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ABSTRACT: Blake-Zisserman functional Fo‘fﬁ achieves a finite
minimum for any pair of real numbers «, (B such that 0 < f <
a <283 and any g € L*(0,1).

Uniqueness of minimizer does not hold in general. Nevertheless,
in the 1D case uniqueness of minimizer is a generic property for
Fiﬁ in the sense that it holds true for almost all gray levels data

g and parameters «, (3: we prove that, whenever 3 ¢ Q, the

minimizer is unique for any g belonging to a G subset of L?(0,1)
dependent on « and 3.
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1 Introduction

Image segmentation plays an important role in computer vision and in the
understanding of biological vision. The first variational model for image seg-
mentation was proposed by D.Mumford & J.Shah [21], [22] and studied by



several authors ([16], [17], [18], [20]). Blake & Zisserman showed some incon-
venient related to Mumford & Shah approach and introduced an alternative
way ([3]) to translate image segmentation task into a variational formulation
which actually is a free gradient discontinuity problem. Blake & Zisserman
approach was studied in [5], [6], [7], [8], [9], [10], [13], [12], [15].

Here we focus the question of uniqueness restricting the analysis to the 1
dimensional Blake & Zisserman functional F g’ﬂ defined as follows.

Given g € L*(0,1), a, 3 € R and u € H? we set Fgﬁ : H? — [0, +00)

FY 5(u) = /0 jii(2)|* da+ /0 u(z) — g(2)|” dz+at (Su)+584(Si\S.). (1.1)

Here and in the sequel for all v € L?(0,1), @ denotes the absolutely contin-
uous part of the distributional derivative u' of wu, i denotes the absolutely
continuous part of (4)', S, C (0, 1) denotes the approximate discontinuity set
([1]) of w and S; C (0,1) the approximate discontinuity set of @, H? denotes
the set of v € L?(0,1) such that S, and S; are finite sets and v € H*(I) for
any interval I C (0,1)\ (S, US;), eventually £ denotes the counting measure.
We will call singular set of u the set S, U S;. We set

mf(a, B) = inf{Fiﬁ(u) Yu € H?},

argmin FY ; = {u € H*:  FJ 4(u) =m?(a, §)}.

We recall that argmin Fiﬁ # () whenever the two following conditions are
satisfied ([15]):
0<pf<a<2p (1.2)

g€ L*0,1). (1.3)

Nevertheless minimizers are not unique in general. In [4] Section 3 we exhibit
examples of ¢ € L*(0,1) and «, 8 fulfilling (1.2) such that FY 5 has more
than one minimizer (see Counterexample 3.1, 3.2, 3.3 of [4]). Moreover we
give an example of a non empty open subset A C L?(0,1) such that for
any g € N there are a and 3 satisfying (1.2) and £ (argmin F] 5) > 2 (see
Counterexample 3.4 of [4]). Anyway m?(a, () continuously depends on g, «,
B ([4], Theorem. 2.3).

The main result of this paper is the following:

Theorem 1.1 For any a and 3 with 0 < < a <20 and % ¢ Q, there is a

G5 set (countable intersection of dense open sets) Eq 5 C L*(0,1) such that
for any g € E, s we have § (argmin Fiﬁ) = 1.



As usual we denote by G the intersection of at most countably many dense
open sets. Since the complement in L?(0, 1) of a G4 subset and the comple-
ment in R? of the set {(a,3) € R?: a/3 ¢ Q} are sets of first category,
Theorem 1.1 says that uniqueness for minimizers of F' i 5 1s a generic property.
The whole picture we obtain about generic uniqueness and counterexamples
is coherent with the presence of instable patterns, each of them correspond-
ing to a bifurcation of optimal segmentation under variation of parameters:
this fact is natural since suitable combinations of alfa and beta are related
to contrast threshold, crease detection, “luminance sensitivity”, resistance to
noise and double-edge detection (see [BZ]).

The absolutely continuous part of functional (1.1) will be denoted by

:/0 i(z) dx+/ fu(2) — g(x)f da. (1.4)

Uniqueness of solution and its coincidence with the datum are shown in case
of piecewise affine datum ¢, under suitable smallness assumption on «, 3
(Lemma 3.7). In the general case the discussion about uniqueness of min-
imizers is outlined as follows. We identify partitions {g;}, of the interval
(0,1) with vectors q = (¢;), such that 0 < q < ...<qq < 1. In case of a
partition associated to a singular set ({¢;}&, = S, USU) the vector q is called
location of the singular set and the ordered attribute of belonging to S, or
Sy is called quality (see Definition 3.1). Theorem 3.2 states that if u is a
minimizer of F] 5 then it is the unique minimizer of F ;(w) among w in H?
fulfilling S,, = S, and S; = S;; Euler equations (recalled in Theorem 2.1)
may lack uniqueness (see Counterexamples 3.1-3.4 in [4]), moreover even with
fixed singular set the whole system of Euler equations is overdetermined. For
these reasons we introduce Problem 3.3, related to a selection of Euler equa-
tions, where we prescribe two parameters (still called location and quality,
see (3.3)) associated to suitable transition conditions: this is motivated by
the fact that in case of minimizers the two notions of location and quality for
function and Problem 3.3 coincide). Theorems 3.8, 3.9, 3.11 prove that sys-
tem (3.2) has unique solution b which depends linearly on g and has energy
F9(b) quadratic on g. Theorem 3.14 shows analytic dependence of energy
(1.4) with respect to location of singular set (varying on open cells of CW
structure induced by piecewise affine datum g). Lemma 3.19 shows continu-
ous dependence for solution b of Problem 3.3 with respect to perturbations
of the singular set of a piecewise affine datum g. In Section 4 we introduce
two auxiliary problems: Problem 4.2, which is equivalent to minimization of
functional (1.1) in case of continuous piecewise affine datum ¢, and Problem
4.4 which is related to a different selection of Euler equations, in such a way
that common solutions of Problems 3.3 and 4.4 fulfill the whole system of



Euler equations (7)-(iv),(vi) in Theorem 2.1. In Section 5 we introduce the
excess functional £ which vanishes only on common solutions of both Prob-
lems 3.3 and 4.4; by exploiting this tool, for suitable integers m and n, we
define subsets of R™ x R™ measuring how many pairs (g, t) exist such that
g is a continuous piecewise affine function with no more than m creases and
t € R” is the ordered singular set of a solution of Problem 4.2 with datum
g: we prove (Theorem 5.4) that these subsets are finite CW complexes of
dimension m. In Section 6 we prove that the set of all affine data related to
suitably refined partitions and exhibiting non uniqueness of minimizer with
different arrangement and same prescribed cardinality of singular set has null
m dimensional Lebesgue measure (Theorem 6.4) where m = Q + 2 and Q is
the cardinality of the partition.

In Section 7 the main result (Theorem 1.1) is deduced as a consequence of
the following intermediate claim (Theorem 7.2): for any «, § fulfilling (1.2)
and a/ irrational, the set of data g with uniqueness of minimizer for F? g
is dense in L2. Theorem 7.2 is achieved by exploiting several technical steps
proven in Sections 3 - 7: the idea is to show that, for sufficiently fine parti-
tions q = (¢;), of (0, 1), the set of continuous piecewise linear functions g
associated to q such that Fg has more than one minimizer is small; here
small means that its (Q + 2) dimensional Lebesgue measure is zero, after
identification of continuous piecewise linear functions associated to the par-
tition g and the euclidean space R®+2.

We emphasize that, with continuous piecewise affine datum g, jump and
crease points of minimizers are not necessarily localized among those of ¢
(see Section 4 of [4]): hence the techniques used for proving the generic
uniqueness for Mumford-Shah functional in [2] cannot be applied to Blake-
Zisserman functional. For this reason we follow a different strategy, by care-
fully exploiting some intersection properties between real analytic varieties.

2 Euler equations

In this section we recall the whole set of Euler equations and the compliance
identity for minimizers of the functional F] ; (Theorems 2.1, 2.1 of [4]). For
the multidimensional situation (n > 2) we refer to [7], [10] and [12].

Theorem 2.1 (Euler equations) If (1.2) and (1.3) hold true then every



u which minimizes (1.1) in H? is also a solution of the following system:
(i) u""+u=yg on (0,1)\ (Sy U Sy)

i) iy =1 =0 on S; US, U{0,1}

iti) Wy=7u_=0 onS,U{0,1}

(

(

(iv) Uy ="Tu_ on Sy
| (

1
v) §(u+ +u_) =g on S, N{continuity points of g}

In (i7) and (iii) we conventionally set ii_(0) = i4(1) =0 = U (1) = % _(0).
If, in addition to (1.2) and (1.3), g is continuous piecewise affine then
(471),(iv) improve as follows

(vi) Uy, =7U_=0 on (S, US;U{0,1})\ S;
If, in addition to (1.2) and (1.3), a = [ then (iii),(iv) improve as follows
(vi7) Uy =71_=0 on S, U S; U{0,1}.
By summarizing:
(viii) i€ H*(0,1) and (i)"+u=g in D'(0,1).

Proof. Properties (i)-(v), (vii), (viii) are proven in [4] Section 2 Theorem
2.1. Property (vi) is a straightforward consequence of (7ii) and of (3.24)
which will be proved in Lemma 3.18. [

Theorem 2.2 (Compliance identity) Assume (1.2) and (1.3). Then we
have, for any u € H? fulfilling the Euler equations (i)-(iv) of Theorem 2.1:

1 1 1
Fi(u) = / (9> — gu) dx, / |ii]* do = / (gu — u?) dx (2.1)
0 0 0
and )
FL0) = [(@ = guds + ag(5) + 02(S\S.). (@22)
0
In particular any w minimizing F 5 over H* fulfills (2.1) and (2.2).

Theorem 2.3 For any possibly discontinuous piecewise affine function g
with S, U Sy # @ we introduce the subset S[g] of H* as follows:
v € Slg] if and only if, either
I EICACSERICATS
ﬁ(sv) < ﬁ(Sg)—i'ﬁ (Sg\Sg)_ﬁ (S’U\SU)7
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or

£(Se\Sy) < £(9\Sg) +2(8(S) — £(50))-
Then S[g] # @ and

inf F9(v) > 0. (2.3)

vES[g]

These results are proven in [4] Section 2.

3 Notation and preliminary results

In this section we fix the notation used throughout the following sections in
the proof of generic uniqueness and show some preliminary results.

L™ denotes the n-dimensional Lebesgue measure on R*. For any z € R”
and 7 > 0 let B,(z) = {y e R*: |y—uz| < r}, for any A, B C R" let
dist(A,B) = inf{la —b| a € A, b € B}, 0A denotes the topological bound-
ary of A. We denote by L?(0, 1) the space of all measurable square integrable
real valued functions and by S,, C (0, 1) the approximate discontinuity set of
u whenever u € L?(0,1); we set

H*(a,b) = {v e L*a,b): o™ € L*(a,b), 0 < h <k},

H? ={ve L* S,US, is finite, v € H*(I) V interval I C (0,1)\(S,US;))}.

For any u € H? we call jump points the elements of S, C (0,1) and crease
points the elements of (S \ S,) C (0,1).

Let Q. be the set of all (ij“c) orderings of j + ¢ distinct points in (0, 1) such
that j among them are (undistinguished jump points) marked with J, and
c among them are (undistinguished crease points) marked with C: for any
oc€Qe, T=j+c,andl =1,.., T, we set 0y = J if the [-th point is a jump
point, o; = C if the [-th point is a crease point, moreover we set oq = J and
o141 = J by convention.

In this way each element of u € H? with j jump points and c crease points
singles out exactly one element of € ¢, while several functions in #? (with the
same ordering of jumps and creases) may correspond to one single element
of Qj,c-

We are interested in elements of #? with fixed numbers j of jump points and c
of crease points whose location is free in (0, 1): for any integer T (representing
the sum T = j + ¢) we introduce the open connected subset At of (0,1)7 as

Ar={t=(t;,...,t1) € (0,)T: ¢t <..<tr}.



At is identified in a natural way with the set of partitions of (0,1) with
cardinality T. Abusing notation, whenever needed, we write a € t to mean
a € {t;}, while ty = 0, tt41 = 1 are always understood.

We observe that each u € H? uniquely defines a pair

(t,0) = (t(u),0(u)) € Ay(s,0s:) X Dy (S0).6(5u\Sa)
such that

S U Sy =t = {ty(u) }} 35
and #;(u) is a crease point if 0;(u) = C and a jump point if o;(u) = J.
Definition 3.1 For any function u € H? we call:
e location of u: the vector t = t(u) € Ay associated to S, U Sy,

e quality of u: the element 0 = o(u) € Q¢ describing the ordered kind of
singularity associated to S, U Sy,

e arrangement of u: the pair (t(u),o(u)) location of u and quality of .

At first we deal with minimizers of Fg’ﬂ with exactly j jump points and c
crease points with prescribed arrangement. Then we will examine candi-
date minimizers having arrangement compatible with (possibly different) a
prescribed arrangement.

Theorem 3.2 Assume u € argmin F] ;. Define
HE={veH t)=tu), ocl)=o0cu)},
then uniqueness hold true on H2:

argmin F) 5 = {u}.
VEH2Z
Moreover, for any fized w € H? with S, C S, and Sy C S, U S, there is

a convez neighborhood U = U(w) of 0 in R such that the Euler equations
(i)-(iv) of Theorem 2.1 are not satisfied by any u + Aw with A € U \ {0}.

Proof. If w e H? and S, € S, or Sy € S, U Sy then u + Aw ¢ H2 for any
A eR\{0}.

In order to perform variations in 2 we have to test only functions w € H?
with S, € S, and S; C S, US;. Fix a w fulfilling these properties, then
there is a finite (possibly empty) set P = P(w) C R\ {0} such that

u+dw g H,  VAEP
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because of possible cancellations in Sy p U Syiaw- Nevertheless 0 ¢ P and
u+Aw € H.  V\in the open set R\ P.

Set o(A\) = F9(u+Aw). F9 is strictly convex in H?, hence ¢ is strictly convex
in R, hence ¢ is strictly convex in the maximal open interval U = U(w) of
R\ P containing 0. Then 0 belongs to the interior of U, hence 0 is the unique
minimum point of ¢ in R\ P, say

Fi(u) = min F(u + Aw) = min p(\) = ¢(0).

AER\P AER\P
Since u € argmin F] ; and
FY (w4 dw) = F(u+ Mw) + at(Sy) + 84(Su\ Su) VAER\P
then

Aglmg{lng,g(u +dw) = min (p(A) +af (Su) + 515\ Su)) = Fs(w),

and the first part of the thesis is achieved.
For any fixed w € H2 let P = P(w) and U = U(w) be defined as above and
A€ R\ P: then ¢(N) := FY s(u+ dw) = o(A) + af(Sy) + B4 (Sa\ Su) for
any AeR \ P since jj(su-l-/\w) = ﬁ(su) and ﬁ(su-i-)\u') \ Su-l-/\w) = ﬁ(su \ Su)
for any A € R\ P.
The previous argument entails that 1) is strictly convex in U = U(w) and
() has unique strict minimizer at A = 0 with respect to U hence there are
finite values of

PL(A) #0 VA e U\ {0}. (3.1)
From (3.1) we deduce the second part of the thesis. Arguing by contradiction,
we assume that for some fixed w € H2 and A € U(w) \ {0} the function
u 4+ Aw fulfills the Euler equations (i)-(iv) of Theorem 2.1. Then u + Aw €
H*((0,1) \ (S, U Sy)) and by labelling #;, [ = 1, ..., T, the ordered finite set
S, U S, and tg = 0, tt41 = 1, we deduce the ex1stence of '(N):

(fo x) + M (x)) 2d:l:+f0 z) + dw(z) — g(x))? dx) _
2f0 ( )+ A(x )w

_2f1 +)\w(x)> (x )dx—i—2f0 (u )+ Aw(x) — g(:}:))w(:c) dr+

S ((@t1) + A (1)t (t) = (i) + A (#)) (i) ) =

=0



2[0( z) + Niif ( )) ()d:r+2f0( ) + hw(z) — g(:r))w(:c)da:+
(i (1) + N (1)1 (1) — (i6(0) + A 0)) i (0) +
S () + A (1) (1) — (i (1) + Ny (1) s (1)) +

_i (('u'(tm) N (t40) (i) — (i (1) + Xi () () ) =
2 f! ( )+ N (2)) + (u(w) + Mw(z)) — g(x))w(x) dr-+

(i (1) + )\w,(l))u},(l) — (i4(0) + Mid4.(0)) . (0)+

S () + X ()i (1) — (i (1) + N (1)) (1)) +

(% 4(0) + A4 (0))w (0) — (G (1) + Aw_(1))w_(1)+
S (('u'+(t) + X () w (1) — (i (t) + )\'w'_(t))w_(t)>.

t€S,US,
Since u + Aw satisfies the Euler equations (i)-(iv) of Theorem 2.1, by substi-
tution in the above identity we obtain the existence of ¢'()) for the chosen
A € U\ {0} and ¢'(A\) = 0, which contradicts (3.1). O
We introduce and study the following auxiliary problem in order to overcome
the possible lack of uniqueness of the solutions of Euler equations.

Problem 3.3 Given T,j,c € {0,1,2,...}, T =j+c, t €At, 0 € Q¢ and
g € L?(0,1), find b € H*(0,1) s.t. b="Db; on (t;,t;41) where

(i) O"+b=g on (t;,tie1) forl=0,1,..,T )

(it) O (t) =0/ (tjs1) =0 forl=0,1,...,T

(iid) W'(t) =0 =00 (=1, 1€ {1,..T}) | 52)
(iv) O"(tis1) =0 ifl=Tor (o1 =J,1€{1,..,T})

(v) O (t) =b"(t) ifle{l,...,T}and o, =C

(vi) b1 (t) = bi(ty) ifle{l,...,T}and o, =C

/

t and o are called respectively location and quality of Problem 3.3. (3.3)

We emphasize that any solution b of Problem 3.3 is neither forced to have
a jump at t; when o; = J, nor to have a crease when o, = C (though this
may happen at some or every t;). Nevertheless location and quality of the
solution b are compatible with location and quality of Problem 3.3 in the
following sense: t(b) C t, S, C {t;: 0, =J} and S; \ S, C {t;: 0; =C}.

9



For any choice of t €Ay and of 0 € Q; with j4+ ¢ = T, Problem 3.3 amounts
for T + 1 fourth order O.D.E.s linked by 4(T + 1) boundary conditions: in
fact (ii) contains 2(T + 1) conditions, (iii) and (iv) together contains 2(j+ 1)
conditions, (v) and (vi) together contains 2c¢ conditions. Problem 3.3 is not
linear in t, nevertheless b has a nice dependence on t as we will show in
Theorem 3.14.

A priori it is not obvious wether Problem 3.3 has a solution or not for any
choice of g, o, t. Anyway for any fixed o € Q;. and g € L?*(0,1) we will show
(Lemma 3.6) the existence and the uniqueness of a solution for sufficiently
many choices of t € At in order to continue the analysis (actually for any
t €At by Theorem 3.8).

Remark 3.4 Obuviously system (3.2) splits in several uncoupled systems at
each point t; such that op = J. Coupling do act only at each t; s.t. o =C

We show that the differential system (3.2) can be replaced by an algebraic
linear system whose block structure is fully described by the following pre-
liminary lemma where the uncoupling of (3.2) at points of quality J (jump)
is emphasized: the related decomposition (3.5) of b will be exploited with
several different choices of d; in Lemmas 3.11, 3.19, 3.20.

Lemma 3.5 Fiz T,j,c€ {0,1,2,..}, T =j+c, t EAr, 0 € O, g € L*(0,1)
and a solution d; of

d" +d; =g on (t,t;41) for anyl € {0,...,T}. (3.4)

Then: T+1> ¢ (S,US; U{0,1}) and
1. any solution of Problem 3.3, if it exists, has the form

4
bh=d+Y e VIe{0,.., T} (3.5)
=1

where

wy = exp(—x/v/2) cos(z/v/2) wy = exp(z/v/2) cos(x/v/2)
w3 = exp(—x/v/2) sin(z/v/2) wy = exp(z/v/2) sin(x/v/2)

are four linearly independent solutions of the homogeneous equation w""+w =
0 and c;; are real numbers such that

(3.6)

— A(T+1)
2. c= (Cg’l, Co,2, C0,3, Co45 -5 C 3y -+, CT .1, CT,2, CT 3, CT,4) e RYT*Y s the solu-
tion of a linear system
Uc =a (3.7)

10



obtained by evaluating some derivatives of the sum (3.5) at (T + 2) points
{0,t1, ..., t1, 1} associated to partition t;

3. a = alg,t,0] € R*T*V depends on t,o and on g (only through d;) and
has the form

( d;"(tl) - d;lil(tl) Zfl =1 and o) = C
—d;”(tl) ’LfZ =1 and o = J
—d!'(t)) ifi=2
i= Iy ’ Vie{0,...,T}; (3.8
A4+ _dgl(tHl) ifi =3, { b (3.8)
dl-l—l(tl—i—l) - dl(tl—i—l) Zfl =4 and Ol+1 = C
| —d" (t111) ifi=4and o4y =)

4. U=T[t,0] is a 4(T+1) x 4(T + 1) matriz depending only on o and on t
through values of {w;, w!,w!}}_, at t (U is a real analytic function of t for
any o). Moreover U is a square block diagonal matriz: each square block Uy, 4,
(related to an uncoupled subsystem) is identified by two consecutive jump

points t;,, t;, and possible intermediated creases (recall that o = o111 =1J)

01, = O, =]

ll,lQ E {07,T+ ]-}' { O_l — C fofrl E {ll —|— 1,...,[2 - 1},

so that each square block Uy, 1, of U takes the form

(3.9)

Ull 2 [ta J] =

11



where
wllu(tll) wg,(tll) wgl(tll) wgl(tll)

A=| wi(ty) wylty) wi(ty,) wilt,)

wlll(tll-l-l) wg(tlﬁ-l) wg(tll-l-l) wZ(tl1+1)

j = _
wi(tyyg)  waltyg)  waltyyy)  waltygy) —wi(ty ) —waltnyy)  —ws(tyyy)  —walty )
W' (ty4g) W () Wi (tag) Wi (tyag)  —wl' (b)) —wd'(tysg)  —ws' (b)) —wi (tyyg)

wilty+)  wy(tnseg)  wi(tey)  witieg)
W (tyjer) w0 (tyagen) w5 (tyjen) Wi (tyagen)

forje{l ol — 1 — 1}

Z |: III tl2 III (tZQ ) III (tl2 ) III (tZQ ) :|

Proof. Claim about cardinality of singular set and Statement 1 are straight-
forward. Statement 2-4 are deduced by evaluation of (3.2)(ii —vi) as follows.
Condition (3.2)(ii) gives

4 4
ch,iwg’(tl) = —d;l(tl), ch,iw;’(tlﬂ) = _dgl(tl-i-l) VZ € {0, ,T}
i=1

i=1

Conditions (3.2)(i7i) and (3.2)(iv) give

4
ch,iwgﬂ(tl) = —dEH(tl) if l=0or (O'l = J, l e {1, ,T})

i=1

4
ch,iwg”(tlﬂ) = —d;”(tprl) lfl =Tor (O’l+1 = J, { € {1, ,T})
i=1

Condition (3.2)(v) gives

4 4
di' (0) + > ey () — (dﬁ"(tl) + ch,iwi"(tz)> =0

=1 =1

ifl € {1,..., T} and oy, = C,

hence
4 4
> el ()= el (t) = dy(t)—d}"  (t) ifl€{1,.,T}and oy =C.

12



Condition (3.2)(vi) gives

4 4
ch_l,iwi(tl)—ch,iwi(tl) = dl(tl)_dl—l(tl) if [ € {1, vy T} and o) = C. O
i=1 i=1

Lemma 3.6 For any T,j,c € {0,1,2,..}, T = j+4+c, 0 € Qjc and g €
L*(0,1), the set

{t € Ar:  Problem 3.3 is uniquely solvable}

is independent of g.
Then we can define

Alo] ={t € Ar:  Problem 3.3 is uniquely solvable}.

For any j, c and o € Q. the set A[o] is an open set.
Moreover

(3.10)

for every g € L?(0,1), o, 8 with (1.2) and u € argmian’ﬂ,
we have t(u) € Alo(u)].

In particular
Alo(u)] # @ Vg e L*(0,1), o, B with (1.2) and u € argmin FY ;. (3.11)

Proof. Fix g, o, t such that Problem 3.3 has a solution. We choose d =
(dp, ...,dt) of Lemma 3.5 as a fixed particular solution of the differential
equations (3.2.7) (without imposing (3.2.ii)-(3.2.vi)) as follows:

eg. d"+d=g on(0,1), d0)=d(0)=d"(0)=d"(0)=0 (3.12)

in particular d;" +d; =g on (t;,t;41) for i =0,1,....T. (3.13)

Problem 3.3 is uniquely solvable for any g if and only if the matrix Ult, o]
of Lemma 3.5 is an invertible matrix. Then A[o] is an open subset of At
since Alo] = {t € Ar: det(Uft,o]) # 0}. Condition det(U) # 0 does
not depends on g since w; solve the homogeneous equation. Hence A[o] is
independent of g.

Eventually we show (3.10) and (3.11).

For any g € L*(0,1) and u € argmin F)] ; (which is a non empty set) then
t(u) € Alo(u)], we define b, = u on (t;,t;41) for any [ = 0,..., T. By Euler
equations (7)-(iv) of Theorem 2.1, we obtain a solution of Problem 3.3 with
o = o(u) and t =t(u). Once 0 = o(u) and t = t(u) are fixed as above,
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uniqueness property would fail if and only if Ut, o] is not invertible; in this
case all solutions of Problem 3.3 could be expressed as follows

T 4
U+ A Z Z €1 Wi X(tr,t141)
[=0i=1

Ve R, Ve = (el,i)l,i € RAT+D with Ue = 0.

(3.14)

But (3.14) would be a violation of the last statement of Theorem 3.2: in fact
T 4

w; in C°, i =1,...,4 entail that u+ X)) e, wix,
1=0i=1
small neighborhood of 0 € R. [

) € H2 for any ) in a

ti+1

Lemma 3.7 For any piecewise affine (possibly discontinuous) function g
30 > 0: argmin F] ; = {g} Vo, s.t. (1.2) and af(S,) + 85 (5 \ S,) < 9.

Proof. Set j =£(S,), c= £(S;\ S,). For any v € H?, by setting s = £ (S,)
and p = £(Sy \ Sy), at least one of the following (mutually exclusive) five
cases may occur:

s> ] p<c p<c
1){pZC 2){sszrc—p 3){s<j+c—p

s <] s<]
4){p2c+2(j—s) 5){p<c+2(j—s)

(in fact either s > jors < j; if s > j then either s > j4+c—p (and this always
occurs if p > c) ors < j+c—p;if s < j then only one among cases 4 and
5 may occur). We show that F; 5(v) > F 5(g) for any a, 3 satisfying (1.2)
and v € H2, v # g in each one of the five cases.

C{.%SG 1) then F ;(v) > FJ 5(g) since F9(v) > 0 = F9(g) and as+ Fp >
aj+ fe.
Case 2) Fy 5(v) > F{ 4(g) , since F?(v) > 0 hence
Fis(v) =F(v) +as+pp>ajtac—ap+fp=
aj+ et (o= pB)(c—p) > aj+Bc=TF],g).

Case 4) F 5(v) > F{ 4(g) , since F?(v) > 0 hence

FY () =F(v) +as+Bp>as+ fc+28j—20s=
aj+fBc+(268—a)(j—s) > aj+Bc=F]4g).
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About cases 3) and 5) we observe that S, U S; # @, then by Theorem 2.3
0 < & = min{F?(v): v €H* belonging to cases 3 and 5},

hence in 3) and 5), for any «, [ satisfying (1.2) and, in addition, so small
that aj+ B¢ < 4, we have F] 5(v) > F] 5(g) for any v in cases 3) and 5). [
We know that the set A[o] is never empty, now we show its coincidence with
the whole At: by exploiting the property that A[o] is independent on the
datum g, we choose piecewise affine g with quality o for S, U S;, then we
prove that ¢ itself is the unique minimizer for Fg’ﬂ provided a and 3 are
suitably small.

Theorem 3.8 Problem 3.3 admits unique solution, that is Alo] = At for
any T,j,c€{0,1,2,..}, T=j+c, t € Ar, 0 € Q;c and g € L*(0,1).

Proof. Fix j,c € {0,1,2,...}, 0 € Q. and t € Ar. By Lemma 3.6, A[o]
is independent of g. Then in the definition of Afo] we choose a piecewise
affine (possibly discontinuous) g such that o(g) = o and t(g) = t. Lemma
3.7 together with Theorem 2.1 and the second claim in Theorem 3.2 entail
that, for any fixed o, t and piecewise affine g, Problem 3.3 admits a unique
solution: in fact any solution different from g must be of the form (3.14)

with ¢ plugged in place of u and a suitable choice A # 0 plugged in place

of \; then g + A Z Z €1,i Wi X(1,t1.,) Would be a solution for any A € R by
I=0:i=1

linearity of conditions (3.3.i7)-(3.3.vi) which contradicts the second statement
of Theorem 3.2. [

Theorem 3.9 If we fix a piecewise affine (possibly discontinuous) function g
and label its location by q = S,US; and its quality by o = o(g), then Problem
3.3 with data q, o and g admits g itself as unique solution: g = b[g,q, o].
The same property holds true for Problem 3.3 with any data q, o, g suth that
the arrangement (S, U Sy,0(g)) is compatible with (q,0) i.e.. S;US; C q
and qualities & and o(g) coincides on common points.

Proof. The fact that ¢ is a solution is trivial since ¢ = 0. Uniqueness state-
ment follows by Theorem 2.1, Lemma 3.7 and the fact that Euler equations
are independent on «, (5. [

Theorem 3.8 allow the introduction of the following basic notation about
solution of Problem 3.3 and its related energy.

Definition 3.10 For any T,j,c € {0,1,2,..}, T=j+c, t € Ay, 0 € O
and g € L*(0,1), set
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1. b = blg,t,0] is the unique function b = b(x) € H? piecewise defined
by the solutions {b, = bjg,t,0] € H?(t;,t111)}, of Problem 3.5. The
dependence on right hand side g, location t and quality o will be dropped
whenever there is no risk of confusion. For anyl € {0, ..., T} we denote
by b, b/, ....b ) the first , second, ..., r-th distributional derivative in
(tl,tlﬂ) of bl with respect to x. Notzce that by = by, b = b, ..., but b
and b" may be different from b and b due to smgular part at tl

2. F(g,t,0) is the absolutely continuous part F? ongﬁ evaluated at bg, t, o|:
F(g,t,0) = F?(bg, t, o)), (3.15)
F(-,-,0) : L*(0,1) x At — R.
In the following proposition we list some properties of b and TF.
Theorem 3.11 Fiz T,j,c€{0,1,2,..}, T=j+c and o € Qj, then

1. the map g — b(g,t,0) is linear in g € L*(0,1) for any t € Ar,
in particular g = 0 entails b = 0,
the map g — F(g,t,0) is 2-homogeneous with respect to g € L?(0,1)
for any t € At;

2. the map by(-,t,0): L?(0,1) — H*(t;,t;11), say g — bi(g,t,0)
is continuous from L?*(0,1) to H?(t;,t;41) where both spaces are endowed
with the strong topology, for any t € At and [ =0,...,T;
the map by(-,-,0): L*(0,1) x At — L>(0,1), say (g,t) — b(g,t,0)
is continuous from L*(0,1) times At endowed with the product topology
(strong L*(0,1) times Euclidean topology of RT) to L>=(0,1) endowed
with the strong topology;

3. the map TF(-,-,0): L*0,1) x At = R
is continuous on L*(0,1) times At endowed with the product topology
(strong L?(0,1) times Euclidean topology of R" );

4. for any g € L*(0,1) and u € argmlanﬂ, if w has j jump points, c
crease points and quality o, the function t — F(g,t,0) achieves its
minimum with respect to t in Ax at t(u) = (t1(u), ..., t(u)). Moreover
Sy =Ati(u): o, =13}, Su\ Sy ={ti(u): o, =C}, and b = u is the

only admissible minimizer of F in H2.
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Proof. Statement 1 follows by linearity in g of resolvent operator for Problem
3.3 with prescribed arrangement (t, o), by (3.2.(i)) and compliance identity
(Theorem 2.2).

Choose d = (dy, ..., dt) fulfilling (3.12), hence (3.4) is trivially fulfilled and
d € H*(0,1) C C3(0,1), the map g — d is linear continuous from L?(0, 1)
to H*(0,1) and well defined by Theorem 3.8.

The function b takes the form (3.5) with ¢ = U 'a, (3.8), (3.9) hold true
and both invertible matrix U and vector a are analytic functions of t since
all entries of U and a are linear functions of w;(t;), w!(¢;) and w!"(¢;); hence
statement 2 holds true.

Statement 3 follows by statement 2 and

o0 =3 [ ([idont.ol)] + 1600t ol) — o) .

Statement 4 follows by Theorems 2.1 and 3.2. [l

In Sections 3,4,5 and 6 we denote by q = (¢;)&, the location (and by {g; ?:1
the related partition) associated to crease points S; of continuous piecewise
affine datum ¢ and we denote by t = (¢;)[_, the location associated to the
singular set S, U S; of the competing functions v € H2. The location t of
singular set of solution of Problem 3.3 and the location q (singular set of
the datum) may be different. Abusing notation, whenever needed, we write
x € q to mean x € {qi}?:p while ¢y = 0, qqt1 = 1 are always understood.

Each location q = (qi)?:1 induces a decomposition of [0, 1]T in cubes, this nat-
urally gives to [0,1]T a finite CW complex structure. For any d € {1,..., T},

a d-dimensional open cell W of [0,1]7 is a d-dimensional open face of a cube
d

IT(4,, q,+1], & 0-dimensional open cell W of [0,1]T is a point (gi,, ..., Giy)-

k=1

For any i,d € {1,..., T}, any t € [0,1]T, and any d-dimensional open cell W

of [0,1]T, we say that ¢; is a free coordinate in W if and only if #; ¢ q for any

t € W. Clearly a 0-dimensional cell of [0,1]T has no free coordinates.

The set At C [0,1]" is an open subset of a finite CW complex, with an abuse

of language we introduce the following definition.

Definition 3.12 Whenever U is an open d-dimensional cell of [0,1]7 such
that UN At # 0, we call d-dimensional open cell of the CW structure induced
on At by [0,1]7 also the set W = U N Ar.

The free coordinates of W = U N At are exactly the same free coordinates of
U but they may have different range when W ; U.

A short summary of what is needed to know about CW complexes can be
found in the Appendix A.
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Fig.1 provides a simple low dimensional visualization of cells in A.

it+4+

;43

qi+2__ ..............

qi+1__ .............

0 — Gito Qiy3  Giva

Figure 1
a: 0 cell, no free coordinates;
b: 1 cell, t; free coordinate, ¢; < t1 < @i+1;
c: 2 cell, ty, to free coordinates, ¢; < t1 < g+1, Givs < to < Qitd4;
d: 2 cell (abusing language), t1, to free coordinates.

For any location q = (¢;)&, we identify the space R®*2 with the space Ay
of continuous piecewise affine functions g with crease points at q. Precisely
for any g = (g0, g1, .-, 8q+1) € R¥*? the identification between the vector
parameter g and the function g € L?(0,1) is given by:

Q+1
g(r) = 21 (gi(7 — qi—1) + Zi—l)X[qifl,qi)(l‘) where

- 3.16
Zy = 8o ( )
z1=g(q — Q1) + 2z for [ € {1,...,Q}.

Notice that (3.16) induces a linear and injective identification between g
and g, hence is’a vector space of dimension Q + 2:

q € Aq, g € RO+% g € Ay ~ RPZ, (3.17)

Restrictions of F(-, -, o) and bl(r)(-, -,0) to Aq x At play a fundamental role in
the following: the restriction of both F and of bl(r)to Aq X At can be considered
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as functions defined on R®*2? x At through the identification between A
and R®*2described by (3.16) and (3.17). Actually (abusing notation) we
specialize Definition 3.10 when g belongs to Aq, as follows.

Definition 3.13 For any Q,T,j,c€{0,1,2,..}, T=j+c, t € A1, q € Aq,
o € Q. and g € R¥2, define

b(-,-,0) : R x At — L?(0,1) by blg,t,0](z) =blg,t,0](x) (3.18)

F(-,-,0) : R¥? x Ay = R by F(g,t,0) =F(g,t,0) (3.19)

where the right-hand sides are given by Definition 3.10 and g € Aq 1is asso-
ciated by (3.16) and (3.17) to vector g and singular set location q.

We are going to show that both (3.18) and (3.19) are polynomials in g with
coefficients which are continuous functions of t € At and their restrictions
to R¥*2 x W are real analytic functions of g and #; for any open cell W of
the CW structure induced by q on At and any ¢; free coordinate in the open
cell .

Theorem 3.14 Fiz T,j,c € {0,1,2,...}, T=j+c and o € Qj, then

1. The map g — blg, t,0|(z) is a linear function of Q + 2 variables g for
any t € At;
the map g — F(g,t,0) is a 2-homogeneous polynomial of Q42 variables
(the coordinates g; of g € R¥*+2);

2. for any Q,r € {0,1,2,...}, q € Aq and any open cell W of the CW
structure induced by q on Ar, the restrictions to Aq x W of bl(r) and
of F (e.g. functions (3.18) and (3.19)) are real analytic functions of g
and t; where t; is a free coordinate of the open cell W.

Proof. Statement 1 follows by Theorem 3.11(1) and identifications (3.16)
and (3.17). Statement 2 follows by the same argument used in the proof
of point 2 of Theorem 3.11 and the simple remark that the map ¢ — d
appearing in the proof is real analytic in the free coordinates of W whenever

ge A, O

Theorem 3.14 allows us to introduce the following notation.

Definition 3.15 For any Q,T,j,c€{0,1,2,..}, T=j+c, t € A1, q € Aq,
o € Q. and £,g,h € R*2, referring to (3.16), (3.17) and Definition 3.13,
set

8f e—0 £

(3.20)
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and

b, b f,t,0)— b (gt
O _ iy 8t 0) = b (8t 0) (3.21)
af e—0 £
moreover, for any open cell W of the CW structure induced by q on AT, and

the directional

"
any a free coordinate t; of W we denote by pT and by aé

derivatives of F and of bl(r) with respect to the free coordinate t; of t.

We are going to evaluate several derivatives of F.

Lemma 3.16 For any Q,T,j,c € {0,1,2...}, T=j+c, t € Ar, q € Aq,
o € Q¢ and f,g,h € R*Z referring to (3.16),(3.17) and Definition 3.13,
the explicit representation of mixed directional derivatives with respect to the
first variable is:

’F(g,t,0)
ofoh

2/0 blf, b w]()blg, t, o)) + (BLS, t,0)(z) — f(2)) (Blg, t, 0)(x) — g(x)) da.

Proof. Since b[g,t,o] and b/'[g, t, o] are linear in g and b = by in (t;,,41)

then the following equalities hold true: 99 _ f and

of
d(big t,0l —g) d(bg t,0]l —g)
of —bl[fataa]_fa oh —bl[hataa]_h:
85l[g,t,0] _ 7 85l[g,t,0] _ 7
T_bl[fatao-]a T_bl[hataa]a
82bl[g7t70] — 82(bl[g7t70] B g) =0
ofoh ofoh -

By Theorem 3.14(2), derivatives with respect to f, h commute with the
integration in . Then

(e t7) _ g / (gt 01(@)? + (b, b0 (@) — 9(2)?)

ofoh ofoh
L i (92[g, t, 0] Obi[g, t, o] Ob[g, t, 0]
— 2 Y Y bll t Y Y Y Y
lz_oz/t, < ofon 9t 58 oh
82(bl[g7t70] _g) a(bl[gataw] _g) a(bl[gvtao-] _g) _
5501 29) 4 g,t,0] - g) + 2008 =0 o -

2/01 57, ol t, 0] + (B[f,t, 0] — £)(b[hs t, 0] — b) dz. O
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Lemma 3.17 Fiz Q,T,j,c,d€{0,1,2,...}, Q> d >0, T=j+c¢c, t € Ay,
q € Aq, 0 € Qjc, any open d-cell W of the CW structure induced by q on
At, and any free coordinate t; of W.

Then the derivative of F with respect to t; exists in W C At due to Theorem
3.14, moreover referring to (3.16), (3.17) and Definition 3.13, for any g € Ay
we have

TUEL) (b () — blt) (1) + (1) — 20(4)

— 20" (t:) (B (t:) — b (t:)),

(3.22)

where b’ (t;) = 0", (t;) is understood.

(r)

Proof. The variables g, t and w in the argument of b, are understood.

o \' _ onf
ot; — 9t;
thank to Theorem 3.14(2); the integrand b|[g, t, o](z) analytically depends on
free coordinate t; by Theorem 3.14(2), hence a(z commutes with integration;
Theorem 2.1(7)-(iv).

Hen)_ 2 (Z / - < )2 + (b — g) )d;;;) _

(B (82))” + (bima (83) — g(£:)” = (0 ()" — (bi(ts) — g(t:))?

T

e (o b,
+2 / (b” 4 (b — ) dz
2 : o, T 95,

= (biflfti) = bi(t:)) (bi—1(t:) + bi(t:) — 29(t:))

fer OB obj [ Ob;
2 _ g d bll b _ il d

1=0 2]

= (bia(t )—b( i) (bi-1(t:) +bi(ti) — 29(%:))
Al k)

= (00— b1 (b (8 + (1) — 20(0) — 23 [byﬁ_”{]
= (bi—1(t:) — bi(t:)) (biz1 (t:) + bi(t:) — 2g(t:))—

T

/11 ab /11 ab
25 (ot Gttt) — ) ) =

=0

We exploit the facts: g and g depend on q but not on t; (
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= (00 = B0} 5 (4] 60 ~210)-
o>~ (0022 ) ey 2

=1

= (bi1(t:) = bi(t:)) (bi 1 (t:) +b-( i) = 2g(ti)—
ZZb/// (861 1 tl) B %(h))

If w; = C we define the function t — ;(t) = b_1(#;) — b(t;); notice that

@i(t) = 0 for any t due to (3.2.(vi)). By performing carefully derivative of
bilg, t,o](x), since O (b;(t;)) /Ot; = bi(t;) + (0b;/0t;) (t;) we get

0= 2214 _ Pl (t) — 92 (1) it
o Pt (1) — Bi(hy) + V(1) — Vi(t;) it 1=,

by substitution we get (3.22). O

Lemma 3.18 ForanyQ € {0,1,2,...},q € Aq, g € Aq and u € argmin F?

a,B’?
we have: .
§(u+(t) +u_(t)) = g(t) for any t € S, (3.23)
and
Uy (t) =0 for any t € Sy \ S, (3.24)

Proof. By Euler equations (7)-(iv) of Theorem 2.1 u is a solution of Problem
3.3, F(g,-,0(u)) achieves its minimum at t(u) and 0 (F(g, t(u),o(u))) /Ot; =
0. Then by (3.2.(i74)), (3.22) we deduce (3.23) when ¢; € S,, (property already
proven in a different way in Theorem 2.1(v)); b;(¢;) = b;_1(t;), bi(t;) = b, ()
and (3.22) entails (3.24) when ¢; € S, \ (S, U S;). O

In the following technical lemma we show that for any location t and quality
w, if g is continuous piecewise affine with either only one ramp or only one
jump (such that S, U S, is contained in {;}._, and has quality compatible
with w) and A is a continuous ramp having singular set close to the singular
set of g, then the solution b[h, t,w]| of Problem 3.3 with data h, t and w is
close to g in the piecewise C® lagrangian norm.

Lemma 3.19 Fiz T,j,c,li,lo,k€{0,1,2,..}, T=j+c, t € Ar, w € Q¢

such that
I <y, 0<li <k<Il<T+1,
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wy, = Wy, =J, w =C VZE{Z1+1,...,ZQ—1}.

We study perturbations of location t and quality w of singular set for two
kinds of datum g in Problem 3.3:

a:—tk

either g(x) = mX[tk,tk+1](x) + Xty 11 (%) for k # 1y, o (3.25)
y
9
that is 1][
tli tllv+1 T
or g(x) = X1(@) for k=11, Iy (3.26)
! 9
that is 1
tk T

Perturbation of datum is chosen as follows

r—r

h(e) = hlr, s1(2) = 2 X @)+ X(s.1 (&) with {

sS—7T

tk <r<s<tpy ’Lfk ;é l1, ls,
t, <r<s<ty, if k=14, ls.

Then there is C' > 0 depending only on t s.t. (referring to Definition 3.10):
ka 7é ll, lQ, then

%l

(l

bl h,t,LU] - g) + |b2”[h7taw](tl)| <
Loo(tl,tl+1)

C (Jr —te] +1|5s —ter]) for 0<I<T, (3.27)

[bilh, t, w](tr) = b B, t,w]) ()] <
(QUr=l it Skl oy
C ifl e {kk+1},
the map (r, s) v b} [h[r, s], t,w](tx) is analytic, (3.29)
the map (r, s) — b}'[h]r, s], t,w](tx) is not identically zero

on {(r,s) € [tk, tps1] X [tr, tera] 7 < s} (3.30)
and vanishes of order 1 as (r,s) — (tg, tgs1);

ka = ll, lQ, then

da

(bl[ha ta w] - g)

+ 18" [h, t, w](t)] <
Lo (tl,tl+1)

C(Jr—te| +1]s—te]) for 0<I<T, (3.31)
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‘bg[hataw](tl) - b;,l[h,t,w](tl)‘ <
C (|T — tk| + |5 — tk|) Zfl € {ll +1, ...,lg — 1} (332)

O

We emphasize that g = b[g, t,w] holds true in the above statement (due to
Theorem 3.9), hence (3.27) and (3.31) express also continuous dependence of
b with respect to the perturbation h, i.e.

I01(h ,6] = 019, 6,10y < C (I = Bl 1 = that])

Proof. The following three pictures represent the three admissible cases for
datum ¢ together with the associated perturbations h

for k 7é ll, l2,
y y
S .
I}Il I fOI' k = lla t Ih } fOI' k = l2.
ty, r s t, x ty, roos t, T
The unique solution of the Cauchy problem
u" +u=gon (r1,1), w(zy) =u' () =u" (1) =" (1) =0

can be represented through u(z) = f;; W(z —y)g(y) dy where

W(x) = g (wi (z) — wa(t) + w3(z) + wa(z)) = Z%lﬁ-ﬂi, (3.33)
wy = exp(—x/v/2) cos(z/v/2) wy = exp(z/v/2) cos(x/v/2) (3.34)

w3 = exp(—x/v/2) sin(z/v/2) wy = exp(x/v/2) sin(z/v/2).

Weset j=Fkifk <ly, j=k—1if k =1. Then, by ¢" = 0 on [t;,t;41] for
any [ =0,..., T and Remark 3.9, we define d; by

0 Vr € [tl,tl+1] if I < 7,
difh,t,w](@) = g(@)+ [ W(z —y)(h(y) —g(y)dy Yz € [tjtin] fl=j, (3.35)
1 Vo € [t tipr]  if 1> 5.

If b solves Problem 3.3 with data t, w and h then d; fulfills (3.4) of Lemma
3.5. We choose decomposition (3.5) with this choice of d;. We denote by
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dga) and W@ the a-th distributional derivative in (t;,#,4,) of d; and of W
respectively. For a = 1,2, 3 we have

1/(tk+1—tk) lfk%ll,lg and a =1
W@ (z—y)(h(y) — dy +
(z—y)(My) —g(y)) dy {0 k=1 0 oradtl.

tj

JE W@ (@ —y)(h(y) = 9(y) dy‘ uniformly on
< 400.

For a = 0,1, 2,3 we estimate
ti,tir1). To this ai b that (a)

x € (tj,t;41). To this aim we observe tha max |w HLOO(O,I)

If k # 11,15, by (3.35), ¢’ = (tsrr — ) " and ¢” = ¢”" = 0 in [ty try1] We get

max {r — ty, tgr1 — S}

|h — 9||L°o(0,1) <

b

Tet1 — tk
then we can choose Cy = Cy(t, W) + oo such that
1h = gll 1001y < Co (Ir —te| + |s = tesal)

|di[h, t, w](z) — g(x)| < Co (|r — te| + |5 — tis1])
di.[h, t,w](x) 1

thy1—1k

< Co (Ir =t + 15 — trp]) (3.36)
‘dgca)[hataw](x)‘ < Cy (|T - tk| + |5 B tk+1|) for a =2,3.

Ifk =1 ork =1l wehave ||h — gl « ) =1, spt(h—g) C [ti,, s]U[r, ;,] then
by (3.35), in [t;,,t;,] we have either g =0 or g =1 and ¢’ = ¢" = ¢ =0,
and we can choose C; = C}(t, W) < 400 such that

<Oy (r =t +[s — tl),

W = )b~ gt dy

|djlh, t,w](2) — g(@)| < O (Ir — te] + |s — ti]),

3.37
dga)[hataw](x)‘ =G (|r_tk|+|5_tk|) fora=1,2,3. ( )

Since w;, = w;, = J, by Remark 3.4 system (3.2) splits into three separate
systems which give b on [0,¢,], on [¢;,,t,] and on [t;,, 1] respectively. Since
h =0 on [0,%,] we have b =0 on [0,,], since h =1 on [t;,, 1] we have b =1
on [t,, 1], then we have to study b only on the interval [¢;,,%;,] that is the
subsystem

Vy = a (3.38)
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of system (3.7) corresponding to the 4(ly — I;) x 4(ly — I;) square diagonal
block V = U, ;, of the matrix U of Lemma 3.5.

Hence, by denoting ||-|| the Euclidean norm in R*‘2=1) (3.3), (3.36) and
(3.37) entail the existence of a positive constant Cy = Cy(t, W) < 400 such

S i- 7
< 2 r 1]6 + 7/k+1 f 1, b2
||C[[h” ) ]H { CQ (|7 — tk| + |S — tk|) itk = ll, lQ

then there is C3 = C3(t,w;) < 400 (since v = V™' a and the matrix V
depends only on fixed data t and w;) such that

_ S G (r —te| + s = tpa]) ifk#D, b
Ik, ¢, | —{ Cy (fr—tl +Js —tal) itk =1, Iy,

Statements (3.27), (3.28), (3.31), (3.32) follow. We are left to prove (3.29),
(3.30). For any [ = 0,..., T choose d; and b; as in (3.35), (3.5).

The vector a is an analytic function of (r, s) since (3.8) entails that o depends
on (r,s) only through d\”(tx) and d\”(ty41) for a = 0,1,2,3, hence v =
V~! ¢ is an analytic function of (r, s). Moreover, for a = 0, 1,2, 3:

dl(ca) [h[ra 5]1 t, w](tk) =0,

tet1
A hlr, st w)(ten) = [ WOt — y)hr, s)(y) dy =
123
s _ (78]
a y r a
/ wi )(tk+1 —y) s—_r dy + Wi )(tk+1 —y) dy.

This identities together with (3.5) proves (3.29). We prove (3.30) first by
showing that the partial derivative of b)’[h[r, s], t,w](t;) with respect to r is
not identically zero, then exploiting b}’ [h[tk, tri1], t,w] = h" [tg, tk1]+(t) =
0 due to bk = h[tk, tk-i—l] on (tk, tk-}-l) and h[tk,tk+1] is linear on (tk,tk+1).

To this aim we set p(x) = ﬁx(tk,tkﬂ)(:ﬂ) and claim

O i, o], b))

or = by o, t, w](th). (3.39)

r=tg, s=tlgt+1

By assuming (3.39) and arguing by contradiction assume b}’ [, t, w](t;) = 0.
By (3.2.v) and t; crease point for by, t, w] we get b} ,[¢, t,w](tx) = 0. Hence
g =0in [tg, tx11] and Theorem 3.9 together entail

{ bk_l[go,t,w](x) =0 zx € (tk—latk)a
belo, t,w|(z) =@ x € (g, trrr).
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But ¢ (tg) = —1/(tr41 — tx) entails b} [, t, w](tx) # 0, then by (3.39) we get
(3.30).
Now we prove the claimed equality (3.39). To this aim we prove:

[h]r, s], t,w] = afp,t,w]. (3.40)

ar
r r=tg, s=lgt+1

By substituting r =5, s = t;11 in
9 (a
2oy hlr, 5], 6,0](frin) =
0 # —r tr+1
o (/ W (ths1 — y)y— dy + / W (tes1 — ¥) dy) =
r\ J, s—r s

S " y — 5
/ W (t41 — y)mdy

we get
0 o) an—_ (a)
Edk [Alte, tria]s £, W] (trt1) = W (=) e(y)dy = d;.” [, &, w] (1)
t
' (3.41)
We have d\"[h[r, s], t,w](ty) = 0 for a = 0,2, 3 then
Qd,@ [hr, s],t, w](t) =0 fora=0,2,3. (3.42)
ar r=tp, s=tp41

Equality (3.40) follows by (3.41) for any entry of e[h[r, s], t,w] of type

1) dily[hlr,s], b, W] (tgr) — dy' [R]r, 8], t,w](tre1) = —d[h[r, 8], t, w](tre1)

2) —di[hlr,s], t, w](tk+1) (3.43)
3)  dpta[hlr, s], t, w](te1) — di[h[r, ], 6, w](tks1) = 1 = di[h[r, s], 6, 0] (trr1),

for any other entry (3.40) is a trivial consequence of (3.42) since both sides
of the equality are zero.
By (3.40), ¥ = V'! a and V independent of r, s

2')/[h[r, s], t, w] = v[p, t,w]. (3.44)

or
r=tg, s=tg4+1
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Eventually by (3.5), (3.42), (3.44) and d}'[p, t,w](tx) = 0 we have

%b%,[h[’f’, S]ataw](tk)‘ =

r=tg, s=tp41

£ Zylhlr o), .](t)]

r=tg, s=tk4+1 = r=tg, s=tk+1

dr[hlr, 5], t,w](t)] Wi(te)

R

7/@,1’[‘107 taw] (tk)wl(tk) = b%,[(p, tvw] (tk)a

=1

say (3.39). O
In the following lemma we show that for suitable step datum x(,,;; with jump
in the interval (¢4, t441) the value by[x (4,1, t, w](tx) is not zero.

Lemma 3.20 Fiz T,m,n € {0,1,2,..}, T=m+n, te Ar and w € Q.
For any k € {1,..., T} we set Uy, : [tg, tp11] = R by

Or(a) = b[x(a: 6 w](te)  Va € [t tepa),
where b = b[x(a,l],f, w] is the unique solution of Problem 3.5. Then

1. Yy is an analytic fungtigvn with respect to a € (Zk,fkﬂ) and is continuous
with respect to a € [ty, tgi1],

2. for any ¢ € <O,dist(f, BAT)) there is a € (ty + €,tpp1 — €) such that
Vi(a) # 0. Here OAt is the topological boundary of At in RT,

Proof. Throughout the proof we write 9 in place of ¥y since k is fixed.
Referring to (3.33) we define d; by

0 Va € [, i) if 1<k,
i@, twl(2) = ¢ fi W(r = y)x@u@) dy Vo € [t tr] if 1=k,
1 Vr € [tl,tl+1] if [ > k,

hence d; fulfills (3.4) and we choose the decomposition (3.5) of b[x(a, t,w]
related to this choice of d;.

By Lemma, 3.5 and Theorem 3.8 it is enough to prove that both dgr) [X(a,u,,f, w](t;)
and dgr)[x(a,u,ff, w](t;41) are analytic functions of a on (f;,tz41) and contin-
uous functions of a on [ty tpsq], ¥ = 0,1,2,3. If I # k then this fact is
straightforward, if [ = &k then this fact follows by direct computation:

tht1

A7 X, & 0] () =0, dY (o), t W] (Frar) = WO (fyr — ) dy.

a

28



Then statement 1 is proven.
Statement 2 will follow by the first statement if we show that

I(tr) # 0, (3.45)

since (3.45) together with statement 1 entails that the analytic function
may have only isolated zeros in @3’ thi1)- o N

If wy = J then by Theorem 3.9 9(tx) = bi[x g 11, 6 wl(te) = X, 1tk +) = 1.
If wr, = C then the following longer analysis is required to show (3.45).

By recalling the convention wy = wryy = J we denote by [y, ls the unique
pair of integers fulfilling

0<h<k<lL<T+1,
Wy, = wy, =], wy =C VZE{ll-i-l,...,lQ—l},

we define a 4(ly — [;)-dimensional row vector v by

wi(ty) ifl=4k—-1—-10)+ifori=1,...,4,
vl:{ () if1=d(k—1-b) .40

0 otherwise (say [ #4 (k—1—1;) +1).

Notice that v has only four non trivial entries coincident with the left half
of the first line of block By_y, .
We make a new choice of d; by

~ 0 ifl<k -~ ~
dilxg, 1o 6 wl(7) = Uil g Vo € [t ti], (3.47)

hence d; fulfills (3.4) and we choose the decomposition (3.5) of b[x (a1, t,w]
with this choice of d.

Since w;, = w;, = J by Remark 3.4 system (3.2) splits into three separate
systems which give b on [0,%;,], on [t;,,%,] and on [f;,, 1] respectively. Since
h =0 on~[0,51] we have b = 0 on [0,7;,], since h = 1 on [t;,,1] we have

b=1on [t1,, 1], then, by Lemma 3.5, we have to study b only on the interval
[t1,,t,] that is the subsystem

Vy = « (3.48)
of system (3.7) corresponding to the diagonal block v U, 1, of U (see

4
(3-8),(3.9)) with by = d; + Y, w; and d; defined by (3.47). System (3.48)
i=1

is an algebraic system: 4(ly — [1) algebraic equations, 4(ly — [;) unknowns
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vy = (v, € R with I =1,..., (I, — [y + 1) and i = 1,...,4; the matrix
V=Vt,w =] Z]]Z;2 111) is invertible by Lemma 3.5 and Theorem 3.8; here
a = afxg, 1, t,w] replaces a in (3.8) with ay = a4, -

Vector ¢ has only one non zero entry i.e.
a4(k_l1) == dk[X(tk, t w](tk) dk 1[ ( t w](tk) =1. (349)

Arguing by contradiction assume that 9(t;) = by, [X(?,c,uja w](t;) = 0. Then
by wy = C, (3.5) and (3.47) we deduce that the unique solution « of (3.48) ful-
fills the following relationship, where the common dependence on [X(tk it t, W]
is always understood:

0= bk(tk) = bk l(tk) = dk 1 tk + Z‘Yk 1211)1 tk Z‘Yk 1211}1 tk 3 50)

i=1

Hence, due to (3.46), (3.48) and (3.50), the (4(Iy—1;) + 1) dimensional vector
[v, —1], fulfills the linear system

D’ B‘] {_71]:0. (3.51)

(oY%
0
« has only one non zero component given by (3.49), we get

Equation (3.51) entails det [ Y } = 0 then, since det(V) # 0, v # 0, and

v can be uniquely written as a non trivial linear combination of
the 4(k — ;) — 1 rows of V different from the 4(k — I1)-th row (3.52)

whose coefficient vector is denoted by p: vi= > p; V;,.
J#A(k—11)

We consider two possibilities for coefficient py;_;,),1 (related to the row
below the one with unique non trivial component of a): both possibilities
leads to a contradiction.

o If pyy_i)+1 # 0 we choose a 4(l; — [} — k) square matrix by selecting
4(ly — k) square diagonal SE block of (3.9) and decomposing it as follows:

Uz = [ V4(k*l1)+1,4(kfl1)+1 o V4(k41)+1,4(1241) ]
Vate—tn)+2,40—t0)41 Vit 42,40—1)
Uy, =
Vit -ty ate—t)+1 0 Vi) a(a—1)
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By (3.46) we have | Vig_i)41 - - - Vage—s) | = 0, hence (3.52) entails

_ Pik—1)+1 92 | _ up
0 = det [ ( [[j;r ] = Pa(r—iy)+1 det [ U, ] : (3.53)

Since [ 1[1}2 } is the NW square diagonal block of the invertible matrix of
2

coefficients of the linear system (3.2.ii)-(3.2.vi) obtained by solving Problem
3.3 on the interval [tj, 1] with arrangement data as follows:

S=T—%k j=0,c=S
t such that t;, =t,,, VIl € {1,...,S}
o such that o; = w1y vie{l,..,S}.

Then Lemma 3.5 and Theorem 3.8 entail det [ 52 ] # 0 contradicting (3.53).
2

® If pys_1,)41 = 0 we choose a 4(k — [;) square block by taking the 4(k — ;)
square diagonal NW block of (3.9) and decomposing it as follows:

Vi S Viak=11)
- . .
Viae—1)-1,0 =+ Vag—i)—1,40k-1)
u = [ V4(k41),1 o V4(kle),4(kle) ] .
Definition (3.46) entails
w=[vi - - - Vi) | #0, [ Vag—i)s1 - - 0 Vage—n) | =0.

Hence properties det(V) # 0 and (3.52) entail that

u; can be uniquely written as a non trivial

linear combination of the rows of U;. (3.54)
hence (3.54) entails
det[ Ui ] =0. (3.55)
u

Though [ [51 } is a square NW block of V, equation (3.55) does not entail
1

an immediate contradiction with det(V) # 0, since V is not a square block
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. o . : U
diagonal matrix with NW minor given by [ ul ]
1
We consider a symmetric arrangement of creases in [fy, 2t — #,]:

() S=2k-0)—1,¢c=5,j=0

y |ty ifl=0,....k—0
(1)  t such that t; = { O — o 1 1 L=k —l +1,.S+1, (3.56)
(#31) o such that oy = C for any [ =1, ..., S,
and the following differential problem with arrangement (3.56)
(i) #"+zu=g9g on (tj,ty41) for 1=0,1,...,S )
(i1)  z'(t) = 2/'(tiz1) =0 forl=0,1,...,S
i) 2"() = 0 for [ =0,1,...,S
(i) ='(1) 550
(iv)  2"(ti41) =0 fori=0,1,...,S
(v) " () = 2" () fori=0,1,...,S
(vi)  z1(t) = z1(t) fori=0,1,..,S, )
we also denote by W = W[t, o] = [Wi,j]f(js;l) the invertible matrix of coeffi-

cients of the algebraic linear system related to (3.57) by the same construction
made in Lemma 3.5.

If the arrangement of (t, o) fulfills (3.56) we get the following identity for the
4(k — 1) square diagonal NW block of W:

Wi R Wi ak—1)

M. |
u
! Wik—1)-11 Wak—1)—1,4(k—11)
Wik—t)n - - - Wage—in)ag—n)

We select the 4(S —I; — k + 1) SE square diagonal block and substitute its
first row with the one above, by setting:

m = | Wige—i)at—t)+1 = - Wige—t)as+1) |
Wak—iy+2.4tk—)+1 © + ° Wae—i)42,4(5+41)
M =
Was—iyagk—iy+1 - 0+ Wy as+
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Theorem 3.8 applied to Problem (3.57) entails det (W) # 0 then, by (3.55),

m is not a linear combination of the rows of M that is
det [ & } # 0.

We introduce the two following problems

Given f € L*(t;,,1;) find ¢ such that

i) () =¢/(tiy1) =0 forl=0,..,k—1 —1
i) ¢! (to) =0

iv) @ (t) = )" () forl=1,..,k—1 —1
v) @k, 1(te1,) =0

vi) w1 (t) = @i(t) forl=1,...k—1, —1.

Given h € L?(ty, 2ty — t;,) find v such that

Z) z/// +77//'l =} on (tlatH-l) forl=Fk — ll,

(

(i) () =Y/ (tiz1) =0 forl=k—1,..,S
(i) Y(ts11) = 0

(iv) " (t) =" () foril=k—-104+1,..,S
(v) e, (tp—,) =0

(vi) Y1 (t) = Yi(ty) forl="k—1+1,..,S.

i) Wt =f on (t,t;1) for 1 =0,....k —

(3.58)
I, —1)
> (3.59)
.S )
(3.60)
)

Problems (3.59) (3.60) are slight modification of Problem 3.2 and their so-
lutions have the same value at ¢, = ¢, ,: if | = k — [; then (v) reads

©e_1,-1(tg) = 0 = ¥y, (t;). Notice that matrices [ El

} and V play the

same role respectively in Problems 3.59 and 3.3 while matrices M and

M

V play the same role respectively in Problems 3.60 and 3.3. Then

( existence and uniqueness of solutions

existence and uniqueness of solutions
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Consider the affine map y : [t;,, %] = [tr, 2t — 1;,] defined by pu(t) = 2t;, — t.
Observe that any solution ¢ of Problem 3.59 with datum f gives a solution
P(t) = o(u'(t)) of Problem 3.60 with datum h = f(u'(¢)), and that any
solution ¢ of Problem 3.60 with datum h gives a solution ¢(t) = ¢ (u(t)) of

Problem 3.59 with datum f = h(u(t)). By (3.61) either [ El ] and [ &
1

U

o,
is a contradiction between (3.55) and (3.58). O

are both non singular, or [ } and [ ﬁ ] are both singular, hence there

4 An auxiliary variational problem

We have already noticed that jump and crease points of argmin Fg’ﬂ are not
necessarily localized among those of g even if it is a continuous and piecewise
affine function (see Section 4 of [4]). In this section we develop some technical
tools enabling us to overcome this difficulty. At first we introduce a problem
which is equivalent to the minimization of Blake-Zisserman functional in case
of continuous piecewise affine datum g.

Definition 4.1 For any Q € {0,1,2,..} and q = (¢;)X, € Aq let

Kq={uveH*: a(t")=du(t")=0 VteS,US; and
W) =i(t) =0 Vie (S,USi)\{atd }-

Problem 4.2 Given Q € {0,1,2,...}, q € Aq, g € L?(0,1) and «, 3 satis-
fying (1.2), minimize the functional F] 5 on Kq.

Remark 4.3 If g € Ay (continuous piecewise affine function with crease
points at q) in addition to usual assumptions (1.2) and (1.3), then the set
of solutions of Problem /.2 coincide with the set of minimizers of Blake-
Zisserman functional Fiﬁ with the same data o, 3, g. This is true because
Fiﬁ admits minimizers over H? and they must belong to Kq due to (ii) and
(vi), of Theorem 2.1.

Motivated by this remark, from now on, we focus the multiplicity of solu-
tions of Problem 4.2. We introduce the following problem in order to study
elements of g N argmin F, iﬁ having location and quality compatible with
suitable location and quality a priori prescribed with at most j jump points
and c crease points. Analysis made in Section 3 and Remark 4.3 suggest to
look for solutions v of the following problem.

34



Problem 4.4 Given Q,T,j,c € {0,1,2,...}, T = j+¢c, t €A, q € Aq,
o€ Q. and g € L*(0,1), find v € H*(0,1) s.t. v =y on (t;,t+1) where

@ Y"+m=g on (t,t;41) for1=0,1,..., T )

(7’7’) le”(tl) = ’Yl”(tl-i-l) =0 fOT‘ I = 07 ]-7 ) T

(@ii) " (t) =0 if either 1 =0, orl=1,...,T s.t. oy =J,
orl=1,...,T s.t. t

1 ¢a (4.1)

(iv) 4" (tix1) =0 if either | =T, orl=1,..,T s.t. o141 =1,
orl=1,..,T st t;;1¢q

(v) " () =~"(t1) ifl=1,..,T and oy =C and t; € q

(i)  v_1(t) = v(#) ifl=1,..,Tand oy =Cand t; € q

Vs
t and o are called respectively location and quality of Problem 4.4. (4.2)
We emphasize that v could be discontinuous at some ¢; if o, = C and ¢; ¢ q.

Theorem 4.5 For any Q, T,j,c € {0,1,2,...}, T=]j+¢c, q € Aq, t € A,
o € Q. and g € L*(0,1), Problem 4.4 admits unique solution.

Proof. Consider the quality w defined by w; = o, if t;, € q and w; = J
otherwise. Problem 4.4 is equivalent to Problem 3.3 with datum ¢, quality
w and location t, then the thesis follows by Theorem 3.8. [

Remark 4.6 Location and quality of the solution v of Problem 4.4 are com-
patible with location and quality (4.2) of Problem 4.4, say

Sfy Q {tl g; = J}, S"Y \ Sfy Q {tl g; = C}

Remark 4.7 We notice that, when g € Ay, the relationship between Problem
4.2 and Problem /.J is analogous to relationship between minimization of
Fiﬁ and Problem 3.3: any solution u of Problem 4.2 solves Problem 4.4 with
the same location t = t(u) and quality o = o(u).

Definition 4.8 For any Q,T,j,c€ {0,1,2,..}, T=j+c, t € Ar, q € Aq,
o€ Qe and g € L*(0,1), set:

1. v =1lg,t,q, 0] is the unique function v = y(x) € H? piecewise defined
by the solutions {v; = vlg,t,q,0] € H*(t;,t141) o of system (4.1).
Parameters g, t, q, o will be dropped whenever there is no risk of
confusion. For any | € {0,..., T} we denote by v}, ...,vl(r) the first,
second, ..., r-th distributional derivative in (t;,t; 1) of v, with respect
to x. Notice that v, = Y, v = %1, ..., but v' and ¥" may be different
from 4 and 7 due to singular part at t;.

35



2. §(g,t,q,0) is the absolutely continuous part F9 of Fg’ﬂ evaluated at
the solution ~[g,t,q, o] of Problem 4./

§(g,t.q,0) = F(v]g, t,q,0)]) (4.3)
S(‘, 5 q, U) : L2(07 1) X AT — R

3. If in addition g is continuous piecewise affine with location q (i.e. g €
A, ) and the vector g is associated to g by (3.16) and (3.17), set:

(- q,0) : RY2 x A — L(0,1) by
Vg, t,q,0](x) = 7lg, t,q,0](x) (4.4)

g('a ~»q, U) : RQ+2 X AT —+R by S(gata q, U) = S(gataqa J)' (45)

We emphasize that Definition 3.10 and Definition 3.13 depends on the loca-
tion and quality of Problem 3.3 while Definition 4.8 depends not only on the
location and quality (4.2) of Problem 4.4 but also on vector q (coincident
with location of g in case 3).

Proposition 4.9 Fiz Q,T,j,c,r € {0,1,2,...}, T = j+¢, q € Aq and
o € Qj, then:

1. the map g — v(g,t,q,0) is linear in g € L*(0,1) for any t € At,
in particular g = 0 entails v = 0;
the map g — §(g,t,q,0) is continuous and 2-homogeneous with respect
to g € L*(0,1) for any t € At;

2. for any piecewise affine function g € Aq and any solution w of Problem
4.4 such that u has j jump points, ¢ crease points and quality o, the
map t — §(g,t,q, o) achieves its minimum with respect to t in At at
t(u) = (t1(u),...,tr(uw)). Moreover S, = {t;(u): o, =1}, Su\ S, =
{ti(u): o0, =C} and v = u is the unique minimizer of F in H2;

3. for any piecewise affine function g the function v = g solves Problem
4.4 with data g, t = t(g), q = q(g) and o = o(g);

4. for any open cell W of the CW structure induced by q on At, the
restriction to Ay x W of ,yl(r)[_, - q,0|(t;) and of ,yl(r)[_, - q,0](tit1) (e-g.
evaluations at t;, t; 1 of functions (4.4) and their r-th derivatives with
respect to x) are real analytic functions of g and t; where t; is a free
coordinate of the open cell W ;
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5. for any open cell W of the CW structure induced by q on At, the
restriction to Aq X W of §(,-,q,0) (e.g. function (4.5)) is real analytic
functions of g and t; where t; is a free coordinate of the open cell W .

Proof. Consider the quality w defined by w, = Jif ¢, ¢ q and w;, = o
otherwise. Since F(-,+, q, o) is the restriction of F(-, -, w) to L?(0,1) x At and
¥+, q,0] = b"[-, -, w] the proposition follows from the analogous results
about F and b: Theorem 3.11, Lemma 3.7, Theorem 3.14. [

5 CW structure of the set of data with vanishing ex-
cess {E£ = 0}

We introduce the excess functional E to represent the deviation realized by
solution of Problem 4.4 from (expected for minimizers) vanishing values of
suitable weights. Excess E is given in Definition 5.1 in such a way that the
set {E' = 0} select all data for Problem 3.3 whose related solution fulfills the
whole set of Euler conditions (7)-(vi) of Theorem 2.1.

Euler conditions (7)-(vi) of Theorem 2.1 altogether form an overdetermined
differential system: for this reason we introduced Problems 3.3 and 4.4 (each
of them contains only part of these conditions) and showed that both have
unique solution for any choice of the arrangement. If the evaluation of the
excess F on the solution v of Problem 4.4 vanishes then v is also a solution
of Problem 3.3, more precisely such ~ fulfills all Euler conditions ()-(vz).

Definition 5.1 For any Q,T,j,c€ {0,1,2,..}, T=j+c, t € A1, q € Aq,
0 € Qjc, and g € Ay we define E : Ay x At x Aq x Qjc — RT by

E(g,t,q,0) = (Ei(g,t,q,0),..., E1r(g,t,q,0))

where

7l—1[gat7q7 U](tl) +7l[gat7q7 J](tl) - 2g(tl) /Lf g = J and 4] gé q,
El(g7t7q70) = 71[97t7q7 U](tl) _Pylfl[gataqa U](tl) 'Lf g] = C:

0 otherwise,

and v = 7[g, t,q, 0] is the solution of Problem 4.4.

Notice that if W is a cell of the CW structure induced on At by q and #; is
not a free coordinate of W, then ¢, € q. Since t; € q entails either o, = C or
E; =0 we get

E =0 VI such that ¢, is not a free coordinate of the cell W.  (5.1)
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Notice that Proposition 4.9(4) entails (via identifications (3.16) and (3.17)
between g € Ay and g € Re*2) that the restriction of the function E(-, -, q, o)
to Aq x W is an analytic function of g, t, for any open d-dimensional cell
W C At of the CW decomposition induced on At by q. Moreover, referring
to Definition 4.1, (3.23) together with Theorem 2.1(vi) entail

E(g,t(u),q,0(u)) =0 Vg, Yuc€argminFy,C Kq. (5.2)

In this section (still referring to identifications (3.16) and (3.17) between
g € Ay and g € Re*?) we study the CW structure of the set

{E=0}:={(g,t) e Ay xW: E(g,t,q,0) =0} (5.3)

in a small neighborhood of a fixed point t € At when the location q appearing
in the definition of E is suitably fine. Toward this aim we introduce the
definition of exhaustive sequence of partitions where, as usual, we identify
partitions with vectors.

Definition 5.2 A sequence of partitions {qm }m>o is called ezhaustive if

Am C Qa1 for any m > 0, U Qm s dense in (0,1).

m>0

Lemma 5.3 Fiz T,j,ce {0,1,2,...}, T=j+c, te At and o € Qjc. Then

Je € (0, dist(t, 0AT)/2) s.t. for all exhaustive sequence of partitions {Qp, }m>0
dm: Vm >m
Vie{l,.,T} Fi=i(l), 3¢ := ¢ € dm such that
G @] C (b tisr) Yt ‘t —’E‘RT <e (5.4)
and, by setting  jh(z) = (2 = ¢j-1)Xig; 1.0 (%) + (¢ = G-1)X(g;11(x) for any
je{l,...,Qn+1} and Q,, = dim q,,, we have

Qm+1
Wbty Amy 0] =ho+ Y lih, b, qm, 0l hy VhEA,, , VIE{L, .., T}, (5.5)

J=1

say the solution v[;h, t, Qm, o] of Problem 4.4 is the coefficient of h; (through
the identifications between h € A,,, and h € R 2 see (3.16), (3.17)) in
the linear combination (5.5) representing vy, and

Yeliyhy t,Am, o) = 0 if k <1 and (op =) or t; & dm), (5.6)

’Yl[i(l)hataqmao-](tl) 7£ 0. (57)
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Proof. Statement (5.4) follows from Definition 5.2.
Statement (5.5) follows by Proposition 4.9(1) via identification (3.16) which
now reads as follows

zo = hy, z; =h(q — q-1) + 21,

Q! Qut1 (5.8)
h(r) = 2:1 (hj(z — gj—1) + Zj—l)X[‘Ij—la‘Ij)(x) = Zo ihhj .
j= iz

Statement (5.6) follows by (4.1) and Proposition 4.9(1).
Referring to Problem 3.3, we define by : (¢;,%,41) — R by

bf(a) = bl [X(a,l)v ta w] (E) .

Lemma 3.20 entails that b is a (not identically zero) real analytic function

with respect to a € (#,1;41) for any w € Qr = U Qmn-
m+n=T

Since Q7 is a finite set we have that |J {z € (f,t;41): bf(z) = 0} is a
weNT
discrete set hence we can choose

a € (tt1): B (a) #0  VYw e Qr.

Continuity of b;[x(q,1), t,w](t;) With respect to #; (Theorem 3.11(2)) entails
Je, e > 0 ‘bl[x(al,l),t,w](tl)‘ >c YweQr, Vte Ar: ‘t —f‘ < 2¢;.

For any a,b € [0, 1] with a < b, set

T —a

h(z) = 3—X1 (%) + X1 (2),

Continuity of g, t,w](t;) with respect to g (Theorem 3.11(2)) entails, for
the same ¢; choosen before,

5> 0 diSt((Ll, {tl ZT:-Bl) >0 Vt € A,

| biht,w](t)] > £ Va,b € (a—0,a;+0).

t —,E‘ < ¢y,

By exploiting linearity of b;[g,t,w](t;) with respect to g (Theorem 3.11(1))
we have for any [

t—f‘ < gy,

dist(a, {61 ) >6 Ve AT,
36;,6>0:{ (. tthizo) T (5.9)

| oi[(b — a)h, t,w](t;)| > 5(b—a) Va,b € (a; — d,a; + 0).
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For any | € {1,...,T} fix £; and § as in (5.9), then by (5.4) we can choose
index m,; such that partition q,,, in the given sequence has components ¢;_1,
¢ € (a; — 6,a; + J) and set

e=min{e VI €{1,..,T}} >0, m=max{m; Vle{l,...,T}} < +oo.

Foranymzmand‘t—f“ T<5,deﬁnewbywl:aliftlEqandwl:J
R

otherwise. Since 7;[;h, t, qm, 0] = by[;h, t,w], thesis (5.7) follows by applying
(5.9) to b;h, t,w]. O

Theorem 5.4 Fiz T,j,c€{0,1,2,..}, T=j+c, teAr, o€ Qjc. Then
Ve s.t. 0 < e < 3dist(t,0 At) and V ezhaustive family of partitions {Qm }m>0
Im such that: for any q,, with m > m and any open d-dimensional cells W

of the CW structure induced by q., on At with W C B(t,¢), the set

T:={E=0}N(A,, xW)={(g,t) € Ay, xW: E(g,t,qm,0) =0}

is a finite CW complex of dimension at most Q, +2 (where Q,,, = dim qy;, ).
The higher skeleton of T locally is the graph of an analytic function.

Proof. The restriction of E to Ay x W is an analytic function then its zero
set T = {E =0} N (Aq x W) is a semi-analytic set contained in Ay x W,
hence T" has a CW structure by Theorem 8.5.

Choose ¢ and m as in Lemma 5.3, denote Q,, and q,, shortly by Q and
a = ()2, and denote by {1,}%_, the free coordinates of the d-dimensional
cell W.

Even without assuming £ = 0, by (5.1) we have to consider the intersection
of sets {E} = 0} only over indexes [/, related to free coordinates of W: since

() (Bi=0}]|n(Aq xW)=Aq xW
21

d
we have to study only (ﬂ {E,, = 0}) N (Ag x W).
r=1

Hence we are left to study the analytic function .J : R&2 x W — R? defined
by J(g,t) = (Fi(g,t,q,0))"_, through the identification (3.16) and (3.17)
between ¢ and g.

By Lemma 5.3 there are points ¢,—1,q, € (t,,%,+1), r € {1,...,d} such
that the maps h(2) = (v — q,-1)Xiq, _1.0.1(%) + (@, — @t,-1) X(q, 17 () fulfills
(5.6), (5.7), hence ,h are Q + 2 linearly independent functions in A,.

If .h € Re*2 (r = 1,...,d) are the vectors related to ,h through (3.16) and
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(3.17), then {,h} is a set of Q 4+ 2 independent vectors.

Moreover the matrix .
aJ,
r 5.10
(a(rh)> =1 ( )

is an invertible d x d matrix for any (g,t) € R¥? x W C R®? x R%: in
fact by Definition 5.1, (5.5), (5.8) we have g(th’) = % =, [rh, t o, 0)(t,),

hence the matrix (5.10) is a lower triangular matrix with diagonal given by

the vector .
(fylr [Tha ta q, J] (tlr))rzl

whose entries are all non zero by (5.7).
So the rnatrix = has always maximal rank and, by the Implicit Function

Theorem, {J = 0} = <ﬂ {E,, = 0}> N Ay X W has dimension Q + 2 and
locally is the graph of an analytic function. [J

6 CW structure of the set {¢ = 0} N {E = 0} of all
data exhibiting non uniqueness of minimizer with
same cardinality of singular sets and different ar-
rangement

The main result of this section is Theorem 6.4 which measures how many
triplets (g,t,7) € R™ x R” x R exist where g is associated by (3.16) and
(3.17) to a continuous piecewise affine function g with no more than m creases
and t, T are the ordered singular sets of two different (when possible) so-
lutions of Problem 4.2 with same cardinality n of singular set but different
arrangement' : we prove that the projection on the first component (in R™)
of the whole set of such triplets has zero m dimensional Lebesgue measure.

We introduce two additional excess functionals € and E to represent the
deviation of suitable weights evaluated on the solution of Problem 4.4 from
(expected for minimizers) vanishing values. The definition is built in such a
way that {€ = 0}N{E = 0} is the set of all data exhibiting non uniqueness of
minimizer with different arrangement and same cardinality of singular sets.

Definition 6.1 For any Q,T,j,c € {0,1,2,...}, T=j+¢c, q € Aq, 0,0 €
Qjc, open cell W C At x Ay s.t. W = Wy x Wy with Wy, Wy open cells of

'together with the same arrangement we would have uniqueness by Remark 4.3, The-
orem 2.1 and Theorem 3.8
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the CW structure induced by q on At and any (g,t,7) € Ay X W, referring
to Definitions 4.8(2) and 5.1, we define:

o C:Ag X W x Aq x Qjc X Qjc = R,

such that Qi(g,t,r, q, 0, 5) - S(gata q, 0) - g(ga‘raqa &)7
e E: Ay x W x Aq X Q¢ X Q) — R*T,

such that E(g,t,7,q,0,0) = (E(g,t,q, 0),E(g, 1,9, 5)).

¢(g,t,7,q,0,0) = 0 means that both v = v(¢,t,q,0) and 7 = (g, 7,q,0)
have the same energy JF9.

E(g,t,7,q,0,0) = 0 entails that both v = v(g,t,q,0) and 7 = v(¢,T,q,0)
solve not only Problem 4.2 but also Problem 3.3:

b(g,t,0) =7, b(g,t,0) =7,
Fi(v) =5(9,t,q,0) =F(g,t,0), FI(7) =3F(g9,7,q,0) =F(g,t,0).

Notice that the existence of two different u;, u; minimizing F] ; with (t, o) ar-
rangement of vy and (7, &) arrangement of uy would entail &(g,t,7,q,0,0) =
0 and E(g,t,7,q,0,0) = 0.

In Lemma 6.2 we evaluate the difference F(g,t,w) — F(g,7,0) when two
different minimizers of F g’ﬂ exhibit [y — [; consecutive crease points with
the same location between two jumps with the same location: by approxi-
mating these crease points and the two jump points with suitable ramps we
prove that the contribution of such interval to the above energy difference
is different from zero almost everywhere in a non empty neighborhood of
the diagonal t = 7 (recall that such energy difference must vanish on the
diagonal).

In Lemma 6.3 and Theorem 6.4, for any cell W and any pair of qualities o,
o, we study the CW structure (induced on At x At by q) of the set

{¢=0}n{E=0}:=

{(g,t,7) € Ay xW: ¢&(g,t,7,q,0,0) =0, E(g,t,7,q,0,0) =0} (6.1)
in a small neighborhood of a fixed point (t,7) € At x At when the partition
q appearing in Definition 6.1 is suitably fine.

Lemma 6.2 Fiz T,m,n,m,n, 1,5, A\, A2 € {0,1,2,...}, T = m+n =m+n >
0,0 <Il,lo, A\, s <T+1, (E, T) € At X A1, W € Qmp, w € Qmn. Assume
that

=11 =X — A > 0, (62)
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Cgict = Tasict =1, =l +1, (6.3)
Wy = Wy, = (:))\1 = (:))\2 = J, Wi 4i = a/\ﬁ_i =C 1= 1, N lg—ll—l. (64)

We insert suitable points {x;} between common locations; define an estimate
© of {xx} prozimity to the given partition t; then define a distance v from
coincidence of {xx} and {t;} and from collapse of consecutive pairs in {x;}:

d:lg—ll+1,

X = {X = (Xk)%dzl € (07 ]-)Qd: El-l-i—l < Xoj—1 < Xz < E;1-1-7; L= ]-7 Sd) d— 27

5271 < Xgg-3 < Xog—2 < Xog—1 < Xgg < EQ},
¢(x) = max ({X2z’—1 — tlioty thsi — Xo; 1470 U {xs — tt, — X2d—1});

(x) = min ({dist({x}3L;, {83251} U {xei — xei1}E ).

Then
36 = 6(t,7) > 0 and a closed set P C X with empty interior in R2?:
vxe X\ P with ¢ (X) <min{dist(t, d A1), dist(F,d A1)} and p(X) < §
Je = e(X, t,7) € (0,4(X)/2) s.t.
Vx € (X \ P) N B(X,¢)
V(t,T) € B(t,e) x B(T,¢) with (1, sty 415 oor tly) 72 (Tays T 415 s TAo )
di e {1,...,d} s.t. F(;h,t,w) —FGh,1,0) #0,

\

Vs
where we refer to Definition 3.10 of F and ;h is the ramp defined for by

T — X2j-1

’lh(w) = ’ih[x2’i*17 x2’i]($) = X[X2i—1,X2i] (gj) + X(X24,1] (ZE) HAS [07 ]-] (66)

X2; — X2j—1
Proof. There are four possible types of choices for [y, I, fulfilling (6.2):

(

r=p1 =i,
1<l <l<T, then set 22: d’f = b (6.7)
| p=1,v=d,
( ro=p =1,
0=10 <y, <T, then set ZQ:deii b, (6.8)
| n=2,v=d,
(r=p1 =1,
1<l <lb=T+1, then set ZQ:d”iiT’ (6.9)
(n=1v=d-1,
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’rlzpl:]-a
T2:p2:T7
s=d— 2,
uw=2,v=d—1.

li=0,l5=T+1, then set (6.10)

According to Definition 3.10 ;A approaches either a ramp or a jump when
©(x) — 07 as sketched below, i = 1, ..., d:

2R N \/’

X X2 X1 X2; de 3 de 2 de 1 de
_'_'_'_'_ ........................ _'_'—'_'_ .......................
ty, 41 try it tyy v tr,—1 ty,

Define the vector function L : X x At x A — R® by

v

L(x,t,7) = (F(;h, t,w) — F(ih,r,@))izu (6.11)

Actually the dependence of L on ¢t and 7 is restricted to components (¢,,, ..., t.,)
t —f‘ < (x) and |7 — 7| < ¥(x) in fact by
(6.4) and Remark 3.4, we know that: system (3.2) with data t, w, ;h splits
into three uncoupled systems related to intervals [0, ¢, ], [t ], [t 1]; sys-
tem (3.2) with data 7, @, ;h splits into three uncoupled systems on [0, 7y, ],
on [Ty, Ta,] and on [7y,, 1]; b[;h, t,w] = b[;h, 7,&] on [0,t;,] U [t1,, 1].

By denoting with |-| the Euclidean norm we define:

and (7,,, ..., 7,,) alone whenever

e the set Z C R*T by

Z = {(tl, ---atT;TI; ...,TT)I tl =0 forl 75 T1y..., T2,
7, =0 for | # py, ...,p2}

and the orthogonal projection onto Z, pr : R*T — Z;

e the set Ax C Z C At x At by

Ax={rt.m): [6 =% < v, Ir 7] <),
briti = Tpi4i fori:O,...,s—l} Vx € X;

e the open set Yx C Z C At x At by

Yx = {(pr(t,7)): ‘t—t‘<¢ ) and |T— 7| <¢(x)} Vxe€X;
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e the openset Y C X x Z C X x At x At by

Y = {(xpr(t.,7)): x€X, ‘t—%‘<¢(x), Ir— 7| < p(x)} C
X xY CX xZ.

We study the restriction of L to Y.
By Theorems 3.8 and 3.14(2)

(t,7) — L(x, t,7) is a real analytic function

of free coordinates Yx for any x € X.

We state a claim about Jacobian matrix DL =0L/0(t, T) = (JL/0t, 0L/oT),
where abusing notation d(t, 7) stands for 0z with z € Z, say we take into
account only the derivatives with respect to ¢; with [ = rq,...,ry and to 7
with [ = py, ..., po:

36 = 6(t,7) > 0 and a closed semi-analytic set P C R*? s.t.
dim (P) < 2d — 1, hence with empty interior in R??, (6.12)
Vx € X \ P and p(x) < §, rank (DL(x,pr(t,7))) = s.

The matrix DL(x, pr(t,7)) has s row and 2s columns such that the first s
columns do not depend on 7 and the second s columns do not depend on t,

we denote by M = M(x,t) = OL/0t the square matrix given by the first s
columns of DL(x, pr(t, 7)). Recall that s = ly—I; +1 in case (6.7), s = l,—;
in cases (6.8), (6.9), s =l —{; — 1 in case (6.10). We study in detail the
behaviour of the entries of M in cases (6.7)-(6.10) when ¢(x) — 0*. By
exploiting identity (3.22), (3.2.(zii)), (3.2.(iv)) and (3.2.(vi)) we analyze M.
Entries of type 1;; (diagonal entries).

We study M;; = ———(ih, t,w).
a ri+i—1

If i =1 and (6.7) or (6.9) occur (BM;; in cases (6.8), (6.10)), then

r
My = —b2, [Lh,t,w](t,) and My, — —1 when @(x) = 0. (6.13)
In fact 1A(ty,) = 0, by, _1[1h, t,w](tr,) = 0 by Remark 3.4 and b [, h, t, w](t,,) =

T1

0 since t,, has quality J. Moreover data h = 1h[x,,X,] and g = X[y, 1] 1D
Lemma 3.19, estimate (3.31) and g(Z,,) = 1 entail M (x,t) — —1 when
o(x) — 0.

If i ={2,...,d — 1} then

Mi,i = _2b;{i+i—1[ih7 ta w] (trl-l-i—l)vx N N

(b;'l‘l‘i—l[ih’ t’ (.U] (tr1—|—i—1) - b;‘l-l-i—Q[ih) ta L()] (tT'l-l-i—l))
and M;,; — 0 of order 1 when p(x) — 0.

(6.14)
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In fact br1+i—2[ihataw](tr1+i—1) = brl-l—i—l[ihatawlgtrl—l—i—l) since 2;\1:1-}—2'—1 has
quality C. Moreover if we chose t = t, g = ;h[tr i 1, tr i), 9(tr i) = 1,
h = ;h[x9; 1,%2;] and (7, s) = (X2;_1, X9;) in Lemma 3.19, then (3.30), estimate
(3.27) and vanishing set properties of non constant analytic functions allow
us to define the following sets for i = 2,...,d — 1,

P = {pairs (X2i—1, Xg;) : %Vrl+1>1 < Xgi—1 < X9 < Zw ) Mzz(xaf) =0
(6.15)

——

Sets P; fulfill the following properties:

P; is a closed semi-analytic set contained in R* and dim (P;) < 1. (6.16)

Then M;;(x,t) — 0 of order 1 when p(x) — 0.

If i = d and (6.7) or (6.8) occur (AM4 in cases (6.9), (6.10)), then

Md,d = (bm_l[dh,f{':, w](%;z) — 1)2 and Md,d — 1 when QO(X) — 0T,
(6.17)

In fact ¢h(ty,) = 1, by,[ah, t,w](t,,) = 1 by Remark 3.4 and by [ah, b, w](tr,) =
0 since %;2 has quality J. Moreover data h = jh[Xoq 1,X24) and g = X[iy, 1] in
Lemma 3.19 and estimate (3.31) entail My 4(x,t) — 1 when o(x) — 0*.

So far we have all the estimates which are needed about main diagonal, since

index i runs respectively from 1 to d in case (6.7), from 2 to d in case (6.8),
from 1 to d — 1 in case (6.9), from 2 to d — 1 in case (6.10).
Entries of type M, ;. (entries just above the diagonal).
OF ~
We study M; ;11 = ——(;h, t,w).
’ atr1+i
Ifi = {u,...,d — 1} then
Mi,i-l-l = _Qb%ﬂ' [Zhv t, w] (%;1+i) X

(b;l-i-z' [lha ta w] (trl-i-i) - b;~1+i—1[ihv,£7 w](%vrl-i-i))
and M; ;11 — 0 of order 1 when p(x) — 0.

(6.18)

In fact b,nlﬂ,l[ih,f, w] (ﬁ1+i) = br1+i[ih,¥, w] (%;,LJFZ-) since %V“H has quality C.
Moreover data h = ;jh[xgi_1,%2;] and g = ;hlt; 1i1,t, 4] in Lemma 3.19,
(3.30) and estimate (3.27) entail M; ;4(x,t) — 0 of order 1 when ¢(x) — 0.

If i=d—1and (6.7) or (6.8) occur, then
Md—l,d = (brz—l[d—lha t,w] (tr2) — 1)2 and (619)
My-14 — 0 of order at least 2 when p(x) — 0.
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In fact we have 4_1h(ty,) =1, byl4—1h,t,w](t,,) = 1 by Remark 3.4 and
b la-1h, t,w|(f,,) = 0 since £, has quality J. Moreover data h = ;h[X2;_1, X2;]
and g = ih[ o1y ftvm] in Lemma 3.19 and estimate (3.31) entails Md,l,d(x,f) —
0 of order at least 2 when ¢(x) — 0.

Entries of type M, ; with (i, j) # (4,4), (i,3 + 1).

We study Mi,j = rl(zh,,{,w)
ri+j—

If £,,,;_1 has quality C then

My = =260 iy [ih, 6, w)(Er, 45 1) % (6.20)

(b;'l-i-g 1[ h t ]( ri+j— 1) br1+j—2[ih7,£? w](f{rﬂr]’*l))
and M; ; — 0 of order at least 2 when ¢(x) — 0.

In fact b,nlﬂ,l[ih,f, w](ﬁl+i,1) = b,nlﬂ-,g[ih,f, w](frﬁj,l) = () since Zrlﬂ',l
has quality C. Moreover data h = ;h[X9; 1,Xy;] and g = ih[ﬂ1+i,1,ﬁnl+i] in
Lemma 3.19 and estimates (3.27) and (3.31) entail M; ;(x,t) — 0 of order at
least 2 when ¢(x) — 0.

If %;,1+j 1 has quality J then
Ml] (bnﬂ 2[h t ](tnﬂ 1) br1+y l[h t ](tnﬂ 1))X (6.21)

(bry 42l h,t,w]( ritj—1) by i1 h,t,w]( r1+j—1) -2 h( ri+j—1))
and M; ;(x,t) — 0 of order at least 2 when ¢(x) — 0.

In fact by, ;_,[ih, t,w](try 4 1) = 0 since t,,+j 1 has quality J. Moreover
data h = ;h[x9; 1,%9;] and g = ZlNL[t“H,l, tr i) in Lemma 3.19 and estimates
(3.27) and (3.31) entail M, ;(x,t) — 0 of order at least 2 when p(x) — 07.

Referring to (6.15), and setting by convention P, = P, = () in all cases
(6.7)-(6.10) we define P C R?? as follows

d
P = U R x ... X I% X ... x R2. (6.22)

i-th position

The set P is contained in R??: actually P is the union of d — 2 semi-analytic
sets since the first and the last one are empty. By denoting & the group
of permutations of s elements and referring to (6.7)-(6.10), we exploit the
standard formula

det(M Z sgn(p H p(i)> (6.23)

peES =
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where v — . = s — 1 is equal to respectively d — 1, d — 2, d — 3 in cases (6.7),
(6.8) and (6.9), (6.10).

We summarize (6.13)-(6.21) as follows: product [[M;; is an infinitesimal as

i=p
©(x) = 0T of order respectively (s —2) V0, (s—1) V0, s VO in cases (6.7),
(6.8) and (6.9), (6.10); all other products are of order at least s + 1. Then
det(M(x,t)) tends to 0 of the same order than []M;;. The claim (6.12)
i=p

follows by (6.16), (6.22).

For fixed X € X \ P consider the following choices in Definition 8.9: M = Yk,
V =R, N = {0}, f defined by f(t,7) = L(X,t,7) with (t,7) € Y. Then
dim(M) = 2s, dim(N) = 0, rank(DL) = s by (6.12), hence projection
pr(t,T) is a regular point of f for x € X \ P with ¢(X) < §. By Theorem
8.10, f~'(0) is an analytic manifold containing the diagonal set Ay and

contained in the open set Y. Since 0 (Yx) N (B(f, P(x)/2) x B(T, w(i)/2)>
is the empty set we conclude that f~*(N) N (B(E £) X B(?,e)) = Ag N
(B(’E, £) % B(?,s)) for suitable £ € (0,4(%)/2). O

Lemma 6.3 Fiz T,j,c€ {0,1,2,...}, T=j+c >0, (t,7) € Ar X At and
0,0 € Qj,c-

Ve s.t. 0 <& < $min {dist(z, 0 A1), dist(T, 8AT)} and any erhaustive fam-
ily of partitions {dm tm>0, Am of cardinality Qp,, fir:

a d-dimensional cell W =Wy x Wy C B(t,e) x B(T,¢)
of the CW structure induced on At X At by q; (6.24)

{t,}Eo, {m\, }EL, respectively denote free coordinates of Wy, Wi;  (6.25)
(t,7) € W witht # 1 if c = 07; (6.26)

L=t ({tlu}fil U {T/\u 5;1) < Lo+ Ly; (6-27)

€(g,t,7,qm, 0,0) = F(9,t,qm, 0) = F(9, 7, am, ) Vg € Aq,. (6.28)

Then there is T > m (where m is the integer defined in Theorem 5.4) s.t. for
any qm with m >m there are at least L + 1 independent vectors {,h I+l

RO +2 identified with L+ 1 functions in A,,, by (3.16) and (3.17), such that

ge Lt
{8( h) } C R *2 js a set of L + 1 independent vectors (6.29)

v=1
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or, equivalently,

dim (span ({6(81/@;)} ' )) =Qn+2—(L+1)=Q,—L+1. (6.30)

v=1

Here € is defined by (6.28) and, analogously to Definition 3.15 of derivative
OF

a_g’ we set
% _ limS(f +eg,t,0) — S(f,t,a)_ (6.31)
g 0 e

Proof. First we introduce some notation. Let < -, - >>:L?(0,1)xL?*(0,1) >R
be the positive definite bilinear map given by

L U, v > = /0 ii(x)0(x) + u(x)v(z) de. (6.32)

Let Qr = |J Qm, and denote by w the elements of Q1 x Qr.
m+n=T
Fix w = (w,w) € Q1 X Qr, w € O and @ € Qz 7, and set

Fw (g,t,T) = F(gataw) - F(Q,T,&) V(g,t,‘l’) € L2(07 1) X AT X AT) (633)
T={t:w=1, T={7:&=1J, (6.34)
TUTU{0,1}=(¢)s 0=C <o <G <Gp1 < oo <Cpur =1, (6.35)
R={re{0,..p+1}: ¢ e(TNnT)u{o,1}}. (6.36)

Any ¢, with r € R is called double point, we will study intervals [(,, ;] where
¢ and (s are two consecutive double points (notice that there are at least
two double points in any case: 0 and 1). Now the proof splits into two steps.

Step 1 - As a first step we prove the following claim.

For any interval [(,, (5], with (., (s consecutive double points, )

there are continuous piecewise affine maps {;g};_{ in [0,1]
such that, by setting (only in this step)
b = big,t,w] and b* = bf;g,T,d], (
the following square matriz M is invertible
M= (<b—g,bF—pg>—<b—;g,bF—1g>)"

S§—7r
i k=1" )

(6.37)

Proof of statement (6.37) depends on the nature of the interval [¢;, (s]. As-
sume (. = t;,, = T, and (s = t;, = T), then we distinguish between three
different types of intervals, describing all possible configurations.
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Type 1 intervals: Intervals [(, (] fulfilling all the following three conditions

l—1L =X — A\
trict = Tayaict Vi {10, — 1, +1} 3. (6.38)

Wi, 4i = @,\H_i = C Vl € {]_, ls - lT‘ — ]_}

Type 1 intervals [(, (5] look as follows

tlr tlr+1 tlr+2 ....................................................... tlgfl tl;
77777 | | | | ] P
T T T T
_____ i . i . Lo _
- T T T L
The Tadl  Tagtpgeeeseomoommsoees s Tol T

Type 2 intervals: Intervals [(,, ;] containing at least one jump point in t
or T, hence fulfilling s —r > 1. Each type 2 interval belongs to at least one

of the two following kinds: either

E, ET-HL tls
————— i i F————-
J J J
_____ g o
T The
or _ _
t, t
77777 I I —_
J J J
77777 | A
Ta, Tt Ths

Crease points are not drawn in the two figures above, however they could be
present possibly not coupled or in different number for w and .

Type 3 intervals: Intervals [(,, (] fulfilling s —r = 1, say without jumps in
(¢, Cs], and not fulfilling all conditions (6.38). Type 3 intervals [(,, (5] look
as follows

t, ti,+a t,te t1,

77777 | | | ] P —
f f f f

,,,,, a i i L
T T T T
A Thr+b TAr+d Ths
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Proof of (6.37) in case of type 1 intervals. In this case r —s =1 hence
the matrix M is a scalar.

Lemma 6.2 applied with data T, m, n, m, n, w, @ given by the pair w, l; = [,
lo =15, A1 = A, Ao = A entails the existence of

X=Xor, P=P,;, X=0u,X, 0=04hyr €=C¢cur (6.39)
fulfilling

36w, > 0 and a closed set P, C X, with empty interior in R?? s.t.

Y(w,X) < min {dist(t, 0 Ar), dist(7,0 Ar))},

V wrX € Xy, \ Py, with
P X) <9

Jewr € (0,9(X)/2) s.t.
v w,ri S (Xw,r \ Pw,r) N B(w,ria 5(.),7')

V(t, ’T) - B(t, 5(4,7') X B(?, 5(4,7') Wlth (tl17tl1+17 ceey tlz) 7£ (T/\laT/\l-Ha ...,7')\2)
di € {1, . d} s.t. F(ih,t,w) - F(ih,T,&j) # 0,
We plug

T — Xo9;—

zg(x) - #X[Xm—mxm}(aj) + X(Xa;,1] (x)

Xo; — X241
in (6.37). Due to (6.32), ;5 = 0 in [0, 1], with the choice ;g = ;h in (6.6),
(6.5) of Lemma 6.2 entails

M= (F(lgvtvw) - F(lgvTa(‘T})) 7& 0,

say M is a matrix of order 1 = s — r with non zero determinant.

Proof of (6.37) in case of type 2 intervals. In this case s —r > 2, we
set

YV={y=(y)iz] €[0,1]"": y; € ({r4i 1, Crs] Vie{l,..,s—r},

W(y) = min ({dist(y;, {f, 7} 5") b2t U {dist(y,, yi) }iano)-
We denote by M(y, t, ) the symmetric matrix M defined in (6.37) with the
choices

lg:X[yl’l} Z E {]_,...,S—T’}.

By Theorems 3.11(2), 3.14(2) matrix M(y, t, ) is a continuous function on
Y x At x At where the topology of Y is induced by [0, 1]*7".
We denote by M the matrix M(y, t, 7) evaluated at y = (Gog1, - Gsr1, Ys—r )
t =t, 7 = 7. We claim that

M, is non singular. (6.40)
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Since M(y, t,7) is continuous on Y, if (6.40) holds true, then we get

3o >0, Fury=(or¥ps o wr, ) €Y with {u,y, 177 0 {t, 7} =0
such that  |det(M(,,y,t,7))| > ¢,

then, referring to Definition (6.37) of M, J(w,ry) > (0, Theorem 3.11(2) and
Theorem 3.19 entail
o )
e, € (0, M) such that the matrix M(y, t, 7) is invertible

V(t,T) € B(t,ew,) X B(T,cwr),
V partition q and set {;g};=] C A, of ramp functions with e (6.41)

0 ifx<y,Y. —cwr,
(o) = A

1 ifz >4y, +cw,-

Eventually we prove claim (6.40) by showing that M, is a block diagonal
matrix and that each block has non zero determinant.

The matrix M = M(y, t, ) defined in (6.37) is symmetric and for any i, k €
{1,...,s —r} with i < k we have

£ (spt (0" —ig) N spt (BF —g)) <1 if [y, y, ] NT #0, (6.42)
£ (spt (b —;9) Nspt (b —1g)) <1 if [y, y, ] NT #0, '
then
(i) <b —ig,0" —pg>=0 ifly,y,]NT #0, (6.43)
(i) < b —ig,bF —pg>=0 if[y,y,]NT #0, .
hence

M, =0 if both [y;,y,]NT #0 and [y, y,]NT #0 hold true. (6.44)
By (6.44) we have
M, =0 entails M,, =0 for a <i and b >k (6.45)

and

(M¢);i+1 =0 for all ¢ such that
(i €T and Goyiyr1 €T) or (Gai €T and (ryipr € T), (6.46)

then M, is a square block diagonal matrix where each block Mg’ belongs to
exactly one kind among the following four ones:
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Ble<e <s—r Gie1,Crer1 €T and Gy € T\T for any i € {e, ..., €'};
B2e<e <s—r,(ret1,Grer1 €T and (pq; € T\T forany i € {e, ..., €'};
B3 e<e=s—r (e €T and (,y; € T\T forany i € {e,...,s —r—1};

Bd4e<e=s—71Gie1 €T and (y; € T\T foranyi € {e,...,s—r—1}.

e/

By (6.43.(ii)), B.1 blocks have the form M = ( < b* — ;g,bF — g > )i’k:e.
The bilinear map (6.32) is positively defined and {b’ — ;g}¢_, C L?(0,1) are
independent vectors since {;g}¢_, are, then det(M¢') # 0.
By (6.43.(1)), B.2 blocks have the form M = (=< b' —g,b" —g> ), .
The bilinear map (6.32) is positively defined and {b* — ;¢}¢_, C L?(0,1) are
independent vectors since {;g}¢_, are, then det(M¢) # 0.
Type B.3 blocks have the form

M = (< b —;g,bF—pg>— < b — 9,68 —1g>>)
where < b — ;g, b% — g >= 0 whenever (i,k) # (s —1r,s — 7).
Let M?™" = N7 — £, where

el

S—r

i,k=e

<<b8_egabe_eg>> o <<be_egab87r_s—rg>>

< bsjr —s—rY, be —ed > s K bSir — s—r4, bs*r — s—rd >

0 if (i,k)#(s — 7,5 —7),
<<bsfr_57rg, bSir_sfrg>> lf (27 k) = (S —ns— T).

E=Eiklinse, Ein= {

The same argument used for B.1 blocks proves that N ~" is an invertible
matrix. Moreover £ — 0 as y,_, — (.1, since ;g — X, ,11 in L*(0,1),
hence Theorem 3.11(2) entails b — x,_,1 in H*(7,741) VL.
Then any type B.3 block M™" = N/™" — £ is an invertible matrix.
Type B.4 blocks have the form

M = (b —ig,b" — g > — < b —g,bF — g >)
where < b — ;g,b% — g >= 0 whenever (i,k) # (s —r,s — 7).
Let M)™" = =917~ + & where M5 " is defined like N7 " with < b* —;g, b* —
kg > replaced by < b — ;g,b6F — g > and € is defined like £ with <
b " — s—r9, b " — s—rg > replaced by < b — s—r9, b — s—rd >.
So we can repeat the same analysis we performed on type B.3 blocks.
Proof of (6.37) in case of type 3 intervals. In this case set

7 = {Z = (21722) € [CT‘?CS]27 z; < 22}7

S—r

i,k=e
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#(z) = min ({dist({z1,z: }, {t, 720} U {dist(z,, 25)}).
We label by M(z, t, 7) the matrix M defined in (6.37) with the choice

Tr —Z

g(l‘) - X[Z1,Z2}(x) + X[Z2,1](x) YAES (Zla 22) €.

;-7
Actually the matrix M(z, t, 7) is a scalar whose value is a continuous function
on Z x At x At, where the topology of Z is induced by [0, 1]?, due to Theorems
3.11(2), 3.14(2).
Since [(,, (] is a type 3 interval and s —r = 1, then at least one among the
following two possibilities holds true:

(1) Fefl,..Th: 7elé G\ [ uT),
(2) Fe{l,.. T} hele )\ (R uT).

We examine only possibility (1) since the other one is analogous.
We evaluate M(z,t,7) at: z=(7,25), t =t, 7 = 7, with z5 € (7, T141)

Since
lim <b—g,b—g>=0 (by Theorem 3.9)

ZQ*}T[+1

lim <b—g,b—g> > 0,

Zg—)TH_l

Theorem 3.11(2) entails M((7,25), t, 7) # 0 for any z, close enough to 774;.
Since M(z, t, T) is continuous on Z we get

de> 0, = wrl = (w,rzla w,rzg)
with  {u,Z,, w,Z, } N {t, =10

such that ‘M(w,rz,f,?)‘ > c.

Then, by definition (6.37) of M, {b\(‘”z) > 0, Theorem 3.11(2) and Theorem
3.19 we get

Jewr € (0, 2252y quch that [M(z,t,7)| > & }

2

(6.47)
V(t,T) € B(t,cw,) X B(T,cws), VZ € B(wsZ,0w, )-

So far the claim (6.37) is proven.
Step 2 - To achieve the conclusion we exploit Step 1. First we choose

e=min{e,,: w € Qr xQr, r € R} > 0. (6.48)
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We consider m such that q;; has at least two distinct points in each one of
the following intervals

(w,rxgi,l - &, w,rxgi,l +e )7 (w,rx% - &, w,rxgi + 5) vw,rx (Type 1)7
(wr¥; = & wey; +6) Vury  (Type 2),

(w,rzgi,l — &, w,rZQi,l +e€ )7 (w,rzgi — &, w,rZQZ' + 5) vw,rz (Type 3)7

where we refer respectively to (6.39), (6.41), (6.47) for different interval types
(only for types which are present, according to arrangements t and 7).
Obviously the same property holds true for any q,, with m > m.

To any cell W = W, x W fulfilling (6.24) with £ given by (6.48), we associate
the following qualities w and w:

o, if t; is not a free coordinate of W,
W —
: J  otherwise

_ o, if t; is not a free coordinate of W,
wp = .
J  otherwise,

and denote respectively by m, n the number of J, C in quality w and respec-
tively by m, n the number of J, C in quality w.

Then the ordered sequence (¢,)E_, of jump points (related to w, @) is fixed
and for any (t,7) € W: by referring to Definition 6.1 and (6.33), we get
¢,y Am,0,0) =By, (-, -, +) where w = (w,w).

By the same procedure used in Step 1 we choose {,g 5;1 associated to w, w:
we notice that the vectors {,¢g}~*} are linearly independent by construction.
We exploit [, -, qm, o] = b[-,-,w], V[, *, Am, ] = b, -, @] and apply Lemma
3.16 to obtain the following identity between square matrices

— 1 821[?‘4 (gv tv T) o
M5 (a(yg> 20.8) )

v'=1 .

There is an uniform estimate in the choices of ey, (in case of type 1 intervals
by Lemma 6.2; in case of type 2 interval by (6.41); in case of type 3 interval
by (6.47)). By summarizing:

1 ~ ~
Ewyr < 5 min {w(w,ri)a w(w,ry)ﬂ w(wﬂ"z)} :

Hence M is a block diagonal matrix where each block is related to an interval
of type either 1 or 2 or 3. Moreover M turns out to be a constant matrix

%)



once t and 7 are fixed, due to (6.33) and Theorem 3.14.
By Step 1 each block is an invertible matrix so that the whole matrix M is

invertible. This implies that the normal vectors to the L 4+ 1 hyperplanes

determined by {% = 0}Lt! are independent. [

Theorem 6.4 Fiz T,j,ce {0,1,2,..}, T=j+c>0, (t,7) € At x At and
0,0 € Qj,c-

For any e s.t. 0 <& < min {dist(f,@AT),dist(?, aAT)} and any exhaus-
tive family of partitions {dm, tm>0, Am of cardinality Q,,, there is m:

for any q, with m > m, any d = 0,...,2T and any open d-dimensional

cell W C B(t,e) x B(7,¢) s.t. W = Wy x Wy where Wy C B(t,e) and
Wy C B(T,¢) open cells of the CW structure induced by q,, on At, if € and
E are the maps of Definition 6.1, we have

EQm+2<pr Ag,] ({QS=0}m{E=0})> ~0 ifo+5
£+ ((pr{Aq, ] ({€=0}N{E=0}) \ (Aq, xA[47]))) =0 o =5,

where N[At]={(t,7)€ArxAr: t =7} and
pr(Ag, ] Ay, X AT X AT —A,,, is the projection on the component A,,, :

prlAg,] (g t,7) =g, Vge R (6.49)

Proof. Choose € and m as in Lemma 6.3. Fix m > m.

Parameters q,,, o, o are now fixed: for this reason they are omitted when
writing the variables of & and E in the following. As usual we set Q,, =
dim q,, and the identification between A, and R®*2 through (3.16) and
(3.17) will be always understood. We denote by (t;,, ..., bigs Tors oo Ty, ) the
free coordinates of W. We set
J= (Ell, . Eldo’ ET+/\1, . ET‘H\dl)
T={(g t,1) el xAr x Ar : E(g,t,7) =0}.

We emphasize that

SCAg, xW, dim(Ag, xW)=Q,+2+d, HI™(S) >0,

since S is at most countable union of analytic graphs; here H? denotes d-
dimensional Hausdorff measure and dim(S) denotes the geometric dimension
of S which is coincident with the Hausdorff measure of S.

By applying first (5.1) and Theorem 5.4 to Wy and to W; we have:

TN(Ag, xW)={(g,t,7) € Aq,, x W : J(g,t,7) =0};
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T N (Ag, x W) is a semi-analytic set contained in A,,, x W and the higher
order skeleton (Definition 5.3 of [23] or Definition 8.1 in the Appendix) S of
T N (A, x W) has dimension at most Q,, + 2 .

If dim(S) < Q, + 2 then the theorem follows.

If dim(S) = Q,, + 2 then we can show a contradiction by a three steps proof.

Step 1 - We prove the following statement.
If we set Z = {(g,t,7) € S: det(DwJ)(g,t,7) =0}
where DwJ is the differential of J with respect to free coordinates
of d-cell W,
then L 2(pr Ay, ] (Z)) = 0.

Theorem 5.4 entails that the higher order skeleton S is a countable union of
graphs of analytic functions F : A — B where A and B are connected open
sets, ACUxW,BCVand U,V C A,, are independent linear subspaces
of dimension Q,, + 2 — d and d respectively, we also choose A and B so that
SN (A x B) is connected.

For any choice of F, A, B as above we prove:

L2 (pr[Ag,,] (ZN (A x B))) =0. (6.50)
By denoting pr{U] : U x W — U the projection on U we can say
(8t,7) € ZN(AXB) <= ¢ g = (pritdl(g),F(prlti](g), t, 7)), o (6.51)
det(DwF) (pritd)(g). . 7) = 0.
We examine two possibilities according to the fact that det(Dy J) is identi-
cally zero or not on SN (A x B).
If det(DwJ) =0 on SN (A x B) then det(DwF)=0 on A since, by Dini’s
Theorem, (DywF)(h, w) = ((DyJ)(h, (b, w), )~ ((Dy-T) (h, F(h, w), w)).
By (6.51) pr[Ay,,] (Z N (A x B)) is the image of the function G : A — A,

defined by G(h,w) = (h, F(h,w)). Hence Theorem 2.71 in [1] together with
DG lower block triangular matrix entail

L9 (pr [Aq ] (Z 1 (A x B))) = /A | det(D G)| dh duw =
/ | det(Dy pr{d])| | det( Dy F)| dh dw = 0, (6.52)

hence (6.50) holds true.
If det(DwJ) # 0 on SN(A X B) then the semi analytic set {det(DyF) = 0} is
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a closed subset of A with higher order skeleton of dimension at most Q,, + 1:
this follows by Dini’s Theorem and (6.51) since S N (A x B) is connected.
By ACU x W and dim W = d, we get

ZN(Ax B) = {(h,F(h,t,7),t,7) (h,t 7)€ {det(DwF) =0} CU x Wy x W;}

is a semi-analytic subset of SN (A x B) of dimension at most Q,, + 1, hence
(6.50) holds true.
Step 2 - We prove the following statement.

Referring to (3.16), (3.17), (6.31), we denote the differential
of & with respect to g € RAm+2 py Dy, € and set

Y ={(gt7)€S (Da,, &gt T)=0} if o #0, (6.53)
Y:{(g,t,T)ES\D: (DAmeS)(g,t,T):0} if o=o0. ’
Then Y 1is contained in a semi-analytic set whose higher

order skeleton has dimension strictly less than Q,, + 2.

We introduce V; as the intersection with the cell W of all (2T —r)-dimensional
diagonal hyperplanes, say:
R, ={rC{1,. ., T}x{1,..,T}: t(r)=r} Vre{0,.,T}
Vie={(t,7) € A x Ar: t;=m V(i,k)er} Vre{0,.,T}VreR,,

w:(ﬂng( Ux@D vr e {0, T},

reR, $>r,s€ERg
Notice that

Fo={0}, Vo=w\( U W),

s>r,s€ER;
V,r is a semi-analytic set contained in At x Ar,

V, is a real analytic manifold contained in W Vr € {1,..., T},
T
Vr=AlAr],  V,inVi=0 ifr#s,  W=UW.
r=0
Now fix any r € {0,..., T}, with restriction » # T if ¢ = 7, and denote

by L the dimension of V,: L < min{2T — r,d}. Lemma 6.3 entails the
ex1stence (for any (t,7) € V) of at least L + 1 vectors {,h}/*| C A,

Kur = ﬂ {8%((9 ;)"') =0} is a (Q,,+1—L)-dimensional subspace of Ay, . Then
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the set K, = U K r) is a semi-analytic set with higher order skeleton of
(t, T)EV,

dimension strictly less than Q,, + 2, moreover

YN(Ay, xV,) C K, C SN(A,, xV,).

m

Eventually (6.53) follows by

v € U n(Ag, x 1) ifo#5

}fgtﬂymm%xw»iw:a

r=0

Step 3 - By Step 1 and Step 2 we are left to prove the following statement.

~ \ (ZUY) ifo#£ao
We set S = { S\ (Al | x W)UZUY) ifo =7 , then

LQm+2 <p7“ Ag, ]
LOm+2 (pr [Ag,. ]

({e=01nd)) =0 ifo#s
(qe_mmﬁgzm if 0=5.
Since S is semi-analytic, there is a covering C of S defined as follows

e Any element of C is the product of a connected open subset N of Ay,
by a connected open subset U of W,

e For any N x U € C there is an analytic function ® : N x U — R¢ with
(NxU)NS = {®=0}, moreover det(DyP)(g,t,7)#0 on S by Step 1.

The differential of map (€,®): N x U — R* isa (Qu+2+d) x (d+1)
tensor with the following structure:

D, ¢ Dy€

1%@@):[[) & Diyd
A w

We claim that the rank of the matrix D(€, ®) is 2T + 1 on S. In fact:
o det(Dy ®)(g,t,7) #0 on S;

e (Dyw€)(g,t,7) =0 for any (g,t,7) € S, since Lemma 3.17 holds true
and E(g,t,7) = 0 entails that the right hand side of (3.22) vanishes
on S,
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T) 20 for any (g,t,7) € S,

e there is at least a coordinate h; with o¢
thanks to Step 2.

Hence, by Theorem 12.17 in [23], (recalled in the Appendix A: Theorem
8.10) the set {(&,®) = 0} has co-dimension at least d + 1 in N x U, that is
dimension strictly less than Q,, +2. O

7 Proof of the main theorem

This section is devoted to prove Theorem 1.1.

In Lemma 7.1 we show a compactness property about locations of minimizers
valid when data «, 3, ¢, fulfill the assumption that all related minimizers
have the same cardinality of both jumps and creases (with possibly different
quality of singular set). In Theorem 7.2 we prove the existence of a dense
set of continuous piecewise affine data leading to uniqueness. Eventually we
deduce Theorem 1.1.

Lemma 7.1 Fiz T,j,c€ {0,1,2,..}, T=j+c, 0 € Qj., g € L? and set
= {t(u) € Ar: Ju € argmin F ; with o(u) = o},

Ric={hel* VwecargmnF!; #(S,) =] §(Ss\Sw) =c}.
Assume T] #0, £(S,) =] and §(Si\Su) =c Vu € argminF) ;. (7.1)
Then:

1. g E R"c;

2. the set T of locations of Fg minimizers with quality o s a compact
subset of the open set At, hence dist(7y,0 At) > 0;

3. for any neighborhood A of T] contained in At there is an L?-neighborhood
V' of g such that
t(u) € A for any u € argmin F? 5 with o(u) = o and h € V N Rj.

Proof. The first point is a restatement of (7.1). Now we prove 2 and 3.

For any fixed choice of sequences {t,} C T/, {u,} C argmin F ; such that
tn = t(un), we have I ;(u,) = m?(a, §) and {u,} satisfies the hypotheses of
Theorem 2.5(1) in [4]. Then there is u., € H? such that, up to subsequences,
Up — Ug strongly in L', uy € argmin F 5, and {t, = t(u,)} tends to
too = t(U). Actually t,, € At in fact if ¢ # [ then sequences {t,;},
{tn,} cannot have the same limit point without contradiction with (7.1) and
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Theorem 2.5(3) in [4]. The number of creases is preserved. Obviously the
ordering (say the quality) is preserved too, then the second statement is
proven.

The third statement holds true whenever g is an isolated point of R;. since
g € Rjc. If g is not an isolated point of R;. we argue by contradiction by
assuming the existence of a neighborhood U of T7 such that for any n there
i gn € Ry with [|g — gnll;» < + and u, € argmin FJ" with o(u,) = ¢ and
t(u,) ¢ U.

The sequence {u,} satisfies the hypotheses of Theorem 2.5(1) in [4] then up
to subsequences there is us, with u, — s strongly in L', and by Theorem
2.5(3) in [4] the sequence {t, = t(u,)} tends to to = t(us) ¢ U.

We have that F; ;(u,) — m], 4 since:

| FS 5 (un) —m?(a, B)| < |FY 5(un) = Fs(un)| + [m® (e, B) — m?(a, B)]
and the first term in the right-hand side goes to zero by plugging (2.12) of
[4] in

n 2 2
| F 5(un) = Fitg(un)| = [llun = gll72 = [lun — gull72] =
- <g —Gns G+ Gn — 2Un>L2 < ||g + Gn — 2un||L2 ||g - gn“L2 )

while the second term in the right-hand side goes to zero by (2.14) of [4].

Moreover o(us) = o (since otherwise we get a contradiction with (7.1) and
Theorem 2.5(1) in [4]); by lower semi-continuity (Theorem 2.5(2) in [4]) we
have FY 5(us)=m(a, B). Then t(us) €Ty CU contradicting t(us)¢U. O

Theorem 7.2 Assume (1.2) and o/ ¢ Q.
Then there is Agp dense in L*(0,1) such that

¢ (argmin F! 5) = 1 VheAyp, (7.2)
Au.p C {continuous piecewise affine functions in [0, 1]}. (7.3)
Proof. It is enough proving:

for any continuous piecewise linear function g € L*(0,1) and ¢ > 0

there is a continuous piecewise linear function f € L?(0,1) s.t. (7.4)

If =gl <&, t(argmin Fy) =1.
We fix g € L?(0,1) continuous piecewise linear. By (2.15) of [4] we know:

IKeN U ={feL?0,1): ||f —gl,. <} st

£ (S, USy) <K Vu € argminF) 5, Vh € U. (7.5)
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So the number of possible pairs (£ (Sy,),  (Sy \ Su)) with u € argmin F? ; and
h € U is finite, say less then K(K + 1)/2. Proof of (7.4) splits in five steps.
Step 1 - We exploit «/ ¢ Q to show the following claim.

Let

H=H(j,j,c?) = {heU: Ju veargmlnFj with §(Su) =], (S,) =]
1(Su\ Su) =, 2(Ss\ S) =€ (j,0) # (j;©), j+c<K, j+T<K}.

Then EQ”(HﬂAq)—O VQeN Vqe Aq with Q=dim q.

Set T=j+c, T= j+c. Choose o € Qj, 0 € Q~ and, referring to Definition
3.10, consider the function £(-,0,0) : A, — R defined by

E(h,0,0) = inf F(h,t,0) — inf IF(h T,0) Vh € Aq.

tcAt TcA

By Theorem 3.11(3) F(h,t,0) and F(h,T,0) are non negative continuous
functions with respect to h, t and 7. Then maps h — tir}L‘f F(h,t,0) and
€AT

h 7_in/f; F(h, T,0) are Borel functions from A4 to R, since they are infimum
F

of continuous functions, hence h — & (h, 0,0) is a Borel function of h € Ay =

RQ+2,

Then

f[d:er{heAq: E(h,o,0) :aG—j)+ﬁ(E—c)} is a Borel subset of A,.

Since
E(th,o,0) = t?E(h,0,0) VYt €R, by Theorem 3.11(1),
{ a(=)+FE-9#0 VijcCeN (0 #(.0), sincea/s¢Q
we deduce

{teR: thef{r} —{-1,1}  Vhe H\{0} (7.6)

Since H is a Borel subset of Ay 2 R¥?2 and (7.6) holds true then

£O2([T) = /;, dx =
_ /50+1 (/moo) i (p.9) p2F dp> do(9) = /SQ+1 0 do(d) = 0.

Since H N Aq C H we have LIT2(H N Ay) = 0.
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Step 2 - Referring to (7.5) we introduce the set H (of data g admitting at
least two minimizers with different arrangements) and its complement in U:

H= |J HGjc9, V=U\H. (7.7)
(1,0)#(.2)
By (7.5) H is the union of a finite number of sets, then we deduce by Step 1
LO2(HNAY) =0, LO(VNAy) =L32(UNA) VYqeAdq. (7.8)
By (7.5) and (7.8) there are only the two following possibilities:
either I eV: f(argminFl,) =1, (7.9)

f(argmin Fgﬁ) > 1 Vh € V and
or < #(Su)=H#(Sy), #(Su\Su)=4(S5\Sy) VhEV, Yu,v€argminF 5, (7.10)
0<#((S,USy) =1((SyUS;) <K VheV, Vu,anrgminF{fﬁ.

If (7.9) occurs then claim (7.4) trivially follows.
We show by steps 3,4,5 that (7.10) entails a contradiction.

Step 3 - We prove the following claim.
If (7.10) occurs then there are

J,6, Te{0,...,K}, T=j+c<K, o,0€Q,

a compact subset Ky C At X Ar,

a subset 'y C V,

an ezhaustive family of partitions {q), = (q1, ¢2,---, 40, ) }m.

such that
Sg g qg’ Sg — Q))
L%F2ToNAp)>0  Vme{0,1,..},
(t(u),t(v)) € Koy Vh € Ty, Vu,v € argmin F 5: o(u) =0, 0(v) = 7.

In order to prove the claim, we introduce the following notation:
5(q) = max {qs1 —q: 1€{0,...,Q}} Vq=(0)¥, € Aq VQ €{0,1,...},

P={q: S;Cq},
and, for any m,n € {0,1,...} with m +n < K and any w,w € Q. ,, we set:

V(mnwo)={h€V: Ju,v€argminFl s.t.u#v,0(u) =w,0(v) =},
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P(m,nw,o) ={qeP: LY*V(m,nw,d)NAy) >0},
Z={(mnw,w): V¥§>0 3Iq€P(mnw,w) and §(q) <}

We have that 7 is a finite non empty set since: the number of quadruples
(m,n,w,w) withm+n < Kand w,w € Qn, is finite; |J V(m,nw,w) = V;
for any 0 > 0 the subset of the elements q € P with d(q) < ¢ is infinite;
L2V NA) = LY2(UNA,) >0 for any q € P by (7.8).

We label the elements of the finite set 7 i.e. Z = {z, = (m,,n,, w,,0,)} Y.
We set Vo = U, for r > 1, if V,_;1 NV (z,) = 0 then we set (,h,T,,V,) =
(0,0,V,_1), otherwise we choose ,h € V,_; NV(z,) and observe that Lemma
7.1 entails the existence of a compact neighborhood T, of 7% X T% and a
neighborhood V;. C V, 4 of .h such that (t(u ) t(v)) € T, Vh eV, n Vi(z),
Vu,v € argmin Fh with o(u) = w,, o(v) = ©,.

Among all trlplets constructed above we consider the collection of the ones
whose first two entries are not empty and relabel such triplets {(;h, Ty, V) }M,
with M < N. Summarizing we have

( (i) sh € V(z) C L*0,1), Ty is a pair of locations,
(i) sh € Vs open set in L2, V, CV, 1 C U,

(#4i) Ts C At x At is a compact neighborhood of T x Tgf (7.11)

where T}’ is defined in Lemma 7.1,

(iv) (t(u),t(v)) € Ts Vhe VNV (zs), Yu,v € argmlthBst

L o(u) = ws, o(v) = ws.

For any (m,n,w,®) ¢ Z there is § = §(m, n,w,@) > 0 such that
{qe P(m,n,w,@): d(q) <d}=0.
Let 0p = min{d(m,n,w,w): (m,nw,w) ¢ Z, m+n <K, w,w € Qnn} >0.

For any fixed exhaustive family {q;};>o € P with d(aqp) < dp, by V' C U,
(7.8) and definition of P and 7, we have

EQJJFQ((EIU U V(m,n,w,@))ﬂqu> =0 vy,

(mnw,&)¢Z

hence by (7.8)

Lo VE)INAG) =LY UNAG) >0 V),

z=(mnw,0)EZ

64



then, since Vy is an open set of L? and Vy C U,

ch+2(vN nJve) mqu) =LY (VyNAg) >0 V).

z2EZ

Since Z is a non empty and finite set there is zz = (Mg, ny, wr, 0F) € Z and
a subsequence {q%}m C {q;}; such that Ty # () and L +2(Vy NV (z) N
Ago ) > 0 for any m. We select j = my, ¢ = ny, 0 = wy, 0 = Wy, Ky = Ty and
1—‘0 = VN N V(ZF)

Step 4 - We prove the following claim (which is an iteration of Step 3).

If (7.10) occurs then there are T,j,c € {0,...,.K}, T=j+c, 0,0 € Q. and
a family F = {o; = (K;, i, {q%, }m) }ien of triplets where

K; is a non empty compact subset of At x At C R?T,

[; is a subset of 'V,

{d, Y mis an exhaustive sequence of partitions (Q!, =1 (d’,)),
such that, for any i € N,

S, =0, S;Cd) and {d’,}m is a subsequence of {q% '},

Ki g Kifl, dzam(Kz) S %dzam(KZ,l) and FZ Q Fifl,
L*2(T;NAg ) >0  Vme{0,1,..},

(t(u),t(v)) € K; Vh € Ty, Yu,v € argmin F)) 4: o(u) =0, o(v) = 0.

We argue by induction. Step 3 is the starting point: we set ¢y = (Kp, To, {@2, }m)-
Then, by assuming that the family F' is defined up to index i, we show how

to define @; 11 = (K1, Digr, {d ' }m)-

Choose a finite covering { K; ;. }2_, of K; by compact subsets with diam/(K; ;) <
diam(K;)/2, the choice is possible since K; is compact by induction.

For any k € {1,..., N} set

Tig={h€T;: Fu,v € argminF 5 with u # v, (t(u),t(v)) € Kix}.
Since £ +2(I; N Agi ) >0 ¥m by induction,

3 a sequence {k,}n, with values in {1,..., N} :
LYHTD, NAg ) >0 Ym. (7.12)

Hence there is k € {1, ..., N} and a subsequence {m,}, such that k,, =k Vn.
We define @;,1 as follows: K11 = Kz, Dig1 = Uiz, {di b = {d},, Jn-
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Step 5 - We exploit Step 4 and Theorem 6.4 to show that (7.10) cannot
hold true (as was claimed at the end of Step 2).

By the construction in Step 4, (| K; # 0: precisely (] K; is a single point. So
we can set (t,7) = () K;. Then we choose: T, j, ¢, o, ¢ as in Step 4; £ as in

Theorem 6.4; j such that K; C B(t,£/2) x B(7,¢/2); m (large enough) such
that the CW structure induced by g/, on At x At (is so fine that) provides
a compact neighborhood K of K; where K C B(t,¢) x B(7,¢) and K is a
union of cells of the CW structure induced by qZ,.

For the sake of simplicity we drop the indexes j and m and we write q, Q
instead of ¢/,, Q; in the following.

For any d € {0, ..., min{2T, 2K}} we set

{Cy;}-, the finite set of all d-dimensional open cells of K, L = L(d),
@d,l:{hEFjﬂAq;n:Elu,UEargmthﬁst -
o(u) =0, 0(v) =0, (t(u),t(v)) € Cay}.

Form
{Cy,}ay is a finite set of cells, LY2(I'; NAy) > 0 and T'; N Ay C Uy,
d,l

we deduce: there is a pair (d,[) such that LY72(®z7) > 0.

On the other hand we prove that £L92(® 71) = 0 obtaining the contradiction.
By referring to Definition 6.1, (6.1) and (6 49) we set

. { priagl({€ = 0} N {E = 0}) if o #7,
priAq]({€ =0} N{E =0})\ (Aq x A[A7])) ifo =7,
where A[At] ={(t,7) € Ar x Ar: t =71},
The choice W = C3; in Theorem 6.4 entails £2+2(T) = 0. We claim:
®;; CT. (7.13)

To prove (7.13) we choose h € ®z; and u,v € argmin F 5 with u # v,
o(u) = o and o(v) = 0; then, referring to identification (3.16) and (3.17),
we have

{¢=0}Nn{E =0} ifo#0o

(h,t(u),t(v)) € { {e=0n{E=0})\(Aq x A[47]) ifo =07,

since,
by referring to Definition 4.8(1): u = 7[h, t(u),q, 0] and v = v[h, t(v), q,7];
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by (710) ﬁ (Su) = jj (Sv)a ﬁ (Su\Su) = jj (Sv \ Sv)7 G(hv t(u)v t(v)a q,0; a) =0;
by wu,v € argmin Féjﬁ and Theorems 2.1, 4.5: E(h,t(u),t(v),q,0,0)=0;

by Theorem 3.8 since we have chosen u # v: t(u) # t(v) if o = 7.

Then (7.13) is proven and, since £LT2(T) = 0 we deduce LY (D) = 0,
e.g. a contradiction with (7.10). O

Proof of Theorem 1.1. We fix «, (3 fulfilling (1.2) and o/ ¢ Q. Then we
choose A, s as in Theorem 7.2. We define the function H : L? — [0, +00) by

H(g) =sup{|lu — ||, w,v€argminFy,}  Vge L*0,1).

Since £ (argmin Fg’ﬂ) =1 for any g € A, 3, we get

Aoy € {g € L*(0,1): ¢ (argminFY,) =1} = H '(0) =
={geL’0,1): H(g)=0} = () {g€L0,1): H(g) <1/n}.

neN

We claim

Vn V,=H *([0,1/n)) is an L?*-neighborhood of dense set H *(0)D A, 5, (7.14)

ds
ie: Vn 3U, open sets in L*(0,1), U, C L*(0,1), Aaps C U, C Vj.
Then Theorem 1.1 is a consequence of (7.14) by setting
Ea,ﬁ = Hﬁl(O) = ﬂVn D) nUn

We prove (7.14) by showing that H is continuous at any g € H'(0). Arguing
by contradiction assume that there are ¢ > 0, f s.t. H(f) =0 and a family
{fu}n C L? with f, —7> f and H(f,) > . Then for any n we can choose

Up, U, € argmin FJ"B such that ||u, — v,|[; > €. (7.15)

By Young inequality and (2.12),(2.13) of [4]

n 2 2
F) 5(un) = Fis(un) + [|un = fII72 = llun = fall72 <
< m(a, B) + 2| fullz2 + 201/ 172 < 4l falle + 2 /172 < C,

in the same way we get F(f’ﬂ(vn) < C.

By m’(a, f) € min Fly = Flv(u,) = Fly(v,),

[0}
and property (2.14) in [4] we get F/(u,) — m! (o, ), Fl%5(vn) = mf(a, B)
then by Theorem 2.5(1) in [4], up to subsequences, we have u, —" u € H?
and v, —» v € H? with u,v € argmin F(f’ﬂ. Since (argmin FJB) =1 we

have u = v, then |ju, — v,||;, — 0 which is in contradiction with (7.15). O
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8 Appendix A: CW complexes and Transversality

Here follows a short summary of the notions about CW complexes which are
needed in this paper.

Let I = [0,1]. For any n € {0,1,2,...} we define I"™ to be the closed unit
n-cube if n > 0 and the origin if n = 0, we also define (0,1)" to be the open
unit n-cube if n > 0 and the origin if n = 0, we denote by 01" the topological
boundary of I" if n > 0 and set 9I° = &.

Definition 8.1 A CW complex X is the direct limit of a sequence {X,}5° |
of topological spaces defined inductively as follows:

L X—l 207

e a family of continuous maps {fY: OIy — Xy 1},cy, called gluing
maps,

e X, obtained from the following diagram:

L I3 Loy " x|

AEA, AEA,

by push-out

I? or? fr
)\Gl—ll\n A Ael_/lxn g Xn—1

X

where | | denotes the disjoint union of spaces and the left arrow repre-

sents the injective embedding and f™ = || f¥.
AEA,

The subspaces X,, are called n-skeleta, for n = —1,0,1,....

A CW complex X is finite of dimension n if A, is a finite set for any n,
Aw # 0 and A, = O whenever n > M. In such case Xy is called higher
skeleton and X, = X5 for any n > 7.

Notice that, by push-out, each gluing function f{ : 9I7 — X,,_; extends to a
continuous function g¥ : I{ — X,, which is an homeomorphism on the open
n-cube I} \ OIY.

68



Definition 8.2 A n-cell of a CW complex X is the image of a n-cube I}
through g%, an open n-cell of X is the image of an open n-cube I} \ OI}
through gy .

We emphasize that the Definitions 8.1 and 8.2 above refers to cubes instead
of balls, nevertheless they are equivalent to Definition 5.3 in [23].

The following result due to Lojasiewicz (see [19]) describes a very large class
of spaces which are CW complexes.

Definition 8.3 Consider a real analytic manifold M and a subset S C M.
We call S a semi-analytic set if and only if for any xo € S there is a neigh-
borhood V' of xy and a finite set {f; : V' — R} of analytic functions such that
SNV isa finite union of finite intersections of sets of type

{z: fi(z) >0}, {z: fi(x) =0}.

Definition 8.4 Consider an affine space space X, a real analytic manifold
Y and a subset S C X xY. We call S a partially semi algebraic set with
respect to X if and only if for any yo € Y there are:

e a neighborhood U of 1

e a finite set {f; : X x U — R} of analytic functions which are polyno-
mials i x for any fired y € U

s.t. SN (X x U) is a finite union of finite intersections of sets of type

{z: f;(z) >0}, {z: fi(x)=0}.

Theorem 8.5 (Lojasiewicz [19]) Consider a real analytic manifold Y and
a locally finite collection {B;},c, of semi-analytic sets of Y s.t. By CY for
any l € A.

Then there exist an affine space X, a locally finite symplicial complexr K and
a homeomorphism f : |K| — Y such that:

1. |K| is a subspace of X;

2. the set {(x, f(z)) =z €|K|C X xY} is partially semi-algebraic with
respect to X (see Definition 8.4);

3. f(|z]) is an analytic sub-manifold of M and the restriction of f to
|| C | K| is an analytic isomorphism for any simplex s € K;
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4. f(|2]) € By or f(Is]) € M\ By for any simplez = € K, [ € A.

Here |K| denotes the geometric realization of the symplicial complex K and
|| denotes the geometric realization of the simplex ¥ € K.

Example 8.6 Theorem 8.5 provides many examples of CW complexes: the
semt analytic sets and the semi-algebraic sets.

In this paper we are also interested in a very particular type of CW complexes
where cells are cubes and gluing maps are identities on boundaries, as in the
case of the whole collection of (T + 2) dimensional rectangles lying in At of
the CW structure induced on [0,1]7 by vectors of type q.

Example 8.7 Consider the space

X={(z,y)eR’: (0<z<landy=0)or (z=0and0<y<1)}.
This space is a 1-dimensional CW complex with X, = {(0,0), (0,1), (1,0)},
Xl — X;' AO = {17273}’ ff)afgafi? : 810 — @ = X*ly' Al — {172}) f,{ :
(0,1).
Cells of X are the following: (0,0), (0,1), (1,0) the three 0-cells; [0,1] x {0},

{0} x [0, 1] the two 1-cells.
Geometric realization of X is the collection Xy, U X; C R2.

Example 8.8 Consider the space
) 11 2 2
X =< (z,y) e R*: nggg andggygl or 0§x§§ andggygl .

This space 1s a 2-dimensional CW complex with skeleta:
Xo = {(0,5), (0.3), (0,1), 5:3), 5:3): 51 G.3), 5,1}
Xi=({0,5} x [5, 1) U ({3} x [, 1) U ([0, 5] x {3, 1}) U ([0, 5] x {5}) .
X, =X,
and gluing maps:
Ao ={1,....8}, fL:0I° =0 =X_y;
Ay ={1,...,10}, f} : 0" — X, whose images are points given by

10) = (0,5), f1(1) = (5,3), £(0) =(0,3), f5(1) = (3,3),
5(0)=(0,1), f5(1) = (3. 1), f2(0) = (3.3). fi(1) = (3. %),
f(0) = (3. 1), f5(1) = (3.1). f5(0) = (0,3), f5(1) = (0,%),
f10)=(0.3), f1(1) =G 1), f500) = (3.3): fs(1) =(3,3),
f3(0) = (3,3), fo(1) = (3, 1), f15(0) = (3, 3), fio(1) = (3, 1);



Ay ={1,2,3}, f}:0I> = X, given by

(0,2) ifrx=1,
fxy) = Gz, ly)+ 4 (0,1 ifA=2, (z,y) €I’

We recall from [23] the definition of transversality and Theorem 12.17.

Definition 8.9 Let M, V be C*® manifolds with OM =0, f € C®(M,V),
N be a C* sub-manifold of V.
We say that f is transverse reqular to N at x € f~Y(N) if

Df(x) (r(M)2) + T(N)y = 7(V)y

where D f(x) is the differential of f at x and 7(Z), is the tangent space to
Z at point z.
In this case we say that x is a reqular point for f.

Theorem 8.10 (Switzer [23]) Let M, V be C™ manifolds, f € C*(M,V),
N be a C* sub-manifold of V.

Suppose OM = (), dim N +dim M —dim V > 0 and f transverse reqular to
N at any v € f~YN), then f~Y(N) is a sub-manifold of M and

codim f~1(N) = codim N/

that is
dim M —dim f' (V) =dim ¥V — dim N

Theorem 8.10 is applied when A is a single point (hence dim f~'(N) =
dim M — dim V) in the proof of Lemma 6.2 and, in its general form, of
Theorem 5.4 and of Theorem 6.4.
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