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STATIC CONDENSATION PROCEDURES
FOR HYBRIDIZED MIXED FINITE ELEMENT METHODS

PAOLA CAUSIN AND RICCARDO SACCO

ABSTRACT. Stemming from the characterization of the static condensation
procedure for mixed hybridized methods introduced in [9, 10], in this pa-
per we use Helmholtz decompositions to obtain a substructuring of the lo-
cal mapping problems, in order to end up with simpler systems of reduced
size. This procedure is effective especially when dealing with high degree or
variable degree approximations. Moreover, we extend the variational charac-
terization of static condensation to more general saddle—point formulations.
Two relevant examples of mixed—hybridized methods are considered, namely,
the classical Galerkin Dual-Mixed Hybridized scheme and the Discontinuous
Petrov—Galerkin (DPG) scheme of [7].

1. INTRODUCTION

We consider the following elliptic model problem written in mixed form on the
polygonal domain Q C R? with boundary I':
Given f € L*(2), find (q,u) € (H(div;Q) x L?(f2)), such that

q=—-rVu in €,
(1.1) divg+du= f in Q,
u=20 onl,

where k() is a bounded diffusion coefficient, such that x(x) > ko > 0 almost
everywhere in ), and d(x) is a nonnegative bounded reaction coefficient. Homoge-
neous Dirichlet boundary conditions are considered here for sake of simplicity, as
all subsequent results can be extended straightforwardly to more general boundary
conditions. In the numerical discretization of problem (1.1), we seek a simultaneous
approximation of both primal and dual variables. This approach gives rise to a non-
definite linear algebraic system of large size, the solution of which is computationally
expensive. The so-called “hybridization” procedure introduces an additional field
to relax the interelement continuity requirement for the normal component of the
vector field [2], in such a way that static elimination of primal and dual variables
can be performed, yielding a much smaller matrix equation in the sole hybrid field.
The resulting method is called Dual-Mixed Hybridized (DMH). Hybridization is
traditionally carried out via an algebraic manipulation of the full linear system
acting on the primal, dual and hybrid variables; however, such a manipulation may
become rather involved and dissuade from its actual use in computer implemen-
tation. In [9, 10], a novel characterization of the static condensation is proposed,
showing that the reduced system may be derived from the solution of suitable local
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mapping problems. This interpretation provides a variational framework to the hy-
bridized formulation and an explicit expression of the entries of the condensed local
coefficient matrix and right-hand side. Moreover, the novel characterization may
be profitably employed to establish connections between approximation methods
obtained by using different discrete spaces, in the same spirit as in [17].

In the first part of this article, based on the above variational procedure, we use
two different orthogonal decompositions of the local finite element space for the
flux variable, in order to single out a substructuring of the elementwise mapping
problems. As a matter of fact, ending up with smaller and easier local matrices is a
desirable property, especially if one wants to deal with high order approximations,
for example in the context of p—type adaptive refinement. The first decomposition
“horizontally” splits the space into a solenoidal part and a weakly irrotational com-
plement of the same polynomial degree. The second (alternative) decomposition
“vertically” splits the space into a two-level hierarchy. One level has a lower degree,
while the other level is a “surplus” space of functions having the same polynomial
degree as the original space. Additionally, the surplus space is “horizontally” de-
composed via a Helmholtz strategy [25]. The above two kinds of decomposition
lead to simplified local mapping problems, that can be solved with a reduced com-
putational effort.

In the second part of the article, we propose an extension of the variational char-
acterization of the static condensation to more general saddle—point formulations,
as discussed in [20]. As an example, we focus our attention on the Discontinuous
Petrov—Galerkin (DPG) method introduced in [4] and subsequently analyzed in [7],
providing a variational characterization of the local mappings and the expression of
the entries of the local element stiffness matrix and load vector. As already done for
the DMH formulation, we use a Helmholtz decomposition technique to identify a
substructure in the local mapping problems, that leads to an easier implementation
of the DPG method.

The paper is organized as follows. In Sect. 2 we introduce the geometrical quanti-
ties and the approximation spaces used in the discretization. In Sect. 3 we recall the
DMH formulation of (1.1). In Sect. 4 the steps of the abstract variational character-
ization given in [9] are discussed, emphasizing the connection with nonconforming
formulations. In Sect. 5 we introduce two variants of the Helmholtz decomposition
of the flux discrete space and we discuss the structure of the resulting set of re-
duced mapping problems. In Sect. 6 we apply the variational characterization to
the DPG formulation of lowest order. In Sect. 7 we briefly address the issue of deal-
ing with more general nonhomogeneous Dirichlet—-Neumann boundary conditions,
and in Sect. 8 we draw some final conclusions.

2. MATHEMATICAL PRELIMINARIES

In this section, we provide the basic notation that will be used throughout the
article and we introduce the finite element approximation spaces.

2.1. Notation. In view of the finite element discretization of problem (1.1), we let
Q =K be a regular [8] partition 7}, of the domain  into triangular elements K
of area | K|, diameter hx and barycenter zce = (vcg,ycg)?. For each K € Ty, we
denote by 0K and ngx the boundary of the element and its outward unit normal
vector (according to a counterclockwise orientation along 0K), respectively. If v
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is any function defined in €, we denote by v its restriction to K and by vog its
restriction on 0K. We denote by &, the set of all the Ned edges of 75, with Ni
internal edges and N boundary edges, respectively. The set of the internal edges of
&n is denoted by & ;. For each edge e € 0K, we indicate by |e| the length of e and
by nok|e the restriction of nyx on e € &, ; and by nr|. the restriction of ngx on
e € T'. Let w and g be piecewise smooth (p.s.) scalar and vector-valued functions
on 7, respectively. For each internal edge e = 0K N 0Ky € &4, we define the
jump [-] and the average {-} operators (the latter only for w) as

[w] = wF nok, | + w2nor, e, [a] = a*" - nox, le + 4%2 - nox, e,

wK1|e + wK2|e

{w} =

2 )
while on each boundary edge e = 0K1 N T, we set
[[’LU]] = len8K1|8a [[Q]] = qu "MK |es

wh|

{w} = ——

Notice that the jump of a vector-valued function is a scalar quantity, while the
jump of a scalar-valued function is a vector quantity. Notice also that the above
definitions are invariant if we exchange K7 with K. Using the previous definitions,
the following identity can be proved to hold [3]

ey Y [uanocds=Y [l whds+ Y [} [ulds

KeT, g e€EnY c€En’

In view of the analysis of the DPG formulation, it is useful to rewrite (2.1) in an
equivalent form, by introducing on each element boundary the new quantity

(2.2) MoK = qK ‘MoK VK € 7;1

If w has the meaning of a displacement, and q is the associated stress, then u has
the meaning of normal stress. We define the jump and average operators for u as
(2.3)

(1) = MoK, oK, |e -;— MoK, MOK, |e’

1] = pox,le + poxsle, Ve € En,

{/,L} — MBKl";BKl |€7
Notice that the jump of the scalar function p is a scalar quantity, while the average
of p is a vector-valued quantity. Then, using (2.2) and (2.3) in (2.1), we easily get

e 3 funds= Y [l twhds+ Y [} [ulds

KeTh gk e€ERY, eEER",

[1] = roxile, Ve eI

2.2. Finite element spaces. We now define the basic polynomial spaces and pro-
jection operators that will be used in the numerical approximation of (1.1). For
k > 0, we let Pi(K) to be the space of polynomials in two variables of total degree
at most k on K and by Ry (0K) the space of polynomials in two variables of total
degree at most k on each edge of 0K. Notice that functions belonging to Ry (0K)
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are not necessarily continuous at the vertices of K. Furthermore, we denote by
RTy(K), k > 0, the k-order Raviart-Thomas finite element space [22] defined as

(2.5) RT:(K) = (Px(K))? @ Pr(K) x,

where z = (z, y)T and where Py(K) = span{z®y”,a + 3 = k}. The degrees of
freedom of the space RTy(K) are given by (see [5])

[amoceas  veem@K). k=0
(2.6) oK

/q-pdﬂc Vp € (Pr-1(K))?, k>1

K

Notice that if a function 7% belongs to RT(K), then its divergence belongs to
Pr(K) and its normal trace on 0K belongs to Ri(0K). We also introduce the
nonconforming Crouzeix—Raviart finite element space [11]

(27) P?C(K) = span {@Z}?:l ) &i(mm,j) = 6ija 1,5 =1, 2,3 VK €Ty

where each basis function ¢; € P1(K) and «,, ; is the midpoint of each edge e; €
OK. Notice that ¢; = 1 — 2¢;, ¢; being the i-th nodal basis function for Py (K),

and @;(z)|e, = 1 for each fixed 7 = 1,2, 3. This implies that
- 2n., e ne, )

2. =2l ; —1,2,3,

(28) ve H; K| '

H; being the height associated with edge e;. We denote by P7¢(7},) the space of
functions whose restriction to each triangle K of 7}, belongs to P7¢(K). Notice that
P7“(7},) is not a subspace of H'(Q). Finally, for any set S C §, we denote by Pk n
the L? projection of a function n € L%(S) onto Py (S).

3. THE DUAL-MIXED HYBRIDIZED METHOD
For each K € 7}, we define the local finite element spaces
(3.1) Vi(K) =RTi(K), Wi(K)=Pi(K), Lp(0K)= Ry(0K).
The corresponding global finite element spaces are
(3.2) V=[] W), Wi= [] WaK), L= ][] Ln(0K),
KeTy, KeTy, KeTy,

with the constraint
(3.3) >\8K1|e = /\8K2|e Ve € Shﬂ' and /\8K1|e =0 Vee F, A€ Ly.

Conditions (3.3) express the fact that functions belonging to Lj, are single-valued
on &, ; and satisfy the Dirichlet boundary condition of problem (1.1) in an essential
manner on I'.

Then, the Dual-Mixed Hybridized formulation of (1.1), (see [2]), reads: Find
(qh, Up, )\h) S (Vh x W, % Lh) such that for all (’Uh, Wh,, T]h) S (Vh x Wp, % Lh) we



STATIC CONDENSATION FOR HYBRIDIZED MIXED METHODS 5

have
/quh-vhdx— Z/uhdivvhdx—i— Z An [vn] ds =0,
Q KeT, K 565}1,1 €
— whdivqhda:—/dwhuhdx:—/fwhda:,
sy -2, [ [
> /ﬁh [gr] ds =0,
eclh,i €

where we have set K := £~ 1. Equation (3.4)3 expresses the fact that functions in V},
that are a-priori fully discontinuous over 7, satisfy in weak form an interelement
compatibility condition, physically corresponding to the action-reaction principle.
Problem (3.4) admits a unique solution (see [5] for a proof).

4. VARIATIONAL CHARACTERIZATION OF THE DMH METHOD

In this section, we briefly recall the steps of the abstract variational charac-
terization of the mixed—hybridized method (3.4) given in [9], providing some new
insights.

4.1. Generalized displacement DMH problem from superposition of ef-

fects. The triple (gn, un, An), solution of (3.4), can be characterized as follows.
The pair (gn, up) € (Vi x W) is given by

(4'1) (Qh, U'h) = (q)\ha uAh) + (qf7 U’f)v

where the two pairs at the right—hand side are suitable lifting operators associated
with Ap and f, respectively.
The Lagrange multiplier Ay, € Ly, is the unique solution of

(4.2) Cl,h(/\h, Zh) = bh(Zh) Vzp € Lh,

where

(4.3) ap(An, zp) = /IC qr, - 49z, dr + /du;h Uy, dz, bp(zp) = /f Uy, d.
Q Q Q

The variational problem (4.2) is a generalized displacement approximation of the
model problem (1.1) and can be written in matrix form as

(4.4) EA =H,
where E is the global, symmetric and positive definite stiffness matrix, A is the

vector of the degrees of freedom of A\j, over &, ; and H is the load vector.

4.2. Local mappings. The pair (gyu, uy) is the local lifting of a given hybrid vari-
able function m € Lj,(9K), such that m = 0 for each edge e = 0K NT, while (gs, uy)
is the local mapping of a given source term f € L?(K).
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We introduce the following local bilinear forms
af(q,v)= | Kq-vdx o (Vh(K) x Vi (K)) — R,

b5 (u, v):—/udivvdx : (Un(K) x Vi(K)) — R,
K

& (u, w):/duwdx ¢ (Un(K) x Up(K)) — R.
K

The first local mapping reads: Givenm € Ly, (0K), find (g, un) € (Vi (K)x Wp(K))
such that for all K € 7},

aK(qm7 vp) + bK(um, v,) = GE(w) Yoy, € Vi (K),
(4.5)
bK(wh, qn) — cK(wh, ug) = 0 Ywy, € Wi, (K),
where we have introduced the local linear form
G?(’l}h)Z— f'vh'naKdSch(K)HR,
oK

which is parametrically depending on the given function £ € L (90K).

The second local mapping reads: Given f € L*(K), find (qyf, us) € (Va(K) x
W (K)) such that for all K € 7},

a™(qp, vp) + b5 (ug, vy) = 0 Vop, € Vi (K),
(4.6)
bK(wh, Qf) — cK(wh, Uf) = Ff((wh) Ywy, € Wh(K),

where we have introduced the local linear form
Ff(wh) = —/quwh dz : Wp(K) — R,

which is parametrically depending on the given function ¢ € L?(K).
Using superposition of effects in (3.4)3, yields

(4.7) > /ﬁh [ax.Jds ==Y /ﬁh laslds  Vnn € Li.

eesh,ie eegh,’ie

Substituting into (4.7) the characterizations of g, and gy, and using Lemma 2.2
of [9], leads to the generalized displacement formulation (4.2), or, equivalently, to
the algebraic form (4.4).

4.3. Local matrices in the lowest—order case. As an example, in this section
we provide the explicit expressions of the entries of the element matrix and load
vector EX and H¥ in the lowest-order case k = 0. These expressions can be
obtained from the finite element discretization of the local mappings.

We start computing the local mapping associated with a given function m €
Ry(0K). With this aim, we express the solution (gm, un) of (4.5) in the basis of
Ry(0K) as [9]

3

(48) (qun um) = Z(Qm,e,“ um,ei) )\ia

=1
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where A; € R is the constant value of m on the edge e;, and (gue;, Une,) is the
solution of problem (4.5) with mp gx = 1;, 1; € R? being the unit vector of the axis
x;, © = 1,2,3. The discretization of the local mapping problem with right-hand
sides mp, o = 14, @ = 1,2, 3, gives rise to three 2-by-2 block diagonal systems, the
solution of which is

(4.9)
Unme; = — —g >
3(1+d" h?)
_K MoK e; ei| EK Um,e; ~ EK U, e
Qne; = —K K - 2 (x —xcg) = —F" Vo — 5 (x —xca),

—_Kk\ 1 _
where B = (/CK) = (PYK) " is the harmonic average of the diffusion coeffi-
cient x over the element K and
/ ICK(:B —xca) - (@ —xeg) dx
2._ JK

—K
d
4|K|

=P, h VK € Tp,.
Notice that in the case k = 0, the average values of KC and d are an outcome of the
computation.

Remark 4.1. Eq. (4.9) reveals that for the quantity p; introduced in [9] Sect. 3.2,
the relation p; = 1/3 holds irrespectively of the shape of the mesh element K.

Remark 4.2. Substituting (2.8) into (4.9) allows to write the local mapping associ-
ated with a given m € Ro(0K) as

0,,* EK
(4.10) Uy = IpKf;ém, G = —F5 Vu! — U
1+d h?

where u; is the P;—nonconforming interpolant of m within K.

(x —xca),

Let us now compute the local mapping associated with f € L?(K). The corre-
sponding discrete system is 2-by-2 block diagonal, the solution of which is
h? P%f uf

qf——(:c—:ccg) VK € Ty.

4.11 = =
( ) uf 2h2

1+d"n2

Eventually, the entries of EX and HX for each element K € 7j, are computed as
(4.12)

(]EK)U — / (EK)A Gue; * G, dT + /gK Un,e, Un,e, dT i,7=1,2,3,
K K

(]HIK)Z- :/ f Une; dxz/ P?(fum,ei dz 1=1,2,3.
K K

Remark 4.3. Assume that d = 0, and define the finite element space
Vho = {vn € PT°(T1), v = 0 at the midpoint of each edge e € T'}.
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Then, using (4.9) into (4.12), it can be shown that problem (4.2) is equivalent to:
Find uih € Vb0 such that

(4.13) An(ud,, én) = Fr(on)  Yén € Vhp,

where

Ay (uy, dn) = Z 7K Vu;h “Vondr : Vho X Vho— R,
KGThK

and Fj(-) is the approximate computation of [, f @5 dz using the two-dimensional
midpoint quadrature rule. The variational problem (4.2) in the case d = 0 is thus a
generalized displacement finite element scheme of nonconforming type (cf. [22] and
[5] Chapt. V) with two differences. The first difference is that the harmonic average
of the diffusion coefficient is automatically performed over each mesh element K,
instead of the usual average. The second difference is that f is replaced by its pro-
jection over constant functions on each element K € 7. For a further connection
between DMH methods and (extended) nonconforming formulations, we refer to
Lemma 2.3 and 2.4 of [2] and Sect. 4 of [14].

5. SUBSTRUCTURING OF LOCAL MAPPINGS

As the finite element degree k increases, the solution of the local problems (4.5)
and (4.6) becomes involved. The characterization of the local mappings provided in
this section can be used to single out a further substructuring of the local mapping
problems. This turns out to be of interest in view of p-type refinement or variable
degree formulations (see [13], [16],[12]).

5.1. One—level Helmholtz decomposition. Throughout this section and the
next one, we assume that the diffusion coefficient x and the reaction term d are
piecewise constant (cf.[25]). For all K € 73, we introduce the affine manifold
(see [21], Chpt. 7)

VAUK) == {v € Vi, (K) | b (w, v) = 0, Yw € Wj,(K)} = {v € Vi(K) |dive = 0}.
The space V(K induces the following "horizontal” Helmholtz decomposition of V}, (K)

(5.1) Vi(K) = V)(K) @ (V)(K)" VK €Ty,
where
(5.2) (V2K = {v € Vu(K)|a"(v,0°) =0, Vo’ € VQ(K)} .

The representation (5.1) of the space Vj,(K) into a solenoidal and a weakly irrota-
tional part is unique (see also [25]).

We have the following result.

Proposition 5.1. Let d > 0. Then

(5.3) a5 = af € (VO(K))*-.
Moreover, if d = 0, then

(5.4) Gn = qy € Vi (K).
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Proof. Set d = 0 and consider the local mapping problem (4.5). Surjectivity of the
divergence operator in (4.5)2 immediately implies that g, = g2 € V,?(K). Consider
now the second local mapping. Taking v, = v € V2(K) in (4.6);, immediately
yields q} = 0, which implies that q; = qF € (V(K))*. If d > 0, it is immediate
to check that both non-zero q° and g7~ contribute to the mapping qn, whilst the
same property qy = qJJ; holds as in the case d = 0. ]

The result of Prop. 5.1 suggests that the local problems (4.5) and (4.6) may
be further split into smaller subproblems, the computation of which turns out to
be easier than the solution of the full size problem. We introduce the following
notation

dimV;, (K) = dimV (K) + dim(V;2(K))™* .

M MY M

We start considering the local problem (4.5). In the case d = 0, using (5.1),
relation (4.5); can be written as

a® (qu, vp) = Gi(vp) Vv € V)(K),
(5.5)
b (un, viy) = Gy (vy) Yoy € (VP (K))™,
which yields the block diagonal system

A° O(MQ,M,j) Qqn 92
(5.6) = )

T 1
O(Mg,MkL) A Un ar

where A% and At are square matrices of size M and M;-, respectively. Each
sub-block of (5.6) is invertible because a’ is coercive on V2(K) and b¥ satisfies
the inf-sup condition. Solving system (5.6) completely determines the M ,g non-zero
degrees of freedom of g, and the M- = dim(Py) degrees of freedom of tuy.

In the case d > 0, the unknown ¢° can be obtained from the square invertible
system of size M}

Aq) = g3,
whilst the (coupled) variables g and u, are the unique solution of the system
A+ BT [ay 9a
B C Up O(MkLl)

Each matrix in the above system is square of size equal to M ,g.
We consider now the local problem (4.6). Due to the fact that g5 = qj;, such a
problem can be rewritten as

bK(’LUh, qf) —CK(U)}L, Uf) = Ff((wh) Ywy, € Wi (K),

aK(qfv v}%) +bK(ufa 'v}%) =0 V'v}% € (V}?(K))la
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or, equivalently, as the system

BJ‘ C qf F
(5.7) =

At (BT uy Oart 1)
Each matrix in (5.7) is square of size equal to M. Solving system (5.7) completely
determines the M ,ﬁ- non-zero degrees of freedom of q; and the M ,ﬁ- degrees of
freedom of uy. Notice that in the case d = 0, we have that ¢' = 07+ 51y and
system (5.7) is block lower triangular.

5.2. Construction of a basis for V? and (V,!)*. In order to compute the so-
lution of the various systems introduced in Sect. 5.1, we need a basis for functions
belonging to V,2(K) and (V?(K))* defined in (5.1) and (5.2), respectively.

In the following, we indicate by K the reference triangle, by Z = (7, §)7 the
coordinate vector on K and by Fi : K — K the affine transformation

T2 — &1 XT3 — T

Y2—Y1 Ys—yi|’

x = Fg(Z) =bg + BrgZ, bg= Bl] , Br = [
1

which transforms K into the element K € 7T}, of vertices (zi,yi), @ = 1,2,3, labelled
with a counterclockwise orientation. Accordingly, for a scalar—valued function v
and a vector—valued function 7 defined on K, we set

() o) =0(@), (@)= PxF(@) = —— B 7(@),
mk
where P is the Piola transformation (cf. [5], Sect. 1I1.1.3) and mg := |det Bg]|.
Let ¢ € Hl(IA() and let curl : ¢ — curlg = (85/8@, —6(5/83:\)? Then, we
have (see [5], Corollary 3.2)
(5.9) VY(K) = curl Py (K).

We have that dim(RTx(K)) = (k + 1)(k +3) = My, MY = 1(k + 1)(k +4), Mj- =
L(k +1)(k +2) = dim(Py,(K)). The values of My, M? and M;" are summarized in
Tab. 1 for k € [0, 3].

o~

M, | MY | M7
0] 3 [ 2| 1

1| 8 5 3
2| 15 9 6
3124 | 14| 10

TABLE 1. Values of My, MY and M- for the space RTx(K) as a
function of the degree k.

The computation of the basis for V2 (I? ) follows directly from (5.9). The compu-
tation of the basis for the orthogonal complement (V,?(K))* requires solving the
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following linear algebraic system associated with (5.2)
(5.10) VExt =000,
where V1 € RMOXMi and xL € RMi . For a given k > 0, the solution of (5.10)

can be found once for all, for example, by computing an orthonormal basis for the
null space of V! via a singular value decomposition.

In the case k = 0, it is easy to check that the above procedure yields

Vo) = earte() =span { (3 ). (0)} et = (200 ).

In the case k = 1, we have

- -am(2).(1)-(5)- (1) (D)}

and using the Matlab command null(A,’r’) to solve (5.10), we obtain

(V2(R))* = span {71, 7, 73},

where
Ligtg L LAF
—— 4z ——T+ = — 4+ -+
_ 2 y ~ 57 107 R 20 5775
T = y T2 = y T3 =
[ PO [ Bt 3,2,
g Tt Ty 20 107" 10" 5"

5.3. Hierarchical-Helmholtz splitting. The approach discussed in the previous
section is the most straightforward way to build a basis for V2(K) and (V(K))*.
However, it yields a computation technique that may become involved as the degree
k grows. In this section, we discuss an alternative approach, based on a hierarchical
splitting of the Raviart-Thomas finite element space (see [19],[1],[25]). The advan-
tage of this approach is that computations already carried out for lower degrees can
be profitably reused, yielding more effective algorithms.

Throughout this section, for a given polynomial vector space QP(IA( ) of degree
p, p > 0, the spaces Qg(f? ) and QZJ;(IA{ ) will denote the divergence—free part and
its complement, respectively, of the Helmholtz decomposition

(5.11) Qp(K) = QS(K) ® Q- (K).

Moreover, for a given polynomial scalar space WTH(IA( ) of degree r 4+ 1, r > 0, the
spaces W,.(K) and W, 1 (K) will denote the scalar space of degree r and the scalar
surplus polynomial space of degree r + 1, respectively, of the scalar hierarchical
decomposition

(5.12) W1 (K) = Wo(K) & Wy (K),

~

whilst for a given polynomial vector space Qs4+1(K) of degree s + 1, s > 0, the
spaces Qs(K) and Q1 (K) will denote the vector space of degree s and the surplus,
respectively, of the vector hierarchical decomposition

(5.13) Qs11(R) = Qu(R) ® Qo1 (K).
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We have the following result, that generalizes to a generic degree k the analysis
of [25], Sect. 2.

Proposition 5.2. In the Helmholtz decomposition
(5.14) RTy 41 (K) = RTY,, (K) & R} (K),

the following hierarchical structure can be identified

k
~ ~ 0 ~
RT} 1 (K) = RTY(K) © ZRTZ+1(K)a
(5.15) =
- N 1~
RTjy (K) = RTg (K) @ Z RT; ;1 (K).
1=0

Proof. Set k = 0. Applying the decomposition of type (5.13) to the space RT} 4 (IA( )=
RT)(K) yields

RTY(K) = RTY(K) & RT, (K).
Set now k = 1. Applying the decomposition of type (5.13) to the space ]1%’]1‘24_1 ([?) =
RTY(K) yields

1
~ ~ ~0 ~ ~ —~0 ~
RTY(K) = RTY(K) & RT,(K) = RT)(K) & > RT,,,(K).
=0

Then, induction on k gives (5.15);. Set again k = 0. Applying the decomposition

~ ~

of type (5.13) to the space RTy41(K) = RTy(K) and then a decomposition of

~ —~ ~

type (5.11) to each of the spaces RTo (k) and RT;(K) yields
~ ~ —~ ~ ~ 0 ~ — 1~
RT(K) = RTo(K)®RTi(K) = (RTo(K) ® RTy (K)) @ (RT, (K) & RT; (K))

~

~  ~0, ~ ~ =
= (RT(K) ® RT,(K)) & (RTy (K) & RT; (K)).
Using (5.15)1 (with k& = 0), the first term of the right-hand side of the previous
expression is equal to RTY(K); this leads to recognize
~ 1~ — 1~

RT{ (K) = RT, (K) ® RT, (K)

Induction on k yields relation (5.15)s.
O

Remark 5.3. Notice that the result of Prop. 5.2 represents at the same time a ”hor-
izontal” (relation (5.14)) and a nested ”vertical” (relation (5.15)) decomposition of

~

the space RTy41(K).
—0 ~

In order to characterize the space RT;,(/K), I > 0, of Prop. 5.2, we observe that,
from [5], Corollary 3.2, we have

RTY, | (K) = curl P 5(K),
and from
(5.16) curl P o(K) = curl (P41 (K)) & curl (Pr»(K)),
we have

(5.17) RT},, (K) = curl Bpyo(K).
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We are left with the issue of characterizing the space H@rﬂ‘irl(f( ). The basis for
this space can be built by properly picking independent functions from the span
of RT;41(K). Before proceeding, following [19], it is convenient to replace the
standard internal degrees of freedom of the Raviart—-Thomas finite element space
of degree k, given by (2.6)2, with the alternative (and equivalent) unisolvent set of
internal degrees of freedom

/divqrdx VTEIP’;@(I?)\R kE>1,

(5.18) K
/curlqsdac VSEIPIC,Q(I?), k> 2,

K

where curl : q — curlq = (%i; - %—q;), for any q = (gz,q,)7 € (Hl&f{))?
We need first to give a constructive characterization of the space RT;11(K). With

)
this aim, we introduce the interpolation operator p; : RT;+1(K) — RT;(K), such

~

that for all q € RT;41(K)

~

/(plq)-nagfds = /q-naf(fds V§6Rl(8f(), 1>0,
oK oK

(5.19) div (p1q) 7 dx = /divqr dx Vr € IF’Z(IA() \R, [>1,
I%e I7%¢
/curl (mq)sde = /curlqsdz Vs € P_o(K), 1>2,
R R

and then, we set RT;41(K) = (Id — p;)RT,41(K). Due again to [5], Corollary 3.2,
we have

~ -~

dim(curl P4 5(K)) = dim(Pj42(K)) — 1,
from which, using (5.16) and (5.17), we get
—~0 ~ ~ ~ ~ ~
dim(RT,, ;(K)) = dim(curl P42 (K)) = dim(Py2(K)) — dim(P;41(K)) =1+ 3,
which eventually gives the number of independent functions in the span of I@/Tlﬂ (IA( )

dim(RT);, (K)) = dim(RT;, (K)) — dim(RT), , (K))

= (dim(RT}11(K)) — dim(RTy(R))) — dim(RT), , (K))
=(204+5) - (1+3)=1+2.

~ ~1 = . . . s
Functions q € RT; (/) can be characterized by enforcing the following additional
constraints

/ﬁ-naf(gdSZO V€ € Ri41(0K), 1>0,

(5.20) oK
curlq3dz = 0 VieP_y(K), 1>1,

w\
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where we set @O(IA( )= IP’O(IA( ) and }N%ZH(&IA( ) is the surplus space such that
(5.21) Ri11(0K) = R/(0K) & Ri41(0K).
We observe that relation (5.20); provides 3 constraints, irrespectively of the degree,

while relation (5.20)9 provides [ constraints, their sum being the necessary amount
required to filter out from the space RT;41(K) the [ + 3 divergence—free functions

belonging to @H‘?+1(IA( ). Tab. 2 summarizes the degrees of freedom and the con-
straints enforced by relations (5.20); and (5.20)9 for [ € [0,3]. We refer to [15] for

an alternative characterization of the space Rf; (0K).

space | 1 | dim(RT;11) dim(@ﬂ‘? 41) | constraints | constraints
=20+4+5 =[+3 from (5.20); | from (5.20)

RT; |0 5 3 3 -

RTy | 1 7 4 3 1

RT3 | 2 9 ) 3 2

RTy |3 11 6 3 3

TABLE 2. Summary of the degrees of freedom and of the number
—~ 1 ~

of constraints necessary to build the basis of RT; (K ) from the

basis of RT;41(K).

The degrees of freedom of each subspace in the hierarchical-Helmholtz decom-
— 0 — 1

position RTy41(K) = RTx(K) © RT, ,(K) ® RT, ., (K), k& > 0, on the generic

element K, are depicted in Fig. 1 in the cases k = 0,1, 2.

~

~ 0
5.4. Approximate hierarchical substructuring. The spaces RT(K), RTy, (K)

—~ | -~
and RT;_ ;(K) in the decomposition

~ ~

—0 o~ — 1~
(5.22) RTi+1(K) = RTy(K) & RT;, (K) @ RT,, (K)

are not orthogonal with respect to the bilinear form a(-,-). In order to end up
with a computable hierarchical counterpart of problems (5.6) and (5.7), we replace
the original local bilinear form a(-,-) with a modified local bilinear form a* (-, )
spectrally equivalent, and defined as (see [25],[15]; see also [24] for an alternative
approach)

(5.23) a"(q,v) = " (qr, vr) + CLK@2+1, P + aK(quH’ "~’kL+1)a
where
(5.24) q=qk+ 52+1 + qu—Q—l’ v =+ "N’lg+1 + "N’kL+1a

~ N —~0 ~ o —~ 1
and gp, v € RTy(K), g4, 1,00, € RT, . (K) and g5, 05y € RTy, (K.
The decomposition (5.22) is orthogonal with respect to the modified bilinear form
a¥(-,-). Lemma 2.1 and Theorem 2.2 of [15] ensure the equivalence of the solu-
tions of the modified mapping problems, where a€ (-, -) is replaced by a* (-, -), with
problems (4.5) and (4.6).
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3 dofs 2 dofs
-+ .
N‘ —~ 1
RT, (K) RT) (K)
4 dofs 3 dofs
[ ] + o o
N‘ —~ 1
R, (K) ET, (K)
24 dofs 15 dofs 5 dofs 4 dofs
— + . + ”
RT3(K) RT(K) RT(K) RT; (K)

FIGURE 1. Degrees of freedom of the subspaces of the decompo-
sitions RT; (K) = RTo(K) @ RT; (K) & RT, (K) (top), RT2(K) =
RT, (K) ® RTy(K) ® RT, (K) (middle) and RT3(K) = RT2(K) @
]I/@‘g(K) @ H/{?I‘;_(K) (bottom) for element K (upon mapping

~

from K).

In the following, we provide the details of the approximate solution of the local
mapping problems in the case d = 0. We consider the hierarchical splittings

(5.25) U1 = Uk + Up41, Wkl = Wk + Wht1,  Mpp1 = Mg + Mpp1,

where Uk+15 Wh+1 S Pk‘j\-l(l?)a Uk, W S Pk/(\f?), Uk41, Wkt1 € @]H_l(f?), and mg1q €
Rp1+1(0K), mp € Rp(OK), mp41 € Ri+1(0K), respectively.

Using (5.23), (5.24) and (5.25) into (4.5), we obtain two independent systems. The

first system is associated with the lower order space in the hierarchical decomposi-
tion and reads:
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Given m € Ry (OK), find (Qim, un) € (RTx(K) x P4(K)), such that
(5.26)

a® (ke m, Vi) + b5 (ugm, vi) = —/m;C Vi - Dypds Vv, € RT(K),

oK R
" (wh, Ak.m) = 0 Ywy, € Prp(K).

System (5.26) is a uniquely solvable local saddle—point problem to which the hier-
archical decomposition (5.22)—(5.25) can be recursively applied.
The second system reads:

Givenm € Ek+1(3f(), find (Qt10 = ﬁ%H,m,ﬂkH,m) € (ﬁrkﬂ(f() XHNDkH([AQ), such
that

~ ~ —~0 ~
aK(quer,vh) = _/mk+1 vy -nds Vv, € RT(K),
(5.27) oK )
bK(ak+17m,Vh) = —/ﬁk_;,_l Vi Ny ds Vv € RTk+1(K).
oK

System (5.27) is uniquely solvable and it allows to completely determine Q41 m,
and U1 (cf. (5.6)).

Using (5.23), (5.24) and (5.25) into (4.6), we obtain again two independent sys-
tems. The first system is associated with the lower order space in the hierarchical
decomposition and reads:

Given f € L2(K), find (qy., ur.s) € (RTx(K) x Px(K)), such that

-~

a®(qr,p, vi) + 0% (uk,p,ve) = 0 Vv, € RTy(K),

(5.28)

~

—/kawh dx Ywy, € ]P’k(K)

K

b5 (wh, ar, 7)

System (5.28) is a uniquely solvable local saddle—point problem to which the hier-
archical decomposition (5.22)-(5.25) can be recursively applied.
The second system reads:

Given f € LA(K), find (Gus1.f = Gy, po Uks1.s) € (RThpa(K) x Brpr(K)), such
that

(5.29)
~ — —~ 1 —~
a®(Qjryy g i) + 05 (Ui vi) = 0 Vi € Ry (K),
D (wn, ity ) — / (f T wnde Yy € B ().
K

System (5.29) is uniquely solvable and it allows to completely determine g1, ¢ and
ﬂk+17f (Cf. (5.7) with C = @)
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6. THE DI1SCONTINUOUS PETROV-GALERKIN METHOD

In this section, we recall the Discontinuous Petrov—Galerkin formulation of lowest
order (DPGyg) of (1.1), introduced in [4] and analyzed in [6, 7]. For each K € Ty,
we introduce the local trial finite element spaces

Qn(K) = (Po(K))*,  Un(K)=Po(K),  Lin(0K)=Mu(0K) = Ro(0K),
and the local test spaces
Vi(K) =RTo(K),  Wi(K) =Pi(K).

The global trial spaces are defined as

Qn= ][] @nx), Up= [] Un(K),
KeTy, KeTy,

Ly= ][] Ln(0K), My = [ Mn(OK).
KeT, KeT,

The space Ly, satisfies the constraint (3.3), while the space M), satisfies the con-
straint

(6.1) [u] =0 Ve € Epiy p € Mp,

where the jump [-] is defined in (2.3). Condition (6.1) states the fact that functions
in Mj, satisfy in an essential manner an interelement compatibility condition, that
physically expresses the action-reaction principle.

The global test spaces are defined as

V= [ W), Wiw= ] Wa(X).
KeT, KeT,

Remark 6.1. In the DPGg approximation of (1.1), the hybrid variable A is an
approximation of ugg, while the hybrid variable uy is an approximation of puyx =
q - nyx (see Sect. 2). As a consequence, two different sets of finite element spaces
are needed, because the numerical approach is of Petrov—Galerkin type. Moreover,
the global spaces Qp, Uy, Vi, and W}, are fully discontinuous on 7j,.

The DPGy finite element approximation of problem (1.1) reads:
Find (gp, un, An, pn) € (Qn X Up X Ly x Mp,) such that for all (vp, wp) € (Vi x Wh)

we have
/quh-vhdx— Z / wup, div vy, do + Z An [vn] ds =0,
Q KeT, K €€, ” ¢
(6.2) - Z / Qh'vwhdfc+/duhwhdx
KeTy, K %)
+Z/[[Mh]] (wn} ds + Z/{uh}- [wn] ds:/fwhdx.
ecl e 565}15 @

The sum over boundary edges at the left—hand side in (6.2)5 is obtained using (6.1)
into (2.4).
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In [7] it has been shown that problem (6.2) admits a unique solution in the case
d = 0. The case d(z) > 0 can be dealt with as follows. Set f =0 and let u}, € Vp 0
be the piecewise linear nonconforming function such that

(6.3) Pluy, = A Ve € &

Let us consider Eq. (6.2)1. It can be checked that [7]

(6.4) qff = % Vuy, , up = Py, VK € Ty.

Let us consider equation (6.2)2, and take wy, = ujh € Vh,0. This choice implies
that

©5) % [ Ul twyds+ 3 [ () [wonlds=0 e M,

e€l’ % eeghe

Assuming to replace d¥ with its mean value d" for all K € 71, and using (6.4)
and (6.5), yields

Z /EK \Vuj, |* dz + Z /EK Pruy, ui, dov = 0.
KeThj; KeTy, 3

Observing that
/EK P?{uih uy, dr = a (P%uﬁ\hf |K| = /EK (P?{ujhf dx VK € Tp,
K K

we immediately get

0=y / (R¥ IV, 12+ @ (PR, )?) do = w0 3 /|vu;h|2dx,
KeTnye KeTy ¢

which implies u}, = 0 and consequently g, = 0, up = 0 and Ay = 0.
Eventually, consider again Eq. (6.2)2 and take this time wy, € Wj,(K) for all K € T,.
Using (2.3), we obtain

0:2/[[;%]] {wn} ds + Z/{uh}' [wn]ds = ) /thhd&

eel’ e€ERY KeTy, K
which implies uj, = 0 (see [23] for the proof).
6.1. Local DPG mappings. We define the two pairs (g, Un, tm) and (g, uys, pis)

as the solutions of local dual-primal mixed problems, which provide the lifting of
the given data m on 0K and f in K, respectively. With this aim, let us introduce
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the following local bilinear forms

Af(gv) = [ Kgevde 5 (QuE) X VA(K) — R,
CK (u, w) = /KEKuwdx (Un(K) x Wi(K)) — R,
BE((u,\), v) = —/Kudivvdx
—1—/)\1; ‘noxds : (UL(K) x Ly(0K)) x Vi (K)) = R,
BE (g, 1), w) = —87Kq~dea:
—i—/uwds (Qu(EK) x My(0K)) x Wi(K)) — R.
oK

Then, the first local mapping reads: Given m € Lp(0K), find (gn, Un, fin)

(Qn(K) x Up(K) x Mp(0K)) such that for all K € 7y,

(6.6)
AK (g, vp) + Bf((un,0), va) = GEF(vp) Vo, € Vi(K),
BE((qu ), wn)  +  C* (ua, wp) =0 Yy, € Wi(K),

where we have introduced the local linear form

G?(vh):— §vh-nade:Vh(K)—>]R,
0K

which is parametrically depending on the given function £ € L, (0K).
This lifting can be thought as the discretization of the local problem

Gn = —KkVuy in K,
divgy, +duy, =0 in K,
(6.7) 4
MUm = (gn - NHK on 8K7
Uy =1 on OK.

19

The second local mapping reads: Given f € L?(K), find (qf, us, pus) € (Qn(K) x

Un(K) x Mp(0K)) such that for all K € 7,

(6.8)
AK(qf,vh) + BlK((’LLf,O)7 Uh) = 0 Vvh e Vh(K),
BE((gr.mp)swn) + CFup,wy) = —FF(wp) Yy, € Wi (K

where we have introduced the local linear form

Fff (wp) = —/K¢wh dx : Wi(K) — R,

);
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which is parametrically depending on the given function ¢ € L?(K). This lifting
can be thought as the discretization of the local problem

qyr :—&Vuf in K,
divgr+dur = in K,
(6.9) as =1
,uf qu~’naK on 8K,
ur =0 on OK.

6.2. DPG generalized displacement formulation. In the case of a Petrov-
Galerkin formulation, the formal approach adopted for the Galerkin problem does
not apply straightforwardly. This difficulty requires to resort to the generalized
saddle-point theory of [20]. The following result holds.

Theorem 6.2. Let (qp, un, An, in) be the unique solution of problem (6.2). Then

(6.10) qn = qr, + 4qy, up = uy, +uf, P = P, F g,
and the Lagrange multiplier A\, € Ly, is the unique solution of
(6.11) Ap(An, Cn) = Fu(Ch) VG € Li,
with

An(nsGr) = Y (AN (qn,, gc) + CF(un,,, we,)),
(6.12) KGT”K

Fu(G) ==Y Ff(we,),

KeTy,

we, € Vho being the nonconforming piecewise linear function such that Powe, =
<h fO?" all e € gh, <h € Ly.

The following result is needed for the proof of Theorem 6.2.

Lemma 6.3. Let &, € My, and (p € Ly,. Then, it is immediate to see that

(6.13) 3 / 6] Cds = / [n] {we, Y ds Ve e &

e€ERY e€€n’,

Proof of Theorem 6.2
Relation (6.10) is an immediate consequence of the linearity of problem (6.2).
Let m be a given function in Lj. Relation (6.1) implies

Z [tm] mp ds = 0 Yy € Ly,

e€ép’,

and, further, relation (6.10) gives

(614 > [ lalmds == [ lnshmds v € L.

e€€n’, e€ERY,

Using Lemma 6.3 with &, = un + 7, we obtain

(6.15) > [tug) lnalds == [{we,} sl

eéghe eéghe
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To characterize the left-hand side of (6.15), we consider the mapping prob-
lem (6.6). Choose wy, = we, in (6.6)2 and, correspondingly, v, = Vwe, in (6.6):.
Then, summing over mesh elements, we get

©16) Y [{we) bulds=— 3 (A% (g 46,) + C¥(um, wg,)).

e€EnY, KeT,
To characterize the right-hand side of (6.15), we consider the mapping prob-
lem (6.8). It is immediate to check that g = 0 and uy = 0 (from (6.4) with
An = 0). Choosing wy, = we, in (6.8)2, and summing over 75, we immediately
obtain

(6.17) =3 [twa) budds = 3 Ff(ug,)

e€ln Y, KeTy,

Remark 6.4. Notice that while p, and py are not necessarily reciprocal across
interelement boundaries, their sum gy, is reciprocal.

6.3. Local matrices for the DPGy method. Proceeding as in Sect. 4.3, we
express the solution of (6.6) in the basis of Ly (0K) as
3

(6.18) (G, Un, fm) = Z(Qm,ew Un,e;s fme;) Aiy

i=1
where (gm,e;, Un,e;s tm,e;) 1S the solution of problem (6.6) withm = 1,, ¢ = 1,2, 3.
Correspondingly, the discretization of (6.6) gives rise to three independent 2-by-2
block lower triangular systems.

For each fixed ¢ = 1,2, 3, the equations of the first block are

(6.19) /ICqu,ei -vp dr — /umyei divvy dz = —/1ivh ‘ngg ds, v € RTo(K),
K K oK

and their solution is the pair

1

3

Remark 6.5. Comparing (4.9) and (6.20), it is immediate to see that the difference

between the values of uy ., computed by the lowest—order Galerkin DMH formula-

tion and the Petrov-Galerkin DPGy formulation is O(h%). This result extends to

the case d > 0 previous relations proved in [17] and [7] in the case d = 0.

(6.20) Une, = —F Vi, =-F V@i,  tne =PRus,, =

m,e;

For each fixed 1 = 1,2, 3, the equations of the second block are

(6.21) /,um,ei wp, ds = /qm8 -Vwy, dz — /EK Un,e; Wh A, wyp, € Py (K).
oK K K
Choosing wy, € P°(K), system (6.21) becomes diagonal and its solution is
K| d" |K|
3 el 9 les|

(6.22)  pime, = —K5Vul, - n,,

m,e;

0, * Ky~
PKum,ei ==K VSOZ *1e;, —
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The discretization of (6.8) gives rise to a single 2-by-2 block lower triangular system,
the solution of which is

(qf’ uf) = [(Ov O)Ta O]a
(6.23) LI

0 .
e = — , =1,2,3.
Mf; i 3|61|PKf ?

Remark 6.6. Relation (6.23), immediately yields

3
D e |€i|:/ufd82/7??(fdgg:/fdx VK € Ty,
K

i=1 oK K

which expresses the local conservation property enjoyed by the DPGq approxima-
tion.

The corresponding entries of the local stiffness matrix and the load vector associated
with the displacement—based formulation of the DPGy method (6.2) are given by

~ - 1 (=K .
(EEY; = |REVE; - V@idr + = deda: i,j=1,2,3,
5J J 3
(6.24) K K
(HK)F/P?(f@dx i=1,2,3.
K

Remark 6.7. We observe that in the case d = 0, formulation (6.11) is a noncon-
forming scheme with harmonic average of the diffusion coefficient on each mesh
element. (cf. Remark 6.5).

Remark 6.8. The discretization of the reaction term in (6.24); does not yield a
diagonal matrix, but a full 3 x 3 matrix, and the resulting scheme does not enjoy a
discrete maximum principle for any d > 0 (see [18] for a discussion of this issue in
the case of Galerkin dual-mixed methods using RTy finite elements). In the present
formulation, a simple way to overcome this problem is to perform a diagonal of the
local reaction matrix. This procedure leads to a nonconforming monotone scheme,
the global stiffness matrix E of which is a symmetric positive definite M-matrix.

6.4. Substructuring of local mappings in the Petrov—Galerkin setting. In
this section we use again the tool of orthogonal decomposition in order to single
out a further substructuring in the local mappings (6.6) and (6.8).

Let us introduce the null space [20]

2K, =ker BE((u, 0), v) = {v € V;,(K) | divw = 0}.

Then, we have the decomposition V3, (K) = th @ (foh)J-7 orthogonal with respect
to the L? inner product induced by the bilinear form AX(-,-). Moreover, let us
introduce the affine manifold

(255)7 = {a € Qu(K), p € My(OK)| By ((q, p), w) = (0, w)xc Yw € Wy (K)}.

Finally, we let o4 := —d* uy. Then, we have the following result.
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Proposition 6.9. The local liftings (gu, m) and (qy, ptf) are such that
(qma /me) € (Zi{h)gda

(a5, 15) € (Z55)7.

Proof. Consider the mapping problem (6.6). Taking in (6.6); v, € th and then

(6.25)

v € (th)J—, respectively, allows to completely determine q, and wu,. Replacing
these quantities into (6.6)2, immediately gives u, and (6.25);. Consider now the
mapping problem (6.8). Taking in (6.8)1 vs € Z{%, and vj, € (Z[%,)*, respectively,
yields g5 = 0,uy = 0 irrespectively of d. Replacing these quantities into (6.6)2,
immediately gives 117 and (6.25)2. O

Remark 6.10. The structure of the DPG formulation introduces a decoupling in the
lifting of d and f when static condensation is carried out. Precisely, the reaction
term d is accounted for by pm, while the source term f is accounted for by ps (see
[17] and [7] for a discussion on the relation between the variable pj, and the vector
field qp, in the case of mixed and nonconforming methods).

Prop. 6.9 suggests that a block Gauss—Seidel approach can be adopted to solve
the linear systems arising from the local mapping problems.
Eq. (6.6); can be written as

AR (qn, vn) = GE(vp) Vo, € 2[5,
(6.26) N
BlK(um, ’Uh) = Gu{((vh) Yuy, € (th)l,
which yields the block diagonal system
AO 0(271) dn mO
(6.27) . N = )
0(271) A Ug mt

where A? and Al are square matrices of size 2 x 2 and 1 x 1, respectively. Each
sub-block of (6.27) is invertible because AX is coercive on th and Ef( satisfies
the inf-sup condition. Eventually, the variable uy, is eliminated in favour of u} by
solving a 3 x 3 system, g, and u, being given data. As for uy, the same 3 x 3
system as above must be solved, the difference being in the right—hand side, which
only depends on the source term f.

7. DIRICHLET-NEUMANN BOUNDARY CONDITIONS

In order to deal with the case where nonhomogenous Dirichlet boundary con-
ditions u = gp are assumed, we still use superposition of effects. We continue to
denote by 1 the extension to zero of the function, where F;, C &, to &, still by 7.
As a consequence, if m = A, on &, ; and m = PEgp on ', we write m = A\, + PEgp
and we proceed in the same way as in the homogeneous case.

When mixed Dirichlet-Neumann boundary conditions are considered, that is
qg-nr = jy on 'y, with jy € H*1/2(I‘N) and I' = 'p UT'y, we have to distinguish
the DMH method from the DPGy method. In the DMH method, the Neumann
boundary condition is weakly enforced in the sum of (3.4)3, extended to all the
edges, while in the DPGg method, the Neumann condition is enforced in an essential
manner by the variable pp,.
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In the right-hand side of the DMH nonconforming problem (4.2), we have the
presence of an additional term, which derives from the Neumann datum entering
the right-hand side of (4.7). In an analogous manner, in the right—hand side of the
DPG problem (6.11), we have the presence of an additional term, which derives
from the Neumann datum entering the right-hand side of (6.15).

8. CONCLUSIONS

In this paper, stemming from the characterization of the static condensation pro-
cedure for mixed hybridized methods introduced in [9, 10], we have used Helmholtz
decompositions to obtain a substructuring of the local mapping problems. This
characterization turns out to be of special interest in p-type refinement or a vari-
able degree strategy. Moreover, we have extended the variational characterization
of static condensation to the DPGq scheme, which represents a more general saddle
point formulation. Also in this case, Helmholtz decomposition has been used to
yield a substructuring of the local mappings.
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