoting k�k the Eu
lidean norm in R4(l2�l1), (3.3), (3.36) and(3.37) entail the existen
e of a positive 
onstant C2 = C2(t;W ) < +1 su
hthat k�[h; t; !℄k � � C2 (jr � tkj+ js� tk+1j) if k 6= l1; l2C2 (jr � tkj+ js� tkj) if k = l1; l2then there is C3 = C3(t; wi) < +1 (sin
e 
 = V�1 � and the matrix Vdepends only on �xed data t and wi) su
h thatk
[h; t; !℄k = � C3 (jr � tkj+ js� tk+1j) if k 6= l1; l2C3 (jr � tkj+ js� tkj) if k = l1; l2.Statements (3.27), (3.28), (3.31), (3.32) follow. We are left to prove (3.29),(3.30). For any l = 0; :::;T 
hoose dl and bl as in (3.35), (3.5).The ve
tor � is an analyti
 fun
tion of (r; s) sin
e (3.8) entails that � dependson (r; s) only through d(a)k (tk) and d(a)k (tk+1) for a = 0; 1; 2; 3, hen
e 
 =V�1 � is an analyti
 fun
tion of (r; s). Moreover, for a = 0; 1; 2; 3:d(a)k [h[r; s℄; t; !℄(tk) = 0,d(a)k [h[r; s℄; t; !℄(tk+1) = Z tk+1tk W (a)(tk+1 � y)h[r; s℄(y) dy =Z sr W (a)(tk+1 � y)y � rs� r dy + Z tk+1s W (a)(tk+1 � y) dy.This identities together with (3.5) proves (3.29). We prove (3.30) �rst byshowing that the partial derivative of b000k [h[r; s℄; t; !℄(tk) with respe
t to r isnot identi
ally zero, then exploiting b000k [h[tk; tk+1℄; t; !℄ = h000[tk; tk+1℄+(tk) =0 due to bk = h[tk; tk+1℄ on (tk; tk+1) and h[tk; tk+1℄ is linear on (tk; tk+1).To this aim we set '(x) = x�tk+1(tk+1�tk)2�(tk ;tk+1)(x) and 
laim��r b000k [h[r; s℄; t; !℄(tk)����r=tk; s=tk+1 = b000k ['; t; !℄(tk). (3.39)By assuming (3.39) and arguing by 
ontradi
tion assume b000k ['; t; !℄(tk) = 0.By (3:2:v) and tk 
rease point for b['; t; !℄ we get b000k�1['; t; !℄(tk) = 0. Hen
eg = 0 in [tk; tk+1℄ and Theorem 3.9 together entail� bk�1['; t; !℄(x) = 0 x 2 (tk�1; tk),bk['; t; !℄(x) = ' x 2 (tk; tk+1).26



But '+(tk) = �1=(tk+1� tk) entails b000k ['; t; !℄(tk) 6= 0, then by (3.39) we get(3.30).Now we prove the 
laimed equality (3.39). To this aim we prove:��r�[h[r; s℄; t; !℄����r=tk; s=tk+1 = �['; t; !℄ . (3.40)By substituting r = tk, s = tk+1 in��rd(a)k [h[r; s℄; t; !℄(tk+1) =��r�Z sr W (a)(tk+1 � y)y � rs� r dy + Z tk+1s W (a)(tk+1 � y) dy� =Z sr W (a)(tk+1 � y) y � s(s� r)2dywe get��rd(a)k [h[tk; tk+1℄; t; !℄(tk+1) = Z tk+1tk W (a)(tk+1�y)'(y)dy = d(a)k ['; t; !℄(tk+1).(3.41)We have d(a)k [h[r; s℄; t; !℄(tk) = 0 for a = 0; 2; 3 then��rd(a)k [h[r; s℄; t; !℄(tk)����r=tk ; s=tk+1 = 0 for a = 0; 2; 3. (3.42)Equality (3.40) follows by (3.41) for any entry of �[h[r; s℄; t; !℄ of type1) d000k+1[h[r; s℄; t; !℄(tk+1)� d000k [h[r; s℄; t; !℄(tk+1) = �d000k [h[r; s℄; t; !℄(tk+1)2) �d00k [h[r; s℄; t; !℄(tk+1)3) dk+1[h[r; s℄; t; !℄(tk+1)� dk[h[r; s℄; t; !℄(tk+1) = 1� dk[h[r; s℄; t; !℄(tk+1), 9>>>>=>>>>; (3.43)for any other entry (3.40) is a trivial 
onsequen
e of (3.42) sin
e both sidesof the equality are zero.By (3.40), 
 = V�1 � and V independent of r, s��r
[h[r; s℄; t; !℄����r=tk; s=tk+1 = 
['; t; !℄. (3.44)
27



Eventually by (3.5), (3.42), (3.44) and d000k ['; t; !℄(tk) = 0 we have��r b000k [h[r; s℄; t; !℄(tk)��r=tk ; s=tk+1 =��rd00k[h[r; s℄; t; !℄(tk)��r=tk; s=tk+1 + 4Pi=1 ��r
k;i[h[r; s℄; t; !℄(tk)��r=tk; s=tk+1 ...wi(tk)= 4Pi=1
k;i['; t; !℄(tk)...wi(tk) = b000k ['; t; !℄(tk),say (3.39). �In the following lemma we show that for suitable step datum �(a;1℄ with jumpin the interval (tk; tk+1) the value bk[�(a;1℄; t; !℄(tk) is not zero.Lemma 3.20 Fix T;m; n 2 f0; 1; 2; :::g, T = m + n, et 2 AT and ! 2 
m;n.For any k 2 f1; :::;Tg we set #k : [etk;etk+1℄! R by#k(a) = bk[�(a;1℄;et; !℄(etk) 8a 2 [etk;etk+1℄,where b = b[�(a;1℄;et; !℄ is the unique solution of Problem 3.3. Then1. #k is an analyti
 fun
tion with respe
t to a 2 (etk;etk+1) and is 
ontinuouswith respe
t to a 2 [etk;etk+1℄,2. for any " 2 �0; dist(et; �AT)� there is a 2 (etk + ";etk+1 � ") su
h that#k(a) 6= 0. Here �AT is the topologi
al boundary of AT in RT .Proof. Throughout the proof we write # in pla
e of #k sin
e k is �xed.Referring to (3.33) we de�ne dl bydl[�(a;1℄;et; !℄(x) = 8<: 0 8x 2 [etl;etl+1℄ if l < k,R xetl W (x� y)�(a;1℄(y) dy 8x 2 [etk;etk+1℄ if l = k,1 8x 2 [etl;etl+1℄ if l > k,hen
e dl ful�lls (3.4) and we 
hoose the de
omposition (3.5) of b[�(a;1℄;et; !℄related to this 
hoi
e of dl.By Lemma 3.5 and Theorem 3.8 it is enough to prove that both d(r)l [�(a;1℄;et; !℄(etl)and d(r)l [�(a;1℄;et; !℄(etl+1) are analyti
 fun
tions of a on (etk;etk+1) and 
ontin-uous fun
tions of a on [etk;etk+1℄, r = 0; 1; 2; 3. If l 6= k then this fa
t isstraightforward, if l = k then this fa
t follows by dire
t 
omputation:d(r)k [�(a;1℄;et; !℄(etk) = 0, d(r)k [�(a;1℄;et; !℄(etk+1) = Z etk+1a W (r)(etk+1 � y) dy.28



Then statement 1 is proven.Statement 2 will follow by the �rst statement if we show that#(etk) 6= 0, (3.45)sin
e (3.45) together with statement 1 entails that the analyti
 fun
tion #may have only isolated zeros in (etk;etk+1).If !k = J then by Theorem 3.9 #(etk) = bk[�(etk ;1℄;et; !℄(etk) = �(etk ;1℄(etk+) = 1.If !k = C then the following longer analysis is required to show (3.45).By re
alling the 
onvention !0 = !T+1 = J we denote by l1, l2 the uniquepair of integers ful�lling( 0 � l1 < k < l2 � T+ 1,!l1 = !l2 = J, !l = C 8l 2 fl1 + 1; :::; l2 � 1g,we de�ne a 4(l2 � l1)-dimensional row ve
tor v byvl = ( wi(tk) if l = 4 (k � 1� l1) + i for i = 1; :::; 4,0 otherwise (say l 6= 4 (k � 1� l1) + i). (3.46)Noti
e that v has only four non trivial entries 
oin
ident with the left halfof the �rst line of blo
k Bk�l1 .We make a new 
hoi
e of dl bydl[�(etk ;1℄;et; !℄(x) = ( 0 if l < k1 if l � k 8x 2 [etl;etl+1℄, (3.47)hen
e dl ful�lls (3.4) and we 
hoose the de
omposition (3.5) of b[�(a;1℄;et; !℄with this 
hoi
e of dl.Sin
e !l1 = !l2 = J by Remark 3.4 system (3.2) splits into three separatesystems whi
h give b on [0;etl1℄, on [etl1 ;etl2 ℄ and on [etl2 ; 1℄ respe
tively. Sin
eh = 0 on [0;etl1 ℄ we have b � 0 on [0;etl1℄, sin
e h = 1 on [etl2 ; 1℄ we haveb � 1 on [etl2 ; 1℄, then, by Lemma 3.5, we have to study b only on the interval[etl1 ;etl2 ℄ that is the subsystem V 
 = � (3.48)of system (3.7) 
orresponding to the diagonal blo
k V def= Ul1 ;l2 of U (see(3.8),(3.9)) with bl = dl + 4Pi=1
l;iwi and dl de�ned by (3.47). System (3.48)is an algebrai
 system: 4(l2 � l1) algebrai
 equations, 4(l2 � l1) unknowns29




 = (
l;i) 2 R4(l2�l1) with l = 1; :::; (l2 � l1 + 1) and i = 1; :::; 4; the matrixV = V[et; !℄ = [Vi;j ℄4(l2�l1)i;j=1 is invertible by Lemma 3.5 and Theorem 3.8; here� = �[�(etk ;1℄; t; !℄ repla
es a in (3.8) with �l = al+4l1 .Ve
tor � has only one non zero entry i.e.�4(k�l1) = dk[�(etk ;1℄;et; !℄(etk)� dk�1[�(etk;1℄;et; !℄(etk) = 1. (3.49)Arguing by 
ontradi
tion assume that #(etk) = bk[�(etk ;1℄;et; !℄(etk) = 0. Thenby !k = C, (3.5) and (3.47) we dedu
e that the unique solution 
 of (3.48) ful-�lls the following relationship, where the 
ommon dependen
e on [�(etk ;1℄;et; !℄is always understood:0 = bk(etk) = bk�1(etk) = dk�1(etk) + 4Xi=1
k�1;iwi(etk) = 4Xi=1
k�1;iwi(etk) (3.50)Hen
e, due to (3.46), (3.48) and (3.50), the (4(l2� l1)+1) dimensional ve
tor[
;�1℄, ful�lls the linear system� V �v 0 � � 
�1 � = 0. (3.51)Equation (3.51) entails det � V �v 0 � = 0 then, sin
e det(V) 6= 0, v 6= 0, and� has only one non zero 
omponent given by (3.49), we getv 
an be uniquely written as a non trivial linear 
ombination ofthe 4(k � l1)� 1 rows of V di�erent from the 4(k � l1)-th rowwhose 
oeÆ
ient ve
tor is denoted by �: vl = Pj 6=4(k�l1) �j Vj;l . (3.52)We 
onsider two possibilities for 
oeÆ
ient �4(k�l1)+1 (related to the rowbelow the one with unique non trivial 
omponent of �): both possibilitiesleads to a 
ontradi
tion.� If �4(k�l1)+1 6= 0 we 
hoose a 4(l2 � l1 � k) square matrix by sele
ting4(l2 � k) square diagonal SE blo
k of (3.9) and de
omposing it as follows:u2 = � V4(k�l1 )+1;4(k�l1)+1 � � � V4(k�l1 )+1;4(l2�l1) �U2 = 266664 V4(k�l1 )+2;4(k�l1)+1 � � � V4(k�l1 )+2;4(l2�l1)� �� �� �V4(l2�l1);4(k�l1)+1 � � � V4(l2�l1);4(l2�l1)
377775 .30



By (3.46) we have � v4(k�l1)+1 � � � v4(l2�l1) � = 0, hen
e (3.52) entails0 = det � �4(k�l1)+1 u2U2 � = �4(k�l1)+1 det � u2U2 � . (3.53)Sin
e � u2U2 � is the NW square diagonal blo
k of the invertible matrix of
oeÆ
ients of the linear system (3:2:ii)-(3:2:vi) obtained by solving Problem3.3 on the interval [etk; 1℄ with arrangement data as follows:8><>: S = T� k, j = 0, 
 = St su
h that tl = etl+k 8l 2 f1; :::; Sg� su
h that �l = !l+k 8l 2 f1; :::; Sg.Then Lemma 3.5 and Theorem 3.8 entail det � u2U2 � 6= 0 
ontradi
ting (3.53).� If �4(k�l1)+1 = 0 we 
hoose a 4(k� l1) square blo
k by taking the 4(k� l1)square diagonal NW blo
k of (3.9) and de
omposing it as follows:U1 = 266664 V1;1 � � � V1;4(k�l1 )� �� �� �V4(k�l1 )�1;1 � � � V4(k�l1 )�1;4(k�l1)
377775u1 = � V4(k�l1 );1 � � � V4(k�l1 );4(k�l1) � .De�nition (3.46) entailsu1 = � v1 � � � v4(k�l1) � 6= 0, � v4(k�l1)+1 � � � v4(l2�l1) � = 0:Hen
e properties det(V) 6= 0 and (3.52) entail thatu1 
an be uniquely written as a non triviallinear 
ombination of the rows of U1 . (3.54)hen
e (3.54) entails det � U1u1 � = 0. (3.55)Though � U1u1 � is a square NW blo
k of V, equation (3.55) does not entailan immediate 
ontradi
tion with det(V) 6= 0, sin
e V is not a square blo
k31



diagonal matrix with NW minor given by � U1u1 �.We 
onsider a symmetri
 arrangement of 
reases in [etk; 2etk � etl1 ℄:8>>><>>>: (i) S = 2(k � l1)� 1, 
 = S, j = 0(ii) t su
h that tl = � etl+l1 if l = 0; :::; k � l12etk � et2k�l1�l if l = k � l1 + 1; :::;S+ 1,(iii) � su
h that �l = C for any l = 1; :::;S, (3.56)and the following di�erential problem with arrangement (3.56)(i) z0000l + zl = g on (tl; tl+1) for l = 0; 1; :::; S(ii) z00l (tl) = z00l (tl+1) = 0 for l = 0; 1; :::; S(iii) z000l (tl) = 0 for l = 0; 1; :::; S(iv) z000l (tl+1) = 0 for l = 0; 1; :::; S(v) z000l�1(tl) = z000l (tl) for l = 0; 1; :::; S(vi) zl�1(tl) = zl(tl) for l = 0; 1; :::; S,
9>>>>>>>>>=>>>>>>>>>; (3.57)

we also denote by W = W [t; �℄ = [W i;j ℄4(S+1)i;j=1 the invertible matrix of 
oeÆ-
ients of the algebrai
 linear system related to (3.57) by the same 
onstru
tionmade in Lemma 3.5.If the arrangement of (t; �) ful�lls (3.56) we get the following identity for the4(k � l1) square diagonal NW blo
k of W :� U1u1 � = 266664 W 1;1 � � � W 1;4(k�l1 )� �� �W 4(k�l1 )�1;1 � � � W 4(k�l1 )�1;4(k�l1)W 4(k�l1 );1 � � � W 4(k�l1 );4(k�l1)
377775 .We sele
t the 4(S � l1 � k + 1) SE square diagonal blo
k and substitute its�rst row with the one above, by setting:m = � W 4(k�l1 );4(k�l1)+1 � � � W 4(k�l1 );4(S+1) �M = 266664 W 4(k�l1 )+2;4(k�l1)+1 � � � W 4(k�l1 )+2;4(S+1)� �� �� �W 4(S�l1 );4(k�l1)+1 � � � W 4(S+1);4(S+1)
377775 .
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Theorem 3.8 applied to Problem (3.57) entails det (W ) 6= 0 then, by (3.55),m is not a linear 
ombination of the rows of M that isdet � mM � 6= 0. (3.58)We introdu
e the two following problemsGiven f 2 L2(etl1 ;etk) �nd ' su
h that(i) '0000l + 'l = f on (tl; tl+1) for l = 0; :::; k � l1 � 1(ii) '00l (tl) = '00l (tl+1) = 0 for l = 0; :::; k � l1 � 1(iii) '000l1(t0) = 0(iv) '000l�1(tl) = '000l (tl) for l = 1; :::; k � l1 � 1(v) 'k�l1�1(tk�l1) = 0(vi) 'l�1(tl) = 'l(tl) for l = 1; :::; k � l1 � 1 .
9>>>>>>>>>=>>>>>>>>>; (3.59)

Given h 2 L2(etk; 2etk � etl1) �nd  su
h that(i)  0000l +  l = h on (tl; tl+1) for l = k � l1; :::; S(ii)  00l (tl) =  00l (tl+1) = 0 for l = k � l1; :::; S(iii)  000S (tS+1) = 0(iv)  000l�1(tl) =  000l (tl) for l = k � l1 + 1; :::; S(v)  k�l1(tk�l1) = 0(vi)  l�1(tl) =  l(tl) for l = k � l1 + 1; :::; S.
9>>>>>>>>>=>>>>>>>>>; (3.60)

Problems (3.59) (3.60) are slight modi�
ation of Problem 3.2 and their so-lutions have the same value at etk = tk�l1: if l = k � l1 then (v) reads'k�l1�1(etk) = 0 =  k�l1(etk). Noti
e that matri
es � U1u1 � and V play thesame role respe
tively in Problems 3.59 and 3.3 while matri
es � mM � andV play the same role respe
tively in Problems 3.60 and 3.3. Then8>>>>>>><>>>>>>>:
existen
e and uniqueness of solutionsof Problem 3.59 depends only on � U1u1 � ,existen
e and uniqueness of solutionsof Problem 3.60 depends only on � mM � . (3.61)
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Consider the aÆne map � : [etl1 ;etk℄! [etk; 2etk � etl1 ℄ de�ned by �(t) = 2etk � t.Observe that any solution ' of Problem 3.59 with datum f gives a solution (t) = '(��1(t)) of Problem 3.60 with datum h = f(��1(t)), and that anysolution  of Problem 3.60 with datum h gives a solution '(t) =  (�(t)) ofProblem 3.59 with datum f = h(�(t)). By (3.61) either � U1u1 � and � mM �are both non singular, or � U1u1 � and � mM � are both singular, hen
e thereis a 
ontradi
tion between (3.55) and (3.58). �4 An auxiliary variational problemWe have already noti
ed that jump and 
rease points of argminF g�;� are notne
essarily lo
alized among those of g even if it is a 
ontinuous and pie
ewiseaÆne fun
tion (see Se
tion 4 of [4℄). In this se
tion we develop some te
hni
altools enabling us to over
ome this diÆ
ulty. At �rst we introdu
e a problemwhi
h is equivalent to the minimization of Blake-Zisserman fun
tional in 
aseof 
ontinuous pie
ewise aÆne datum g.De�nition 4.1 For any Q 2 f0; 1; 2; :::g and q = (qi)Qi=1 2 AQ letKq = f u 2 H2 : �u(t+) = �u(t�) = 0 8t 2 Su [ S _u and...u (t+) = ...u (t�) = 0 8t 2 (Su [ S _u) n fqigQi=1 g.Problem 4.2 Given Q 2 f0; 1; 2; :::g, q 2 AQ, g 2 L2(0; 1) and �, � satis-fying (1.2), minimize the fun
tional F g�;� on Kq.Remark 4.3 If g 2 A q (
ontinuous pie
ewise aÆne fun
tion with 
reasepoints at q) in addition to usual assumptions (1.2) and (1.3), then the setof solutions of Problem 4.2 
oin
ide with the set of minimizers of Blake-Zisserman fun
tional F g�;� with the same data �, �, g. This is true be
auseF g�;� admits minimizers over H2 and they must belong to Kq due to (ii) and(vi), of Theorem 2.1.Motivated by this remark, from now on, we fo
us the multipli
ity of solu-tions of Problem 4.2. We introdu
e the following problem in order to studyelements of Kq \ argminF g�;� having lo
ation and quality 
ompatible withsuitable lo
ation and quality a priori pres
ribed with at most j jump pointsand 
 
rease points. Analysis made in Se
tion 3 and Remark 4.3 suggest tolook for solutions 
 of the following problem.34



Problem 4.4 Given Q;T; j; 
 2 f0; 1; 2; :::g, T = j + 
, t 2AT, q 2 AQ,� 2 
j;
 and g 2 L2(0; 1), �nd 
 2 H2(0; 1) s.t. 
 = 
l on (tl; tl+1) where(i) 
0000l + 
l = g on (tl; tl+1) for l = 0; 1; :::;T(ii) 
00l (tl) = 
00l (tl+1) = 0 for l = 0; 1; :::;T(iii) 
000l (tl) = 0 if either l = 0, or l = 1; :::;T s.t. �l = J,or l = 1; :::;T s.t. tl =2 q(iv) 
000l (tl+1) = 0 if either l = T, or l = 1; :::;T s.t. �l+1 = J,or l = 1; :::;T s.t. tl+1 =2 q(v) 
000l�1(tl) = 
000l (tl) if l = 1; :::;T and �l = C and tl 2 q(vi) 
l�1(tl) = 
l(tl) if l = 1; :::;T and �l = C and tl 2 q
9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>; (4.1)

t and � are 
alled respe
tively lo
ation and quality of Problem 4.4. (4.2)We emphasize that 
 
ould be dis
ontinuous at some tl if �l = C and tl =2 q.Theorem 4.5 For any Q;T; j; 
 2 f0; 1; 2; :::g, T = j + 
, q 2 AQ, t 2 AT,� 2 
j;
 and g 2 L2(0; 1), Problem 4.4 admits unique solution.Proof. Consider the quality ! de�ned by !l = �l if tl 2 q and !l = Jotherwise. Problem 4.4 is equivalent to Problem 3.3 with datum g, quality! and lo
ation t, then the thesis follows by Theorem 3.8. �Remark 4.6 Lo
ation and quality of the solution 
 of Problem 4.4 are 
om-patible with lo
ation and quality (4.2) of Problem 4.4, sayS
 � fti : �i = Jg, S _
 n S
 � fti : �i = Cg.Remark 4.7 We noti
e that, when g 2 A q , the relationship between Problem4.2 and Problem 4.4 is analogous to relationship between minimization ofF g�;� and Problem 3.3: any solution u of Problem 4.2 solves Problem 4.4 withthe same lo
ation t = t(u) and quality � = �(u).De�nition 4.8 For any Q;T; j; 
 2 f0; 1; 2; :::g, T = j+ 
, t 2 AT, q 2 AQ,� 2 
j;
 and g 2 L2(0; 1), set:1. 
 = 
[g; t;q; �℄ is the unique fun
tion 
 = 
(x) 2 H2 pie
ewise de�nedby the solutions f
l = 
l[g; t;q; �℄ 2 H2(tl; tl+1)gTl=0 of system (4.1).Parameters g, t, q, � will be dropped whenever there is no risk of
onfusion. For any l 2 f0; :::;Tg we denote by 
0l; 
00l ; :::; 
(r)l the �rst,se
ond, ..., r-th distributional derivative in (tl; tl+1) of 
l with respe
tto x. Noti
e that 
0l = _
l, 
00l = �
l, ..., but 
0 and 
00 may be di�erentfrom _
 and �
 due to singular part at tl.35



2. F(g; t;q; �) is the absolutely 
ontinuous part Fg of F g�;� evaluated atthe solution 
[g; t;q; �℄ of Problem 4.4F(g; t;q; �) = Fg(
[g; t;q; �℄) (4.3)F(�; �;q; �) : L2(0; 1)� AT ! R3. If in addition g is 
ontinuous pie
ewise aÆne with lo
ation q (i.e. g 2A q) and the ve
tor g is asso
iated to g by (3.16) and (3.17), set:
(�; �;q; �) : RQ+2 � AT ! L2(0; 1) by
[g; t;q; �℄(x) = 
[g; t;q; �℄(x) (4.4)F(�; �;q; �) : RQ+2 � AT ! R by F(g; t;q; �) = F(g; t;q; �). (4.5)We emphasize that De�nition 3.10 and De�nition 3.13 depends on the lo
a-tion and quality of Problem 3.3 while De�nition 4.8 depends not only on thelo
ation and quality (4.2) of Problem 4.4 but also on ve
tor q (
oin
identwith lo
ation of g in 
ase 3).Proposition 4.9 Fix Q;T; j; 
; r 2 f0; 1; 2; :::g, T = j + 
, q 2 AQ and� 2 
j;
, then:1. the map g 7! 
(g; t;q; �) is linear in g 2 L2(0; 1) for any t 2 AT,in parti
ular g � 0 entails 
 � 0;the map g 7! F(g; t;q; �) is 
ontinuous and 2-homogeneous with respe
tto g 2 L2(0; 1) for any t 2 AT;2. for any pie
ewise aÆne fun
tion g 2 A q and any solution u of Problem4.4 su
h that u has j jump points, 
 
rease points and quality �, themap t 7�! F(g; t;q; �) a
hieves its minimum with respe
t to t in AT att(u) = (t1(u); :::; tT(u)). Moreover Su = ftl(u) : �l = Jg, S _u n Su =ftl(u) : �l = Cg and 
 = u is the unique minimizer of F in H2u;3. for any pie
ewise aÆne fun
tion g the fun
tion 
 = g solves Problem4.4 with data g, t = t(g), q = q(g) and � = �(g);4. for any open 
ell W of the CW stru
ture indu
ed by q on AT, therestri
tion to A q �W of 
(r)l [�; �;q; �℄(tl) and of 
(r)l [�; �;q; �℄(tl+1) (e.g.evaluations at tl, tl+1 of fun
tions (4.4) and their r-th derivatives withrespe
t to x) are real analyti
 fun
tions of g and tj where tj is a free
oordinate of the open 
ell W ; 36



5. for any open 
ell W of the CW stru
ture indu
ed by q on AT, therestri
tion to A q�W of F(�; �;q; �) (e.g. fun
tion (4.5)) is real analyti
fun
tions of g and tj where tj is a free 
oordinate of the open 
ell W .Proof. Consider the quality ! de�ned by !l = J if tl =2 q and !l = �lotherwise. Sin
e F(�; �;q; �) is the restri
tion of F(�; �; !) to L2(0; 1)�AT and
(r)[�; �;q; �℄ = b(r)[�; �; !℄ the proposition follows from the analogous resultsabout F and b: Theorem 3.11, Lemma 3.7, Theorem 3.14. �5 CW stru
ture of the set of data with vanishing ex-
ess fE = 0gWe introdu
e the ex
ess fun
tional E to represent the deviation realized bysolution of Problem 4.4 from (expe
ted for minimizers) vanishing values ofsuitable weights. Ex
ess E is given in De�nition 5.1 in su
h a way that theset fE = 0g sele
t all data for Problem 3.3 whose related solution ful�lls thewhole set of Euler 
onditions (i)-(vi) of Theorem 2.1.Euler 
onditions (i)-(vi) of Theorem 2.1 altogether form an overdetermineddi�erential system: for this reason we introdu
ed Problems 3.3 and 4.4 (ea
hof them 
ontains only part of these 
onditions) and showed that both haveunique solution for any 
hoi
e of the arrangement. If the evaluation of theex
ess E on the solution 
 of Problem 4.4 vanishes then 
 is also a solutionof Problem 3.3, more pre
isely su
h 
 ful�lls all Euler 
onditions (i)-(vi).De�nition 5.1 For any Q;T; j; 
 2 f0; 1; 2; :::g, T = j+ 
, t 2 AT, q 2 AQ,� 2 
j;
, and g 2 A q we de�ne E : A q � AT � AQ � 
j;
 ! RT byE(g; t;q; �) = �E1(g; t;q; �); :::; ET(g; t;q; �)�whereEl(g; t;q; �) = 8<: 
l�1[g; t;q; �℄(tl) + 
l[g; t;q; �℄(tl)� 2g(tl) if �l = J and tl =2 q,
l[g; t;q; �℄(tl)� 
l�1[g; t;q; �℄(tl) if �l = C,0 otherwise,and 
 = 
[g; t;q; �℄ is the solution of Problem 4.4.Noti
e that if W is a 
ell of the CW stru
ture indu
ed on AT by q and tl isnot a free 
oordinate of W , then tl 2 q. Sin
e tl 2 q entails either �l = C orEl = 0 we getEl = 0 8l su
h that tl is not a free 
oordinate of the 
ell W . (5.1)37



Noti
e that Proposition 4.9(4) entails (via identi�
ations (3.16) and (3.17)between g 2 A q and g 2 RQ+2) that the restri
tion of the fun
tion E(�; �;q; �)to A q �W is an analyti
 fun
tion of g, t, for any open d-dimensional 
ellW � AT of the CW de
omposition indu
ed on AT by q. Moreover, referringto De�nition 4.1, (3.23) together with Theorem 2.1(vi) entailE(g; t(u);q; �(u)) = 0 8g; 8u 2 argminF g�;� � Kq. (5.2)In this se
tion (still referring to identi�
ations (3.16) and (3.17) betweeng 2 A q and g 2 RQ+2) we study the CW stru
ture of the setfE = 0g := f(g; t) 2 A q �W : E(g; t;q; �) = 0g (5.3)in a small neighborhood of a �xed pointet 2 AT when the lo
ation q appearingin the de�nition of E is suitably �ne. Toward this aim we introdu
e thede�nition of exhaustive sequen
e of partitions where, as usual, we identifypartitions with ve
tors.De�nition 5.2 A sequen
e of partitions fqmgm�0 is 
alled exhaustive ifqm � qm+1 for any m � 0, [m�0qm is dense in (0; 1).Lemma 5.3 Fix T; j; 
 2 f0; 1; 2; :::g, T = j+ 
, et 2 AT and � 2 
j;
. Then9" 2 (0; dist(et; �AT)=2) s.t. for all exhaustive sequen
e of partitions fqmgm�09m : 8m > m8l 2 f1; :::;Tg 9i = i(l), 9qi := qi(l) 2 qm su
h that[qi�1; qi℄ � (tl; tl+1) 8t : ���t�et���RT < " (5.4)and, by setting jh(x) = (x� qj�1)�[qj�1;qj ℄(x) + (qj � qj�1)�(qj ;1℄(x) for anyj 2 f1; :::;Qm + 1g and Qm = dim qm, we have
l[h; t;qm; �℄=h0+Qm+1Xj=1 
l[jh; t;qm; �℄hj 8h2A qm , 8l2f1; :::;Tg, (5.5)say the solution 
l[jh; t;qm; �℄ of Problem 4.4 is the 
oeÆ
ient of hj (throughthe identi�
ations between h 2 A qm and h 2 RQm+2, see (3.16), (3.17)) inthe linear 
ombination (5.5) representing 
l, and
k[i(l)h; t;qm; �℄ � 0 if k < l and (�l = J or tl =2 qm), (5.6)
l[i(l)h; t;qm; �℄(tl) 6= 0. (5.7)38



Proof. Statement (5.4) follows from De�nition 5.2.Statement (5.5) follows by Proposition 4.9(1) via identi�
ation (3.16) whi
hnow reads as follows8><>: z0 = h0, zl = hl(ql � ql�1) + zl�1,h(x) = Qm+1Pj=1 (hj(x� qj�1) + zj�1)�[qj�1;qj)(x) = Qm+1Pj=0 jh hj . (5.8)Statement (5.6) follows by (4.1) and Proposition 4.9(1).Referring to Problem 3.3, we de�ne b!l : (etl;etl+1) ! R byb!l (a) = bl[�(a;1);et; !℄(etl).Lemma 3.20 entails that b!l is a (not identi
ally zero) real analyti
 fun
tionwith respe
t to a 2 (etl;etl+1) for any ! 2 
T = Sm+n=T
m;n.Sin
e 
T is a �nite set we have that S!2
Tfx 2 (etl;etl+1) : b!l (x) = 0g is adis
rete set hen
e we 
an 
hooseal 2 (etl;etl+1) : b!l (al) 6= 0 8! 2 
T.Continuity of bl[�(al;1); t; !℄(tl) with respe
t to tl (Theorem 3.11(2)) entails9
; "l > 0: ��bl[�(al;1); t; !℄(tl)�� > 
 8! 2 
T; 8t 2 AT : ���t�et��� < 2"l.For any a; b 2 [0; 1℄ with a < b, seth(x) = x� ab� a �[a;b℄(x) + �(b;1℄(x),Continuity of bl[g; t; !℄(tl) with respe
t to g (Theorem 3.11(2)) entails, forthe same "l 
hoosen before,9Æ > 0 : 8<: dist(al; ftlgT+1l=0 ) > Æ 8t 2 AT; ���t�et��� < "l,j bl[h; t; !℄(tl)j > 
2 8a; b 2 (al � Æ; al + Æ).By exploiting linearity of bl[g; t; !℄(tl) with respe
t to g (Theorem 3.11(1))we have for any l9"l; Æ > 0 : 8<: dist(al; ftlgT+1l=0 ) > Æ 8t 2 AT; ���t�et��� < "l,j bl[(b� a)h; t; !℄(tl)j > 
2(b� a) 8a; b 2 (al � Æ; al + Æ). (5.9)39



For any l 2 f1; :::;Tg �x "l and Æ as in (5.9), then by (5.4) we 
an 
hooseindex ml su
h that partition qml in the given sequen
e has 
omponents qi�1,qi 2 (al � Æ; al + Æ) and set" = min f"l 8l 2 f1; :::;Tgg > 0; m = max fml 8l 2 f1; :::;Tgg < +1.For any m � m and 


t�et


RT < ", de�ne ! by !l = �l if tl 2 q and !l = Jotherwise. Sin
e 
l[ih; t;qm; �℄ = bl[ih; t; !℄, thesis (5.7) follows by applying(5.9) to bl[ih; t; !℄. �Theorem 5.4 Fix T; j; 
 2 f0; 1; 2; :::g, T = j+ 
, et 2 AT, � 2 
j;
. Then8" s.t. 0 < " < 12dist(et; � AT) and 8 exhaustive family of partitions fqmgm�09em su
h that: for any qm with m � em and any open d-dimensional 
ells Wof the CW stru
ture indu
ed by qm on AT with W � B(et; "), the setT := fE = 0g \ (A qm �W ) = f(g; t) 2 A qm �W : E(g; t;qm; �) = 0gis a �nite CW 
omplex of dimension at most Qm +2 (where Qm = dim qm).The higher skeleton of T lo
ally is the graph of an analyti
 fun
tion.Proof. The restri
tion of E to A q �W is an analyti
 fun
tion then its zeroset T = fE = 0g \ (A q �W ) is a semi-analyti
 set 
ontained in A q �W ,hen
e T has a CW stru
ture by Theorem 8.5.Choose " and em as in Lemma 5.3, denote Qm and qm shortly by Q andq = (qi)Qi=1 and denote by flrgdr=1 the free 
oordinates of the d-dimensional
ell W .Even without assuming E = 0, by (5.1) we have to 
onsider the interse
tionof sets fEl = 0g only over indexes lr related to free 
oordinates of W : sin
e0� \l =2flrgdr=1fEl = 0g1A \ (A q �W ) = A q �Wwe have to study only � dTr=1fElr = 0g� \ (A q �W ).Hen
e we are left to study the analyti
 fun
tion J : RQ+2 �W ! Rd de�nedby J(g; t) = (Elr(g; t;q; �))dr=1 through the identi�
ation (3.16) and (3.17)between g and g.By Lemma 5.3 there are points qlr�1; qlr 2 (tlr ; tlr+1), r 2 f1; :::; dg su
hthat the maps rh(x) = (x� qlr�1)�[qlr�1;qlr ℄(x) + (qlr � qlr�1)�(qlr ;1℄(x) ful�lls(5.6), (5.7), hen
e rh are Q+ 2 linearly independent fun
tions in A q .If rh 2 RQ+2 (r = 1; :::; d) are the ve
tors related to rh through (3.16) and40



(3.17), then frhg is a set of Q+ 2 independent ve
tors.Moreover the matrix  �Jlr0�(rh)!dr;r0=1 (5.10)is an invertible d � d matrix for any (g; t) 2 RQ+2 �W � RQ+2 � Rd : infa
t by De�nition 5.1, (5.5), (5.8) we have �Jlr0�(rh) = �Elr0�(rh) = 
lr0 [rh; t;q; �℄(tlr0),hen
e the matrix (5.10) is a lower triangular matrix with diagonal given bythe ve
tor �
lr [rh; t;q; �℄(tlr)�dr=1whose entries are all non zero by (5.7).So the matrix �J�h has always maximal rank and, by the Impli
it Fun
tionTheorem, fJ = 0g = � dTr=1fElr = 0g� \ A q �W has dimension Q + 2 andlo
ally is the graph of an analyti
 fun
tion. �6 CW stru
ture of the set fE = 0g \ fE = 0g of alldata exhibiting non uniqueness of minimizer withsame 
ardinality of singular sets and di�erent ar-rangementThe main result of this se
tion is Theorem 6.4 whi
h measures how manytriplets (g; t; �) 2 Rm � Rn � Rn exist where g is asso
iated by (3.16) and(3.17) to a 
ontinuous pie
ewise aÆne fun
tion g with no more thanm 
reasesand t, � are the ordered singular sets of two di�erent (when possible) so-lutions of Problem 4.2 with same 
ardinality n of singular set but di�erentarrangement1 : we prove that the proje
tion on the �rst 
omponent (in Rm)of the whole set of su
h triplets has zero m dimensional Lebesgue measure.We introdu
e two additional ex
ess fun
tionals E and E to represent thedeviation of suitable weights evaluated on the solution of Problem 4.4 from(expe
ted for minimizers) vanishing values. The de�nition is built in su
h away that fE = 0g\fE = 0g is the set of all data exhibiting non uniqueness ofminimizer with di�erent arrangement and same 
ardinality of singular sets.De�nition 6.1 For any Q;T; j; 
 2 f0; 1; 2; :::g, T = j + 
, q 2 AQ, �; e� 2
j;
, open 
ell W � AT � AT s.t. W = W0 �W1 with W0, W1 open 
ells of1together with the same arrangement we would have uniqueness by Remark 4.3, The-orem 2.1 and Theorem 3.8 41



the CW stru
ture indu
ed by q on AT and any (g; t; � ) 2 A q �W , referringto De�nitions 4.8(2) and 5.1, we de�ne:� E : A q �W � AQ � 
j;
 � 
j;
 ! R,su
h that E(g; t; � ;q; �; e�) = F(g; t;q; �)� F(g; � ;q; e�);� E : A q �W � AQ � 
j;
 � 
j;
 ! R2T ,su
h that E(g; t; � ;q; �; e�) = �E(g; t;q; �); E(g; � ;q; e�)�:E(g; t; � ;q; �; e�) = 0 means that both 
 = 
(g; t;q; �) and e
 = 
(g; � ;q; e�)have the same energy Fg.E(g; t; � ;q; �; e�) = 0 entails that both 
 = 
(g; t;q; �) and e
 = 
(g; � ;q; e�)solve not only Problem 4.2 but also Problem 3.3:b(g; t; �) = 
, b(g; t; e�) = e
,Fg(
) = F(g; t;q; �) = F(g; t; �), Fg(e
) = F(g; � ;q; e�) = F(g; t; e�).Noti
e that the existen
e of two di�erent u1, u2 minimizingF g�;� with (t; �) ar-rangement of u1 and (� ; e�) arrangement of u2 would entail E(g; t; � ;q; �; e�) =0 and E(g; t; � ;q; �; e�) = 0.In Lemma 6.2 we evaluate the di�eren
e F(g; t; !) � F(g; � ; e!) when twodi�erent minimizers of F g�;� exhibit l2 � l1 
onse
utive 
rease points withthe same lo
ation between two jumps with the same lo
ation: by approxi-mating these 
rease points and the two jump points with suitable ramps weprove that the 
ontribution of su
h interval to the above energy di�eren
eis di�erent from zero almost everywhere in a non empty neighborhood ofthe diagonal t = � (re
all that su
h energy di�eren
e must vanish on thediagonal).In Lemma 6.3 and Theorem 6.4, for any 
ell W and any pair of qualities �,e�, we study the CW stru
ture (indu
ed on AT � AT by q) of the setfE = 0g \ fE = 0g :=f(g; t; �) 2 A q �W : E(g; t; � ;q; �; e�) = 0; E(g; t; � ;q; �; e�) = 0g (6.1)in a small neighborhood of a �xed point (et; e� ) 2 AT�AT when the partitionq appearing in De�nition 6.1 is suitably �ne.Lemma 6.2 Fix T;m; n; em;en; l1; l2; �1; �2 2 f0; 1; 2; :::g, T = m+n = em+en >0, 0 � l1; l2; �1; �2 � T + 1, (et; e� ) 2 AT � AT, ! 2 
m;n, e! 2 
em;en. Assumethat l2 � l1 = �2 � �1 > 0, (6.2)42



etl1+i�1 = e� �1+i�1 i = 1; :::; l2 � l1 + 1, (6.3)!l1 = !l2 = e!�1 = e!�2 = J, !l1+i = e!�1+i = C i = 1; :::; l2�l1�1. (6.4)We insert suitable points fxkg between 
ommon lo
ations; de�ne an estimate' of fxkg proximity to the given partition et; then de�ne a distan
e  from
oin
iden
e of fxkg and ftlg and from 
ollapse of 
onse
utive pairs in fxkg:d = l2 � l1 + 1,X = fx = (xk)2dk=1 2 (0; 1)2d : etl1+i�1 < x2i�1 < x2i < etl1+i i = 1; :::; d� 2,etl2�1 < x2d�3 < x2d�2 < x2d�1 < x2d < etl2g,'(x) = max �fx2i�1 � etl1+i�1; etl1+i � x2igd�1i=2 [ fx2 � etl1 ;etl2 � x2d�1g�, (x) = min �fdist(fxkg2dk=1; fetlgT+1l=0 )g [ fx2i � x2i�1gdi=1�.Then9Æ = Æ(et; e� ) > 0 and a 
losed set P � X with empty interior in R2d :8x2XnP with  (x)<minfdist(et; � AT);dist(e� ; � AT))g and '(x) < Æ9" = "(x;et; e� ) 2 (0;  (x)=2) s.t.8x 2 (X n P ) \B(x; ")8(t; � ) 2 B(et; ")�B(e� ; ") with (tl1 ; tl1+1; :::; tl2) 6= (��1 ; ��1+1; :::; ��2)9i 2 f1; :::; dg s.t. F(ih; t; !)� F(ih; � ; e!) 6= 0,
9>>>>>>>>>>=>>>>>>>>>>; (6.5)

where we refer to De�nition 3.10 of F and ih is the ramp de�ned for byih(x) = ih[x2i�1; x2i℄(x) = x� x2i�1x2i � x2i�1�[x2i�1;x2i℄(x) + �(x2i;1℄(x) x2 [0; 1℄. (6.6)Proof. There are four possible types of 
hoi
es for l1, l2 ful�lling (6.2):1 � l1 < l2 � T, then set 8>><>>: r1 = �1 = l1,r2 = �2 = l2,s = d,� = 1, � = d, (6.7)
0 = l1 < l2 � T, then set 8>><>>: r1 = �1 = 1,r2 = �2 = l2,s = d� 1,� = 2, � = d, (6.8)

1 � l1 < l2 = T+ 1, then set 8>><>>: r1 = �1 = l1,r2 = �2 = T,s = d� 1,� = 1, � = d� 1, (6.9)43



l1 = 0, l2 = T+ 1, then set 8>><>>: r1 = �1 = 1,r2 = �2 = T,s = d� 2,� = 2, � = d� 1. (6.10)A

ording to De�nition 3.10 ih approa
hes either a ramp or a jump when'(x) ! 0+ as sket
hed below, i = 1; :::; d:
etl1x1 x2 etl1+1
ss

nn

etl1+i�1x2i�1 x2i etl1+i
mm 11

etl2x2dx2d�1x2d�2x2d�3etl2�1
nn 00

..
,,

De�ne the ve
tor fun
tion L : X � AT � AT ! Rs byL(x; t; � ) = �F(ih; t; !)� F(ih; � ; e!)��i=�. (6.11)A
tually the dependen
e of L on t and � is restri
ted to 
omponents (tr1 ; :::; tr2)and (��1 ; :::; ��2) alone whenever ���t�et��� <  (x) and j� � e� j <  (x) in fa
t by(6.4) and Remark 3.4, we know that: system (3.2) with data t, !, ih splitsinto three un
oupled systems related to intervals [0; tl1 ℄, [tl1 ; tl2 ℄, [tl2 ; 1℄; sys-tem (3.2) with data � , e!, ih splits into three un
oupled systems on [0; ��1 ℄,on [��1 ; ��2 ℄ and on [��2 ; 1℄; b[ih; t; !℄ = b[ih; � ; e!℄ on [0; tl1 ℄ [ [tl2 ; 1℄.By denoting with j�j the Eu
lidean norm we de�ne:� the set Z � R2T byZ = �(t1; :::; tT; �1; :::; �T) : tl = 0 for l 6= r1; :::; r2,�l = 0 for l 6= �1; :::; �2	and the orthogonal proje
tion onto Z, pr : R2T ! Z;� the set �x � Z � AT � AT by�x = �(pr(t; � )) : ���t�et��� <  (x), j� � e� j <  (x),tr1+i = ��1+i for i = 0; :::; s� 1	 8x 2 X;� the open set Yx � Z � AT � AT byYx = �(pr(t; � )) : ���t�et��� <  (x) and j� � e� j <  (x)	 8x 2 X;
44



� the open set Y � X � Z � X � AT � AT byY = �(x; pr(t; �)) : x 2 X, ���t�et��� <  (x), j� � e� j <  (x)	 �X � Yx � X � Z.We study the restri
tion of L to Y .By Theorems 3.8 and 3.14(2)(t; � ) 7�! L(x; t; � ) is a real analyti
 fun
tionof free 
oordinates Yx for any x 2 X.We state a 
laim about Ja
obian matrixDL =�L=�(t; � ) = (�L=�t; �L=�� ),where abusing notation �(t; � ) stands for �z with z 2 Z, say we take intoa

ount only the derivatives with respe
t to tl with l = r1; :::; r2 and to �lwith l = �1; :::; �2:9Æ = Æ(et; e� ) > 0 and a 
losed semi-analyti
 set P � R2d s.t.dim (P ) � 2d� 1, hen
e with empty interior in R2d ,8x 2 X n P and '(x) < Æ; rank (DL(x; pr(et; e� ))) = s. 9=; (6.12)The matrix DL(x; pr(et; e� )) has s row and 2s 
olumns su
h that the �rst s
olumns do not depend on � and the se
ond s 
olumns do not depend on t,we denote by M = M(x;et) = �L=�t the square matrix given by the �rst s
olumns of DL(x; pr(et; e� )). Re
all that s = l2� l1+1 in 
ase (6.7), s = l2� l1in 
ases (6.8), (6.9), s = l2 � l1 � 1 in 
ase (6.10). We study in detail thebehaviour of the entries of M in 
ases (6.7)-(6.10) when '(x) ! 0+. Byexploiting identity (3.22), (3.2:(iii)), (3.2:(iv)) and (3.2:(vi)) we analyze M .Entries of type Mi;i (diagonal entries).We study Mi;i = �F�tr1+i�1 (ih;et; !).If i = 1 and (6.7) or (6.9) o

ur (�M1;1 in 
ases (6.8), (6.10)), thenM1;1 = �b2r1 [1h;et; !℄(etr1) and M1;1 ! �1 when '(x)! 0+. (6.13)In fa
t 1h(etr1) = 0, br1�1[1h;et; !℄(etr1) = 0 by Remark 3.4 and b000r1 [1h;et; !℄(etr1) =0 sin
e etr1 has quality J. Moreover data h = 1h[x1; x2℄ and g = �[etr1 ;1℄ inLemma 3.19, estimate (3.31) and g(etr1) = 1 entail M1;1(x;et) ! �1 when'(x)! 0+.If i = f2; :::; d� 1g thenMi;i = �2b000r1+i�1[ih;et; !℄(etr1+i�1)�(b0r1+i�1[ih;et; !℄(etr1+i�1)� b0r1+i�2[ih;et; !℄(etr1+i�1))and Mi;i ! 0 of order 1 when '(x)! 0+. (6.14)45



In fa
t br1+i�2[ih;et; !℄(etr1+i�1) = br1+i�1[ih;et; !℄(etr1+i�1) sin
e etr1+i�1 hasquality C . Moreover if we 
hose t = et, g = ih[etr1+i�1;etr1+i℄, g(etr1+i) = 1,h = ih[x2i�1; x2i℄ and (r; s) = (x2i�1; x2i) in Lemma 3.19, then (3.30), estimate(3.27) and vanishing set properties of non 
onstant analyti
 fun
tions allowus to de�ne the following sets for i = 2; :::; d� 1,Pi = npairs (x2i�1; x2i) : etr1+i�1 < x2i�1 < x2i < etr1+i , Mi;i(x;et) = 0o .(6.15)Sets Pi ful�ll the following properties:Pi is a 
losed semi-analyti
 set 
ontained in R2 and dim (Pi) � 1. (6.16)Then Mi;i(x;et)! 0 of order 1 when '(x)! 0+.If i = d and (6.7) or (6.8) o

ur (�Md;d in 
ases (6.9), (6.10)), thenMd;d = (br2�1[dh;et; !℄(etr2)� 1)2 and Md;d ! 1 when '(x)! 0+.(6.17)In fa
t dh(etr2) = 1, br2 [dh;et; !℄(etr2) = 1 by Remark 3.4 and b000r2 [dh;et; !℄(etr2) =0 sin
e etr2 has quality J. Moreover data h = dh[x2d�1; x2d℄ and g = �[etr2 ;1℄ inLemma 3.19 and estimate (3.31) entail Md;d(x;et)! 1 when '(x)! 0+.So far we have all the estimates whi
h are needed about main diagonal, sin
eindex i runs respe
tively from 1 to d in 
ase (6.7), from 2 to d in 
ase (6.8),from 1 to d� 1 in 
ase (6.9), from 2 to d� 1 in 
ase (6.10).Entries of type Mi;i+1 (entries just above the diagonal).We study Mi;i+1 = �F�tr1+i (ih;et; !).If i = f�; :::; d� 1g thenMi;i+1 = �2b000r1+i[ih;et; !℄(etr1+i)�(b0r1+i[ih;et; !℄(etr1+i)� b0r1+i�1[ih;et; !℄(etr1+i))and Mi;i+1 ! 0 of order 1 when '(x)! 0+. (6.18)In fa
t br1+i�1[ih;et; !℄(etr1+i) = br1+i[ih;et; !℄(etr1+i) sin
e etr1+i has quality C.Moreover data h = ih[x2i�1; x2i℄ and g = ih[etr1+i�1;etr1+i℄ in Lemma 3.19,(3.30) and estimate (3.27) entailMi;i+1(x;et)! 0 of order 1 when '(x)! 0+.If i = d� 1 and (6.7) or (6.8) o

ur, thenMd�1;d = (br2�1[d�1h;et; !℄(etr2)� 1)2 andMd�1;d ! 0 of order at least 2 when '(x)! 0+. (6.19)46



In fa
t we have d�1h(etr2) = 1, br2 [d�1h;et; !℄(etr2) = 1 by Remark 3.4 andb000r2 [d�1h;et; !℄(etr2) = 0 sin
e etr2 has quality J. Moreover data h = ih[x2i�1; x2i℄and g = ih[etr2�1;etr2 ℄ in Lemma 3.19 and estimate (3.31) entailsMd�1;d(x;et)!0 of order at least 2 when '(x)! 0+.Entries of type Mi;j with (i; j) 6= (i; i); (i; i+ 1).We study Mi;j = �F�tr1+j�1 (ih;et; !).If etr1+j�1 has quality C thenMi;j = �2b000r1+j�1[ih;et; !℄(etr1+j�1)�(b0r1+j�1[ih;et; !℄(etr1+j�1)� b0r1+j�2[ih;et; !℄(etr1+j�1))and Mi;j ! 0 of order at least 2 when '(x)! 0+. (6.20)In fa
t br1+j�1[ih;et; !℄(etr1+i�1) = br1+j�2[ih;et; !℄(etr1+j�1) = 0 sin
e etr1+j�1has quality C. Moreover data h = ih[x2i�1; x2i℄ and g = ih[etr1+i�1;etr1+i℄ inLemma 3.19 and estimates (3.27) and (3.31) entail Mi;j(x;et)! 0 of order atleast 2 when '(x)! 0+.If etr1+j�1 has quality J thenMi;j = (br1+j�2[ih;et; !℄(etr1+j�1)� br1+j�1[ih;et; !℄(etr1+j�1))�(br1+j�2[ih;et; !℄(etr1+j�1) + br1+j�1[ih;et; !℄(etr1+j�1)� 2ih(etr1+j�1))and Mi;j(x;et)! 0 of order at least 2 when '(x)! 0+. (6.21)In fa
t b000r1+j�1[ih;et; !℄(etr1+j�1) = 0 sin
e etr1+j�1 has quality J. Moreoverdata h = ih[x2i�1; x2i℄ and g = ih[etr1+i�1;etr1+i℄ in Lemma 3.19 and estimates(3.27) and (3.31) entail Mi;j(x;et) ! 0 of order at least 2 when '(x) ! 0+.Referring to (6.15), and setting by 
onvention P1 = Pd = ; in all 
ases(6.7)-(6.10) we de�ne P � R2d as followsP = d[i=1 R2 � :::� Pi � :::� R2"i-th position . (6.22)The set P is 
ontained in R2d : a
tually P is the union of d� 2 semi-analyti
sets sin
e the �rst and the last one are empty. By denoting S the groupof permutations of s elements and referring to (6.7)-(6.10), we exploit thestandard formula det(M(x;et)) = Xp2S sgn(p) �Yi=�Mi;p(i), (6.23)47



where � � � = s� 1 is equal to respe
tively d� 1, d� 2, d� 3 in 
ases (6.7),(6.8) and (6.9), (6.10).We summarize (6.13)-(6.21) as follows: produ
t �Qi=�Mi;i is an in�nitesimal as'(x)! 0+ of order respe
tively (s� 2) _ 0, (s� 1) _ 0, s _ 0 in 
ases (6.7),(6.8) and (6.9), (6.10); all other produ
ts are of order at least s + 1. Thendet(M(x;et)) tends to 0 of the same order than �Qi=�Mi;i. The 
laim (6.12)follows by (6.16), (6.22).For �xed x 2 X nP 
onsider the following 
hoi
es in De�nition 8.9: M = Yx,V = Rs , N = f0g, f de�ned by f(t; � ) = L(x; t; � ) with (t; � ) 2 Yx. Thendim(M) = 2s, dim(N ) = 0, rank(DL) = s by (6.12), hen
e proje
tionpr(et; e� ) is a regular point of f for x 2 X n P with '(x) < Æ. By Theorem8.10, f�1(0) is an analyti
 manifold 
ontaining the diagonal set �x and
ontained in the open set Yx. Sin
e � (Yx) \ �B(et;  (x)=2)�B(e� ;  (x)=2)�is the empty set we 
on
lude that f�1(N ) \ �B(et; ")� B(e� ; ")� = �x \�B(et; ")� B(e� ; ")� for suitable " 2 (0;  (x)=2). �Lemma 6.3 Fix T; j; 
 2 f0; 1; 2; :::g, T = j + 
 > 0, (et; e� ) 2 AT � AT and�; e� 2 
j;
.8" s.t. 0 < " < 12 minndist(et; � AT); dist(e� ; � AT)o and any exhaustive fam-ily of partitions fqmgm�0, qm of 
ardinality Qm, �x:a d-dimensional 
ell W =W0 �W1 � B(et; ")� B(e� ; ")of the CW stru
ture indu
ed on AT � AT by qm; (6.24)ftl�gL0�=1, f���gL1�=1 respe
tively denote free 
oordinates of W0, W1; (6.25)(t; � ) 2 W with t 6= � if � = e�; (6.26)L = ℄ �ftl�gL0�=1 [ f���gL1�=1� � L0 + L1; (6.27)E(g; t; � ;qm; �; e�) = F(g; t;qm; �)� F(g; � ;qm; e�) 8g 2 A qm . (6.28)Then there is m � em (where em is the integer de�ned in Theorem 5.4) s.t. forany qm with m > m there are at least L + 1 independent ve
tors f�hgL+1�=1 �RQm+2, identi�ed with L+1 fun
tions in A qm by (3.16) and (3.17), su
h that� �E�(�h)�L+1�=1 � RQm+2 is a set of L + 1 independent ve
tors (6.29)48



or, equivalently,dim0� span  � �E�(�h)�L+1�=1!!?1A = Qm+2�(L+1) = Qm�L+1. (6.30)Here E is de�ned by (6.28) and, analogously to De�nition 3.15 of derivative�F�g , we set �F�g = lim"!0F(f + "g; t; �)� F(f ; t; �)" . (6.31)Proof. First we introdu
e some notation. Let� �; � �:L2(0; 1)�L2(0; 1)!Rbe the positive de�nite bilinear map given by� u; v � = Z 10 �u(x)�v(x) + u(x)v(x) dx. (6.32)Let 
T = Sm+n=T
m;n and denote by ! the elements of 
T � 
T.Fix ! = (!; e!) 2 
T � 
T, ! 2 
m;n and e! 2 
em;en, and setF! (g; t;� ) = F(g; t;!)� F(g; � ; e!) 8(g; t;� ) 2 L2(0; 1)� AT � AT, (6.33)T = fetl : !l = Jg, T = fe�l : e!l = Jg, (6.34)T [ T [ f0; 1g = (�r)�+1r=0, 0 = �0 < ::: < �r < �r+1 < ::: < ��+1 = 1, (6.35)R = f r 2 f0; :::; �+ 1g : �r 2 (T \ T ) [ f0; 1g g . (6.36)Any �r with r 2 R is 
alled double point, we will study intervals [�r; �s℄ where�r and �s are two 
onse
utive double points (noti
e that there are at leasttwo double points in any 
ase: 0 and 1). Now the proof splits into two steps.Step 1 - As a �rst step we prove the following 
laim.For any interval [�r; �s℄, with �r, �s 
onse
utive double points,there are 
ontinuous pie
ewise aÆne maps figgs�ri=1 in [0; 1℄su
h that, by setting (only in this step)bi = b[ig; t; !℄ and bi = b[ig; � ; e!℄,the following square matrix M is invertibleM = �� bi � ig; bk � kg � �� bi � ig; bk � kg � �s�ri; k=1.
9>>>>>>>=>>>>>>>; (6.37)

Proof of statement (6.37) depends on the nature of the interval [�r; �s℄. As-sume �r = etlr = e��r and �s = etls = e��s then we distinguish between threedi�erent types of intervals, des
ribing all possible 
on�gurations.49



Type 1 intervals: Intervals [�r; �s℄ ful�lling all the following three 
onditions8><>: ls � lr = �s � �retlr+i�1 = e��r+i�1 8i 2 f1; :::ls � lr + 1g!lr+i = e!�r+i = C 8i 2 f1; :::ls � lr � 1g 9>=>; . (6.38)Type 1 intervals [�r; �s℄ look as follows
______ ______

______ ______

etlr
e��rJ

etls
e��sJ

etlr+1
e��r+1C etlr+2

e��r+2C etls�1
e��s�1CType 2 intervals: Intervals [�r; �s℄ 
ontaining at least one jump point in tor � , hen
e ful�lling s� r > 1. Ea
h type 2 interval belongs to at least oneof the two following kinds: either

______ ______

______ ______

etlr
e��rJ

etls
e��sJ

etlr+aJ
or

______ ______

______ ______

etlr
e��rJ

etls
e��sJe��r+bJCrease points are not drawn in the two �gures above, however they 
ould bepresent possibly not 
oupled or in di�erent number for ! and e!.Type 3 intervals: Intervals [�r; �s℄ ful�lling s�r = 1, say without jumps in[�r; �s℄, and not ful�lling all 
onditions (6.38). Type 3 intervals [�r; �s℄ lookas follows

______ ______

______ ______

etlr
e��rJ

etls
e��sJ

etlr+a
e��r+bC etlr+


e��r+dC C50



Proof of (6.37) in 
ase of type 1 intervals. In this 
ase r� s = 1 hen
ethe matrix M is a s
alar.Lemma 6.2 applied with data T, m, n, em, en, !, e! given by the pair !, l1 = lr,l2 = ls, �1 = �r, �2 = �s entails the existen
e ofX = X!;r, P = P!;r, x = !;rx, Æ = Æ!;r, " = "!;r (6.39)ful�lling9Æ!;r > 0 and a 
losed set P!;r � X!;r with empty interior in R2d s.t.8 !;rx 2 X!;r n P!;r with (  ( !;rx ) < min fdist(et; � AT); dist(e� ; � AT))g,'( !;rx ) < Æ9"!;r 2 (0;  (x)=2) s.t.8 !;rx 2 (X!;r n P!;r) \ B(!;rx; "!;r)8(t; � ) 2 B(et; "!;r)� B(e� ; "!;r) with (tl1 ; tl1+1; :::; tl2) 6= (��1 ; ��1+1; :::; ��2)9i 2 f1; :::; dg s.t. F(ih; t; !)� F(ih; � ; e!) 6= 0,We plug ig(x) = x� x2i�1x2i � x2i�1�[x2i�2;x2i℄(x) + �(x2i;1℄(x)in (6.37). Due to (6.32), i�g � 0 in [0; 1℄, with the 
hoi
e ig = ih in (6.6),(6.5) of Lemma 6.2 entailsM = �F(1g; t; !)� F(1g; � ; e!)� 6= 0,say M is a matrix of order 1 = s� r with non zero determinant.Proof of (6.37) in 
ase of type 2 intervals. In this 
ase s� r � 2, wesetY = fy = (yi)s�ri=1 2 [0; 1℄s�r : yi 2 (�r+i�1; �r+i℄ 8i 2 f1; :::; s� rg,e (y) = min �fdist(yi; fetl; e�lgT+1l=0 )gs�ri=1 [ fdist(yi; yk)gs�ri 6=k=1�.We denote by M (y; t; � ) the symmetri
 matrix M de�ned in (6.37) with the
hoi
es ig = �[yi;1℄ i 2 f1; :::; s� rg.By Theorems 3.11(2), 3.14(2) matrix M (y; t; � ) is a 
ontinuous fun
tion onY � AT � AT where the topology of Y is indu
ed by [0; 1℄s�r.We denote by M � the matrix M (y; t; � ) evaluated at y = (�r+1; :::; �s�r�1; ys�r),t = et, � = e� . We 
laim thatM � is non singular. (6.40)51



Sin
e M (y;et; e� ) is 
ontinuous on Y , if (6.40) holds true, then we get9
 > 0; 9 !;ry=(!;ry1; :::; !;rys�r)2Y with f!;ryigs�ri=1 \ fetl; e�lgT+1l=0 =;su
h that ���det(M (! ;ry;et; e� ))��� > 
,then, referring to De�nition (6.37) of M , e (!;ry) > 0, Theorem 3.11(2) andTheorem 3.19 entail9"!;r 2 (0; e (!;ry)2 ) su
h that the matrix M (y; t; � ) is invertible8(t; � ) 2 B(et; "!;r)� B(e� ; "!;r),8 partition q and set figgs�ri=1 � A q of ramp fun
tions withig(x) = ( 0 if x � !;ryi � "!;r,1 if x � !;ryi + "!;r.
9>>>>>>>=>>>>>>>; (6.41)

Eventually we prove 
laim (6.40) by showing that M � is a blo
k diagonalmatrix and that ea
h blo
k has non zero determinant.The matrix M = M (y; t; � ) de�ned in (6.37) is symmetri
 and for any i; k 2f1; :::; s� rg with i < k we have( ℄ (spt (bi � ig) \ spt (bk � kg)) � 1 if [yi; yk℄ \ T 6= ;,℄ (spt (bi � ig) \ spt (bk � kg)) � 1 if [yi; yk℄ \ T 6= ;, (6.42)then ( (i) � bi � ig; bk � kg � = 0 if [yi; yk℄ \ T 6= ;,(ii) � bi � ig; bk � kg � = 0 if [yi; yk℄ \ T 6= ;, (6.43)hen
eM i;k = 0 if both [yi; yk℄ \ T 6= ; and [yi; yk℄ \ T 6= ; hold true. (6.44)By (6.44) we haveM i;k = 0 entails Ma;b = 0 for a � i and b � k (6.45)and(M � )i;i+1 = 0 for all i su
h that(�r+i 2 T and �r+i+1 2 T ) or (�r+i 2 T and �r+i+1 2 T ), (6.46)then M � is a square blo
k diagonal matrix where ea
h blo
k M e0e belongs toexa
tly one kind among the following four ones:52



B.1 e � e0 < s�r, �r+e�1; �r+e0+1 2 T and �r+i 2 T nT for any i 2 fe; :::; e0g;B.2 e � e0 < s�r, �r+e�1; �r+e0+1 2 T and �r+i 2 T nT for any i 2 fe; :::; e0g;B.3 e � e0 = s� r, �r+e�1 2 T and �r+i 2 T nT for any i 2 fe; :::; s� r� 1g;B.4 e � e0 = s� r, �r+e�1 2 T and �r+i 2 T nT for any i 2 fe; :::; s� r�1g.By (6.43.(ii)), B.1 blo
ks have the form M e0e = �� bi � ig; bk � kg � �e0i;k=e.The bilinear map (6.32) is positively de�ned and fbi � igge0i=e � L2(0; 1) areindependent ve
tors sin
e figge0i=e are, then det(M e0e ) 6= 0.By (6.43.(i)), B.2 blo
ks have the form M e0e = ��� bi� ig; bk� kg � �e0i;k=e.The bilinear map (6.32) is positively de�ned and fbi � igge0i=e � L2(0; 1) areindependent ve
tors sin
e figge0i=e are, then det(M e0e ) 6= 0.Type B.3 blo
ks have the formM s�re = �� bi � ig; bk � kg � � � bi � ig; bk � kg � �s�ri;k=ewhere � bi � ig; bk � kg �= 0 whenever (i; k) 6= (s� r; s� r).Let M s�re = N s�re � E , whereN s�re = 266664 � be � eg; be � eg � � � � � be � eg; bs�r � s�rg �� �� �� �� bs�r � s�rg; be � eg � � � � � bs�r � s�rg; bs�r � s�rg �
377775E=[Ei;k℄s�ri;k=e , Ei;k=( 0 if (i; k) 6=(s� r; s� r),�bs�r�s�rg; bs�r�s�rg� if (i; k)=(s� r; s� r).The same argument used for B.1 blo
ks proves that N s�re is an invertiblematrix. Moreover E ! 0 as ys�r ! �s�1, sin
e s�rg ! �[�s�r;1℄ in L2(0; 1),hen
e Theorem 3.11(2) entails b! �[�s�r;1℄ in H2(�l; �l+1) 8l.Then any type B.3 blo
k M s�re = N s�re � E is an invertible matrix.Type B.4 blo
ks have the formM s�re = �� bi � ig; bk � kg � �� bi � ig; bk � kg � �s�ri;k=ewhere � bi � ig; bk � kg �= 0 whenever (i; k) 6= (s� r; s� r).Let M s�re = �N s�re + bE where N s�re is de�ned like N s�re with � bi� ig; bk�kg � repla
ed by � bi � ig; bk � kg � and bE is de�ned like E with �bs�r � s�rg; bs�r � s�rg � repla
ed by � bs�r � s�rg; bs�r � s�rg �.So we 
an repeat the same analysis we performed on type B.3 blo
ks.Proof of (6.37) in 
ase of type 3 intervals. In this 
ase setZ = fz = (z1; z2) 2 [�r; �s℄2; z1 < z2g,53



b (z) = min �fdist(fz1; z1g; fetl; e�lgT+1l=0 )g [ fdist(z1; z2)g�.We label by M (z; t; � ) the matrix M de�ned in (6.37) with the 
hoi
eg(x) = x� z1z2 � z1�[z1;z2℄(x) + �[z2;1℄(x) z = (z1; z2) 2 Z.A
tually the matrix M (z; t; � ) is a s
alar whose value is a 
ontinuous fun
tionon Z�AT�AT, where the topology of Z is indu
ed by [0; 1℄2, due to Theorems3.11(2), 3.14(2).Sin
e [�r; �s℄ is a type 3 interval and s� r = 1, then at least one among thefollowing two possibilities holds true:(1) 9l 2 f1; :::;Tg : e�l 2 [�r; �s℄ n (fetlgT+1l=0 [ T ),(2) 9l 2 f1; :::;Tg : etl 2 [�r; �s℄ n (fe�lgT+1l=0 [ T ).We examine only possibility (1) sin
e the other one is analogous.We evaluate M (z; t; � ) at: z = (e�l; z2), t = et, � = e� , with z2 2 (e�l; e�l+1)Sin
e 8<: limz2!e�l+1 � b� g; b� g � = 0 (by Theorem 3.9)limz2!e�l+1 � b� g; b� g � > 0,Theorem 3.11(2) entails M ((e�l ; z2);et; e� ) 6= 0 for any z2 
lose enough to e�l+1:Sin
e M (z;et; e� ) is 
ontinuous on Z we get9 
 > 0; 9 !;rz = ( !;rz1; !;rz2 )with f !;rz1; !;rz2 g \ fetl; e�lgT+1l=0 = ;su
h that ���M ( ! ;rz;et; e� )��� > 
.Then, by de�nition (6.37) of M , b ( !;rz ) > 0, Theorem 3.11(2) and Theorem3.19 we get9"!;r 2 (0; b (!;rz )2 ) su
h that jM (z; t; � )j > 
28(t; � ) 2 B(et; "!;r)�B(e� ; "!;r), 8z 2 B( !;rz; "!;r ). ) (6.47)So far the 
laim (6.37) is proven.Step 2 - To a
hieve the 
on
lusion we exploit Step 1. First we 
hoose" = min f"!;r : ! 2 
T � 
T; r 2 Rg > 0. (6.48)54



We 
onsider m su
h that qm has at least two distin
t points in ea
h one ofthe following intervals( !;rx2i�1 � "; !;rx2i�1 + " ); ( !;rx2i � "; !;rx2i + " ) 8 !;rx (Type 1),( !;ryi � "; !;ryi + " ) 8 !;ry (Type 2),( !;rz2i�1 � "; !;rz2i�1 + " ); ( !;rz2i � "; !;rz2i + " ) 8 !;rz (Type 3),where we refer respe
tively to (6.39), (6.41), (6.47) for di�erent interval types(only for types whi
h are present, a

ording to arrangements t and � ).Obviously the same property holds true for any qm with m � m.To any 
ellW = W0�W1 ful�lling (6.24) with " given by (6.48), we asso
iatethe following qualities ! and e!:!l = ( �l if tl is not a free 
oordinate of W0J otherwisee!l = ( e�l if tl is not a free 
oordinate of W1J otherwise,and denote respe
tively by m, n the number of J, C in quality ! and respe
-tively by em, en the number of J, C in quality e!.Then the ordered sequen
e (�r)Lr=1 of jump points (related to !, e!) is �xedand for any (t; � ) 2 W : by referring to De�nition 6.1 and (6.33), we getE(�; �; �;qm; �; e�) = F! (�; �; �) where ! = (!; e!).By the same pro
edure used in Step 1 we 
hoose f�ggL+1�=1 asso
iated to !, e!:we noti
e that the ve
tors f�ggL+1�=1 are linearly independent by 
onstru
tion.We exploit 
[�; �;qm; �℄ = b[�; �; !℄, 
[�; �;qm; e�℄ = b[�; �; e!℄ and apply Lemma3.16 to obtain the following identity between square matri
esM = 12 �2F! (g; t; �)�(�g) �(�g0)!L+1�;�0=1 .There is an uniform estimate in the 
hoi
es of "!;r (in 
ase of type 1 intervalsby Lemma 6.2; in 
ase of type 2 interval by (6.41); in 
ase of type 3 intervalby (6.47)). By summarizing:"!;r < 12 minn (!;rx); e (!;ry); b (!;rz)o .Hen
e M is a blo
k diagonal matrix where ea
h blo
k is related to an intervalof type either 1 or 2 or 3. Moreover M turns out to be a 
onstant matrix55



on
e t and � are �xed, due to (6.33) and Theorem 3.14.By Step 1 ea
h blo
k is an invertible matrix so that the whole matrix M isinvertible. This implies that the normal ve
tors to the L + 1 hyperplanesdetermined by f�F! (g;t;� )�(�g) = 0gL+1�=1 are independent. �Theorem 6.4 Fix T; j; 
 2 f0; 1; 2; :::g, T = j+ 
 > 0, (et; e� ) 2 AT �AT and�; e� 2 
j;
.For any " s.t. 0 < " < 12 min ndist(et; � AT); dist(e� ; � AT)o and any exhaus-tive family of partitions fqmgm�0, qm of 
ardinality Qm, there is m :for any qm with m > m, any d = 0; :::; 2T and any open d-dimensional
ell W � B(et; ") � B(e� ; ") s.t. W = W0 � W1 where W0 � B(et; ") andW1 � B(e� ; ") open 
ells of the CW stru
ture indu
ed by qm on AT, if E andE are the maps of De�nition 6.1, we have8<: LQm+2�pr [A qm ℄ �fE = 0g \ fE = 0g�� = 0 if � 6= e�LQm+2� pr [A qm ℄ �(fE=0g\fE=0g) n (A qm�� [AT℄)�� = 0 if � = e�,where � [AT℄=f(t; � )2AT�AT : t = �g andpr [A qm ℄ :A qm�AT�AT!A qm is the proje
tion on the 
omponent A qm :pr [A qm ℄ (g; t; � ) = g, 8g 2 RQm+2. (6.49)Proof. Choose " and m as in Lemma 6.3. Fix m > m.Parameters qm, �, e� are now �xed: for this reason they are omitted whenwriting the variables of E and E in the following. As usual we set Qm =dim qm and the identi�
ation between A qm and RQm+2 through (3.16) and(3.17) will be always understood. We denote by (tl1; :::; tld0 ; � �1 ; :::; � �d1 ) thefree 
oordinates of W . We setJ = (El1 ; :::;Eld0 ;ET+�1; :::;ET+�d1 )T = f(g; t; � ) 2 A qm � AT � AT : E(g; t; �) = 0g.We emphasize thatS � A qm �W , dim(A qm �W ) = Qm + 2 + d, Hdim(S)(S) > 0,sin
e S is at most 
ountable union of analyti
 graphs; here Hd denotes d-dimensional Hausdor� measure and dim(S) denotes the geometri
 dimensionof S whi
h is 
oin
ident with the Hausdor� measure of S.By applying �rst (5.1) and Theorem 5.4 to W0 and to W1 we have:T \ (A qm �W ) = f(g; t; � ) 2 A qm �W : J(g; t; � ) = 0g;56



T \ (A qm �W ) is a semi-analyti
 set 
ontained in A qm �W and the higherorder skeleton (De�nition 5.3 of [23℄ or De�nition 8.1 in the Appendix) S ofT \ (A qm �W ) has dimension at most Qm + 2 .If dim(S) < Qm + 2 then the theorem follows.If dim(S) = Qm+2 then we 
an show a 
ontradi
tion by a three steps proof.Step 1 - We prove the following statement.If we set Z = f(g; t; � ) 2 S : det(DWJ)(g; t; � ) = 0gwhere DWJ is the di�erential of J with respe
t to free 
oordinatesof d-
ell W ,then LQm+2(pr [A qm ℄ (Z)) = 0.Theorem 5.4 entails that the higher order skeleton S is a 
ountable union ofgraphs of analyti
 fun
tions F : A ! B where A and B are 
onne
ted opensets, A � U �W , B � V and U ;V � A qm are independent linear subspa
esof dimension Qm + 2� d and d respe
tively, we also 
hoose A and B so thatS \ (A� B) is 
onne
ted.For any 
hoi
e of F, A, B as above we prove:LQm+2(pr [A qm ℄ (Z \ (A�B))) = 0. (6.50)By denoting pr[U ℄ : U �W ! U the proje
tion on U we 
an say(g; t; � ) 2 Z\ (A�B) () 8><>: (g; t; � ) 2 (A�B),g = (pr[U ℄(g);F(pr[U ℄(g); t; �)),det(DWF)(pr[U ℄(g); t; � ) = 0. 9>=>; (6.51)We examine two possibilities a

ording to the fa
t that det(DWJ) is identi-
ally zero or not on S \ (A� B).If det(DWJ)� 0 on S \ (A � B) then det(DWF)� 0 on A sin
e, by Dini'sTheorem, (DWF)(h; w) = ((DVJ)(h;F(h; w); w))�1((DWJ)(h;F(h; w); w)).By (6.51) pr [A qm ℄ (Z \ (A� B)) is the image of the fun
tion G : A! A qmde�ned by G(h; w) = (h;F(h; w)). Hen
e Theorem 2.71 in [1℄ together withDG lower blo
k triangular matrix entailLQm+2(pr [A qm ℄ (Z \ (A�B))) = ZA j det(DG)j dh dw =ZA j det(DU pr[U ℄)j j det(DW F)j dh dw = 0, (6.52)hen
e (6.50) holds true.If det(DWJ) 6� 0 on S\(A�B) then the semi analyti
 set fdet(DWF) = 0g is57



a 
losed subset of A with higher order skeleton of dimension at most Qm+1:this follows by Dini's Theorem and (6.51) sin
e S \ (A� B) is 
onne
ted.By A � U �W and dimW = d, we getZ \ (A�B) = f(h;F(h; t; � ); t; � ) (h; t; � ) 2 fdet(DWF) = 0g � U �W0�W1gis a semi-analyti
 subset of S \ (A�B) of dimension at most Qm + 1, hen
e(6.50) holds true.Step 2 - We prove the following statement.Referring to (3.16), (3.17), (6.31), we denote the di�erentialof E with respe
t to g 2 RQm+2 by DA qm E and set( Y = �(g; t; � ) 2 S: (DA qm E)(g; t; � ) = 0	 if � 6= e�,Y = �(g; t; � ) 2 S n D: (DA qm E)(g; t; � ) = 0	 if � = e�.Then Y is 
ontained in a semi-analyti
 set whose higherorder skeleton has dimension stri
tly less than Qm + 2. (6.53)
We introdu
e Vr as the interse
tion with the 
ellW of all (2T�r)-dimensionaldiagonal hyperplanes, say:Rr = fr � f1; :::;Tg � f1; :::;Tg : ℄ (r) = rg 8r 2 f0; :::;Tg,Vr;r = f(t; � ) 2 AT � AT : ti = �k 8(i; k) 2 rg 8r 2 f0; :::;Tg 8r 2Rr,Vr =  � [r2RrVr;r� n � [s>r;s2RsVs;s�! \W 8r 2 f0; :::;Tg.Noti
e thatR0 = f;g, V0 = W n � Ss>r;s2RsVs;s�,Vr;r is a semi-analyti
 set 
ontained in AT � AT,Vr is a real analyti
 manifold 
ontained in W 8r 2 f1; :::;Tg,VT = � [AT℄ , Vr \ Vs = ; if r 6= s, W = TSr=0Vr.Now �x any r 2 f0; :::;Tg, with restri
tion r 6= T if � = e�, and denoteby L the dimension of Vr: L � minf2T � r; dg. Lemma 6.3 entails theexisten
e (for any (t; � ) 2 Vr) of at least L + 1 ve
tors f�hgL+1�=1 � A qm s.t.K(t;� ) = L+1T�=1f�E(g;t;� )�(�h) = 0g is a (Qm+1�L)-dimensional subspa
e of A qm . Then58



the set Kr = S(t;� )2VrK(t;� ) is a semi-analyti
 set with higher order skeleton ofdimension stri
tly less than Qm + 2, moreoverY \ (A qm � Vr) � Kr � S \ (A qm � Vr).Eventually (6.53) follows by8>>><>>>: Y � TSr=0�Y \ (A qm � Vr)� if � 6= e�Y � T�1Sr=0�Y \ (A qm � Vr)� if � = e�.Step 3 - By Step 1 and Step 2 we are left to prove the following statement.We set bS = ( S n (Z [ Y ) if � 6= e�S n ((�[A qm ℄�W ) [ Z [ Y ) if � = e� , then8<: LQm+2�pr [A qm ℄ �fE = 0g \ bS�� = 0 if � 6= e�LQm+2�pr [A qm ℄ �(fE = 0g \ bS)�� = 0 if � = e�.Sin
e S is semi-analyti
, there is a 
overing C of bS de�ned as follows� Any element of C is the produ
t of a 
onne
ted open subset N of A qmby a 
onne
ted open subset U of W ,� For any N �U 2 C there is an analyti
 fun
tion � : N �U ! Rd with(N�U)\bS = f�=0g, moreover det(DW�)(g; t; �) 6=0 on bS by Step 1.The di�erential of map (E;�) : N � U ! Rd+1 is a (Qm + 2 + d) � (d + 1)tensor with the following stru
ture:D(E;�) = " DA qmE DWEDA qm� DW� # .We 
laim that the rank of the matrix D(E;�) is 2T+ 1 on bS. In fa
t:� det(DW�)(g; t; � ) 6= 0 on bS;� (DWE)(g; t; �) = 0 for any (g; t; � ) 2 bS, sin
e Lemma 3.17 holds trueand E(g; t; �) = 0 entails that the right hand side of (3.22) vanisheson bS; 59



� there is at least a 
oordinate hj with �E(g;t;� )�(jh) 6= 0 for any (g; t; � ) 2 bS,thanks to Step 2.Hen
e, by Theorem 12.17 in [23℄, (re
alled in the Appendix A: Theorem8.10) the set f(E;�) = 0g has 
o-dimension at least d + 1 in N � U , that isdimension stri
tly less than Qm + 2. �7 Proof of the main theoremThis se
tion is devoted to prove Theorem 1.1.In Lemma 7.1 we show a 
ompa
tness property about lo
ations of minimizersvalid when data �, �, g, ful�ll the assumption that all related minimizershave the same 
ardinality of both jumps and 
reases (with possibly di�erentquality of singular set). In Theorem 7.2 we prove the existen
e of a denseset of 
ontinuous pie
ewise aÆne data leading to uniqueness. Eventually wededu
e Theorem 1.1.Lemma 7.1 Fix T; j; 
 2 f0; 1; 2; :::g, T = j+ 
, � 2 
j;
 , g 2 L2 and setT �g = ft(u) 2 AT : 9u 2 argminF g�;� with �(u) = �g,Rj;
 = �h 2 L2 : 8w 2 argminF h�;� ℄ (Sw) = j; ℄ (S _w n Sw) = 
	 .Assume T �g 6= ;, ℄ (Su) = j and ℄ (S _unSu) = 
 8u 2 argminF g�;� . (7.1)Then:1. g 2 Rj;
;2. the set T �g of lo
ations of F g�;� minimizers with quality � is a 
ompa
tsubset of the open set AT, hen
e dist(T �g ; � AT) > 0;3. for any neighborhood A of T �g 
ontained in AT there is an L2-neighborhoodV of g su
h thatt(u) 2 A for any u 2 argminF h�;� with �(u) = � and h 2 V \Rj;
.Proof. The �rst point is a restatement of (7.1). Now we prove 2 and 3.For any �xed 
hoi
e of sequen
es ftng � T �g , fung � argminF g�;� su
h thattn = t(un), we have F g�;�(un) = mg(�; �) and fung satis�es the hypotheses ofTheorem 2.5(1) in [4℄. Then there is u1 2 H2 su
h that, up to subsequen
es,un ! u1 strongly in L1, u1 2 argminF g�;�, and ftn = t(un)g tends tot1 = t(u1). A
tually t1 2 AT in fa
t if i 6= l then sequen
es ftn;ig,ftn;lg 
annot have the same limit point without 
ontradi
tion with (7.1) and60



Theorem 2.5(3) in [4℄. The number of 
reases is preserved. Obviously theordering (say the quality) is preserved too, then the se
ond statement isproven.The third statement holds true whenever g is an isolated point of Rj;
 sin
eg 2 Rj;
. If g is not an isolated point of Rj;
 we argue by 
ontradi
tion byassuming the existen
e of a neighborhood U of T �g su
h that for any n thereis gn 2 Rj;
 with kg � gnkL2 < 1n and un 2 argminF gn�;� with �(un) = � andt(un) =2 U .The sequen
e fung satis�es the hypotheses of Theorem 2.5(1) in [4℄ then upto subsequen
es there is u1 with un ! u1 strongly in L1, and by Theorem2.5(3) in [4℄ the sequen
e ftn = t(un)g tends to t1 = t(u1) =2 U .We have that F g�;�(un) ! mg�;� sin
e:��F g�;�(un)�mg(�; �)�� � ��F g�;�(un)� F gn�;�(un)��+ jmgn(�; �)�mg(�; �)jand the �rst term in the right-hand side goes to zero by plugging (2.12) of[4℄ in��F g�;�(un)� F gn�;�(un)�� = ��kun � gk2L2 � kun � gnk2L2�� == hg � gn; g + gn � 2uniL2 � kg + gn � 2unkL2 kg � gnkL2 ,while the se
ond term in the right-hand side goes to zero by (2.14) of [4℄.Moreover �(u1) = � (sin
e otherwise we get a 
ontradi
tion with (7.1) andTheorem 2.5(1) in [4℄); by lower semi-
ontinuity (Theorem 2.5(2) in [4℄) wehave F g�;�(u1)=mg(�; �). Then t(u1)2T �g �U 
ontradi
ting t(u1) =2U . �Theorem 7.2 Assume (1.2) and �=� =2 Q .Then there is A�;� dense in L2(0; 1) su
h that℄ (argminF h�;�) = 1 8h 2 A�;� , (7.2)A�;� � f
ontinuous pie
ewise aÆne fun
tions in [0; 1℄g. (7.3)Proof. It is enough proving:for any 
ontinuous pie
ewise linear fun
tion g 2 L2(0; 1) and " > 0there is a 
ontinuous pie
ewise linear fun
tion f 2 L2(0; 1) s.t.kf � gkL2 < ", ℄ (argminF f�;�) = 1. 9>=>; (7.4)We �x g 2 L2(0; 1) 
ontinuous pie
ewise linear. By (2.15) of [4℄ we know:9K 2 N 9U = ff 2 L2(0; 1) : kf � gkL2 < "g s.t.℄ (Su [ S _u) � K 8u 2 argminF h�;�, 8h 2 U . (7.5)61



So the number of possible pairs (℄ (Su); ℄ (S _u nSu)) with u 2 argminF h�;� andh 2 U is �nite, say less then K(K+ 1)=2. Proof of (7.4) splits in �ve steps.Step 1 - We exploit �=� =2 Q to show the following 
laim.LetH = H(j;ej; 
;e
) = �h 2 U : 9u; v 2 argminF h�;� with ℄ (Su) = j, ℄ (Sv) =ej℄ (S _u n Su) = 
, ℄ (S _v n Sv) = e
, (j; 
) 6= (ej;e
), j+ 
 � K, ej+e
 � K	.Then LQ+2(H \ A q) = 0 8Q 2 N 8q 2 AQ with Q = dim q.Set T = j+ 
, eT =ej+e
. Choose � 2 
j;
, e� 2 
ej;e
 and, referring to De�nition3.10, 
onsider the fun
tion E(�; �; e�) : A q ! R de�ned byE(h; �; e�) = inft2AT F(h; t; �) � inf�2AeT F(h; � ; e�) 8h 2 Aq.By Theorem 3.11(3) F(h; t; �) and F(h; � ; e�) are non negative 
ontinuousfun
tions with respe
t to h, t and � . Then maps h 7! inft2AT F(h; t; �) andh 7! inf�2AeT F(h; � ; e�) are Borel fun
tions from A q to R, sin
e they are in�mumof 
ontinuous fun
tions, hen
e h 7! E(h; �; e�) is a Borel fun
tion of h 2 A q �=RQ+2 .TheneH def= [�;e� nh 2 A q : E(h; �; e�) = � (ej� j) + � (e
� 
)o is a Borel subset of A q .Sin
e( E(th; �; e�) = t2E(h; �; e�) 8t 2 R, by Theorem 3.11(1),� (ej� j) + � (e
� 
) 6= 0 8j;ej; 
;e
 2 N , (j; 
) 6= (ej;e
), sin
e �=� =2 Q ,we dedu
e nt 2 R : th 2 eHo = f�1; 1g 8h 2 eH n f0g. (7.6)Sin
e eH is a Borel subset of A q �= RQ+2 and (7.6) holds true thenLQ+2( eH) = Z eH dx == ZS Q+1 �Z(0;+1) � eH (�;#) �Q+1 d�� d�(#) = ZS Q+1 0 d�(#) = 0.Sin
e H \ A q � eH we have LQ+2(H \ A q) = 0.62



Step 2 - Referring to (7.5) we introdu
e the set bH (of data g admitting atleast two minimizers with di�erent arrangements) and its 
omplement in U :bH = [(j;
)6=(ej;e
)H(j;ej; 
;e
), V =U n bH. (7.7)By (7.5) bH is the union of a �nite number of sets, then we dedu
e by Step 1LQ+2( bH \ A q) = 0, LQ+2(V \ A q) = LQ+2(U \ A q) 8q 2 AQ. (7.8)By (7.5) and (7.8) there are only the two following possibilities:either 9h 2 V : ℄ (argminF h�;�) = 1, (7.9)or 8>><>>:℄(argminF h�;�) > 1 8h 2 V and℄(Su)=℄(Sv), ℄(S _unSu)=℄(S _vnSv) 8h2V , 8u; v2argminF h�;� ,0 < ℄ ((Su [ S _u) = ℄ ((Sv [ S _v) � K 8h2V , 8u; v2argminF h�;� . (7.10)If (7.9) o

urs then 
laim (7.4) trivially follows.We show by steps 3,4,5 that (7.10) entails a 
ontradi
tion.Step 3 - We prove the following 
laim.If (7.10) o

urs then there arej; 
;T 2 f0; :::;Kg, T = j+ 
 � K, �; e� 2 
j;
,a 
ompa
t subset K0 � AT � AT,a subset �0 � V ,an exhaustive family of partitions fq0m = (q1; q2;:::; qQ0m)gm,su
h that8><>: S _g � q00, Sg = ;,LQ0m+2(�0 \ A q0m ) > 0 8m 2 f0; 1; :::g,(t(u); t(v)) 2 K0 8h 2 �0, 8u; v 2 argminF h�;� : �(u) = �, �(v) = e�.In order to prove the 
laim, we introdu
e the following notation:Æ(q) = max fql+1 � ql : l 2 f0; :::;Qgg 8q = (ql)Ql=1 2 AQ 8Q 2 f0; 1; :::g,P= fq : S _g � qg,and, for any m; n 2 f0; 1; :::g with m+ n � K and any !; e! 2 
m;n, we set:V (m; n; !; e!) = fh 2 V : 9u; v 2 argminF h�;� s.t. u 6= v, �(u) = !, �(v) = e!g,63



P(m; n; !; e!) = fq 2 P : LQ+2(V (m; n; !; e!) \ A q) > 0g,Z = f(m; n; !; e!) : 8Æ > 0 9q 2 P(m; n; !; e!) and Æ(q) < Æg.We have that Z is a �nite non empty set sin
e: the number of quadruples(m; n; !; e!) with m+n � K and !; e! 2 
m;n is �nite; Sm;n;!;e!V (m; n; !; e!) = V ;for any Æ > 0 the subset of the elements q 2 P with Æ(q) < Æ is in�nite;LQ+2(V \ A q) = LQ+2(U \ A q) > 0 for any q 2 P by (7.8).We label the elements of the �nite set Z i.e. Z = fzr = (mr; nr; !r; e!r)gNr=1.We set V0 = U , for r � 1, if Vr�1 \ V (zr) = ; then we set (rh;Tr ; Vr) =(;; ;; Vr�1), otherwise we 
hoose rh 2 Vr�1 \ V (zr) and observe that Lemma7.1 entails the existen
e of a 
ompa
t neighborhood Tr of T !rh � T e!rh and aneighborhood Vr � Vr�1 of rh su
h that (t(u); t(v)) 2 Tr 8h 2 Vr \ V (zr),8u; v 2 argminF h�;� with �(u) = !r, �(v) = e!r.Among all triplets 
onstru
ted above we 
onsider the 
olle
tion of the oneswhose �rst two entries are not empty and relabel su
h triplets f(sh;Ts; Vs)gMs=1with M � N . Summarizing we have8>>>>>>>>>>><>>>>>>>>>>>:
(i) sh 2 V (zs) � L2(0; 1), Ts is a pair of lo
ations,(ii) sh 2 Vs open set in L2, Vs � Vs�1 � U ,(iii) Ts � AT �AT is a 
ompa
t neighborhood of T!rsh � T e!sshwhere T!h is de�ned in Lemma 7.1,(iv) (t(u); t(v)) 2 Ts 8h 2 Vs \ V (zs), 8u; v 2 argminF h�;� s.t.�(u) = !s, �(v) = e!s. (7.11)

For any (m; n; !; e!) =2 Z there is Æ = Æ(m; n; !; e!) > 0 su
h thatfq 2 P(m; n; !; e!) : Æ(q) < Æg = ;.Let Æ0 = min fÆ(m; n; !; e!) : (m; n; !; e!) =2 Z, m+ n � K, !; e! 2 
m;ng > 0.For any �xed exhaustive family fqjgj�0 � P with Æ(q0) < Æ0, by V � U ,(7.8) and de�nition of P and Z, we haveLQj +2 � bH [ [(m;n;!;e!)=2ZV (m; n; !; e!)� \ A qj! = 0 8j,hen
e by (7.8)LQj +2� [z=(m;n;!;e!)2ZV (z) \ A qj � = LQj +2(U \ A qj ) > 0 8j ,64



then, sin
e VN is an open set of L2 and VN � U ,LQj +2�VN \ [z2ZV (z) \ A qj � = LQj +2(VN \ A qj ) > 0 8j .Sin
e Z is a non empty and �nite set there is zr = (mr; nr; !r; e!r) 2 Z anda subsequen
e fq0mgm � fqjgj su
h that Tr 6= ; and LQ0m+2(VN \ V (zr) \A q0m ) > 0 for any m. We sele
t j = mr, 
 = nr, � = !r, e� = e!r, K0 = Tr and�0 = VN \ V (zr).Step 4 - We prove the following 
laim (whi
h is an iteration of Step 3).If (7.10) o

urs then there are T; j; 
 2 f0; :::;Kg, T = j+ 
, �; e� 2 
j;
 anda family F = f'i = (Ki;�i; fqimgm)gi2N of triplets whereKi is a non empty 
ompa
t subset of AT � AT � R2T ,�i is a subset of V ,fqimgmis an exhaustive sequen
e of partitions (Qim = ℄ (qim)),su
h that, for any i 2 N,8>>>><>>>>: Sg = ;, S _g � qi0 and fqimgm is a subsequen
e of fqi�1m gm,Ki � Ki�1, diam(Ki) � 12diam(Ki�1) and �i � �i�1,LQim+2(�i \ A qim ) > 0 8m 2 f0; 1; :::g,(t(u); t(v)) 2 Ki 8h 2 �i, 8u; v 2 argminF h�;� : �(u) = �, �(v) = e�.We argue by indu
tion. Step 3 is the starting point: we set '0 = (K0;�0; fq0mgm).Then, by assuming that the family F is de�ned up to index i, we show howto de�ne 'i+1 = (Ki+1;�i+1; fqi+1m gm).Choose a �nite 
overing fKi;kgNk=1 ofKi by 
ompa
t subsets with diam(Ki;k) �diam(Ki)=2, the 
hoi
e is possible sin
e Ki is 
ompa
t by indu
tion.For any k 2 f1; :::; Ng set�i;k = fh 2 �i : 9u; v 2 argminF h�;� with u 6= v, (t(u); t(v)) 2 Ki;kg:Sin
e LQim+2(�i \ A qim ) > 0 8m by indu
tion,9 a sequen
e fkmgm with values in f1; :::; Ng :LQim+2(�i;km \ A qim ) > 0 8m. (7.12)Hen
e there is k 2 f1; :::; Ng and a subsequen
e fmngn su
h that kmn = k 8n.We de�ne 'i+1 as follows: Ki+1 = Ki;k, �i+1 = �i;k, fqi+1m gm = fqimngn.65



Step 5 - We exploit Step 4 and Theorem 6.4 to show that (7.10) 
annothold true (as was 
laimed at the end of Step 2).By the 
onstru
tion in Step 4, Ti Ki 6= ;: pre
isely Ti Ki is a single point. Sowe 
an set (et; e� ) = Ti Ki. Then we 
hoose: T, j, 
, �, e� as in Step 4; " as inTheorem 6.4; j su
h that Kj � B(et; "=2)�B(e� ; "=2); m (large enough) su
hthat the CW stru
ture indu
ed by qjm on AT � AT (is so �ne that) providesa 
ompa
t neighborhood K of Kj where K � B(et; ") � B(e� ; ") and K is aunion of 
ells of the CW stru
ture indu
ed by qjm.For the sake of simpli
ity we drop the indexes j and m and we write q, Qinstead of qjm, Qj in the following.For any d 2 f0; :::;minf2T; 2Kgg we setfCd;lgLl=1 the �nite set of all d-dimensional open 
ells of K, L = L(d),�d;l = fh 2 �j \ A qjm : 9u; v 2 argminF h�;� s.t.�(u) = �, �(v) = e�, (t(u); t(v)) 2 Cd;lg.FormfCd;lgd;l is a �nite set of 
ells, LQ+2(�j \ A q) > 0 and �j \ A qjm � Sd;l�d;l,we dedu
e: there is a pair (d; l) su
h that LQ+2(�d;l) > 0.On the other hand we prove that LQ+2(�d;l) = 0 obtaining the 
ontradi
tion.By referring to De�nition 6.1, (6.1) and (6.49) we sete� = ( pr[A q ℄(fE = 0g \ fE = 0g) if � 6= e�,pr[A q ℄�(fE = 0g \ fE = 0g) n (A q � � [AT℄)� if � = e�,where �[AT℄ = f(t; � ) 2 AT � AT : t = �g.The 
hoi
e W = Cd;l in Theorem 6.4 entails LQ+2(e�) = 0. We 
laim:�d;l � e�. (7.13)To prove (7.13) we 
hoose h 2 �d;l and u; v 2 argminF h�;� with u 6= v,�(u) = � and �(v) = e�; then, referring to identi�
ation (3.16) and (3.17),we have(h; t(u); t(v)) 2 ( fE = 0g \ fE = 0g if � 6= e�fE = 0g \ fE = 0g) n (A q � � [AT℄) if � = e�,sin
e,by referring to De�nition 4.8(1): u = 
[h; t(u);q; �℄ and v = 
[h; t(v);q; e�℄;66



by (7.10): ℄ (Su) = ℄ (Sv), ℄ (S _unSu) = ℄ (S _v nSv), E(h; t(u); t(v);q; �;e�)=0;by u;v2argminF h�;� and Theorems 2.1, 4.5: E(h;t(u);t(v);q;�;e�)=0;by Theorem 3.8 sin
e we have 
hosen u 6= v: t(u) 6= t(v) if � = e�.Then (7.13) is proven and, sin
e LQ+2(e�) = 0 we dedu
e LQ+2(�d;l) = 0,e.g. a 
ontradi
tion with (7.10). �Proof of Theorem 1.1. We �x �; � ful�lling (1.2) and �=� =2 Q . Then we
hoose A�;� as in Theorem 7.2. We de�ne the fun
tion H : L2 ! [0;+1) byH(g) = supfku� vkL1 u; v 2 argminF g�;�g 8g 2 L2(0; 1).Sin
e ℄ �argminF g�;�� = 1 for any g 2 A�;�, we getA�;� � �g 2 L2(0; 1) : ℄ �argminF g�;�� = 1	 = H�1(0) == �g 2 L2(0; 1) : H(g) = 0	 = \n2N �g 2 L2(0; 1) : H(g) < 1=n	 .We 
laim8n Vn=H�1([0; 1=n)) is an L2-neighborhood of dense set H�1(0)�A�;� , (7.14)i.e.: 8n 9Un open sets in L2(0; 1), Un ds� L2(0; 1), A�;� � Un � Vn.Then Theorem 1.1 is a 
onsequen
e of (7.14) by settingE�;� = H�1(0) = Tn Vn � Tn Un.We prove (7.14) by showing thatH is 
ontinuous at any g 2 H�1(0). Arguingby 
ontradi
tion assume that there are " > 0, f s.t. H(f) = 0 and a familyffngn � L2 with fn !L2 f and H(fn) > ". Then for any n we 
an 
hooseun; vn 2 argminF fn�;� su
h that kun � vnkL1 > ". (7.15)By Young inequality and (2.12),(2.13) of [4℄F f�;�(un) = F fn�;�(un) + kun � fk2L2 � kun � fnk2L2 �� mfn(�; �) + 2 kfnk2L2 + 2 kfk2L2 � 4 kfnk2L2 + 2 kfk2L2 � C,in the same way we get F f�;�(vn) � C.By mfn(�; �) def= min F fn�;� = F fn�;�(un) = F fn�;�(vn),and property (2.14) in [4℄ we get F fn�;�(un)! mf (�; �), F fn�;�(vn)! mf(�; �)then by Theorem 2.5(1) in [4℄, up to subsequen
es, we have un !L1 u 2 H2and vn !L1 v 2 H2 with u; v 2 argminF f�;�. Sin
e ℄ �argminF f�;�� = 1 wehave u = v, then kun � vnkL1 ! 0 whi
h is in 
ontradi
tion with (7.15). �67



8 Appendix A: CW 
omplexes and TransversalityHere follows a short summary of the notions about CW 
omplexes whi
h areneeded in this paper.Let I = [0; 1℄. For any n 2 f0; 1; 2; :::g we de�ne In to be the 
losed unitn-
ube if n > 0 and the origin if n = 0, we also de�ne (0; 1)n to be the openunit n-
ube if n > 0 and the origin if n = 0, we denote by �In the topologi
alboundary of In if n > 0 and set �I0 = ?.De�nition 8.1 A CW 
omplex X is the dire
t limit of a sequen
e fXng1n=�1of topologi
al spa
es de�ned indu
tively as follows:� X�1 = ;,� a family of 
ontinuous maps ffn� : �In� ! Xn�1g�2�n 
alled gluingmaps,� Xn obtained from the following diagram:F�2�n In� F�2�n �In� fn
//oo Xn�1by push-out F�2�n In�

((PPPPPPPPPPPPPPP

F�2�n �In� fn
//oo Xn�1

wwooooooooooooooooXnwhere F denotes the disjoint union of spa
es and the left arrow repre-sents the inje
tive embedding and fn = F�2�nfn� .The subspa
es Xn are 
alled n-skeleta, for n = �1; 0; 1; :::.A CW 
omplex X is �nite of dimension n if �n is a �nite set for any n,�n 6= ; and �n = ; whenever n > n. In su
h 
ase Xn is 
alled higherskeleton and Xn = Xn for any n � n.Noti
e that, by push-out, ea
h gluing fun
tion fn� : �In� ! Xn�1 extends to a
ontinuous fun
tion gn� : In� ! Xn whi
h is an homeomorphism on the openn-
ube In� n �In� . 68



De�nition 8.2 A n-
ell of a CW 
omplex X is the image of a n-
ube In�through gn�, an open n-
ell of X is the image of an open n-
ube In� n �In�through gn� .We emphasize that the De�nitions 8.1 and 8.2 above refers to 
ubes insteadof balls, nevertheless they are equivalent to De�nition 5.3 in [23℄.The following result due to Lojasiewi
z (see [19℄) des
ribes a very large 
lassof spa
es whi
h are CW 
omplexes.De�nition 8.3 Consider a real analyti
 manifold M and a subset S �M .We 
all S a semi-analyti
 set if and only if for any x0 2 S there is a neigh-borhood V of x0 and a �nite set ffj : V ! Rg of analyti
 fun
tions su
h thatS \ V is a �nite union of �nite interse
tions of sets of typefx : fj(x) > 0g , fx : fj(x) = 0g .De�nition 8.4 Consider an aÆne spa
e spa
e X, a real analyti
 manifoldY and a subset S � X � Y . We 
all S a partially semi algebrai
 set withrespe
t to X if and only if for any y0 2 Y there are:� a neighborhood U of y0� a �nite set ffj : X � U ! Rg of analyti
 fun
tions whi
h are polyno-mials in x for any �xed y 2 Us.t. S \ (X � U) is a �nite union of �nite interse
tions of sets of typefx : fj(x) > 0g , fx : fj(x) = 0g .Theorem 8.5 (Lojasiewi
z [19℄) Consider a real analyti
 manifold Y anda lo
ally �nite 
olle
tion fBlgl2� of semi-analyti
 sets of Y s.t. Bl � Y forany l 2 �.Then there exist an aÆne spa
e X, a lo
ally �nite sympli
ial 
omplex K anda homeomorphism f : jKj ! Y su
h that:1. jKj is a subspa
e of X;2. the set f(x; f(x)) x 2 jKj � X � Y g is partially semi-algebrai
 withrespe
t to X (see De�nition 8.4);3. f(j�j) is an analyti
 sub-manifold of M and the restri
tion of f toj�j � jKj is an analyti
 isomorphism for any simplex � 2 K;69



4. f(j�j) � Bl or f(j�j) �M nBl for any simplex � 2 K, l 2 �.Here jKj denotes the geometri
 realization of the sympli
ial 
omplex K andj�j denotes the geometri
 realization of the simplex � 2 K.Example 8.6 Theorem 8.5 provides many examples of CW 
omplexes: thesemi analyti
 sets and the semi-algebrai
 sets.In this paper we are also interested in a very parti
ular type of CW 
omplexeswhere 
ells are 
ubes and gluing maps are identities on boundaries, as in the
ase of the whole 
olle
tion of (T+ 2) dimensional re
tangles lying in AT ofthe CW stru
ture indu
ed on [0; 1℄T by ve
tors of type q.Example 8.7 Consider the spa
eX = �(x; y) 2 R2 : (0 � x � 1 and y = 0) or (x = 0 and 0 � y � 1)	 .This spa
e is a 1-dimensional CW 
omplex with X0 = f(0; 0); (0; 1); (1; 0)g,X1 = X; �0 = f1; 2; 3g, f 01 ; f 02 ; f 03 : �I0 ! ; = X�1; �1 = f1; 2g, f 1� :f0; 1g ! X0 given by f 11 (0) = (0; 0), f 11 (1) = (1; 0), f 12 (0) = (0; 0), f 12 (1) =(0; 1).Cells of X are the following: (0; 0), (0; 1), (1; 0) the three 0-
ells; [0; 1℄�f0g,f0g � [0; 1℄ the two 1-
ells.Geometri
 realization of X is the 
olle
tion X0 [X1 � R2 .Example 8.8 Consider the spa
eX = �(x; y) 2 R2 : �0�x� 13 and 13�y�1� or �0�x� 23 and 23�y�1�� .This spa
e is a 2-dimensional CW 
omplex with skeleta:X0 = �(0; 13); (0; 23); (0; 1); (13 ; 13); (13 ; 23); (13 ; 1); (23 ; 23); (23 ; 1)	 ,X1 = �f0; 13g � [13 ; 1℄� [ �f23g � [23 ; 1℄� [ �[0; 23 ℄� f23 ; 1g� [ �[0; 13 ℄� f13g� ,X2 = X;and gluing maps:�0 = f1; :::; 8g, f 0� : �I0 ! ; = X�1;�1 = f1; :::; 10g, f 1� : �I1 ! X0 whose images are points given byf 11 (0) = (0; 13), f 11 (1) = (13 ; 13), f 12 (0) = (0; 23), f 12 (1) = (13 ; 23),f 13 (0) = (0; 1), f 13 (1) = (13 ; 1), f 14 (0) = (13 ; 23), f 14 (1) = (23 ; 23),f 15 (0) = (13 ; 1), f 15 (1) = (23 ; 1), f 16 (0) = (0; 13), f 16 (1) = (0; 23),f 17 (0) = (0; 23), f 17 (1) = (23 ; 1), f 18 (0) = (13 ; 13), f 18 (1) = (13 ; 23),f 19 (0) = (13 ; 23), f 19 (1) = (23 ; 1), f 110(0) = (23 ; 23), f 110(1) = (23 ; 1);70



�2 = f1; 2; 3g, f 2� : �I2 ! X1 given byf 2�(x; y) = (13x; 13y) +8><>: (0; 23) if � = 1,(0; 13) if � = 2,(13 ; 23); if � = 3. (x; y) 2 �I2We re
all from [23℄ the de�nition of transversality and Theorem 12.17.De�nition 8.9 Let M, V be C1 manifolds with �M = ;, f 2 C1(M;V),N be a C1 sub-manifold of V.We say that f is transverse regular to N at x 2 f�1(N ) ifDf(x) (�(M)x) + �(N )y = �(V)ywhere Df(x) is the di�erential of f at x and �(Z)z is the tangent spa
e toZ at point z.In this 
ase we say that x is a regular point for f .Theorem 8.10 (Switzer [23℄) LetM, V be C1 manifolds, f 2 C1(M;V),N be a C1 sub-manifold of V.Suppose �M = ;, dim N +dim M� dim V � 0 and f transverse regular toN at any x 2 f�1(N ), then f�1(N ) is a sub-manifold of M and
odim f�1(N ) = 
odimNthat is dim M� dim f�1(N ) = dim V � dim NTheorem 8.10 is applied when N is a single point (hen
e dim f�1(N ) =dim M � dim V) in the proof of Lemma 6.2 and, in its general form, ofTheorem 5.4 and of Theorem 6.4.Referen
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