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Abstract

In this article, we discuss the numerical approximation of transport phenomena occurring at

material interfaces between physical subdomains with heterogenous properties. The model

in each subdomain consists of a partial differential equation with diffusive, convective

and reactive terms, the coupling between each subdomain being realized through an in-

terface transmission condition of Robin type. The numerical approximation of the problem

in the two–dimensional case is carried out through a dual mixed–hybridized finite ele-

ment method with numerical quadrature of the mass flux matrix. The resulting method is

a conservative finite volume scheme over triangular grids, for which a discrete maximum

principle is proved under the assumption that the mesh is of Delaunay type in the interior

of the domain and of weakly acute type along the domain external boundary and internal

interface. The stability, accuracy and robustness of the proposed method are validated on

several numerical examples motivated by applications in Biology, Electrophysiology and

Neuroelectronics.
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1 Introduction and Motivation

In this article, we deal with the numerical approximation of the following Diffusion-

Advection-Reaction (DAR) model problem with gradient advective field:

Find u ∈ H1(Ω) such that:






Lu = div J(u) + c u = f in Ω

J(u) = −D (∇u+ u∇ψ) in Ω

u = uD on ΓD

J(u) · n = γ u+ jR on ΓR

J(u) · n1 = αu1 − β u2 + σ1 on Γm,1

J(u) · n2 = β u2 − αu1 − σ2 on Γm,2,

(1)

where Ω = Ω1∪Ω2 is an open bounded set of R
2 with Lipschitz boundary ∂Ω ≡ Γ,

an example of which is depicted in Fig.1, while H1(Ω) :=
2∏
i=1

H1(Ωi) is the “bro-

ken” space of functions belonging to L2(Ω) whose gradient is piecewise square

integrable over Ω, ui being the restriction of the solution u : Ω → R to the subdo-

main Ωi, i = 1, 2. The domain boundary Γ is partitioned into the disjoint segments

Figure 1. Computational domain with material interface.

ΓD and ΓR, where the Dirichlet boundary condition (1)3 and the Robin boundary

condition (1)4 are enforced, and an internal interface Γm, where the transmission

conditions (1)5,6 are enforced. We indicate by Γm,1 and Γm,2 the restrictions of Γm
when viewed from Ω1 and Ω2, respectively, while the outward unit normal vectors

to Γ, Γm,1 and Γm,2 are n, n1 and n2, respectively. The quantity D ∈ L∞(Ω) is the

diffusion coefficient, with D(x) ≥ Dmin > 0 almost everywhere (a.e.) in Ω, while

c ∈ L∞(Ω) is the reaction coefficient, with c(x) ≥ 0 a.e. in Ω. The vector ∇ψ is a

given advective field in gradient form, and the regularity of the generating potential

function ψ will be specified in Sect.3. Finally, f ∈ L2(Ω) is the production term

and J(u) is the advective-diffusive flux density associated with the scalar variable

u. Boundary and interface data uD, γ, jR, α, β, σ1 and σ2 are given functions whose

regularity will be made precise in Sect.3, uD being > 0 and α, β, γ being ≥ 0.

Well posedness of the linear system (1) can be proved by adapting the ideas of

Ref. [49]. The model problem (1) is representative of several important applica-
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tions, ranging from electrokinetic flows in nanofluidics [56,2] to cell biology [40,1].

A common feature of these applications is the presence of active interfaces (mem-

branes) whose selective behavior controls mass transport from a subdomain to the

neighbouring one according to the difference between the values of the electrostatic

potential ψ across the membrane. In this work, ψ is assumed to be a given function,

but in realistic situations, for example in the study of current flux across ionic chan-

nels using the so-called Poisson-Nernst-Planck (PNP) model [56], the potential is

itself an unknown of the problem and is dynamically determined by the solution of

Gauss’ law in differential form in the domain Ω supplied by interface conditions

across Γm similar to (1)5,6. Time advancing in PNP simulations is typically treated

using Rothe’s method and, at each semi-discrete time level, the nonlinear coupling

between the dependent variables u and ψ is usually dealt with by some suitable

functional iteration of decoupled type [36,37,49,43,39,38] which eventually leads

to the successive solution of linearized systems of the form (1).

Equation (1)1 is a conservation law expressing the balance between the flux of the

advective–diffusive vector field J(u) across an arbitrary control volume B ⊆ Ω and

the production term f − c u within the volume itself. In particular, the jump of the

normal component of J(u) is equal to zero across each segment belonging to the

interior of Ω1 and Ω2, respectively, while it is equal to σ1−σ2 across the membrane

Γm, as it can be checked by summing (1)5 and (1)6. Using the terminology of Com-

putational Mechanics, where u has the meaning of displacement and J(u) is the

stress field, it is well-known that standard displacement-based finite element meth-

ods for the numerical approximation of (1) generally fail at satisfying the above

properties, despite the optimal convergence of the approximate solution uh to u in

theH1-norm (see [51]). An effective alternative is represented by dual mixed (DM)

methods, where two independent discrete solutions uh and Jh are simultaneously

sought for, leading to a linear system in saddle-point form. DM methods satisfy

both local self-equilibrium and conservation, and an optimal error estimate holds

for the pair (uh, Jh) in the graph norm with respect to the L2-H(div) topology

(see [14]). However, there are several drawbacks that make them not so amenable

to realistic computations, namely, the increased computational cost, the indefinite

algebraic character of the system, and a possible failure at satisfying the discrete

maximum principle (DMP) for uh in the case of a nonvanishing reaction term c
(see [16] and references cited therein). A considerable improvement consists of re-

sorting to the hybridization of the DM formulation (see, [4] and [14], Chapt. V;

for more recent development in the framework of Discontinuous Gakerkin meth-

ods, see also [23]). The hybridization procedure is based on the introduction of a

Lagrange multiplier denoted by λh (hybrid variable), which is an approximation

of u along mesh edges and allows one to enforce the interelement continuity of

the normal component of Jh. The local elimination of the variables uh and Jh as

functions of λh (static condensation) leads to a dual mixed–hybridized (DMH) fi-

nite element scheme of displacement–based type, acting on the sole λh, which is

completely equivalent to the original DM approximation but at a much reduced

computational effort. Moreover, it can be shown that the hybrid variable enjoys su-
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perconvergence properties. However, the question of ensuring a numerically stable

computed solution in the presence of dominating convection and/or reaction terms

still remains an open issue, and appropriate stabilization techniques must be used

(see [16,15] and the more recent work [23]). To this end, we propose in this article

a finite volume variation of the standard DMH method, denoted DMH-FV method,

based on the introduction of a quadrature formula for the diagonalization of the

local flux mass matrix. This approach, that extends to the heterogeneous transport

problem (1) previously introduced MFV formulations [3,11,45,16], has three im-

portant advantages. The first is that the resulting numerical scheme has a simple and

very compact finite volume structure where for each element of the grid, the com-

putational stencil consists of the element itself and, at most, its three neighbours.

The second is that the treatment of the exponentially varying diffusion coefficient

across inter-element edges allows, under mild geometric conditions, a DMP for the

computed discrete solution. The third is that the novel method enjoys the same con-

vergence properties as the standard DMH scheme, including superconvergence in

the L2-norm of the post-processed solution obtained from λh (see [4]).

A brief outline of the article is as follows. In Sect. 2, we introduce the geometric

entities and finite element spaces; in Sect. 3, we first introduce the change of vari-

able that allows one to write problem (1) in symmetric form. Then, we describe

the DMH-FV method, while in Sect. 4 we illustrate the computer implementation

of the scheme and related post-processing. Sect. 5 contains a thorough validation

of the numerical performance of the novel scheme, and Sect. 6 addresses some

concluding remarks and future research perspectives.

2 Geometric Discretization and Finite Element Spaces

Let {Th} be a regular family of given partitions of the domain Ω into open triangles

K satisfying the usual admissibility condition (see [51], Sect. 3.1 and Def. 3.4.1).

For a given Th, we denote by NT and Ne the total number of triangles and edges,

respectively, by |K| and hK the area and the diameter of K, respectively, and we

set h = maxTh
hK . Let x = (x, y)T be the position vector in Ω; then, for each

K ∈ Th, we denote by xq, q = 1, 2, 3, the three vertices of K ordered according

to a counterclockwise orientation, by eq the edge of ∂K which is opposite to xq,

by θKq the angle opposite to eq and by CK the circumcenter of K. We denote by

|eq| the length of eq and by nq the outward unit normal vector along eq. Moreover,

we define sKq as the signed distance between CK and the midpoint Mq of eq. If

θKq < π/2 then sKq > 0, while if K is obtuse in θKq then sKq < 0, and CK falls

outside K. Notice also that if θKq = π/2 then sKq = 0, and CK coincides with Mq.

We denote by Eh the set of edges of Th, and by Eh,int and Eh,Γ those belonging to the

interior of Ω and to the boundary Γ, respectively. For each e ∈ Eh,int, we indicate

by K1
e and K2

e the pair of elements of Th such that e = ∂K1
e ∩ ∂K2

e . Finally, we let

se = sK
1
e

e +sK
2
e

e denote the signed distance between CK1
e

and CK2
e
. If θK

1
e

e +θK
2
e

e < π
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for all e ∈ Eh,int, then se > 0, and Th is called a Delaunay triangulation [30]. If the

inequality is replaced by an equality, for some e ∈ Eh,int, we call Th a degenerate

Delaunay triangulation. For such an edge, se = 0 and the two circumcenters CK1
e
,

CK2
e

collapse into the midpoint of e. The Delaunay condition prevents the occur-

rence of pairs of obtuse neighbouring elements in Th, still allowing the possibility

of having single obtuse triangles in the computational grid (see [31] for algorithmic

details). From now on, we assume that Th is a Delaunay triangulation.

For k ≥ 0 and a given set S, we denote by Pk(S) the space of polynomials of

degree ≤ k defined over S. We also denote by RT0(K) := (P0(K))2 ⊕ P0(K) x

the Raviart–Thomas (RT) finite element space of lowest degree [52], and by P0

the L2-projection over constant functions. Then, for g ∈ L2(ΓD), we introduce the

following finite element spaces:

Vh := {v ∈ (L2(Ω))2 |vK ∈ RT0(K) ∀K ∈ Th}
Wh := {w ∈ L2(Ω) |wK ∈ P0(K) ∀K ∈ Th}
Mh,g := {m ∈ L2(Eh) |m|∂K ∈ R0(∂K)∀K ∈ Th,

mK1
e = mK2

e ∀e ∈ Eh,int, me = P0g|e,∀e ∈ ΓD},

(2)

where R0(∂K) := {v ∈ L2(∂K)| v|e ∈ P0(e) ∀e ∈ ∂K}. For each K ∈ Th,

the basis functions of RT0(K) are τ j(x) = (x − xj)/(2|K|), j = 1, 2, 3, and are

such that div τ j = 1/|K| and τ j · nj = 1/|ej| for each ej ∈ ∂K, which implies

that
∫
ej

τ i · nj dς = δij , i, j = 1, 2, 3, δij being the Kronecker symbol. Functions

belonging to Mh,g are single-valued on Eh,int ∪ ΓD ∪ ΓR, while they admit two

distinct values on each edge e ∈ Γm. This latter, special, situation reproduces, on

the discrete level, the selectivity characteristic of the membrane Γm, and allows

accounting for the occurrence of finite jump discontinuities across Γm. It is also

useful to introduce the following global finite element space

Λh = {vh ∈ L2(Ω) | vh ∈ P1(K) ∀K ∈ Th,
vh(M

K1
e

e ) = vh(M
K2

e
e ) ∀e ∈ Eh,int} = span {ωe}e∈Eh

,

where the basis functions ωe are the non-conforming elements of Crouzeix-Raviart

[28]. Functions in Λh are piecewise linear over Th, continuous at the midpoint of

each edge e ∈ Eh,int and possibly admitting a finite jump discontinuity at each edge

e ∈ Γm.

3 A Mixed–Hybridized Method with Numerical Quadrature

With the aim of constructing a finite element approximation of the DAR model

problem (1), we introduce the change of dependent variable

u := ρ e−ψ. (3)
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The idea, proposed originally in [10] and subsequently used in [19] for the numer-

ical treatment with mixed methods of the Drift-Diffusion semiconductor device

equations, consists of using (3) to write (1) in symmetric form, then, to discretize

the new equivalent problem with a proper (finite volume) modification of the DMH

method, and, finally, to go back to the original variable u via (3) again on the dis-

crete level. This gives a numerical scheme for the approximation of (1) whose stiff-

ness matrix is an M-matrix under mild assumptions on the computational grid.

The change of variable (3) transforms the original advection–diffusion–reaction

system (1) into the equivalent problem of finding the solution ρ ∈ H1(Ω) of the

following linear diffusion-reaction model problem in conservative form:






Lρ = div J(ρ) + c ρ e−ψ = f in Ω

J(ρ) = −D e−ψ∇ρ in Ω

ρ = ρD on ΓD

J(ρ) · n = γ ρ e−ψ + jR on ΓR

J(ρ) · n1 = α ρ1 e
−ψ1 − β ρ2 e

−ψ2 + σ1 on Γm,1

J(ρ) · n2 = β ρ2 e
−ψ2 − α ρ1 e

−ψ1 − σ2 on Γm,2,

(4)

where ρD := uD e
ψD and ψD := ψ|ΓD

. Comparing (4) with (1), we see that the

use of relation (3) has transformed the original DAR problem into a new equiva-

lent diffusion-reaction problem with an exponentially varying diffusion coefficient

D e−ψ and a new dependent variable ρ. From now on, we assume that D, c and f
are piecewise constant given functions over Th, and that ρD, γ and jR are piecewise

constant boundary data over Eh,Γ, with the same assumption for the transmission

coefficients α, β, σ1 and σ2, and that ψ ∈ Λh. Moreover, given a function η, we

denote by ηK and ηe the constant values of η over each element K ∈ Th and each

edge e ∈ Eh, respectively. Finally, we set for brevity a := D e−ψ and A := a−1.

The DMH Galerkin approximation of problem (4) consists of finding (Jh, ρh, λh) ∈
(Vh ×Wh ×Mh,ρD

) such that:






(AJh, τ h)Th
− (ρh, div τ h)Th

+ 〈λh, τ h · n〉Eh
= 0 ∀τ h ∈ Vh

(div Jh + c e−ψ ρh, qh)Th
= (f, qh)Th

∀qh ∈ Wh

〈Jh · n, µh〉Eh
= 〈γ λh e−ψ, µh〉ΓR

+ 〈jR, µh〉ΓR

+〈αλh e−ψ1 , µh〉Γm,1
− 〈β λh e−ψ2 , µh〉Γm,1

+〈σ1, µh〉Γm,1
+ 〈β λh e−ψ2 , µh〉Γm,2

−〈αλh e−ψ1 , µh〉Γm,2
− 〈σ2, µh〉Γm,1

∀µh ∈Mh,0,

(5)

where (·, ·)Th
and 〈·, ·〉S denote the elementwise L2 inner products over Th and
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over any subset S ⊆ Eh, respectively. The equations in (5) have the following inter-

pretation: (5)1 expresses the approximate local constitutive law; (5)2 expresses the

approximate local balance between net flux across K and net production of mass

inside K; (5)3 expresses the approximate continuity of J · n across each interele-

ment edge, the Robin boundary condition and the interface transmission condition.

The approximate interelement continuity of ρ and the Dirichlet boundary condition

are automatically expressed by the fact that λh is a single–valued function over

Eh,int ∪ ΓD ∪ ΓR. Using the static condensation procedure allows one to eliminate

uh and Jh in favor of the sole hybrid variable λh and leads to solving a linear alge-

braic system whose size is of the order of Ne, which makes the DMH formulation

a generalized displacement-based method. Once λh is available, the variables uh
and Jh can be recovered by post-processing over each mesh element. The DMH

formulation was originally proposed and theoretically analyzed in [4] in the study

of an elliptic model problem with Dirichlet boundary conditions. Further analysis

and extensions can be found in [14,53,54]. Related approaches in the framework of

Discontinuous Galerkin methods have been recently proposed and analyzed in the

series of papers [24,25,22,26,27,23].

To construct a DMH scheme with reduced computational effort, we proceed as

follows. For each K ∈ Th, we set

JK
h (x) =

3∑

j=1

ΦK
j τ j(x) x ∈ K, (6)

where the degree of freedom ΦK
j =

∫

ej

JK
h · njdζ is the flux of JK

h across edge ej ,

j = 1, 2, 3. Then, we consider the following quadrature formula

∫

K

AJK
h · τ idK =

3∑

j=1

ΦK
j

∫

K

A τ j · τ idK

≃ 1

2
ΦK
j A

K

i cot(θKi )δij = ΦK
j A

K

i

sKi
|ei|

δij i, j = 1, 2, 3,

(7)

where A
K

i :=
∫Mi

CK
AK(ζ)dζ/|sKi |. Using the fact that ψ ∈ P1(K), we have

A
K

i =

∫Mi

CK
D−1(ζ)eψ(ζ)dζ

|sKi |
=

1

Di
K

eψi

Be (ψK − ψi)
(8)

where Be(t) := t/(et − 1) is the inverse of the Bernoulli function, and Di
K

is the

constant value of the diffusion coefficient along the segment CKMi defined as:

Di
K

=






DK if sKi ≥ 0

DKi if sKi < 0.
(9)
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The above definition is consistent with physical intuition, because in the case where

sKi < 0 (i.e., θKi > π/2) the path of the integral in (8) lies completely in Ki, so

that the diffusion coefficient that must be used to compute the average A
K

i is that

associated with triangleKi (opposite toK with respect to edge ei). Using (9) makes

the average A
K

i always a strictly positive quantity. Moreover, it can be shown that

the diagonalization formula (7) is affected by the following quadrature error

∣∣∣∣
∫

K

A τ j · τ idK − A
K

i

sKi
|ei|

δij

∣∣∣∣ ≤ ChK‖τ i‖H(div ;K)‖τ j‖H(div ;K), (10)

where H(div ;K) = {τ ∈ (L2(K))2 | div τ ∈ L2(K)K ∈ Th} and C is a positive

constant depending on A and on the mesh regularity (see [45,16] for a proof).

Using (7) into (5)1, we obtain the following discrete equations for the DMH method

with diagonalized local mass flux matrix.

• Equation (5)1:

A
K

i ΦK
i

sKi
|ei|

− ρK + λKi = 0 ∀K ∈ Th i = 1, 2, 3. (11)

• Equation (5)2:

3∑

i=1

ΦK
i + cKe−ψ

K

ρK |K| = fK |K| ∀K ∈ Th. (12)

• Equation (5)3:

ΦK1
e

e =






−ΦK2
e

e e ∈ Eh,int
(
γe λe e

−ψe + jRe
)
|e| e ∈ ΓR

(
αeλe,1 e

−ψe,1 − βeλe,2 e
−ψe,2 + σe,1

)
|e| e ∈ Γm,1

(
βeλe,2 e

−ψe,2 − αeλe,1 e
−ψe,1 − σe,2

)
|e| e ∈ Γm,2.

(13)

Equation (12) is already in genuine FV form, so that, to construct a finite volume

approximation starting from system (11)–(13), we need to express the flux ΦK
i as a

function of ρK and ρKi , for each K ∈ Th and i = 1, 2, 3, proceeding as follows.

(Step 1). Consider equation (11) and assume that θKi 6= π/2. Then, for each K ∈
Th we obtain the explicit relation

ΦK
i = −(A

K

i )−1 λ
K
i − ρK

sKi
|ei| i = 1, 2, 3. (14)

In the special case where θKi = π/2, then sKi = 0 and equation (11) yields

ρK = λKi irrespective of the (undetermined) value of ΦK
i . Such a value can be
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recovered by post-processing the computed solution ρh by using (11) as

ΦK
i = (fK − cKe−ψ

K

ρK) |K| −
3∑

j=1,j 6=i

ΦK
j . (15)

(Step 2). For each e ∈ Eh,int we replace (14) into (13)1, obtaining the explicit

relation

λe =
(A

K1
e

i s
K1

e

i )−1ρK
1
e + (A

K2
e

i s
K2

e

i )−1ρK
2
e

(A
K1

e

i s
K1

e

i )−1 + (A
K2

e

i s
K2

e

i )−1
. (16)

Let Le be the “lumping region” connecting CK1
e
, CK2

e
and the two endpoints of

e (the shaded area in Fig. 2). Then, introducing the harmonic average of a over
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K
1

e

K
2

e

Figure 2. Lumping region Le.

Le, defined as

He(a) :=




∫
se
a−1(ζ) dζ

se




−1

=
se

A
K1

e

i s
K1

e

i + A
K2

e

i s
K2

e

i

,

we can write (16) in a more expressive manner as

λe = He(a)



A
K2

e

i

s
K2

e

i

se
ρK

1
e + A

K1
e

i

s
K1

e

i

se
ρK

2
e



 ≡ C1
e ρ

K1
e + C2

e ρ
K2

e . (17)

The two constants C1
e and C2

e are such that C1
e + C2

e = 1. This ensures that the

average (17) is consistent, i.e., if we set ρK
1
e = ρK

2
e = ρ, then we get λe = ρ, as

should be expected. Using (8) over K1
e and K2

e , we have

He(a) = e−ψe
se

ζ1
e + ζ2

e

, (18)

where ζre = s
Kr

e

i /
(
Di

Kr
e Be(∆ψK

r
e )
)

and ∆ψK
r
e := (ψK

r
e − ψe), r = 1, 2. The

harmonic average (18) is a positive quantity, because se > 0 and (ζ1
e + ζ2

e ) > 0
due to the fact that Th is a Delaunay triangulation and (9), respectively. For a dis-

cussion of the use of the harmonic average in the finite element approximation
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of elliptic problems, and of its impact on the computational performance of the

method, we refer to [5,4].

(Step 3). Substituting back (17) into (14) yields for each K ∈ Th the explicit rela-

tion

ΦK
i = −(A

K

i )−1 CKi

i

ρKi − ρK

sKi
|ei| = −(A

K

i )−1 A
K

i s
K
i

si
Hei

(a)
ρKi − ρK

sKi
|ei|

= −Hei
(a)

ρKi − ρK

si
|ei| ∀ei ∈ ∂K ∩ Eh,int.

(19)

The finite volume nature of the formulation proposed in the present article can

be clearly recognized by comparison of the approximate flux ΦK
i with the exact

flux

∫

ei

− a∇ρ · ni ds, which shows that the effect of the quadrature formula (7)

is to replace the term −(∇ρ ·ni)|Lei
with the incremental ratio −(ρKi − ρK)/si

and the diffusion coefficient a|Lei
with its harmonic average Hei

(a). This result

extends to the dual mixed finite element setting the approach proposed in [47]

for the Petrov-Galerkin finite element discretization of the convection-diffusion-

reaction equation.

(Step 4). Equation (19) already relates the unknown ρK to the neighbouring un-

knowns ρKi , then to complete the derivation of the finite volume scheme, we

need to consider the case where ei ∈ Γ. We have:

ei ∈ ΓD: in this case, combining (14) and (19) immediately yields

ΦK
i = −Hei

(a)
ρD − ρK

sKi
|ei|. (20)

ei ∈ ΓR: in this case, equating (14) with (13)2 and eliminating the hybrid vari-

able λei
, yields

ΦK
i =

γi e
−ψi ρK + jRi

A
K

i γi e
−ψi sKi + 1

|ei|. (21)

ei ∈ Γm: in this case, combining relations (11) and (13)3,4 and eliminating the

hybrid variables λe,1 and λe,2, we get:

Φ
K1

ei

i =
αi e

−ψi,1 ρK
1
ei − βi e

−ψi,2 ρK
2
ei + σi,1 + A

K2
ei

i s
K2

ei

i βie
−ψi,2(σi,1 − σi,2)

1 + A
K1

ei

i s
K1

ei

i αie−ψi,1 + A
K2

ei

i s
K2

ei

i βie−ψi,2

|ei|

Φ
K2

ei

i =
βi e

−ψi,2 ρK
2
ei − αi e

−ψi,1 ρK
1
ei − σi,2 + A

K1
ei

i s
K1

ei

i αie
−ψi,1(σi,1 − σi,2)

1 + A
K1

ei

i s
K1

ei

i αie−ψi,1 + A
K2

ei

i s
K2

ei

i βie−ψi,2

|ei|.

(22)

Replacing the expression of the flux ΦK
i into the equilibrium equation (12), we ob-

tain the following linear system of algebraic equations that characterize the DMH-

10



FV approximation of problem (4)

A
ρ ρ = f (23)

where A
ρ ∈ R

NE×NE is the stiffness matrix, ρ ∈ R
NE is the unknown vector and

f ∈ R
NE is the load vector, accounting for the contribution of the source function

f and of the boundary and interface data. To write down the entries of A
ρ and f ,

we indicate by IK and JKi
the global indices of element K and Ki, i = 1, 2, 3.

Moreover, for each K ∈ Th, we introduce the non-negative quantities NK
D , NK

R

and NK
m representing the number of edges of K which belong to ΓD, ΓR and Γm,

respectively. Clearly, these quantities are all equal to zero if ∂K ∩Γ = ∅. Then, the

diagonal entries of A
ρ read:

AρIKIK
=

3∑

i=1

ξKi + cKe−ψ
K |K|

ξKi =






Hei
(a)

|ei|
si

ei ∈ Eh,int

Hei
(a)

|ei|
sKi

ei ∈ ΓD

γi e
−ψi

1 + A
K

i γi e
−ψi sKi

|ei| ei ∈ ΓR

αi e
−ψi,1

1 + A
K1

ei

i s
K1

ei

i αie−ψi,1 + A
K2

ei

i s
K2

ei

i βie−ψi,2

|ei| ei ∈ Γm,1

βi e
−ψi,2

1 + A
K1

ei

i s
K1

ei

i αie−ψi,1 + A
K2

ei

i s
K2

ei

i βie−ψi,2

|ei| ei ∈ Γm,2,

(24)

the off-diagonal entries of A
ρ are:

AρIKJKi
=






−Hei
(a)

|ei|
si

ei ∈ Eh,int

− βi e
−ψi,2

1 + A
K1

ei

i s
K1

ei

i αie−ψi,1 + A
K2

ei

i s
K2

ei

i βie−ψi,2

|ei| ei ∈ Γm,1

− αi e
−ψi,1

1 + A
K1

ei

i s
K1

ei

i αie−ψi,1 + A
K2

ei

i s
K2

ei

i βie−ψi,2

|ei| ei ∈ Γm,2,

(25)
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and the load vector entries are:

fuIK
= fK |K| +

NK
D∑

i=1

ηK,Di +
NK

R∑

i=1

ηK,Ri +
NK

m∑

i=1

ηK,mi

ηK,Di =
uDi
ζKi

|ei|

ηK,Ri =
jRi

1 + γi ζKi
|ei|

η1,m
i = −σi,1 + βi ζ

2
i (σi,1 − σi,2)

1 + αi ζ1
i + βi ζ2

i

|ei|

η2,m
i =

σi,2 + αi ζ
1
i (σi,2 − σi,1)

1 + αi ζ1
i + βi ζ2

i

|ei|.

(26)

Some remarks about the properties of the numerical formulation illustrated in this

section are in order.

The first remark concerns the algebraic properties of the DMH-FV method. Matrix

A
ρ has, at most, four non–zero entries on each row, and is structurally symmetric,

i.e., if A
ρ
ij 6= 0 then also A

ρ
ji 6= 0. In particular, denoting for each e ∈ Eh,int by

I and J the indices of the two triangles such that e = ∂KI ∩ ∂KJ, we have that

A
ρ
IJ = A

ρ
JI if e ∈ Eh,int\Γm while A

ρ
IJ 6= A

ρ
JI if e ∈ Γm. The lack of symmetry nu-

merically translates the nonsymmetric action of the transmission conditions (4)5,6
with respect to the neighbouring subdomains Ω1 and Ω2. To make this issue more

precise, we associate with each edge ei ∈ Γm the following “transmission” matrix

T
ρ
i ∈ R

NE×NE

I J

T
ρ
i =

|ei|
∆i





. . . 0
αie

−ψi,1 −βie−ψi,2

. . .

−αie−ψi,1 βie
−ψi,2

0 . . .





,

I

J

where ∆i := 1 + A
K1

ei

i s
K1

ei

i αie
−ψi,1 + A

K2
ei

i s
K2

ei

i βie
−ψi,2 . By construction, the non-

zero entries of T
ρ
i are the contributions ξKI

i , ξKJ

i to the diagonal entries of A
ρ and

the off-diagonal entries AρIJ, A
ρ
JI, from which we see that T

ρ
i is a nonsymmetric

singular matrix with zero column sum. The global stiffness matrix A
ρ can therefore

be partitioned into the sum of a symmetric positive definite part A
ρ
S (associated with

12



all the triangles belonging to the interior of Ω1 and Ω2) and of a non-symmetric part

A
ρ
NS =

∑
ei∈Γm

T
ρ
i . By suitably renumbering the mesh elements, we see that the

non-zero portion of matrix A
ρ
NS has a block diagonal structure, where each block

of 2 × 2 size corresponds to the triangle pair sharing an edge on Γm (for example,

KI, KJ or KP, KQ in Fig.3).

Figure 3. Neighbouring triangles across the menbrane.

Having characterized the structure and basic properties of the stiffness matrix A
ρ,

let us now investigate the numerical stability of the DMH-FV scheme. In this

respect, an important issue in heterogeneous flow transport problems is that the

adopted numerical scheme is monotone or, equivalently, it satisfies a Discrete Max-

imum Principle (DMP). This property is the discrete counterpart of the continuous

maximum principle associated with problem (4), and is quite desirable because

it prevents ρh from being affected by spurious oscillations and ensures that each

component of ρ is positive if each component of the load vector f is > 0.

The need of devising a monotone approximation of problem (4) (typically stud-

ied under more standard Dirichlet-Neumann boundary conditions, i.e., without the

presence of an internal interface) has driven a considerable interest towards the

development of a special class of finite element schemes, known as exponentially

fitted schemes (see [55] for a detailed analysis and references). Such schemes are

based on the so–called Scharfetter–Gummel (SG) finite difference scheme [58],

also known as Allen–Southwell method [29]. The SG method is an optimal up-

wind difference scheme, it is nodally exact in the case of constant problem coeffi-

cients [21] and satisfies a DMP irrespective of the relative weight between diffusive

and convective terms. Extending the SG scheme to the two and three–dimensional

setting, on triangular and tetrahedral decompositions of the computational domain,

has been the object of several works: mixed-hybrid formulations [17,19,18,57],

Petrov–Galerkin formulations [47,46,48,41], and Galerkin formulations with aver-

aging of the model coefficients along the element edges [7,33,8,62,42]. These meth-

ods share some common features: (i) they recover the SG approximation if applied

to one-dimensional problems; (ii) they satisfy a DMP under proper assumptions on

the angles of the triangulation Th; (iii) they ensure flux conservation across suitably

defined control volumes. Moreover, as a general trend, the schemes exhibit a com-

mon ability in capturing sharp fronts without spurious oscillations, at the price of

introducing a certain amount of crosswind dissipation if the grid is not favorably

aligned with the advection field (cf. the numerical experiments in [18,57] and [33]).

13



Moreover, in some cases (as in the mixed formulation proposed in [19,18]), the

presence of a reaction term in the differential model introduces a difficulty in prov-

ing the DMP for any value of the coefficient and of the mesh size, and requires

a suitable modification of the finite element space to reinforce the desired prop-

erty [44]. Conceptually similar approaches (based on the use of a proper lumping

quadrature formula) are adopted in the case of nodal-based formulations [10,9,41]

The following result provides sufficient conditions for the DMH-FV method to

satisfy a DMP.

Proposition 3.1 Let Th be a Delaunay triangulation such that for each edge e ∈
Γm we have θK

1
e

e ≤ π/2, θK
2
e

e ≤ π/2, and for each edge e ∈ ΓD ∪ ΓR we have

θKe
e ≤ π/2. Then, Aρ is an irreducible M-matrix with strictly positive inverse [61],

so that ρ > 0 if f ≥ 0 (DMP).

Proof 3.1 Under the above geometric assumptions on Th and the properties of A
ρ
S

and A
ρ
NS , it turns out that the stiffness matrix A

ρ has zero column sums, with

strictly positive diagonal entries and nonpositive off diagonal entries. Moreover,

for each element K with an edge on ΓD, the matrix is diagonally dominant on the

column corresponding to K. The result then immediately follows by application of

Theorem 3.1, p.202 of [55].

Prop. 3.1 provides a characterization of the numerical stability of the DMH-FV

scheme under proper assumptions on the geometrical discretization. It is important

to notice that the monotonicity of the proposed numerical method does not depend

on the value of the reaction coefficient ce−ψ in (4), as is the case with the standard

dual-mixed method of [19,18], because in the FV structure of the scheme such a

term introduces a diagonal non-negative contribution to the stiffness matrix which

increases its diagonal dominance. The requirement of weak acuteness of Th on

the domain external boundary is standard and not restrictive for implementation

(see [62] and the references cited therein). The requirement of weak acuteness of Th
along the internal interface is not strictly necessary, as a sufficient (more general)

condition for Prop. 3.1 to hold is that ∆i > 0 for each edge ei ∈ Γm. In all the

numerical experiments reported in Sect. 5 the finite element triangulation is chosen

to be weakly acute along Γm and ΓD ∪ ΓR.

The second remark concerns the relation between the proposed DMH-FV method

and other classical methods for the numerical solution of (4). Each row of (23) is the

finite volume discretization of the restriction to each element K ∈ Th of the mass

balance equation system (4)1,2. Using Euler’s theorem, we have that Ne → 3NE/2 as

the mesh size is refined, so that we can conclude that the computational effort of the

DMH-FV method is substantially lower than that of the standard DMH formulation.

Comparing the DMH-FV scheme to standard displacement-based methods, we see

from relations (20) and (21) that in the former approach both Dirichlet and Robin

boundary conditions are accounted for in an essential manner, unlike in the latter

14



where Robin conditions are accounted for in a weak manner. This indicates the

robustness of the DMH-FV method in treating boundary conditions on the flux

variable, which are typically the most important in the applications we are focusing

on in the present article.

4 Implementation and Post-Processing of the DMH-FV Method

In this section, we discuss how to implement the DMH-FV method in a numerically

stable manner and how to use the computed discrete solution to obtain a further ap-

proximation of the exact solution u of (1) that enjoys a better convergence behavior.

4.1 Implementation

The solution of system (23) is not convenient from the numerical standpoint be-

cause of the dynamic range of the function e−ψ. This requires one to go back to the

original variable u using the inverse of (3) on each element K ∈ Th (cf. [19,18,16])

ρK = uK eψ
K ∀K ∈ Th. (27)

The action of (27) is a right diagonal scaling of A
ρ which transforms (23) into the

equivalent algebraic linear system

A
u u = f , (28)

where A
u = A

ρ
D
ψ ∈ R

NE×NE is the new stiffness matrix and u ∈ R
NE is the new

unknown vector, Dψ being a diagonal matrix such that D
ψ
IKIK

= eψ
K

, K ∈ Th.

Proposition 4.1 Under the same assumptions as in Prop. 3.1, we have that A
u is

an M-matrix with strictly positive inverse. This implies that u > 0 if f ≥ 0.

4.2 Post-Processing

The approximate flux density Jh can be recovered from the computed solution of

(28) by using (6) over each element K ∈ Th. With this aim, we need the expression

of the flux ΦK
i across each edge ei ∈ ∂K, i = 1, 2, 3, such that ei ∈ Eh,int. A

similar treatment holds for the edges belonging to ΓD, ΓR or Γm. Using (27) and

(18) in (19) yields

ΦK
i = −e

∆ψ
Ki
i uKi − e∆ψ

K
i uK

ζKi + ζKi

i

|ei| ei ∈ ∂K ∩ Eh,int. (29)
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Proposition 4.2 Let ei ∈ ∂K ∩ Eh,int and assume that DK = DKi ≡ D and that

ψ ∈ C1([CK , CKi
]). Then, the flux approximation (29) coincides with the classical

Scharfetter-Gummel (SG) exponentially fitted difference formula [58]

ΦK
i = −D uKi Be(∆ψi) − uK Be(−∆ψi)

si
|ei|, ∆ψi := ψK − ψKi . (30)

Proof 4.1 We have to prove that:

e∆ψ
K
i

sKi
Be(∆ψ1

i )
+

sKi

i

Be(∆ψ2
i )

=
Be(−∆ψi)

si

e∆ψ
Ki
i

sKi

i

Be(∆ψ1
i )

+
sKi

i

Be(∆ψ2
i )

=
Be(∆ψi)

si
.

(31)

Let us consider (31)1. Noting that ∆ψi = ∆ψKi − ∆ψKi

i , we have

Be(−∆ψi)

si
=

−∆ψi
si(e−∆ψi − 1)

=
−∆ψi e

∆ψK
i

si(e∆ψ
Ki
i − e∆ψ

K
i )

=
e∆ψ

K
i

e∆ψ
K
i − 1

∆ψi/si
− e∆ψ

Ki
i − 1

∆ψi/si

,

which coincides with the left-hand side of (31)1 because ∆ψKi = ∆ψi(s
K
i /si) and

∆ψKi

i = −∆ψi(s
Ki

i /si). In the same manner, we prove (31)2.

Proposition 4.2 shows that (29) is the consistent generalization of the SG method

to the case where both diffusivity coefficient and advective field are piecewise con-

stant quantities over the interval se, with a possible finite jump discontinuity in

correspondance of the midpoint Me of the inter-element edge e. This connection

between the DMH-FV formulation and the SG discretization is relevant in view of

the analysis of the numerical performance of the former scheme in the presence of

dominating convection, as thoroughly addressed in Sect.5.

Let λ̂h ∈ Λh be the hybrid variable representing the approximation of u over Eh.

To recover λ̂h from the computed solution of (28) we need to use (17) and then

apply (18), (8), (27) and (3) to obtain

λ̂e =
ζ2
e e

∆ψK1
e uK

1
e + ζ1

e e
∆ψK2

e uK
2
e

ζ1
e + ζ2

e

∀e ∈ Eh,int. (32)

A similar treatment holds for the edges belonging to ΓD, ΓR and Γm, to yield:

λ̂e =






P0(uD,e) e ∈ ΓD

e∆ψ
K

uK − ζe jRe
1 + γe ζKe

e ∈ ΓR,

(33)

16



while on Γm we have:

λ̂e,1 =
e∆ψ

K1
e (1 + βe ζ

2
e ) u

K1
e + βe ζ

1
e e

∆ψK2
e uK

2
e − ζ1

e (σe,1 + βe ζ
2
e (σe,1 − σe,2))

1 + αe ζ1
e + βe ζ2

e

λ̂e,2 =
e∆ψ

K2
e (1 + αe ζ

1
e ) u

K2
e + αe ζ

2
e e

∆ψK1
e uK

1
e + ζ2

e (σe,2 + αe ζ
1
e (σe,2 − σe,1))

1 + αe ζ1
e + βe ζ2

e

.

(34)

The above expressions of the degrees of freedom of λ̂h over Eh can be used to

construct the following approximation of the exact solution u of (1)

u∗h(x) =
∑

e∈Eh

λ̂e ωe(x), x ∈ Ω. (35)

The function u∗h ∈ Λh is the non-conforming piecewise linear interpolate of λ̂h over

the computational grid Th. A thorough experimental analysis illustrated in Sect.5

demonstrates that u∗h satisfies the following convergence result

‖u− u∗h‖L2(Ω) ≤ Ch2, (36)

C being a positive constant depending on u and J but independent of the mesh size

h. Since the expected order of accuracy of uh in the L2-norm is O(h), we conclude

that (36) represents the superconvergence of the non-conforming approximation u∗h
to the exact solution u of (1), indicating, at least experimentally, that the DMH-FV

method, applied to the heterogeneous transport model, enjoys the same conver-

gence behavior proved in [4] for the standard DMH formulation in the case of the

elliptic model problem with Dirichlet boundary conditions. The steps to prove (36)

can be sketched as follows. Assume that the exact solution (J , ρ) of (4) satisfies

suitable regularity properties and that Th, α, β and ψ are as in Theorem 3.1. Then:

i) using (10) and the analysis of Refs. [45,16], we can show that the solution triple

(Jh, ρh, λh) of the DMH approximation with the numerical quadrature (7) sat-

isfies the same optimal error estimates valid for the DMH method in the case of

exact integration (see [4]);

ii) using Theorem 2.2 of [4] we obtain that the non-conforming piecewise linear

interpolate ρ∗h of λh over the computational grid Th satisfies

‖ρ− ρ∗h‖L2(Ω) ≤ Ch2, (37)

for a positive constant C depending on ρ and J but independent of h;

iii) using (3) and triangle inequality, we get

‖u− u∗h‖L2(Ω) ≤ ‖(ρ− ρ∗h)e
−ψ‖L2(Ω) + ‖ρ∗he−ψ − (λhe

−ψ)∗‖L2(Ω).

The first term on the right-hand side can be bounded by using (37) while the

second term can be bounded by using interpolation theory and the a-priori control

on λh provided by the DMP. This concludes the sketch of the proof of (36).
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5 Numerical Results

In this section, we perform a thorough numerical validation of the DMH-FV method

in the study of three test problems which represent significant examples of realistic

applications in Biology and Electrophysiology.

5.1 A One-Dimensional Heterogeneous Domain

In this section, we consider problem (1) in the case where Ω = (0, 1)× (−0.5, 0.5)
and a membrane Γm is located at x = 0.5 to separate the left subdomain Ω1

from the right subdomain Ω2. We set f = 0 and ∇ψ = [−5, 0]T , while hav-

ing two different constant values in each subdomain for the diffusion constant

D1 = 50, D2 = 0.5. The Dirichlet data are uD = 0 at x = 0, y ∈ [−0.5, 0.5]
and uD = 1 at x = 1, y ∈ [−0.5, 0.5], while homogeneous Neumann conditions

are enforced along y = 0.5 and y = −0.5, and σ1 = σ2 = 0 on the interface. These

data correspond to a one-dimensional transmembrane flow along the x-direction.

The following three sets of input data are considered: 1) c1 = c2 = 0 and α = β
with α → +∞; 2) c1 = c2 = 0 and α = β = 10; 3) c1 = 0.1, c2 = 10 while again

α = β = 10. Notice that case 1) corresponds to enforcing that u and J ·n are con-

tinuous across Γm. The computed solutions for cases 1) and 2) are depicted in Fig. 4

(left), representing a section at y = 0 of the post-processed quantity u∗h. The prob-

lem is diffusion–dominated in Ω1, and is advection-dominated in Ω2, with an exact

solution u almost linear over Ω1 and exponential over Ω2. In case 2), the solution

has a finite jump across Γm because of the selective behaviour of the membrane,

while in case 1), the solution is continuous, because the membrane is completely

transparent to the flow of transported mass since the interface condition is reduced

to u1 = u2 on Γm, which is equivalent to eliminating the membrane and treating the

edges on Γm as belonging to Eh,int. In any case, the DMH-FV method captures the

solution layer without introducing spurious oscillations, and it can be checked that

the post-processed solution u∗h is nodally exact up to machine precision. In case 3),

because of the fact that c 6= 0, the variable u∗h is no longer nodally exact; however,

the experimental convergence analysis reported in Fig.4 (right) indicates that u∗h
exhibits second order accuracy according to the error estimate (36). Fig. 5 shows

a three-dimensional plot of u∗h. The finite jump across Γm and the non-conforming

interpolation properties of the finite element space Λh are clearly visible.

5.2 Stationary Profile of a Binary Electrolyte at a Boundary

In this section, we apply the DMH-FV to numerically study the Poisson-Nernst-

Planck (PNP) system of partial differential equations describing the electro-diffusive
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Figure 4. Left: u∗
h. Solid line: α = β = 10, dash-dotted line: α = β → ∞. Right:

‖u − u∗
h‖L2(Ω) as a function of the mesh size h.

Figure 5. Left: post-processed solution u∗
h in the case c1 = 0.1, c2 = 10 and α = β = 10.

Right: zoom of the solution on Ω2.

transport of M ionic species ui, i = 1, . . . ,M , with valence zi, throughout an elec-

trolyte medium [56]:






div Ji + q zi
∂ci
∂t

= 0 i = 1 . . .M

div D = q
∑M
i=1 zi ci + ρ0

Ji = −qziDi

(
∇ci +

qzici
kBT

∇ψ
)
i = 1 . . .M

D = εw E = −εw ∇ψ.

(38)

The dependent variables of the system are the concentrations ci of the i-th ionic

species (e.g. Na+, K+, Cl−), while the ionic current densities Ji and the polariza-

tion vector D are related to the potential ψ by the Poisson equation (38)4. Di is

the diffusion coefficient in an aqueous medium for the i-th species of ion, kB is
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the Boltzmann constant, T is the absolute temperature, q the elementary charge, zi
the valence of each ion, εw the dielectric constant of water and ρ0 the fixed charge

density, assumed to be equal to zero as there are no fixed charge in the intra- or

extracellular space. The diffusion coefficients are related to the mobility coefficient

by the well-known Einstein relation, that is Di = kBT
q|zi|

µi, where µi is the electrical

mobility of the i-th ion in water.

In the stationary case (∂ci/∂t = 0), the PNP nonlinear differential system is treated

using a decoupled functional iteration similar to the classical Gummel’s map [36]

widely employed in semiconductor device simulation (for the details of the algo-

rithm and its computer implementation, we refer to [12]). This leads to the succes-

sive solution of linearized differential subproblems of the form (1). In the consid-

ered case, we have a binary electrolyte (i.e., M = 2) with zi = ±1, and the bound-

ary value problem (38) is to be solved in the semi-infinite domain x ∈ [0,+∞)
with an applied external voltage drop ∆Vext = ψ(0) − ψ(+∞) = 100mV , with

ψ(+∞) = 0 and a surface at x = 0 impermeable to the ions. An analytical solution

of this problem for ψ and u1,2 can be written as [13]:

ψ = 2VT log

(
1 +K exp(−

√
2x/LD)

1 −K exp(−
√

2x/LD)

)

ui = N0 exp (−q zi ψ/VT ),

where K = tanh(∆Vext/VT ), LD =
√
ε VT/(q N0) is the Debye length, VT ≈

25mV is the thermal voltage (having assumed T = 300K), q is the unit charge,

ε ≈ 7 · 10−10 Fm−1 is the dielectric constant of the medium (water in this case)

and N0 = 1mM is the bulk concentration of both ions. The performed simulation

is actually carried out on the two-dimensional domain Ω = (0, L)2, with L =
5LD. The Debye length gives a measure of the screening effect of a space charge

layer, so that the choice of truncating the semi-infinite domain to a finite length

equal to a positive multiple of LD is a very good approximation of the decaying

behavior of ionic densities far away from the layer. The boundary conditions for

ψ and u1,2 on y = 0 and y = 5LD are of homogeneous Neumann type in order

to obtain a solution dependent upon x solely, while on x = 0 and x = 5LD the

boundary conditions are obtained from the analytical solution. Fig. 6 illustrates a

slice along the x-axis of the computed ion concentrations ci and the discretization

error as a function of h. No spurious oscillations affect the results, and, again,

superconvergence as predicted by (36) can be observed for both u1 and u2.

5.3 Simulation of a Neuro-Chip

In this concluding section, we carry out a validation of the numerical accuracy and

robustness of the DMH-FV formulation in the simulation, using the PNP differen-

tial model, of a basic configuration of a neuro-chip for neuroscience applications
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Figure 6. Computed ion concentrations (left) and ‖ui − u∗
i,h‖L2(Ω), i = 1, 2 (right).

[63,59,32,20]. The bio-hybrid device considered in this section is the EOSFET

(Electrolyte Oxide-Semiconductor Field Effect Transistor) schematically depicted

in Fig. 7 (left). The aim of the device is to interface a biological component (a

neuronal cell) to an electrical component (solid-state substrate), in order (i) to

transduce a chemical signal generated by the biological component into an elec-

tronically readable signal, or, viceversa, (ii) to activate the biological component

by the application of an electronic signal. In operation mode (i), the EOSFET is

working as a bio-sensor, while in operation mode (ii) the EOSFET is working as

a neuro-prosthetic device, i.e., playing the role of a neuronal connection or even

of a full neuronal network, thus opening the view for future use of the neuro-chip

as a cure for neuro-degenerative deseases like Alzheimer or Parkinson [6]. The

Figure 7. Left: schematics of a neuro-chip (by courtesy reprinted from: E. Neher, Molecular

biology meets microelectronics, Nature Biotechnology, 19, 114 (2001)). Right: computa-

tional domain for stationary neuro-chip simulation.

computational domain Ω is depicted in Fig. 7 (right), where we can distinguish a

portion Ωcell of the cell cytoplasm, the interstitial electrolyte cleft Ωbath separat-

ing cell from substrate, the cell membrane Γm, the cell-to-chip contacting interface

Γel and two reference contacts Γcell and Γref . Dirichlet boundary conditions as

in (1)3 are enforced on Γcell and Γref , a Robin boundary condition as in (1)4 is

enforced on Γel, while interface boundary conditions as in (1)5,6 are enforced on

Γm. On the remaining portions of the domain boundary, ΓA, ΓN and the left ver-
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tical side of Ω, a homogeneous Neumann condition is enforced (γ = jR = 0 in

(1)4). The geometrical data used in computations are L = 0.8µm, H = 0.3µm,

δcell = 0.25, µm, rcell = 0.5µm and δcleft = 50nm. Ionic charge flow includes

three species, K+, Na+ and Cl−, whose reference values are kept fixed respec-

tively at (139, 12, 151)mM on Γcell and (4, 145, 149)mM on Γref . As for the

boundary condition for the electrostatic potential ψ, we set ψ = 0V on Γref and

ψ ∈ [−100,+60]mV on Γcell. On the membrane Γm, interface conditions for the

potential ψ are enforced in order to model a distributed fixed capacitance, while the

Goldman-Hodgkin-Katz model [40] is used to describe the flow of ionic concen-

trations through the membrane:






−ε∇ψ · nΓm
= Cm (ψint − ψext) ,

Ji · nΓm
= Pi q zi

(

Be

(
−zi ψm
VT

)

ninti −Be

(
zi ψm
VT

)

nexti

)

∀ i,

where int, ext refer to the interior and exterior sides of the membrane, Cm is the

capacitance per unit area of the membrane, ψm = ψint − ψext and Pi is the per-

meability for the specific i-th ion. On Γel, an homogeneous Neumann condition is

enforced for the concentrations ci, while the following compatibility condition is

enforced for the polarization vector D

−εw∇ψ · nΓel
= Cel(ψ) (ψ − Vel) ,

where Vel is a fixed external potential and Cel(ψ) is a MOS (Metal Oxide Semicon-

ductor) capacitance nonlinearly depending upon ψ as described, e.g., in [60].

Fig. 8 (left) shows the computed static current-voltage characteristics, which de-

scribes the behaviour of the average value of Ji · n|Γref
(positive if current flows

out of Γref , negative otherwise) as a function of ψ|Γcell
. The accuracy of the re-

sults is demonstrated by the very good agreement of the estimated reverse potential

Vrev,i = VT / zi log(nexti / ninti ) of each ionic species, that is the value of ψ|Γcell
at

which the ionic current density is equal to zero, with typical data in electrophys-

iology measurements [40,34]. Fig. 8 (right) shows the distribution of potassium

current density over the computational domain. We can notice the higher current

density in the cleft region between the cell membrane and the electrical substrate.

Such higher current density in turn causes the rise of the potential in the cleft region,

which can be measured by the field-effect transistor in the substrate. Computed cur-

rent value is again in quite a good agreement with measured data [20]. We conclude

this discussion by showing in Fig. 9 the computed variations over Th of the elec-

tric potential ψ and of the Na+ concentration with respect to their corrsponding

reference values (enforced at the Dirichlet boundary). The results give an idea of

the steep boundary layer effects occurring across the membrane separating the in-

tracellular region from the electrolyte cleft and at the interface with the electronic

substrate, and demonstrates the effectiveness of the DMH-FV formulation in cap-

turing the essential phenomena without introducing spurious oscillations that would
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otherwise make the simulation prediction completely unreliable and inaccurate.

Figure 8. Left: static current–voltage characteristics. Right: computed Na+ current density.

Figure 9. Variations with respect to reference values of potential (left) and Na+ concentra-

tion (right).

6 Conclusions

In this article, we have proposed, analyzed and numerically validated a novel dual

mixed-hybridized finite volume (DMH-FV) method for the discretization of trans-

port problems in heterogeneous domains separated by a membrane.

The DMH-FV scheme has the same mathematical structure as standard DMH for-

mulations, and enjoys their convergence and conservation properties.

An attractive extra feature of the proposed new method is that it can be imple-

mented as a genuine finite volume scheme with a considerable benefit in terms of

computational saving compared to the classical DMH approach.

Moreover, another relevant property of the FV variant of the DMH method is that,

under mild assumptions on the computational grid, it satisfies a discrete maximum

principle, which ensures that the computed solution is strictly positive if the right-

hand side of the linear algebraic system is so. This property is quite desirable in the
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application at hand where, typically, the primal variable of the model is a concen-

tration.

The novel DMH-FV scheme has proved to be accurate and robust in all of the per-

fomed numerical experiments. This is very promising for future use of the scheme

in the simulation of complex problems in Computational Biology and Neuroscience.

To give an idea of the potentiality of the method in these applications, we show in

Fig. 10 two time snapshots of the simulation of the action potential propagation

along an unmyelinated neuronal axon, as originally considered in [35] and numeri-

cally investigated in [50]. Results clearly reproduce the spreading of the action po-

tential towards the two ends of the axon without introducing spurious oscillations,

while accounting for the finite potential jump occurring across the membrane.

Figure 10. Computed action potential at two different time levels.
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