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STATIC CONDENSATION PROCEDURES

FOR HYBRIDIZED MIXED FINITE ELEMENT METHODS

PAOLA CAUSIN AND RICCARDO SACCO

Abstract. Stemming from the characterization of the static condensation
procedure for mixed hybridized methods introduced in [9, 10], in this pa-
per we use Helmholtz decompositions to obtain a substructuring of the lo-
cal mapping problems, in order to end up with simpler systems of reduced
size. This procedure is effective especially when dealing with high degree or
variable degree approximations. Moreover, we extend the variational charac-
terization of static condensation to more general saddle–point formulations.
Two relevant examples of mixed–hybridized methods are considered, namely,
the classical Galerkin Dual-Mixed Hybridized scheme and the Discontinuous
Petrov–Galerkin (DPG) scheme of [7].

1. Introduction

We consider the following elliptic model problem written in mixed form on the
polygonal domain Ω ⊂ R

2 with boundary Γ:
Given f ∈ L2(Ω), find (q, u) ∈ (H(div ; Ω) × L2(Ω)), such that





q = −κ∇u in Ω,

div q + du = f in Ω,

u = 0 on Γ,

(1.1)

where κ(x) is a bounded diffusion coefficient, such that κ(x) ≥ κ0 > 0 almost
everywhere in Ω, and d(x) is a nonnegative bounded reaction coefficient. Homoge-
neous Dirichlet boundary conditions are considered here for sake of simplicity, as
all subsequent results can be extended straightforwardly to more general boundary
conditions. In the numerical discretization of problem (1.1), we seek a simultaneous
approximation of both primal and dual variables. This approach gives rise to a non-
definite linear algebraic system of large size, the solution of which is computationally
expensive. The so-called “hybridization” procedure introduces an additional field
to relax the interelement continuity requirement for the normal component of the
vector field [2], in such a way that static elimination of primal and dual variables
can be performed, yielding a much smaller matrix equation in the sole hybrid field.
The resulting method is called Dual–Mixed Hybridized (DMH). Hybridization is
traditionally carried out via an algebraic manipulation of the full linear system
acting on the primal, dual and hybrid variables; however, such a manipulation may
become rather involved and dissuade from its actual use in computer implemen-
tation. In [9, 10], a novel characterization of the static condensation is proposed,
showing that the reduced system may be derived from the solution of suitable local
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mapping problems. This interpretation provides a variational framework to the hy-
bridized formulation and an explicit expression of the entries of the condensed local
coefficient matrix and right-hand side. Moreover, the novel characterization may
be profitably employed to establish connections between approximation methods
obtained by using different discrete spaces, in the same spirit as in [17].

In the first part of this article, based on the above variational procedure, we use
two different orthogonal decompositions of the local finite element space for the
flux variable, in order to single out a substructuring of the elementwise mapping
problems. As a matter of fact, ending up with smaller and easier local matrices is a
desirable property, especially if one wants to deal with high order approximations,
for example in the context of p–type adaptive refinement. The first decomposition
“horizontally” splits the space into a solenoidal part and a weakly irrotational com-
plement of the same polynomial degree. The second (alternative) decomposition
“vertically” splits the space into a two-level hierarchy. One level has a lower degree,
while the other level is a “surplus” space of functions having the same polynomial
degree as the original space. Additionally, the surplus space is “horizontally” de-
composed via a Helmholtz strategy [25]. The above two kinds of decomposition
lead to simplified local mapping problems, that can be solved with a reduced com-
putational effort.

In the second part of the article, we propose an extension of the variational char-
acterization of the static condensation to more general saddle–point formulations,
as discussed in [20]. As an example, we focus our attention on the Discontinuous
Petrov–Galerkin (DPG) method introduced in [4] and subsequently analyzed in [7],
providing a variational characterization of the local mappings and the expression of
the entries of the local element stiffness matrix and load vector. As already done for
the DMH formulation, we use a Helmholtz decomposition technique to identify a
substructure in the local mapping problems, that leads to an easier implementation
of the DPG method.

The paper is organized as follows. In Sect. 2 we introduce the geometrical quanti-
ties and the approximation spaces used in the discretization. In Sect. 3 we recall the
DMH formulation of (1.1). In Sect. 4 the steps of the abstract variational character-
ization given in [9] are discussed, emphasizing the connection with nonconforming
formulations. In Sect. 5 we introduce two variants of the Helmholtz decomposition
of the flux discrete space and we discuss the structure of the resulting set of re-
duced mapping problems. In Sect. 6 we apply the variational characterization to
the DPG formulation of lowest order. In Sect. 7 we briefly address the issue of deal-
ing with more general nonhomogeneous Dirichlet–Neumann boundary conditions,
and in Sect. 8 we draw some final conclusions.

2. Mathematical Preliminaries

In this section, we provide the basic notation that will be used throughout the
article and we introduce the finite element approximation spaces.

2.1. Notation. In view of the finite element discretization of problem (1.1), we let
Ω =

⋃
K be a regular [8] partition Th of the domain Ω into triangular elements K

of area |K|, diameter hK and barycenter xCG = (xCG, yCG)T . For each K ∈ Th, we
denote by ∂K and n∂K the boundary of the element and its outward unit normal
vector (according to a counterclockwise orientation along ∂K), respectively. If v
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is any function defined in Ω, we denote by vK its restriction to K and by v∂K its
restriction on ∂K. We denote by Eh the set of all the Ned edges of Th, with Ni

internal edges and Nb boundary edges, respectively. The set of the internal edges of
Eh is denoted by Eh,i. For each edge e ∈ ∂K, we indicate by |e| the length of e and
by n∂K |e the restriction of n∂K on e ∈ Eh,i and by nΓ|e the restriction of n∂K on
e ∈ Γ. Let w and q be piecewise smooth (p.s.) scalar and vector–valued functions
on Th, respectively. For each internal edge e = ∂K1 ∩ ∂K2 ∈ Eh,i, we define the
jump [[ · ]] and the average {·} operators (the latter only for w) as

[[w]] = wK1n∂K1
|e + wK2n∂K2

|e, [[q]] = q
K1 · n∂K1

|e + q
K2 · n∂K2

|e,

{w} =
wK1 |e + wK2 |e

2
,

while on each boundary edge e = ∂K1 ∩ Γ, we set

[[w]] = wK1n∂K1
|e, [[q]] = q

K1 · n∂K1
|e,

{w} =
wK1 |e

2
.

Notice that the jump of a vector-valued function is a scalar quantity, while the
jump of a scalar-valued function is a vector quantity. Notice also that the above
definitions are invariant if we exchange K1 with K2. Using the previous definitions,
the following identity can be proved to hold [3]

(2.1)
∑

K∈Th

∫

∂K

w q · n∂K ds =
∑

e∈Eh

∫

e

[[q]] {w} ds +
∑

e∈Eh

∫

e

{q} · [[w]] ds.

In view of the analysis of the DPG formulation, it is useful to rewrite (2.1) in an
equivalent form, by introducing on each element boundary the new quantity

(2.2) µ∂K = q
K · n∂K ∀K ∈ Th.

If w has the meaning of a displacement, and q is the associated stress, then µ has
the meaning of normal stress. We define the jump and average operators for µ as
(2.3)

{µ} =
µ∂K1

n∂K1
|e + µ∂K2

n∂K2
|e

2
, [[µ]] = µ∂K1

|e + µ∂K2
|e, ∀e ∈ Eh,i,

{µ} =
µ∂K1

n∂K1
|e

2
, [[µ]] = µ∂K1

|e, ∀e ∈ Γ.

Notice that the jump of the scalar function µ is a scalar quantity, while the average
of µ is a vector-valued quantity. Then, using (2.2) and (2.3) in (2.1), we easily get

(2.4)
∑

K∈Th

∫

∂K

w µ ds =
∑

e∈Eh

∫

e

[[µ]] {w} ds +
∑

e∈Eh

∫

e

{µ} · [[w]] ds.

2.2. Finite element spaces. We now define the basic polynomial spaces and pro-
jection operators that will be used in the numerical approximation of (1.1). For
k ≥ 0, we let Pk(K) to be the space of polynomials in two variables of total degree
at most k on K and by Rk(∂K) the space of polynomials in two variables of total
degree at most k on each edge of ∂K. Notice that functions belonging to Rk(∂K)
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are not necessarily continuous at the vertices of K. Furthermore, we denote by
RTk(K), k ≥ 0, the k-order Raviart–Thomas finite element space [22] defined as

(2.5) RTk(K) = (Pk(K))2 ⊕Pk(K) x,

where x = (x, y)T and where Pk(K) = span{xαyβ , α + β = k}. The degrees of
freedom of the space RTk(K) are given by (see [5])

(2.6)





∫

∂K

q · n∂K ξ ds ∀ξ ∈ Rk(∂K), k ≥ 0,

∫

K

q · p dx ∀p ∈ (Pk−1(K))2, k ≥ 1.

Notice that if a function τ
K belongs to RTk(K), then its divergence belongs to

Pk(K) and its normal trace on ∂K belongs to Rk(∂K). We also introduce the
nonconforming Crouzeix–Raviart finite element space [11]

(2.7) P
nc
1 (K) = span {ϕ̃i}

3
i=1 , ϕ̃i(xm,j) = δij , i, j = 1, 2, 3 ∀K ∈ Th

where each basis function ϕ̃i ∈ P1(K) and xm,j is the midpoint of each edge ej ∈
∂K. Notice that ϕ̃i = 1 − 2 ϕi, ϕi being the i-th nodal basis function for P1(K),
and ϕ̃i(x)|ei

= 1 for each fixed i = 1, 2, 3. This implies that

(2.8) ∇ϕ̃i =
2 nei

Hi
=

|ei|nei

|K|
i = 1, 2, 3,

Hi being the height associated with edge ei. We denote by P
nc
1 (Th) the space of

functions whose restriction to each triangle K of Th belongs to P
nc
1 (K). Notice that

P
nc
1 (Th) is not a subspace of H1(Ω). Finally, for any set S ⊆ Ω, we denote by Pk

S η
the L2 projection of a function η ∈ L2(S) onto Pk(S).

3. The Dual–Mixed Hybridized Method

For each K ∈ Th, we define the local finite element spaces

(3.1) Vh(K) = RTk(K), Wh(K) = Pk(K), Lh(∂K) = Rk(∂K).

The corresponding global finite element spaces are

(3.2) Vh =
∏

K∈Th

Vh(K), Wh =
∏

K∈Th

Wh(K), Lh =
∏

K∈Th

Lh(∂K),

with the constraint

(3.3) λ∂K1
|e = λ∂K2

|e ∀e ∈ Eh,i and λ∂K1
|e = 0 ∀e ∈ Γ, λ ∈ Lh.

Conditions (3.3) express the fact that functions belonging to Lh are single–valued
on Eh,i and satisfy the Dirichlet boundary condition of problem (1.1) in an essential
manner on Γ.

Then, the Dual–Mixed Hybridized formulation of (1.1), (see [2]), reads: Find
(qh, uh, λh) ∈ (Vh ×Wh ×Lh) such that for all (vh, wh, ηh) ∈ (Vh ×Wh ×Lh) we
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have

(3.4)

∫

Ω

K qh · vh dx −
∑

K∈Th

∫

K

uh div vh dx +
∑

e∈Eh,i

∫

e

λh [[vh]] ds = 0,

−
∑

K∈Th

∫

K

wh div qh dx −

∫

Ω

d wh uh dx = −

∫

Ω

f wh dx,

∑

e∈Eh,i

∫

e

ηh [[qh]] ds = 0,

where we have set K := κ−1. Equation (3.4)3 expresses the fact that functions in Vh,
that are a-priori fully discontinuous over Th, satisfy in weak form an interelement
compatibility condition, physically corresponding to the action-reaction principle.
Problem (3.4) admits a unique solution (see [5] for a proof).

4. Variational Characterization of the DMH Method

In this section, we briefly recall the steps of the abstract variational charac-
terization of the mixed–hybridized method (3.4) given in [9], providing some new
insights.

4.1. Generalized displacement DMH problem from superposition of ef-

fects. The triple (qh, uh, λh), solution of (3.4), can be characterized as follows.
The pair (qh, uh) ∈ (Vh × Wh) is given by

(4.1) (qh, uh) = (qλh
, uλh

) + (qf , uf ),

where the two pairs at the right–hand side are suitable lifting operators associated
with λh and f , respectively.

The Lagrange multiplier λh ∈ Lh is the unique solution of

(4.2) ah(λh, zh) = bh(zh) ∀zh ∈ Lh,

where

(4.3) ah(λh, zh) =

∫

Ω

K qλh
· qzh

dx +

∫

Ω

d uλh
uzh

dx, bh(zh) =

∫

Ω

f uzh
dx.

The variational problem (4.2) is a generalized displacement approximation of the
model problem (1.1) and can be written in matrix form as

(4.4) E Λ = H,

where E is the global, symmetric and positive definite stiffness matrix, Λ is the
vector of the degrees of freedom of λh over Eh,i and H is the load vector.

4.2. Local mappings. The pair (qm, um) is the local lifting of a given hybrid vari-
able function m ∈ Lh(∂K), such that m = 0 for each edge e = ∂K∩Γ, while (qf , uf )
is the local mapping of a given source term f ∈ L2(K).
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We introduce the following local bilinear forms

aK(q, v) =

∫

K

K q · v dx : (Vh(K) × Vh(K)) → R,

bK(u, v) = −

∫

K

u div v dx : (Uh(K) × Vh(K)) → R,

cK(u, w) =

∫

K

d u w dx : (Uh(K) × Uh(K)) → R.

The first local mapping reads: Given m ∈ Lh(∂K), find (qm, um) ∈ (Vh(K)×Wh(K))
such that for all K ∈ Th

(4.5)
aK(qm, vh) + bK(um, vh) = GK

m (vh) ∀vh ∈ Vh(K),

bK(wh, qm) − cK(wh, um) = 0 ∀wh ∈ Wh(K),

where we have introduced the local linear form

GK
ξ (vh) = −

∫

∂K

ξ vh · n∂K ds : Vh(K) → R,

which is parametrically depending on the given function ξ ∈ Lh(∂K).

The second local mapping reads: Given f ∈ L2(K), find (qf , uf ) ∈ (Vh(K) ×
Wh(K)) such that for all K ∈ Th

(4.6)
aK(qf , vh) + bK(uf , vh) = 0 ∀vh ∈ Vh(K),

bK(wh, qf ) − cK(wh, uf ) = F K
f (wh) ∀wh ∈ Wh(K),

where we have introduced the local linear form

F K
φ (wh) = −

∫

K

φ wh dx : Wh(K) → R,

which is parametrically depending on the given function φ ∈ L2(K).
Using superposition of effects in (3.4)3, yields

(4.7)
∑

e∈Eh,i

∫

e

ηh [[qλh
]] ds = −

∑

e∈Eh,i

∫

e

ηh [[qf ]] ds ∀ηh ∈ Lh.

Substituting into (4.7) the characterizations of qλh
and qf , and using Lemma 2.2

of [9], leads to the generalized displacement formulation (4.2), or, equivalently, to
the algebraic form (4.4).

4.3. Local matrices in the lowest–order case. As an example, in this section
we provide the explicit expressions of the entries of the element matrix and load
vector E

K and H
K in the lowest-order case k = 0. These expressions can be

obtained from the finite element discretization of the local mappings.
We start computing the local mapping associated with a given function m ∈

R0(∂K). With this aim, we express the solution (qm, um) of (4.5) in the basis of
R0(∂K) as [9]

(4.8) (qm, um) =

3∑

i=1

(qm,ei
, um,ei

) λi,
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where λi ∈ R is the constant value of m on the edge ei, and (qm,ei
, um,ei

) is the

solution of problem (4.5) with mh ∂K = 1i, 1i ∈ R
3 being the unit vector of the axis

xi, i = 1, 2, 3. The discretization of the local mapping problem with right–hand
sides mh, ∂K = 1i, i = 1, 2, 3, gives rise to three 2-by-2 block diagonal systems, the
solution of which is
(4.9)

um,ei
=

1

3(1 + d
K
h2)

,

qm,ei
= −κK n∂K,ei

|ei|

|K|
−

d
K

um,ei

2
(x − xCG) = −κK ∇ϕ̃i −

d
K

um,ei

2
(x − xCG),

where κK :=
(
K

K
)−1

=
(
P0

KK
)−1

is the harmonic average of the diffusion coeffi-

cient κ over the element K and

d
K

= P0
K d, h2 :=

∫

K

KK(x − xCG) · (x − xCG) dx

4 |K|
∀K ∈ Th.

Notice that in the case k = 0, the average values of K and d are an outcome of the
computation.

Remark 4.1. Eq. (4.9) reveals that for the quantity ρi introduced in [9] Sect. 3.2,
the relation ρi = 1/3 holds irrespectively of the shape of the mesh element K.

Remark 4.2. Substituting (2.8) into (4.9) allows to write the local mapping associ-
ated with a given m ∈ R0(∂K) as

(4.10) um =
P0

Ku∗
m

1 + d
K
h2

, qm = −κK ∇u∗
m −

d
K

um

2
(x − xCG),

where u∗
m is the P1–nonconforming interpolant of m within K.

Let us now compute the local mapping associated with f ∈ L2(K). The corre-
sponding discrete system is 2-by-2 block diagonal, the solution of which is

(4.11) uf =
h2 P0

Kf

1 + d
K
h2

, qf =
uf

2 h2
(x − xCG) ∀K ∈ Th.

Eventually, the entries of E
K and H

K for each element K ∈ Th are computed as
(4.12)

(EK)ij =

∫

K

(
κK

)−1
qm,ei

· qm,ej
dx +

∫

K

d
K

um,ei
um,ej

dx i, j = 1, 2, 3,

(HK)i =

∫

K

f um,ei
dx =

∫

K

P0
Kf um,ei

dx i = 1, 2, 3.

Remark 4.3. Assume that d = 0, and define the finite element space

Vh,0 = {vh ∈ P
nc
1 (Th), vh = 0 at the midpoint of each edge e ∈ Γ}.
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Then, using (4.9) into (4.12), it can be shown that problem (4.2) is equivalent to:
Find u∗

λh
∈ Vh,0 such that

(4.13) Ah(u∗
λh

, φh) = Fh(φh) ∀φh ∈ Vh,0,

where

Ah(u∗
h, φh) =

∑

K∈Th

∫

K

κK ∇u∗
λh

· ∇φh dx : Vh,0 × Vh,0 → R,

and Fh(·) is the approximate computation of
∫
Ω

f φh dx using the two–dimensional
midpoint quadrature rule. The variational problem (4.2) in the case d = 0 is thus a
generalized displacement finite element scheme of nonconforming type (cf. [22] and
[5] Chapt. V) with two differences. The first difference is that the harmonic average
of the diffusion coefficient is automatically performed over each mesh element K,
instead of the usual average. The second difference is that f is replaced by its pro-
jection over constant functions on each element K ∈ Th. For a further connection
between DMH methods and (extended) nonconforming formulations, we refer to
Lemma 2.3 and 2.4 of [2] and Sect. 4 of [14].

5. Substructuring of Local Mappings

As the finite element degree k increases, the solution of the local problems (4.5)
and (4.6) becomes involved. The characterization of the local mappings provided in
this section can be used to single out a further substructuring of the local mapping
problems. This turns out to be of interest in view of p-type refinement or variable
degree formulations (see [13], [16],[12]).

5.1. One–level Helmholtz decomposition. Throughout this section and the
next one, we assume that the diffusion coefficient κ and the reaction term d are
piecewise constant (cf.[25]). For all K ∈ Th, we introduce the affine manifold
(see [21], Chpt. 7)

V 0
h (K) := {v ∈ Vh(K) | bK(w, v) = 0, ∀w ∈ Wh(K)} = {v ∈ Vh(K) | div v = 0}.

The space V 0
h (K) induces the following ”horizontal” Helmholtz decomposition of Vh(K)

(5.1) Vh(K) = V 0
h (K) ⊕ (V 0

h (K))⊥ ∀K ∈ Th,

where

(5.2) (V 0
h (K))⊥ =

{
v ∈ Vh(K) | aK(v, v0) = 0, ∀v

0 ∈ V 0
h (K)

}
.

The representation (5.1) of the space Vh(K) into a solenoidal and a weakly irrota-
tional part is unique (see also [25]).

We have the following result.

Proposition 5.1. Let d ≥ 0. Then

(5.3) qf = q
⊥
f ∈ (V 0

h (K))⊥.

Moreover, if d = 0, then

(5.4) qm = q
0
m ∈ V 0

h (K).
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Proof. Set d = 0 and consider the local mapping problem (4.5). Surjectivity of the
divergence operator in (4.5)2 immediately implies that qm ≡ q

0
m ∈ V 0

h (K). Consider
now the second local mapping. Taking vh = v

0
h ∈ V 0

h (K) in (4.6)1, immediately
yields q

0
f = 0, which implies that qf ≡ q

⊥
f ∈ (V 0

h (K))⊥. If d > 0, it is immediate

to check that both non-zero q
0
m and q

⊥
m contribute to the mapping qm, whilst the

same property qf ≡ q
⊥
f holds as in the case d = 0. �

The result of Prop. 5.1 suggests that the local problems (4.5) and (4.6) may
be further split into smaller subproblems, the computation of which turns out to
be easier than the solution of the full size problem. We introduce the following
notation

dimVh(K)︸ ︷︷ ︸
Mk

= dimV 0
h (K)︸ ︷︷ ︸

M0

k

+ dim(V 0
h (K))⊥︸ ︷︷ ︸

M⊥

k

.

We start considering the local problem (4.5). In the case d = 0, using (5.1),
relation (4.5)1 can be written as

(5.5)
aK(qm, v

0
h) = GK

m (v0
h) ∀v

0
h ∈ V 0

h (K),

bK(um, v
⊥
h ) = GK

m (v⊥
h ) ∀v

⊥
h ∈ (V 0

h (K))⊥,

which yields the block diagonal system

(5.6)




A0 0(M0

k
,M⊥

k
)

0T
(M0

k
,M⊥

k
)

A⊥







qm

um


 =




g0
m

g⊥m


 ,

where A0 and A⊥ are square matrices of size M 0
k and M⊥

k , respectively. Each
sub–block of (5.6) is invertible because aK is coercive on V 0

h (K) and bK satisfies
the inf–sup condition. Solving system (5.6) completely determines the M 0

k non-zero
degrees of freedom of qm and the M⊥

k = dim(Pk) degrees of freedom of um.

In the case d > 0, the unknown q
0
m can be obtained from the square invertible

system of size M0
k

A0
q

0
m = g0

m ,

whilst the (coupled) variables q
⊥
m and um are the unique solution of the system




A⊥ BT

B C






q
⊥
m

um


 =




g⊥m

0(M⊥

k
,1)


 .

Each matrix in the above system is square of size equal to M 0
k .

We consider now the local problem (4.6). Due to the fact that qf = q
⊥
f , such a

problem can be rewritten as

bK(wh, qf ) −cK(wh, uf ) = F K
f (wh) ∀wh ∈ Wh(K),

aK(qf , v
⊥
h ) +bK(uf , v

⊥
h ) = 0 ∀v

⊥
h ∈ (V 0

h (K))⊥,
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or, equivalently, as the system

(5.7)




B⊥ C

A⊥ (B⊥)T







qf

uf


 =




F

0(M⊥

k
,1)


 .

Each matrix in (5.7) is square of size equal to M⊥
k . Solving system (5.7) completely

determines the M⊥
k non-zero degrees of freedom of qf and the M⊥

k degrees of
freedom of uf . Notice that in the case d = 0, we have that C = 0(M⊥

k
,M⊥

k
) and

system (5.7) is block lower triangular.

5.2. Construction of a basis for V 0
h and (V 0

h )⊥. In order to compute the so-
lution of the various systems introduced in Sect. 5.1, we need a basis for functions
belonging to V 0

h (K) and (V 0
h (K))⊥ defined in (5.1) and (5.2), respectively.

In the following, we indicate by K̂ the reference triangle, by x̂ = (x̂, ŷ)T the

coordinate vector on K̂ and by FK : K̂ → K the affine transformation

x = FK(x̂) = bK + BKx̂, bK =

[
x1

y1

]
, BK =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
,

which transforms K̂ into the element K ∈ Th of vertices (xi, yi), i = 1, 2, 3, labelled
with a counterclockwise orientation. Accordingly, for a scalar–valued function v
and a vector–valued function τ defined on K, we set

(5.8) v(x) = v̂(x̂), τ (x) = PK τ̂ (x̂) =
1

mK
BK τ̂ (x̂),

where PK is the Piola transformation (cf. [5], Sect. III.1.3) and mK := |det BK |.

Let φ̂ ∈ H1(K̂) and let curl : φ̂ → curl φ̂ =
(
∂φ̂/∂ŷ, −∂φ̂/∂x̂

)T

. Then, we

have (see [5], Corollary 3.2)

(5.9) V 0
h (K̂) = curl Pk+1(K̂).

We have that dim(RTk(K̂)) = (k + 1)(k + 3) = Mk, M0
k = 1

2 (k + 1)(k + 4), M⊥
k =

1
2 (k + 1)(k + 2) ≡ dim(Pk(K̂)). The values of Mk, M0

k and M⊥
k are summarized in

Tab. 1 for k ∈ [0, 3].

k Mk M0
k M⊥

k

0 3 2 1

1 8 5 3

2 15 9 6

3 24 14 10

Table 1. Values of Mk, M0
k and M⊥

k for the space RTk(K̂) as a
function of the degree k.

The computation of the basis for V 0
h (K̂) follows directly from (5.9). The compu-

tation of the basis for the orthogonal complement (V 0
h (K̂))⊥ requires solving the
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following linear algebraic system associated with (5.2)

(5.10) V⊥ x⊥ = 0(M0

k
,1),

where V⊥ ∈ R
M0

k×M⊥

k and x⊥ ∈ R
M⊥

k . For a given k ≥ 0, the solution of (5.10)
can be found once for all, for example, by computing an orthonormal basis for the
null space of V⊥ via a singular value decomposition.

In the case k = 0, it is easy to check that the above procedure yields

V 0
h (K̂) = curl P1(K̂) = span

{(
1
0

)
,

(
0
1

)}
, (V 0

h (K̂))⊥ =

(
x̂ − x̂CG

ŷ − ŷCG

)
.

In the case k = 1, we have

V 0
h (K̂) = curl P2(K̂) = span

{(
0
1

)
,

(
1
0

)
,

(
x̂
−ŷ

)
,

(
0
x̂

)
,

(
ŷ
0

)}
,

and using the Matlab command null(A,’r’) to solve (5.10), we obtain

(V 0
h (K̂))⊥ = span {τ̂1, τ̂2, τ̂3} ,

where

τ̂1 =




−
1

2
+ x̂ + ŷ

−
1

2
+

1

2
x̂ + ŷ


 , τ̂2 =




−
3

5
x̂ +

1

10
ŷ + x̂2

−
1

20
−

1

10
x̂ + x̂ ŷ


 , τ̂3 =




7

20
+

3

5
x̂ +

1

5
ŷ + x̂ ŷ

−
3

10
+

2

5
x̂ + ŷ2


 .

5.3. Hierarchical–Helmholtz splitting. The approach discussed in the previous

section is the most straightforward way to build a basis for V 0
h (K̂) and (V 0

h (K̂))⊥.
However, it yields a computation technique that may become involved as the degree
k grows. In this section, we discuss an alternative approach, based on a hierarchical
splitting of the Raviart-Thomas finite element space (see [19],[1],[25]). The advan-
tage of this approach is that computations already carried out for lower degrees can
be profitably reused, yielding more effective algorithms.

Throughout this section, for a given polynomial vector space Qp(K̂) of degree

p, p ≥ 0, the spaces Q0
p(K̂) and Q⊥

p (K̂) will denote the divergence–free part and
its complement, respectively, of the Helmholtz decomposition

(5.11) Qp(K̂) = Q0
p(K̂) ⊕ Q⊥

p (K̂).

Moreover, for a given polynomial scalar space Wr+1(K̂) of degree r + 1, r ≥ 0, the

spaces Wr(K̂) and W̃r+1(K̂) will denote the scalar space of degree r and the scalar
surplus polynomial space of degree r + 1, respectively, of the scalar hierarchical

decomposition

(5.12) Wr+1(K̂) = Wr(K̂) ⊕ W̃r+1(K̂),

whilst for a given polynomial vector space Qs+1(K̂) of degree s + 1, s ≥ 0, the

spaces Qs(K̂) and Q̃s+1(K̂) will denote the vector space of degree s and the surplus,
respectively, of the vector hierarchical decomposition

(5.13) Qs+1(K̂) = Qs(K̂) ⊕ Q̃s+1(K̂).



12 PAOLA CAUSIN AND RICCARDO SACCO

We have the following result, that generalizes to a generic degree k the analysis
of [25], Sect. 2.

Proposition 5.2. In the Helmholtz decomposition

(5.14) RTk+1(K̂) = RT
0
k+1(K̂) ⊕ RT

⊥
k+1(K̂),

the following hierarchical structure can be identified

(5.15)





RT
0
k+1(K̂) = RT

0
0(K̂) ⊕

k∑

l=0

R̃T
0

l+1(K̂),

RT
⊥
k+1(K̂) = RT

⊥
0 (K̂) ⊕

k∑

l=0

R̃T
⊥

l+1(K̂
)
.

Proof. Set k = 0. Applying the decomposition of type (5.13) to the space RT
0
k+1(K̂) =

RT
0
1(K̂) yields

RT
0
1(K̂) = RT

0
0(K̂) ⊕ R̃T

0

1(K̂).

Set now k = 1. Applying the decomposition of type (5.13) to the space RT
0
k+1(K̂) =

RT
0
2(K̂) yields

RT
0
2(K̂) = RT

0
1(K̂) ⊕ R̃T

0

2(K̂) = RT
0
0(K̂) ⊕

1∑

l=0

R̃T
0

l+1(K̂).

Then, induction on k gives (5.15)1. Set again k = 0. Applying the decomposition

of type (5.13) to the space RTk+1(K̂) = RT1(K̂) and then a decomposition of

type (5.11) to each of the spaces RT0(K̂) and R̃T1(K̂) yields

RT1(K̂) = RT0(K̂) ⊕ R̃T1(K̂) = (RT
0
0(K̂) ⊕ RT

⊥
0 (K̂)) ⊕ (R̃T

0

1(K̂) ⊕ R̃T
⊥

1 (K̂))

= (RT
0
0(K̂) ⊕ R̃T

0

1(K̂)) ⊕ (RT
⊥
0 (K̂) ⊕ R̃T

⊥

1 (K̂)).

Using (5.15)1 (with k = 0), the first term of the right–hand side of the previous

expression is equal to RT
0
1(K̂); this leads to recognize

RT
⊥
1 (K̂) = R̃T

⊥

0 (K̂) ⊕ R̃T
⊥

1 (K̂)

Induction on k yields relation (5.15)2.
�

Remark 5.3. Notice that the result of Prop. 5.2 represents at the same time a ”hor-
izontal” (relation (5.14)) and a nested ”vertical” (relation (5.15)) decomposition of

the space RTk+1(K̂).

In order to characterize the space R̃T
0

l+1(K̂), l ≥ 0, of Prop. 5.2, we observe that,
from [5], Corollary 3.2, we have

RT
0
l+1(K̂) = curl Pl+2(K̂),

and from

(5.16) curl Pl+2(K̂) = curl (Pl+1(K̂)) ⊕ curl (P̃l+2(K̂)),

we have

(5.17) R̃T
0

l+1(K̂) = curl P̃l+2(K̂).



STATIC CONDENSATION FOR HYBRIDIZED MIXED METHODS 13

We are left with the issue of characterizing the space R̃T
⊥

l+1(K̂). The basis for
this space can be built by properly picking independent functions from the span

of R̃Tl+1(K̂). Before proceeding, following [19], it is convenient to replace the
standard internal degrees of freedom of the Raviart–Thomas finite element space
of degree k, given by (2.6)2, with the alternative (and equivalent) unisolvent set of
internal degrees of freedom

(5.18)





∫

bK

div q r dx ∀r ∈ Pk(K̂) \ R, k ≥ 1,

∫

bK

curlq s dx ∀s ∈ Pk−2(K̂), k ≥ 2,

where curl : q → curlq = ( ∂qx

∂y − ∂q2

∂y ), for any q = (qx, qy)
T ∈ (H1(K̂))2.

We need first to give a constructive characterization of the space R̃Tl+1(K̂). With

this aim, we introduce the interpolation operator ρl : RTl+1(K̂) → RTl(K̂), such

that for all q ∈ RTl+1(K̂)

(5.19)

∫

∂ bK

(ρlq) · n∂ bK ξ ds =

∫

∂ bK

q · n∂ bK ξ ds ∀ξ ∈ Rl(∂K̂), l ≥ 0,

∫

bK

div (ρlq) r dx =

∫

bK

div q r dx ∀r ∈ Pl(K̂) \ R, l ≥ 1,

∫

bK

curl (ρlq) s dx =

∫

bK

curlq s dx ∀s ∈ Pl−2(K̂), l ≥ 2,

and then, we set R̃Tl+1(K̂) = (Id − ρl)RTl+1(K̂). Due again to [5], Corollary 3.2,
we have

dim(curl Pl+2(K̂)) = dim(Pl+2(K̂)) − 1,

from which, using (5.16) and (5.17), we get

dim(R̃T
0

l+1(K̂)) = dim(curl P̃l+2(K̂)) = dim(Pl+2(K̂)) − dim(Pl+1(K̂)) = l + 3,

which eventually gives the number of independent functions in the span of R̃Tl+1(K̂)

dim(R̃T
⊥

l+1(K̂)) = dim(R̃Tl+1(K̂)) − dim(R̃T
0

l+1(K̂))

= (dim(RTl+1(K̂)) − dim(RTl(K̂))) − dim(R̃T
0

l+1(K̂))

= (2l + 5) − (l + 3) = l + 2.

Functions q̃ ∈ R̃T
⊥

l+1(K̂) can be characterized by enforcing the following additional
constraints

(5.20)

∫

∂ bK

q̃ · n∂ bK ξ̃ ds = 0 ∀ξ̃ ∈ R̃l+1(∂K̂), l ≥ 0,

∫

bK

curl q̃ s̃ dx = 0 ∀s̃ ∈ P̃l−1(K̂), l ≥ 1,
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where we set P̃0(K̂) ≡ P0(K̂) and R̃l+1(∂K̂) is the surplus space such that

(5.21) Rl+1(∂K̂) = Rl(∂K̂) ⊕ R̃l+1(∂K).

We observe that relation (5.20)1 provides 3 constraints, irrespectively of the degree,
while relation (5.20)2 provides l constraints, their sum being the necessary amount

required to filter out from the space R̃Tl+1(K̂) the l + 3 divergence–free functions

belonging to R̃T
0

l+1(K̂). Tab. 2 summarizes the degrees of freedom and the con-
straints enforced by relations (5.20)1 and (5.20)2 for l ∈ [0, 3]. We refer to [15] for

an alternative characterization of the space R̃⊥
l+1(∂K).

space l dim(R̃Tl+1) dim(R̃T
0

l+1) constraints constraints
= 2l + 5 = l + 3 from (5.20)1 from (5.20)2

RT1 0 5 3 3 -

RT2 1 7 4 3 1

RT3 2 9 5 3 2

RT4 3 11 6 3 3

Table 2. Summary of the degrees of freedom and of the number

of constraints necessary to build the basis of R̃T
⊥

l+1(K̂) from the

basis of R̃Tl+1(K̂).

The degrees of freedom of each subspace in the hierarchical–Helmholtz decom-

position RTk+1(K) = RTk(K) ⊕ R̃T
0

k+1(K) ⊕ R̃T
⊥

k+1(K), k ≥ 0, on the generic
element K, are depicted in Fig. 1 in the cases k = 0, 1, 2.

5.4. Approximate hierarchical substructuring. The spaces RTk(K̂), R̃T
0

k+1(K̂)

and R̃T
⊥

k+1(K̂) in the decomposition

(5.22) RTk+1(K̂) = RTk(K̂) ⊕ R̃T
0

k+1(K̂) ⊕ R̃T
⊥

k+1(K̂)

are not orthogonal with respect to the bilinear form aK(·, ·). In order to end up
with a computable hierarchical counterpart of problems (5.6) and (5.7), we replace
the original local bilinear form aK(·, ·) with a modified local bilinear form ãK(·, ·)
spectrally equivalent, and defined as (see [25],[15]; see also [24] for an alternative
approach)

(5.23) ãK(q, v) = aK(qk, vk) + aK(q̃0
k+1, ṽ

0
k+1) + aK(q̃⊥

k+1, ṽ
⊥
k+1),

where

(5.24) q = qk + q̃
0
k+1 + q̃

⊥
k+1, v = vk + ṽ

0
k+1 + ṽ

⊥
k+1,

and qk, vk ∈ RTk(K̂), q̃
0
k+1, ṽ

0
k+1 ∈ R̃T

0

k+1(K̂) and q̃
⊥
k+1, ṽ

⊥
k+1 ∈ R̃T

⊥

k+1(K̂).
The decomposition (5.22) is orthogonal with respect to the modified bilinear form
ãK(·, ·). Lemma 2.1 and Theorem 2.2 of [15] ensure the equivalence of the solu-
tions of the modified mapping problems, where aK(·, ·) is replaced by ãK(·, ·), with
problems (4.5) and (4.6).
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Figure 1. Degrees of freedom of the subspaces of the decompo-

sitions RT1(K) = RT0(K) ⊕ R̃T
0

1(K) ⊕ R̃T
⊥

1 (K) (top), RT2(K) =

RT1(K) ⊕ R̃T
0

2(K) ⊕ R̃T
⊥

2 (K) (middle) and RT3(K) = RT2(K) ⊕

R̃T
0

3(K) ⊕ R̃T
⊥

3 (K) (bottom) for element K (upon mapping

from K̂).

In the following, we provide the details of the approximate solution of the local
mapping problems in the case d = 0. We consider the hierarchical splittings

(5.25) uk+1 = uk + ũk+1, wk+1 = wk + w̃k+1, mk+1 = mk + m̃k+1,

where uk+1, wk+1 ∈ Pk+1(K̂), uk, wk ∈ Pk(K̂), ũk+1, w̃k+1 ∈ P̃k+1(K̂), and mk+1 ∈

Rk+1(∂K̂), mk ∈ Rk(∂K̂), m̃k+1 ∈ R̃k+1(∂K̂), respectively.

Using (5.23), (5.24) and (5.25) into (4.5), we obtain two independent systems. The
first system is associated with the lower order space in the hierarchical decomposi-
tion and reads:



16 PAOLA CAUSIN AND RICCARDO SACCO

Given m ∈ Rk(∂K̂), find (qk,m, uk,m) ∈ (RTk(K̂) × Pk(K̂)), such that
(5.26)

aK(qk,m,vh) + bK(uk,m,vh) = −

∫

∂ bK

mk vh · n∂ bK ds ∀vh ∈ RTk(K̂),

bK(wh,qk,m) = 0 ∀wh ∈ Pk(K̂).

System (5.26) is a uniquely solvable local saddle–point problem to which the hier-
archical decomposition (5.22)–(5.25) can be recursively applied.
The second system reads:

Given m̃ ∈ R̃k+1(∂K̂), find (q̃k+1,m ≡ q̃0
k+1,m, ũk+1,m) ∈ (R̃Tk+1(K̂)×P̃k+1(K̂)), such

that

(5.27)

aK(q̃0
k+1,m,vh) = −

∫

∂ bK

m̃k+1 vh · n ds ∀vh ∈ R̃T
0

k+1(K̂),

bK(ũk+1,m,vh) = −

∫

∂ bK

m̃k+1 vh · n∂ bK ds ∀vh ∈ R̃T
⊥

k+1(K̂).

System (5.27) is uniquely solvable and it allows to completely determine q̃k+1,m,
and ũk+1,m (cf. (5.6)).

Using (5.23), (5.24) and (5.25) into (4.6), we obtain again two independent sys-
tems. The first system is associated with the lower order space in the hierarchical
decomposition and reads:

Given f ∈ L2(K̂), find (qk,f , uk,f ) ∈ (RTk(K̂) × Pk(K̂)), such that

(5.28)

aK(qk,f ,vh) + bK(uk,f ,vh) = 0 ∀vh ∈ RTk(K̂),

bK(wh,qk,f ) = −

∫

bK

Πkf wh dx ∀wh ∈ Pk(K̂).

System (5.28) is a uniquely solvable local saddle–point problem to which the hier-
archical decomposition (5.22)–(5.25) can be recursively applied.
The second system reads:

Given f ∈ L2(K̂), find (q̃k+1,f ≡ q̃⊥
k+1,f , ũk+1,f ) ∈ (R̃Tk+1(K̂) × P̃k+1(K̂)), such

that
(5.29)

aK(q̃⊥
k+1,f ,vh) + bK(ũk+1,f ,vh) = 0 ∀vh ∈ R̃T

⊥

k+1(K̂),

bK(wh, q̃⊥
k+1,f ) = −

∫

bK

(f − Πkf) wh dx ∀wh ∈ P̃k+1(K̂).

System (5.29) is uniquely solvable and it allows to completely determine q̃k+1,f and
ũk+1,f (cf. (5.7) with C = ∅).
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6. The Discontinuous Petrov–Galerkin Method

In this section, we recall the Discontinuous Petrov–Galerkin formulation of lowest
order (DPG0) of (1.1), introduced in [4] and analyzed in [6, 7]. For each K ∈ Th,
we introduce the local trial finite element spaces

Qh(K) = (P0(K))2, Uh(K) = P0(K), Lh(∂K) = Mh(∂K) = R0(∂K),

and the local test spaces

Vh(K) = RT0(K), Wh(K) = P1(K).

The global trial spaces are defined as

Qh =
∏

K∈Th

Qh(K), Uh =
∏

K∈Th

Uh(K),

Lh =
∏

K∈Th

Lh(∂K), Mh =
∏

K∈Th

Mh(∂K).

The space Lh satisfies the constraint (3.3), while the space Mh satisfies the con-
straint

(6.1) [[µ]] = 0 ∀e ∈ Eh,i, µ ∈ Mh,

where the jump [[·]] is defined in (2.3). Condition (6.1) states the fact that functions
in Mh satisfy in an essential manner an interelement compatibility condition, that
physically expresses the action–reaction principle.

The global test spaces are defined as

Vh =
∏

K∈Th

Vh(K), Wh =
∏

K∈Th

Wh(K).

Remark 6.1. In the DPG0 approximation of (1.1), the hybrid variable λh is an
approximation of u∂K , while the hybrid variable µh is an approximation of µ∂K =
q · n∂K (see Sect. 2). As a consequence, two different sets of finite element spaces
are needed, because the numerical approach is of Petrov–Galerkin type. Moreover,
the global spaces Qh, Uh, Vh and Wh are fully discontinuous on Th.

The DPG0 finite element approximation of problem (1.1) reads:
Find (qh, uh, λh, µh) ∈ (Qh ×Uh ×Lh ×Mh) such that for all (vh, wh) ∈ (Vh ×Wh)
we have

(6.2)

∫

Ω

K qh · vh dx −
∑

K∈Th

∫

K

uh div vh dx +
∑

e∈Eh,i

∫

e

λh [[vh]] ds = 0,

−
∑

K∈Th

∫

K

qh · ∇wh dx +

∫

Ω

d uh wh dx

+
∑

e∈Γ

∫

e

[[µh]] {wh} ds +
∑

e∈Eh

∫

e

{µh} · [[wh]] ds =

∫

Ω

f wh dx.

The sum over boundary edges at the left–hand side in (6.2)2 is obtained using (6.1)
into (2.4).
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In [7] it has been shown that problem (6.2) admits a unique solution in the case
d = 0. The case d(x) ≥ 0 can be dealt with as follows. Set f ≡ 0 and let u∗

λh
∈ Vh,0

be the piecewise linear nonconforming function such that

(6.3) P0
e u∗

λh
= λh ∀e ∈ Eh.

Let us consider Eq. (6.2)1. It can be checked that [7]

(6.4) q
K
h = −κK ∇u∗

λh
, uK

h = P0
Ku∗

λh
∀K ∈ Th.

Let us consider equation (6.2)2, and take wh = u∗
λh

∈ Vh,0. This choice implies
that

(6.5)
∑

e∈Γ

∫

e

[[µh]] {wh} ds +
∑

e∈Eh

∫

e

{µh} · [[wh]] ds = 0 µh ∈ Mh.

Assuming to replace dK with its mean value d
K

for all K ∈ Th, and using (6.4)
and (6.5), yields

∑

K∈Th

∫

K

κK |∇u∗
λh
|2 dx +

∑

K∈Th

∫

K

d
K
P0

Ku∗
λh

u∗
λh

dx = 0.

Observing that

∫

K

d
K
P0

Ku∗
λh

u∗
λh

dx = d
K (

P0
Ku∗

λh

)2
|K| =

∫

K

d
K (

P0
Ku∗

λh

)2
dx ∀K ∈ Th,

we immediately get

0 =
∑

K∈Th

∫

K

(
κK |∇u∗

λh
|2 + d

K
(P0

Ku∗
λh

)2
)

dx ≥ κ0

∑

K∈Th

∫

K

|∇u∗
λh
|2 dx,

which implies u∗
λh

= 0 and consequently qh = 0, uh = 0 and λh = 0.
Eventually, consider again Eq. (6.2)2 and take this time wh ∈ Wh(K) for all K ∈ Th.
Using (2.3), we obtain

0 =
∑

e∈Γ

∫

e

[[µh]] {wh} ds +
∑

e∈Eh

∫

e

{µh} · [[wh]] ds =
∑

K∈Th

∫

∂K

µh wh ds,

which implies µh = 0 (see [23] for the proof).

6.1. Local DPG mappings. We define the two pairs (qm, um, µm) and (qf , uf , µf )
as the solutions of local dual–primal mixed problems, which provide the lifting of
the given data m on ∂K and f in K, respectively. With this aim, let us introduce
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the following local bilinear forms

AK(q, v) =

∫

K

KK
q · v dx : (Qh(K) × Vh(K)) → R,

CK(u, w) =

∫

K

d
K

u w dx : (Uh(K) × Wh(K)) → R,

B̂K
1 ((u, λ), v) = −

∫

K

u div v dx

+

∫

∂K

λv · n∂K ds : ((Uh(K) × Lh(∂K)) × Vh(K)) → R,

B̂K
2 ((q, µ), w) = −

∫

K

q · ∇w dx

+

∫

∂K

µ w ds : ((Qh(K) × Mh(∂K)) × Wh(K)) → R.

Then, the first local mapping reads: Given m ∈ Lh(∂K), find (qm, um, µm) ∈
(Qh(K) × Uh(K) × Mh(∂K)) such that for all K ∈ Th

(6.6)

AK(qm, vh) + B̂K
1 ((um, 0), vh) = GK

m (vh) ∀vh ∈ Vh(K),

B̂K
2 ((qm, µm), wh) + CK(um, wh) = 0 ∀wh ∈ Wh(K),

where we have introduced the local linear form

GK
ξ (vh) = −

∫

∂K

ξ vh · n∂K ds : Vh(K) → R,

which is parametrically depending on the given function ξ ∈ Lh(∂K).
This lifting can be thought as the discretization of the local problem

(6.7)

qm = −κ∇um in K,

div qm + dum = 0 in K,

µm = qm · n∂K on ∂K,

um = m on ∂K.

The second local mapping reads: Given f ∈ L2(K), find (qf , uf , µf ) ∈ (Qh(K) ×
Uh(K) × Mh(∂K)) such that for all K ∈ Th

(6.8)

AK(qf , vh) + B̂K
1 ((uf , 0), vh) = 0 ∀vh ∈ Vh(K),

B̂K
2 ((qf , µf ), wh) + CK(uf , wh) = −F K

f (wh) ∀wh ∈ Wh(K),

where we have introduced the local linear form

F K
φ (wh) = −

∫

K

φ wh dx : Wh(K) → R,
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which is parametrically depending on the given function φ ∈ L2(K). This lifting
can be thought as the discretization of the local problem

(6.9)

qf = −κ∇uf in K,

div qf + duf = f in K,

µf = qf · n∂K on ∂K,

uf = 0 on ∂K.

6.2. DPG generalized displacement formulation. In the case of a Petrov-
Galerkin formulation, the formal approach adopted for the Galerkin problem does
not apply straightforwardly. This difficulty requires to resort to the generalized
saddle–point theory of [20]. The following result holds.

Theorem 6.2. Let (qh, uh, λh, µh) be the unique solution of problem (6.2). Then

(6.10) qh = qλh
+ qf , uh = uλh

+ uf , µh = µλh
+ µf ,

and the Lagrange multiplier λh ∈ Lh is the unique solution of

(6.11) Ah(λh, ζh) = Fh(ζh) ∀ζh ∈ Lh,

with

(6.12)

Ah(λh, ζh) =
∑

K∈Th

(AK(qλh
, qζh

) + CK(uλh
, wζh

)),

Fh(ζh) = −
∑

K∈Th

F K
f (wζh

),

wζh
∈ Vh,0 being the nonconforming piecewise linear function such that P0

e wζh
=

ζh for all e ∈ Eh, ζh ∈ Lh.

The following result is needed for the proof of Theorem 6.2.

Lemma 6.3. Let ξh ∈ Mh and ζh ∈ Lh. Then, it is immediate to see that

(6.13)
∑

e∈Eh

∫

e

[[ξh]] ζh ds =
∑

e∈Eh

∫

e

[[ξh]] {wζh
} ds ∀e ∈ Eh.

Proof of Theorem 6.2

Relation (6.10) is an immediate consequence of the linearity of problem (6.2).
Let m be a given function in Lh. Relation (6.1) implies

∑

e∈Eh

∫

e

[[µm]] ηh ds = 0 ∀ηh ∈ Lh,

and, further, relation (6.10) gives

(6.14)
∑

e∈Eh

∫

e

[[µm]] ηh ds = −
∑

e∈Eh

∫

e

[[µf ]] ηh ds ∀ηh ∈ Lh.

Using Lemma 6.3 with ξh = µm + µf , we obtain

(6.15)
∑

e∈Eh

∫

e

{wζh
} [[µm]] ds = −

∑

e∈Eh

∫

e

{wζh
} [[µf ]] ds.
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To characterize the left–hand side of (6.15), we consider the mapping prob-
lem (6.6). Choose wh = wζh

in (6.6)2 and, correspondingly, vh = ∇wζh
in (6.6)1.

Then, summing over mesh elements, we get

(6.16)
∑

e∈Eh

∫

e

{wζh
} [[µm]] ds = −

∑

K∈Th

(AK(qm, qζh
) + CK(um, wζh

)).

To characterize the right–hand side of (6.15), we consider the mapping prob-
lem (6.8). It is immediate to check that qf = 0 and uf = 0 (from (6.4) with
λh = 0). Choosing wh = wζh

in (6.8)2, and summing over Th, we immediately
obtain

(6.17) −
∑

e∈Eh

∫

e

{wζh
} [[µf ]] ds =

∑

K∈Th

F K
f (wζh

).

�

Remark 6.4. Notice that while µm and µf are not necessarily reciprocal across
interelement boundaries, their sum µh is reciprocal.

6.3. Local matrices for the DPG0 method. Proceeding as in Sect. 4.3, we
express the solution of (6.6) in the basis of Lh(∂K) as

(6.18) (qm, um, µm) =

3∑

i=1

(qm,ei
, um,ei

, µm,ei
) λi,

where (qm,ei
, um,ei

, µm,ei
) is the solution of problem (6.6) with m = 1i, i = 1, 2, 3.

Correspondingly, the discretization of (6.6) gives rise to three independent 2-by-2
block lower triangular systems.

For each fixed i = 1, 2, 3, the equations of the first block are

(6.19)

∫

K

KKqm,ei
· vh dx −

∫

K

um,ei
div vh dx = −

∫

∂K

1ivh · n∂K ds, vh ∈ RT0(K),

and their solution is the pair

(6.20) qm,ei
= −κK∇u∗

m,ei
= −κK∇ϕ̃i, um,ei

= P0
Ku∗

m,ei
=

1

3
.

Remark 6.5. Comparing (4.9) and (6.20), it is immediate to see that the difference
between the values of um,ei

computed by the lowest–order Galerkin DMH formula-
tion and the Petrov-Galerkin DPG0 formulation is O(h2

K). This result extends to
the case d ≥ 0 previous relations proved in [17] and [7] in the case d = 0.

For each fixed i = 1, 2, 3, the equations of the second block are

(6.21)

∫

∂K

µm,ei
wh ds =

∫

K

qm,ei
· ∇wh dx −

∫

K

d
K

um,ei
wh dx, wh ∈ P1(K).

Choosing wh ∈ P
nc
1 (K), system (6.21) becomes diagonal and its solution is

(6.22) µm,ei
= −κK∇u∗

m,ei
· nei

−
d

K

3

|K|

|ei|
P0

Ku∗
m,ei

= −κK∇ϕ̃i · nei
−

d
K

9

|K|

|ei|
.
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The discretization of (6.8) gives rise to a single 2-by-2 block lower triangular system,
the solution of which is

(6.23)

(qf , uf ) = [(0, 0)T , 0],

µf,ei
=

1

3

|K|

|ei|
P0

Kf, i = 1, 2, 3.

Remark 6.6. Relation (6.23)2 immediately yields

3∑

i=1

µf,ei
|ei| =

∫

∂K

µf ds =

∫

K

P0
Kf dx =

∫

K

f dx ∀K ∈ Th,

which expresses the local conservation property enjoyed by the DPG0 approxima-
tion.

The corresponding entries of the local stiffness matrix and the load vector associated
with the displacement–based formulation of the DPG0 method (6.2) are given by

(6.24)

(EK)i,j =

∫

K

κK∇ϕ̃j · ∇ϕ̃i dx +
1

3

∫

K

d
K

ϕ̃i dx i, j = 1, 2, 3,

(HK)i =

∫

K

P0
Kf ϕ̃i dx i = 1, 2, 3.

Remark 6.7. We observe that in the case d = 0, formulation (6.11) is a noncon-
forming scheme with harmonic average of the diffusion coefficient on each mesh
element. (cf. Remark 6.5).

Remark 6.8. The discretization of the reaction term in (6.24)1 does not yield a
diagonal matrix, but a full 3× 3 matrix, and the resulting scheme does not enjoy a
discrete maximum principle for any d ≥ 0 (see [18] for a discussion of this issue in
the case of Galerkin dual-mixed methods using RT0 finite elements). In the present
formulation, a simple way to overcome this problem is to perform a diagonal of the
local reaction matrix. This procedure leads to a nonconforming monotone scheme,
the global stiffness matrix E of which is a symmetric positive definite M -matrix.

6.4. Substructuring of local mappings in the Petrov–Galerkin setting. In
this section we use again the tool of orthogonal decomposition in order to single
out a further substructuring in the local mappings (6.6) and (6.8).
Let us introduce the null space [20]

ZK
1,h = ker B̂K

1 ((u, 0), v) = {v ∈ Vh(K) | div v = 0}.

Then, we have the decomposition Vh(K) = ZK
1,h⊕ (ZK

1,h)⊥, orthogonal with respect

to the L2 inner product induced by the bilinear form AK(·, ·). Moreover, let us
introduce the affine manifold

(ZK
2,h)σ := {q ∈ Qh(K), µ ∈ Mh(∂K) | B̂K

2 ((q, µ), w) = (σ, w)K ∀w ∈ Wh(K)}.

Finally, we let σd := −d
K

um. Then, we have the following result.
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Proposition 6.9. The local liftings (qm, µm) and (qf , µf ) are such that

(6.25)
(qm, µm) ∈ (ZK

2,h)σd ,

(qf , µf ) ∈ (ZK
2,h)f .

Proof. Consider the mapping problem (6.6). Taking in (6.6)1 vh ∈ ZK
1,h and then

vh ∈ (ZK
1,h)⊥, respectively, allows to completely determine qm and um. Replacing

these quantities into (6.6)2, immediately gives µm and (6.25)1. Consider now the
mapping problem (6.8). Taking in (6.8)1 vh ∈ ZK

1,h and vh ∈ (ZK
1,h)⊥, respectively,

yields qf = 0, uf = 0 irrespectively of d. Replacing these quantities into (6.6)2,
immediately gives µf and (6.25)2. �

Remark 6.10. The structure of the DPG formulation introduces a decoupling in the
lifting of d and f when static condensation is carried out. Precisely, the reaction
term d is accounted for by µm, while the source term f is accounted for by µf (see
[17] and [7] for a discussion on the relation between the variable µh and the vector
field qh in the case of mixed and nonconforming methods).

Prop. 6.9 suggests that a block Gauss–Seidel approach can be adopted to solve
the linear systems arising from the local mapping problems.

Eq. (6.6)1 can be written as

(6.26)

AK(qm, vh) = GK
m (vh) ∀vh ∈ ZK

1,h,

B̂K
1 (um, vh) = GK

m (vh) ∀vh ∈ (ZK
1,h)⊥,

which yields the block diagonal system

(6.27)




A0 0(2,1)

0T
(2,1) A⊥







qm

um


 =



m0

m⊥


 ,

where A0 and A⊥ are square matrices of size 2 × 2 and 1 × 1, respectively. Each

sub–block of (6.27) is invertible because AK is coercive on ZK
1,h and B̂K

1 satisfies
the inf–sup condition. Eventually, the variable µm is eliminated in favour of u∗

m by
solving a 3 × 3 system, qm and um being given data. As for µf , the same 3 × 3
system as above must be solved, the difference being in the right–hand side, which
only depends on the source term f .

7. Dirichlet–Neumann Boundary Conditions

In order to deal with the case where nonhomogenous Dirichlet boundary con-
ditions u = gD are assumed, we still use superposition of effects. We continue to
denote by η the extension to zero of the function, where Fh ⊂ Eh to Eh still by η.
As a consequence, if m = λh on Eh,i and m = Pk

ΓgD on Γ, we write m = λh + Pk
ΓgD

and we proceed in the same way as in the homogeneous case.
When mixed Dirichlet–Neumann boundary conditions are considered, that is

q ·nΓ = jN on ΓN , with jN ∈ H−1/2(ΓN ) and Γ = ΓD ∪ΓN , we have to distinguish
the DMH method from the DPG0 method. In the DMH method, the Neumann
boundary condition is weakly enforced in the sum of (3.4)3, extended to all the
edges, while in the DPG0 method, the Neumann condition is enforced in an essential
manner by the variable µh.
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In the right–hand side of the DMH nonconforming problem (4.2), we have the
presence of an additional term, which derives from the Neumann datum entering
the right–hand side of (4.7). In an analogous manner, in the right–hand side of the
DPG problem (6.11), we have the presence of an additional term, which derives
from the Neumann datum entering the right–hand side of (6.15).

8. Conclusions

In this paper, stemming from the characterization of the static condensation pro-
cedure for mixed hybridized methods introduced in [9, 10], we have used Helmholtz
decompositions to obtain a substructuring of the local mapping problems. This
characterization turns out to be of special interest in p-type refinement or a vari-
able degree strategy. Moreover, we have extended the variational characterization
of static condensation to the DPG0 scheme, which represents a more general saddle
point formulation. Also in this case, Helmholtz decomposition has been used to
yield a substructuring of the local mappings.
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dini 50, 20133 Milano, Italy

E-mail address: paola.causin@mat.unimi.it

Dipartimento di Matematica “F.Brioschi”, Politecnico di Milano, via Bonardi 9,

20133 Milano, Italy

E-mail address: riccardo.sacco@mate.polimi.it


