DIPARTIMENTO DI MATEMATICA "Francesco Brioschi" POLITECNICO DI MILANO

About k-digit rational approximations

Citterio, M.; Pavani, R.

Collezione dei *Quaderni di Dipartimento*, numero **QDD 59** Inserito negli *Archivi Digitali di Dipartimento* in data 23-11-2009

Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)

About k-digit rational approximations

Maurizio Citterio^a, Raffaella Pavani^{*,b}

^a Università dell'Insubria, 22100 Como; Italy ^b Politecnico di Milano, 20133 Milano; Italy

Abstract

We focus on the computation of best k-digit rational bounds for a given irrational number. We present new results, which allow to implement a reliable very fast algorithm whose computational time increases at most linearly with k. Several numerical examples are reported.

Key words: rational bounds, irrational numbers 2000 MSC: 65G99, 11A55

Introduction

In the framework of applications of numerical analysis to Diophantine approximations, here we address the problem of computing the best rational approximation for any given irrational number α , with the bound of a *k*-digit representation of the involved integer numbers, where *k* is a fixed integer. This peculiar problem is definitively interesting within the frame of finite arithmetic used by scientific computations. Indeed, the general problem of finding the best rational bounds of a given irrational number was solved many years ago using its continued fractions representation and relating convergents (see, for instance [1], [2]). In particular, it is explicitly proved that the best rational approximations of the second kind to α coincide with the convergents of α ([3, pp. 26, 27]).

Here we deal with the best rational approximations restricted to k-digits, concerning with numerators and denominators of approximating rationals.

^{*}Corresponding author

Email addresses: maurizio.citterio@uninsubria.it (Maurizio Citterio), raffaella.pavani@polimi.it (Raffaella Pavani)

Thus our problem is completely different from the generally treated problem, even if it is related to it. Indeed, this problem needs some peculiar proofs in order to be solved and then to implement solution into a reliable numerical method . The final result involves the use of convergents , semiconvergents and pseudoconvergents (see Section 1 for definitions).

It can be shown (see, for instance [1]) that every best approximation of the first kind is either a convergent or a semiconvergent (provided that some non-positive indexes are allowed). Here we specialize these results to the case of k-digit representations and we extend them, taking into account a new type of related rationals, which we term *pseudoconvergents*. They provide the best rational approximation to α by fractions of integers built by exactly k-digits. It is worth noting that our new method requires a computational time increasing at most linearly with k (but in practice "almost" constant for small k) and improves results recently presented in [4]

The contents of this paper are as follows. The next Section presents our notation and definitions. Section 2 presents some propositions and proofs and includes two Subsections. The first one is devoted to the construction of a numerical method for computing the best k-digit rational approximation with at most k-digits. Then, Subsection 2.2 presents analogous results referring to the best k-digit rational approximation with exactly k-digits. In Section 3 we estimate computational time needed for the actual computation of the best k-digit rational approximation. In Section 4 we report several numerical examples, by our algorithms (written both in MATLAB[®] and Mathematica[®]). The paper ends with a final Appendix, which reports the script of the used MATLAB[®] and Mathematica[®] programs.

1. Basic notions and facts

In this article, all the rational numbers are represented by reduced fractions.

Let x and x' be two approximations of a real number α , we say that x is finer than x', and x' is coarser than x, when $|\alpha - x| < |\alpha - x'|$.

Let α be a positive irrational number. We write α in its development in infinite continued fraction

$$\alpha = [a_0; a_1, a_2, a_3, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}},$$

where a_i are positive integers for any $i \ge 1$, while a_0 is a nonnegative integer.

The convergents of α are the rational numbers

$$s_n = \frac{p_n}{q_n} = [a_0; a_1, \dots, a_n]$$

where, for any non-negative integer n,

$$p_{-2} = 0$$
, $p_{-1} = 1$, $p_n = a_n p_{n-1} + p_{n-2}$;
 $q_{-2} = 1$, $q_{-1} = 0$, $q_n = a_n q_{n-1} + q_{n-2}$.

The semiconvergents $s_{n,m}$ of α are defined by

$$s_{n,m} = \frac{p_{n,m}}{q_{n,m}} = \frac{mp_n + p_{n-1}}{mq_n + q_{n-1}} ,$$

where m is an integer with $1 \leq m < a_{n+1}$. We will use the same notation $s_{n,m}$ for any rational of the form $s_{n,m} = p_{n,m}/q_{n,m} = (mp_n + p_{n-1})/(mq_n + q_{n-1})$, for any nonnegative integer m; in particular, we include two special cases:

$$s_{n-1} = s_{n,0}$$
, for $m = 0$;
 $s_{n,a_{n+1}} = s_{n+1}$, for $m = a_{n+1}$

The semiconvergents $s_{n,m}$ are also called subconvergents of s_n .

For any nonnegative integer m, we define the *pseudo-convergent* $\tilde{s}_{n,m}$ of the convergent $s_n = p_n/q_n$ by

$$\tilde{s}_{n,m} = \frac{\tilde{p}_{n,m}}{\tilde{q}_{n,m}} = \frac{mp_n + p_{n-1,a_n-1}}{mq_n + q_{n-1,a_n-1}} = \frac{mp_n + (a_n - 1)p_{n-1} + p_{n-2}}{mq_n + (a_n - 1)q_{n-1} + q_{n-2}} \,.$$

The pseudo-convergents $\tilde{s}_{n,m}$ of s_n are infinite fractions, which lie on the same side of s_n with respect to α ; their value tends to the value of s_n as m tends to infinity; moreover, they are all coarser than s_n .

If w is an integer we write d(w) for its number of digits.

We say that two rational numbers a/b, a'/b' form a pair of Farey fractions when $a'b - ab' = \pm 1$. A convergent s_n forms Farey pairs with s_{n-1} , s_{n+1} as well as $s_{n,m}$ (with any m).

Let k be a positive integer. We say that the rational number a/b is the k-best-N-approximation (D-approximation) of α when it is the best rational approximation of α with at most k digits at the numerator (resp. denominator), namely, for every rational x/y, if $|\alpha - x/y| < |\alpha - a/b|$, then $d(x) \ge k$

(resp. $d(y) \ge k$). Moreover it is called the *k*-proper-N-approximation (*D*-approximation) of α if it is the best rational approximation of α with exactly k digits at the numerator (resp. denominator), namely, for every rational x/y, if $|\alpha - x/y| < |\alpha - a/b|$, then $d(x) \ne k$ (resp. $d(y) \ne k$). We remark that the *k*-proper-approximation can be coarser than the *k*-best-approximation, if the latter is obtained with less than k digits, as it happens for instance in the case $\alpha = \pi$ and k = 4.

We recall the following facts which are either known or easily checked.

Fact 1. The non-zero convergents and the semiconvergents of α are exactly the reciprocals of those of $1/\alpha$.

Fact 2. If a/b and a'/b' are Farey fractions, any rational x/y with a/b < x/y < a'/b' has denominator $y \ge b + b'$ with y = b + b' only for x = a + a', and numerator $x \ge a + a'$ with x = a + a' only for y = b + b'.

Fact 3. For any i > j, the convergent s_i is finer than s_j with $p_i > p_j$ and $q_i > q_j$. For any n and $a_{n+1} \ge i > j \ge 0$, the number $s_{n,i}$ is finer than $s_{n,j}$ with $p_{n,i} > p_{n,j}$ and $q_{n,i} > q_{n,j}$.

Fact 4. The sequence of convergents with even index $\{s_{2n}\}$ is monotonically increasing, while the sequence of convergents with odd index $\{s_{2n+1}\}$ is monotonically decreasing.

 $s_0 < s_2 < \cdots < s_{2n} < s_{2n+2} < \cdots < \alpha < \cdots < s_{2n+1} < s_{2n-1} < \cdots < s_3 < s_1$.

For any fixed n, the sequences $\{s_{n,i}\}$ are monotonic:

$$s_{2n} = s_{2n+1,0} < \dots < s_{2n+1,m} < s_{2n+1,m+1} < \dots < s_{2n+1,a_{2n+2}} = s_{2n+2} ;$$

$$s_{2n+1} = s_{2n,a_{2n+1}} < \dots < s_{2n,m} < s_{2n,m-1} < \dots < s_{2n,0} = s_{2n-1} .$$

2. The construction of the k-digit rational approximations

Firstly we prove a property of rational approximations which is essential for our construction.

Proposition 1. For any positive integer k, both the k-best-N-approximation and the k-best-D-approximation are either convergents or semiconvergents, while the k-proper-approximations are either convergents or semiconvergents or pseudo-convergents. *Proof.* Let us prove the proposition for the k-best-D-approximation; with the obvious modification, the same proof holds for the k-best-N-approximation.

Set the positive integer k and suppose that a/b is the required k-best-Dapproximation of α , assuming the hypothesis that a/b is not a convergent of α . Since the sequence $\{s_n\}$ converges to α , there exists n_* , the greatest integer n such that $|\alpha - s_n| > |\alpha - a/b|$. Consider the fractions $s_{n_*,m} =$ $(mp_{n_*} + p_{n_*-1})/(mq_{n_*} + q_{n_*-1})$, where m is an integer with $m \ge 0$, and let m_* be the greatest integer m such that $|\alpha - s_{n_*,m}| > |\alpha - a/b|$; such an integer m_* exists because the inequality is not fulfilled for $m = a_{n+1}$ and it is fulfilled for m = 0 (if necessary we can assume $s_{-1} = \infty$). We claim that $a/b = s_{n_*,m_*+1}$. As both s_{n_*} and s_{n_*,m_*} are worse approximations of α than a/b, it follows that a/b (together with α) belongs to the open interval whose extremes are s_{n_*} and s_{n_*,m_*} . If $a/b \neq s_{n_*,m_*+1}$, then s_{n_*,m_*+1} is finer than a/band a/b belongs to an open interval whose extremes are s_{n_*,m_*+1} and, on the other side, either s_{n_*} or s_{n_*,m_*} . Observe that s_{n_*,m_*+1} forms Farey pairs with both s_{n_*} and s_{n_*,m_*} . From Fact 2 it follows that s_{n_*,m_*+1} has a denominator smaller than b (and a fortiori smaller than 10^k), while it provides a better approximation of α , which is against the hypothesis that a/b is the k-best-Dapproximation of α . Thus $a/b = s_{n_*,m_*+1}$. Since we have supposed that a/bis not a convergent, we have $s_{n_*,m_*+1} \neq s_{n_*+1}$, namely $1 \leq m_* + 1 < a_{n_*+1}$ and a/b turns out to be the semiconvergent s_{n_*,m_*+1} .

Now we are going to prove the second part of the proposition, namely our claim concerning the k-proper-approximation. We distinguish two cases:

- a. The k-best-D-approximation has exactly k digits at the denominator. Then it coincides with the k-proper-D-approximation which therefore is a convergent or a semiconvergent for the first part of this proof.
- b. The k-best-D-approximation has less than k digits at the denominator. Then there are no convergents s_n with $d(q_n) = k$. Let's make the following positions:
 - *i.* n_k is the greatest integer such that $d(q_{n_k}) < k$;
 - *ii.* m_k is the greatest integer such that $d(q_{n_k,m_k}) = k$;
 - *iii.* M_k is the greatest integer such that $d(\tilde{q}_{n_k,M_k}) = k$.

Observe that the above defined integers exist from Fact 3 and because, for any m, n integers, d(m) < k and d(n) < k imply $d(m+n) \leq k$. Consider the semi-convergent s_{n_k,m_k} and the pseudo-convergent \tilde{s}_{n_k,M_k} . We claim that the finer of them is the required k-proper-D-approximation. Indeed, any rational a/b finer than them belongs, together with α and s_{n_k} , to the open interval whose extremes are s_{n_k,m_k} and \tilde{s}_{n_k,M_k} ; we point out that they both form a Farey pair with s_{n_k} and remember the Fact 2; if a/b is in the open interval whose extremes are s_{n_k} and s_{n_k,m_k} , then it is such that $b \ge q_{n_k} + q_{n_k,m_k} \ge (m_k + 1)q_{n_k} + q_{n_k-1}$; while, if a/b is in the open interval whose extremes are s_{n_k} and \tilde{s}_{n_k,M_k} then $b \ge q_{n_k} + \tilde{q}_{n_k,M_k} \ge (M_k + 1)q_{n_k} + q_{n_k-1,a_{n_k}-1}$. In both cases d(b) > k, proving our statement.

2.1. Approximations with at most k-digits rational numbers

The construction of the k-best-N-approximation can be described in the following way.

Given α positive irrational, set k positive integer. Develop α in continued fraction, $\alpha = [a_0; a_1, a_2, a_3, ...]$. Let $n_k + 1$ be the smallest integer such that p_{n_k+1} has more than k digits and let m_k be the greatest integer such that $m_k p_{n_k} + p_{n_k-1}$ has no more than k digits, i.e.

$$m_k = \left\lfloor \frac{10^k - 1 - p_{n_k-1}}{p_{n_k}} \right\rfloor$$

Consider the convergent s_{n_k} and the (semi)-convergent

$$s_{n_k,m_k} = \frac{m_k p_{n_k} + p_{n_k-1}}{m_k q_{n_k} + q_{n_k-1}};$$

observe that the number s_{n_k,m_k} is the convergent s_{n_k-1} in the case $m_k = 0$, otherwise it is a subconvergent of s_{n_k} .

Proposition 2. The better approximation of α between s_{n_k} and s_{n_k,m_k} is the best approximation of α among all the rational numbers whose numerator has no more than k digits.

Moreover, if n_k is odd, then $s_{n_k,m_k} < \alpha < s_{n_k}$, where s_{n_k,m_k} is the best rational lower bound with k digits and s_{n_k} is the best rational upper bound with k digits of α ; if n_k is even, then $s_{n_k} < \alpha < s_{n_k,m_k}$, where s_{n_k,m_k} is the best rational upper bound with k digits and s_{n_k} is the best rational lower bound with k digits of α .

Proof. We know by Proposition 1 that the best approximation with k digits is either a convergent or a semiconvergent of α . The rational s_{n_k+1} is the first convergent whose numerator has more than k digits, and, taking Fact 3 and Fact 4 into account, we must investigate in two directions:

- 1. in the sequence of convergents whose index has the parity of $n_k + 1$, the best approximation could be either the convergent s_{n_k-1} or a semiconvergents $s_{n_k,m}$ between s_{n_k-1} and s_{n_k+1} , with no more than k digits; writing $s_{n_k,0} = s_{n_k-1}$, the finest of these numbers is the one with $m = m_k$ (Fact 3);
- 2. in the sequence of convergents whose index has the parity of n_k , the best approximation could be either the convergent s_{n_k} or a semiconvergents $s_{n_k+1,m}$ between s_{n_k} and s_{n_k+2} ; but any number $s_{n_k+1,m}$ has a numerator $mp_{n_k+1} + p_{n_k} > p_{n_k+1} > 10^k$, whenever $m \neq 0$, thus we have here to consider only the convergent $s_{n_k+1,0} = s_{n_k}$.

Since $s_{n_k,m_k} < \alpha < s_{n_k}$ in the case n_k is odd, while $s_{n_k} < \alpha < s_{n_k,m_k}$ in the case n_k is even, we have found both the best k-digit lower bound and the best k-digit upper bound of α . The finer approximation of α between s_{n_k} and s_{n_k,m_k} is now the best approximation of α among all the rational numbers whose numerator has no more than k digits.

We observe that in the case $a_{n_k+1} = 1$, we have $m_k = 0$ and then the best k-digit approximation of α is the convergent s_{n_k} , since it is finer than $s_{n_k,m_k} = s_{n_k-1}$. For example, when α is the golden ratio $\varphi = (1 + \sqrt{5})/2 = [1; 1, 1, 1, \ldots]$, the best k-digit approximation is, for any k, the convergent s_{n_k} .

Remark 1. The construction of the k-best-D-approximation can be described as above with the obvious modifications and the proof used for Proposition 2 gives us the analogous results. Thus from Fact 2 we obtain the following:

Corollary. The rational a/b is the k-best-N-approximation of α if and only if b/a is the k-best-D-approximation of $1/\alpha$.

Remark 2. The given construction works for any positive integer k greater or equal to the number of digits of $\lfloor \alpha \rfloor = a_0$. Clearly the k-best-N-approximation of any positive number α is $10^k - 1$, whenever k is lower than the number of digits of $\lfloor \alpha \rfloor$.

Remark 3. The construction of the k-best-N-approximation of α works also in the case $\alpha = x/y$ is a positive rational number; we should limit our computation to those integers k lower than the number of digits of x. Note that in the case $\alpha = x/y$ is a positive rational number, then both s_{n_k} and s_{n_k,m_k} could be the k-best-N-approximation of α .

2.2. The best approximation with exactly k-digits rational number

Fixed k and given a positive irrational number α , we obtained its kbest-N-approximation working on the numbers s_{n_k} and s_{n_k,m_k} defined in the previous subsection. Clearly, if both s_{n_k} and s_{n_k,m_k} have exactly k digits at the numerator we already have the k-proper-N-approximation (together with k-proper-lower bound and k-proper-upper bound) of α . Otherwise, using the same notation introduced above, we have to consider the two cases of the following propositions.

Proposition 3. If the numerator of s_{n_k,m_k} has less than k digits, then s_{n_k} is both the k-best-N-approximation and the k-proper-N-approximation of α .

Proof. Since $p_{n_k,m_k+1} \geq 10^k$, if $p_{n_k,m_k} < 10^{k-1}$ we have $p_{n_k} = p_{n_k,m_k+1} - p_{n_k,m_k} > 9 \cdot 10^{k-1}$; in particular s_{n_k} has exactly k digits at the numerator. Since $10^{k-1} > p_{n_k,m_k} \geq m_k p_{n_k} \geq 9 \cdot m_k \cdot 10^{k-1}$, we have $m_k = 0$ and $s_{n_k,m_k} = s_{n_k-1}$ is coarser than s_{n_k} .

Let M_k be the greatest integer such that $M_k p_n + p_{n-1,a_n-1}$ has no more than k digits, i.e.

$$M_k = \left\lfloor \frac{10^k - 1 - (a_{n_k} - 1)p_{n_k-1} - p_{n_k-2}}{p_{n_k}} \right\rfloor ,$$

and consider the pseudo-convergent

$$\tilde{s}_{n_k,M_k} = \frac{\tilde{p}_{n_k,M_k}}{\tilde{q}_{n_k,M_k}} = \frac{M_k p_{n_k} + p_{n_k-1,a_{n_k}-1}}{M_k q_{n_k} + q_{n_k-1,a_{n_k}-1}} = \frac{M_k p_{n_k} + (a_{n_k} - 1)p_{n_k-1} + p_{n_k-2}}{M_k q_{n_k} + (a_{n_k} - 1)q_{n_k-1} + q_{n_k-2}}$$

Proposition 4. If the numerator of s_{n_k} has less than k digits, the better approximation of α between \tilde{s}_{n_k,M_k} and s_{n_k,m_k} is the best approximation of α among all the rational numbers whose numerator has exactly k digits.

Moreover, if n_k is odd, then $s_{n_k,m_k} < \alpha < \tilde{s}_{n_k,M_k}$, where s_{n_k,m_k} is the best rational lower bound with exactly k digits and \tilde{s}_{n_k,M_k} is the best rational upper bound with exactly k digits of α ; if n_k is even, then $\tilde{s}_{n_k,M_k} < \alpha < s_{n_k,m_k}$, where s_{n_k,m_k} is the best rational upper bound with exactly k digits and \tilde{s}_{n_k,M_k} is the best rational upper bound with exactly k digits of α .

Proof. Since the pseudo-convergent \tilde{s}_{n_k,M_k} lies on the same side of the convergent s_{n_k} (with respect to α) and its numerator has exactly k digits, the proof follows from Proposition 1.

Remark. Given a positive irrational number α and an integer k with $10^k \geq \lfloor \alpha \rfloor$, the algorithm described in this section supplies α with the k-best-N-approximation, the k-proper-N-approximation, the best rational lower and upper bounds with at most k digits at the numerator and, in all the cases but the one considered in Proposition 3, the best rational lower and upper bounds with exactly k digits at the numerator. This means that the current version of our algorithm, when the numerator of s_{n_k,m_k} has less than k digits, gives us directly the k-proper-N-approximation of α , without providing the best rational lower and upper bounds with exactly k digits at the numerator.

3. Computation time

Proposition 2 allows us to obtain the best k-digit rational approximation by a significantly reduced computation time. Indeed, for any k, once the first convergent s_{n_k+1} with numerator (denominator) greater or equal to 10^k is found, then the computation time of the best k-digits rational approximation remains constant for any k. Now a question arises: is it possible to estimate the number of operations we have to perform in order to solve our problem? The answer is that, independently of α , this number grows at most linearly with k.

Proposition 5. Let k be a positive integer, α a positive irrational number. The number K_0 of coefficients a_i in the development of α in continued fraction $\alpha = [a_0; a_1, a_2, a_3, \ldots]$ which have to be computed to solve the k-best-N-approximation problem is independent of α and satisfies the following inequality:

 $K_0 < lk + 3$,

where the coefficient of k is the number $l = \frac{\ln 10}{\ln \varphi} \simeq 4.785$, with $\varphi = \frac{1+\sqrt{5}}{2}$.

Proof. Using the notations previously introduced, let $n_k + 1$ the least integer such that $p_{n_k+1} \ge 10^k$. In order to solve our problem we need to compute the coefficients a_n and the related convergents s_n , with $n \le n_k + 1$.

We denote by F_n the Fibonacci numbers, with $F_0 = 0$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$. Since $p_0 \ge F_0$, $p_1 \ge F_1$ and $a_n \ge 1$, for any $n \ge 1$, we obtain inductively that

$$p_{n+1} = a_{n+1}p_n + p_{n-1} \ge p_n + p_{n-1} \ge F_n + F_{n-1} = F_{n+1}$$
.

Since $\varphi^2 = \varphi + 1$, and consequently $\varphi^{n+1} = \varphi^n + \varphi^{n-1}$, from $\varphi < F_3$ and $\varphi^2 = \varphi + 1 < F_3 + F_2 = F_4$, we obtain inductively that

$$\varphi^{n+1} = \varphi^n + \varphi^{n-1} < F_{n+2} + F_{n+1} = F_{n+3}$$
.

From the equation $\varphi^x = 10^k$, whose solution is x = lk, we derive eventually that

$$10^k \le \varphi^{\lceil lk \rceil} < F_{\lceil lk \rceil+2} \le p_{\lceil lk \rceil+2} .$$

Since $K_0 = n_k + 1$, we have

$$K_0 \le \lceil lk \rceil + 2 < lk + 3. \qquad \Box$$

Corollary. The total amount of operations necessary to compute the best k-digits rational approximation of α is at most linear in k, with absolute constants independent of k and α .

In the case α is a number greater than 1, namely $a_0 \geq 1$, we can state that $p_n \geq F_{n+2}$ and the inequality $K_0 < lk + 3$ expressed in Proposition 5 can be (slightly) improved in $K_0 \leq \lceil lk \rceil$. We have observed that no better improvement can be expected, since for $\alpha = \varphi = (1 + \sqrt{5})/2$, we have $K_0 = \lceil lk \rceil$ for almost all the integers k.

4. Numerical tests

The algorithm described in previous sections has been implemented in both MATLAB[®] and Mathematica[®] programs; we report here some numerical results.

In the following example, the best k-digit rational approximations of some numbers are reported in tables for increasing values of k, separating k-best-Napproximations and k-proper-N-approximations. Following the notation used in Propositions 2–4, we call n_k the greatest integer such that the numerator of the convergent s_{n_k} has at most k digits; m_k is the greatest integer such that the number s_{n_k,m_k} has no more than k digit in the numerator. When n_k is odd, then s_{n_k,m_k} is the best rational lower bound (lb) with k digits and s_{n_k} (written in boldface) is the best rational upper bound (ub) with at most k digits; if n_k is even, we interchange the roles. In the case that the numerator of s_{n_k} has less than k digits, in a separate table we compute the greatest integer M_k such that the pseudo-convergent \tilde{s}_{n_k,M_k} has no more than k digit in the numerator. When n_k is odd, then s_{n_k,m_k} is the best rational lower bound (plb) with exactly k digits and \tilde{s}_{n_k,M_k} (written in sans serif) is the best rational upper bound (pub) with exactly k digits; if n_k is even, we interchange the roles. In the column "bra" we write the k-best-N-approximation by choosing the finer approximation between lb and ub. Similarly in the separated table, "pbra" means k-proper-N-approximation, the finer approximation between plb and pub.

We remark that, using this algorithm, a standard double precision suffices in order to compute both the best rational lower bound and the best rational upper bound, both in the case of at most k-digits and in the case of exactly k-digits. An higher working precision is required only when we need the computation of error. For this reason we report in the columns "a.er." the absolute error of the k-digit-approximations. In MATLAB[®], even if the machine precision is $\mathcal{O}(10^{-16})$, we use the extended accuracy available by the Symbolic Toolbox.

For any of the following example, we report the "total computation time", that is the *total* time this algorithm requires to compute *all* the data of the example, referring to the implementation with Mathematica[®] on a processor Intel[®] Core 2 Quad Q6600. Once convergents are computed (Mathematica[®] has a convenient built-in function), the computation time is expected to remain unaltered for any k. In MATLAB[®], for reported examples we found that the computation time is at most $\mathcal{O}(10^{-4})$ sec for any single k; instead, if convergents are included, then for any k we found that the computation time is always at most $\mathcal{O}(10^{-1})$.

Example 1. The number π .

Total computation time: 0.14 seconds.

k	n_k	m_k	$lb < \pi < ub$	bra	a.er.
1	0	2	$3 < \pi < \frac{7}{2}$	lb	1.42×10^{-1}
2	1	4	$rac{91}{29} < \pi < \ rac{22}{7}$	ub	1.26×10^{-3}
3	3	1	$rac{688}{219} < \pi < rac{{f 355}}{{f 113}}$	ub	2.67×10^{-7}
4	3	27	$rac{9918}{3157} < \pi < rac{{f 355}}{{f 113}}$	ub	2.67×10^{-7}
5	3	280	$rac{99733}{31746} < \pi < rac{{f 355}}{{f 113}}$	lb	1.20×10^{-8}

Table 1: best approximations of π by rationals with at most k-digit numerators

(14010	e conti	nueu ji	rom previous page)			
k	n_k	m_k	$lb~<\pi<$	tub	bra	a.er.
			833719	312689		
6	8	0	$\frac{333110}{265381} < \pi < 10$	99532	lb	8.72×10^{-12}
			9692294	5419351		
7	11	1	$\frac{3002201}{3085153} < \pi <$	$\frac{1}{1725033}$	ub	2.21×10^{-14}
			80143857	85563208		
8	12	1	$\frac{30149001}{25510582} < \pi <$	$\frac{1}{27235615}$	lb	5.79×10^{-16}
			657408909	411557987		
9	15	1	$\frac{3001100000}{209259755} < \pi <$	$\frac{11007001}{131002976}$	lb	1.71×10^{-17}
		1	6167950454	8717442233		
10	10 18		$\frac{610000101}{1963319607} < \pi <$	$\frac{1}{2774848045}$	lb	7.63×10^{-20}
			21053343141	99098765251		
11	20	4	$\frac{11000010111}{6701487259} < \pi <$	31544116688	lb	2.62×10^{-22}
			21053343141	983339177173		
12	20	46	-1000000000000000000000000000000000000	313006581566	ub	2.15×10^{-22}
			8958937768937	5371151992734		
13	24	0	333333333333333333333333333333333333	$\frac{1709690779483}{1709690779483}$	lb	7.72×10^{-27}
			8958937768937	94960529682104		3.88×10 ⁻²⁷
14	24	10	$\frac{1}{2851718461558} < \pi < \pi$	$\frac{1}{30226875395063}$	ub	
			428224593349304	996204405225397		
15	26	2	$\frac{1}{136308121570117}$ < π <	$\frac{1}{317101710843087}$	lb	3.81×10^{-30}
10			6134899525417045	5706674932067741		22
16	28	0	$\frac{1}{1952799169684491} < \pi < \pi$	$\overline{1816491048114374}$	lb	4.86×10^{-32}
			66627445592888887	96873718626624808		24
17	30	1	$\frac{1}{21208174623389167} < \pi < \pi$	30835862350241505	lb	3.36×10^{-34}
10	0.1		926649338775027373	430010946591069243	,	
18	31	2	$\frac{1}{294961645557763847}$ < π <	$\overline{136876735467187340}$	ub	8.66×10^{-36}
10	20		2646693125139304345	8370090322008982278		
19	32	3	$\frac{1}{842468587426513207} < \pi < 10^{-10}$	2664282497746726961	lb	1.41×10^{-38}
	20		2646693125139304345	98357656576745330008	11.	1.41×10 ⁻³⁸
20	32	37	$\frac{1}{842468587426513207} < \pi <$	31308214470248175999	lb	
L	u				ı	1

(table continued from previous page)

Table 2: best approximations of π by rationals with exactly k-digit numerators

k	n_k	m_k	M_k	$plb~<\pi<$	pub	bra	a.er.
4	3	27	28	${9918\over 3157} < \pi <$	9962 3171	plb	2.54×10^{-6}
5	3	280	281	${99733\over 31746} < \pi <$	<u>99777</u> 31760	plb	1.20×10^{-8}
12	20	46	47	${995675078081\over 316933220780}\ <\pi<$	$\frac{983339177173}{313006581566}$	pub	2.15×10^{-22}
14	24	10	10	$\frac{93177163465573}{29659212297655} \ < \pi <$	$\frac{94960529682104}{30226875395063}$	pub	3.88×10^{-27}
20	32	37	36	$\frac{97497634683563191522}{31034460999313801319} < \pi <$	$\frac{98357656576745330008}{31308214470248175999}$	pub	2.38×10^{-38}

Example 2. The Neper number e. Total computation time: 0.14 seconds.

k	n_k	m_k	lb <	e <	ub	bra	a.er.
1	2	0	$\frac{8}{3} < 0$	e <	3	lb	5.16×10^{-2}
			19		87		
2	5	0	$\frac{10}{7} < 0$	e <	$\frac{31}{32}$	ub	4.68×10^{-4}
	-		878		193		5
3	7	4	$\frac{878}{323} < 0$	e <	71	lb	1.56×10^{-5}
4	10	3	2721	e <	9620	lb	1.10×10^{-7}
4	10	5	1001	6 <	3539	10	1.10×10
5	13	1	$\frac{75117}{5}$	e <	49171	ub	2.77×10^{-10}
Ť			27634		18089		
6	15	0	$\frac{517656}{3}$ < 0	e <	566827	ub	1.15×10^{-11}
			190435		208524		
7	16	8	$\frac{1084483}{222272}$ < 0	e <	9242691	ub	2.55×10^{-13}
			398959		3400196		
8	19	3	$\frac{99402293}{26568969} < 6$	e <	28245729	ub	6.16×10^{-16}
			36568060		10391023		
9	22	0	$- rac{848456353}{312129649} < 0$	e <	$\frac{438351041}{161260336}$	lb	6.03×10^{-19}
			848456353		9771370924		2.89×10^{-19}
10	22	11	$\frac{343450353}{312129649} < 0$	e <	3594686475	ub	
			72613632504		28875761731		
11	25	2	$\frac{1}{26713062547} < 6$	e <	10622799089	ub	4.66×10^{-22}
			534625820200		563501581931		
12	27	0	$\frac{196677847971}{196677847971} < 6$	e <	207300647060	ub	1.16×10^{-23}
1.0	00	0	1098127402131		9348520798979		
13	28	8	403978495031 < 0	e <	3439128607308	lb	2.91×10^{-25}
14	31	1	69774403677915	~ /	46150226651233	h	1.51×10^{-28}
14	51	1	$\overline{25668568633102}$ < 0	e <	16977719590391	ub	1.51×10 -*
15	31	21	992778936702575	e <	46150226651233	lb	1.06×10^{-29}
10	51	21	365222960440922	6 <	16977719590391	ID	1.06×10
16	34	4	$\underline{2124008553358849}$	e <	9581113603440437	lb	6.55×10^{-32}
10	94	4	781379079653017	~ ~	3524694718233772	10	0.00710
17	36	0	$\frac{54185293223976266}{4}$	e <	52061284670617417	lb	1.26×10^{-33}
		Ŭ	19933655390947129	90947129		lb	1.26×10 ⁻³³
18	37	8	$\frac{904157916380725730}{2} < 0$	e <	$\underline{106246577894593683}$	ub	$\begin{array}{c c} ab & 2.42 \times 10^{-35} \\ \hline ad on next nage \end{array}$
	Ŭ.	8	332621109008877057	- `	39085931702241241		

Table 3: best approximations of **e** by rationals with at most k-digit numerators

(table continued from previous page)

k	n_k	m_k	$lb < \mathrm{e} < ~ub$	bra	a.er.				
19	40	40 1	$\frac{5739439214861417731}{6 < 6 < 6 < 6662282111239423438}$	lb	7.73×10 ⁻³⁹				
19	40		2111421691000680031 < C < 3186675502352140667	10					
20	40	16	$\frac{5739439214861417731}{6 6 6 6 6 6 6 $	ub	5.86×10^{-39}				
20	10	10	2111421691000680031 34858000867362341132	4.0	0100/110				

Table 4: best approximations of e by rationals with exactly k-digit numerators

k	n_k	m_k	M_k	plb <	< e <	pub	pbra	a.er.
10	22	11	11	$rac{9743125195}{3584295452} <$	< e <	9771370924 3594686475	pub	2.89×10 ⁻¹⁹
15	31	21	21	$\frac{992778936702575}{365222960440922} <$	< e <	991680809300444 364818981945891	plb	1.06×10^{-29}
20	40	16	16	$\frac{94647623756266095720}{34818914935660099891} <$	< e <	$\frac{94753870334160689403}{34858000867362341132}$	pub	5.86×10^{-39}

Example 3. The golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$. Total computation time: 0.28 seconds.

Table 5: best approximations of φ by rationals with at most k-digit numerators

k	n_k	m_k	lb < arphi < ub	bra	a.er.
1	4	0	$\frac{8}{5} < \varphi < \frac{5}{3}$	lb	1.80×10^{-2}
2	9	0	$\frac{55}{34} < \varphi < \frac{89}{55}$	ub	1.48×10^{-4}
3	14	0	$rac{987}{610} < arphi < rac{610}{377}$	lb	1.20×10^{-6}
4	18	0	$\frac{{\bf 6765}}{{\bf 4181}} \ < \varphi < \ \frac{{4181}}{{2584}}$	lb	2.56×10^{-8}
5	23	0	$rac{46368}{28657} < arphi < rac{{f 75025}}{{f 46368}}$	ub	2.08×10^{-10}
6	28	0	$\frac{832040}{514229} < \varphi < \frac{514229}{317811}$	lb	1.69×10^{-12}
7	33	0	$rac{5702887}{3524578} < arphi < rac{9227465}{5702887}$	ub	1.38×10^{-14}
8	37	0	$rac{39088169}{24157817} < arphi < rac{63245986}{39088169}$	ub	2.93×10^{-16}
9	42	0	$\frac{\textbf{701408733}}{\textbf{433494437}} < \varphi < \frac{433494437}{267914296}$	lb	2.38×10^{-18}
10	47	0	$\frac{4807526976}{2971215073} < \varphi < \frac{\textbf{7778742049}}{\textbf{4807526976}}$	ub	1.93×10^{-20}

(14010		nueu ji	rom previous page)			
k	n_k	m_k	lb~ <arphi<~arphi<~arphi< td=""><td>ub</td><td>bra</td><td>a.er.</td></arphi<~arphi<~arphi<>	ub	bra	a.er.
11	52	0	<u> </u>	53316291173 32951280099	lb	1.57×10^{-22}
12	57	0		$956722026041 \\ 591286729879$	ub	1.28×10^{-24}
13	61	0	< \u03c6< -	6557470319842 4052739537881	ub	2.72×10^{-26}
14	66	0	< \alpha < -	44945570212853 27777890035288	lb	2.21×10^{-28}
15	71	0	<u> </u>	$\frac{806515533049393}{498454011879264}$	ub	1.80×10^{-30}
16	76	0	< \alpha < -	5527939700884757 3416454622906707	lb	1.46×10^{-32}
17	81	0	<u> </u>	99194853094755497 61305790721611591	ub	1.19×10^{-34}
18	85	0	< 0 < -	679891637638612258 420196140727489673	ub	2.53×10^{-36}
19	90	0	< \o < -	$\frac{4660046610375530309}{2880067194370816120}$	lb	2.06×10^{-38}
20	95	0	< \u03c9 < -	83621143489848422977 51680708854858323072	ub	1.67×10^{-40}

(table continued from previous page)

Example 4. The number π^e . Total computation time: 0.17 seconds.

Table 6: best approximations of π^e by rationals with at most k-digit numerators

k	n_k	m_k	$lb < \pi^e < ub$	bra	a.er.
1	-1	9	$9 < \pi^e < -$		13.46
2	1	1	$rac{67}{3} < \pi^e < \ rac{45}{2}$	ub	4.08×10^{-2}
3	5	0	$rac{539}{24} < \pi^e < rac{f 831}{f 37}$	ub	3.02×10^{-4}
4	8	0	$rac{{f 7973}}{{f 355}} < \pi^e < \; rac{2201}{98}$	ιь	2.79×10^{-6}
5	11	1	$rac{70387}{3134} \ < \pi^e < \ rac{44267}{1971}$	ub	6.96×10^{-8}
6	12	6	$rac{{f 158921}}{{f 7076}} < \pi^e < \; rac{997793}{44427}$	ub	1.04×10^{-9}
7	13	6	$rac{9006257}{401006} \ < \pi^e < \ rac{1474556}{65655}$	ub	1.53×10^{-11}

(1000	- control	nucu ji	om previous page)				
k	n_k	m_k	lb ·	$< \pi^e <$	ub	bra	a.er.
8	14	4	$\frac{22277261}{991901}$	$< \pi^e <$	$\frac{90583600}{4033259}$	lb	3.97×10^{-14}
9	16	0	580683342	$<\pi^{e}<$	558406081 24863180	lb	6.95×10^{-16}
10	18	1	$\frac{6276130457}{279446386}$	$< \pi^e <$	$\frac{7415219880}{330164647}$	lb	2.62×10^{-18}
11	21	0	$\frac{32519741708}{1447950191}$	$< \pi^e <$	$\frac{91283094667}{4064404187}$	ub	2.59×10^{-20}
12	23	4	$\frac{984146560543}{43819388638}$	$< \pi^e <$	$\frac{215085931042}{9576758565}$	ub	2.13×10^{-22}
13	23	45	$\frac{9802669733265}{436466489803}$	$< \pi^e <$	$\frac{215085931042}{9576758565}$	lb	2.62×10^{-23}
14	28	1	$\frac{55035754735501}{2450481688835}$	$< \pi^e <$	$\frac{88100224763010}{3922686053849}$	lb	2.02×10^{-26}
15	31	0	$\frac{473350507911517}{21076057875694}$	$< \pi^e <$	$\frac{891665261087533}{39701634062553}$	ub	3.43×10^{-28}
16	33	1	$\frac{6351728337083733}{282812401815541}$	$< \pi^e <$	$\frac{4986712568084683}{222034709877294}$	ub	2.81×10^{-30}
17	35	1	$\frac{67557294923098979}{3008006612281316}$	$< \pi^e <$	$\frac{36272003745591831}{1615020661079305}$	ub	1.83×10^{-32}
18	36	1	$\frac{756725366089343768}{33693399172788111}$	$< \pi^e <$	792997369834935599 35308419833867416	lb	8.21×10 ⁻³⁵
19	38	0	$\frac{8360251030728373279}{372242411561748526}$	$< \pi^e <$	7603525664639029511 338549012388960415	lb	2.40×10^{-36}
20	39	3	$\frac{81332334209015701486}{3621343918099120927}$	$< \pi^e <$	$\frac{24324027726095776069}{1083033835512457467}$	ub	7.59×10^{-38}

(table continued from previous page)

Table 7: best approximations of π^e by rationals with exactly k-digit numerators

k	n_k	m_k	M_k	$plb \ < \pi^e <$	z pub	pbra	a.er.
13	23	45	46	$\frac{9802669733265}{436466489803} < \pi^e <$	9985235922599 444595298177	lb	2.62×10^{-23}

Example 5. In this example we consider a number α with k-proper-N-approximations which are pseudo-convergents. The number is

 $\alpha = \frac{32400000017999999995 - \sqrt{5}}{64799999999999999999999} \simeq 0.50000000027777777774 \;,$

whose development in continued fractions is

 $\alpha = [0; 1, 1, 900000000, \{1\}],$

that is $a_0 = 0$, $a_1 = a_2 = 1$, $a_3 = 900000000$ and $a_i = 1$ for any integer *i* greater than 3. Observe that for k > 9 we have $n_k > 3$ and $a_{n_k} = 1$; similarly to the case of the golden ratio φ , the best *k*-digit approximations of α is the convergent s_{n_k} , for any k > 9. Total computation time: 0.20 seconds.

k	n_k	m_k	lb < lpha < ub	bra	a.er.
1	2	8	$rac{1}{2} < lpha < rac{9}{17}$	lb	2.78×10^{-11}
2	2	98	$\frac{1}{2} < \alpha < \frac{99}{197}$	lb	2.78×10^{-11}
3	2	998	$rac{1}{2} < lpha < rac{999}{1997}$	lb	2.78×10^{-11}
4	2	9998	$rac{1}{2} < lpha < rac{9999}{19997}$	lb	2.78×10^{-11}
5	2	99998	$rac{1}{2} < lpha < rac{99999}{199997}$	lb	2.78×10^{-11}
6	2	999998	$rac{1}{2} < lpha < rac{9999999}{1999997}$	lb	2.78×10^{-11}
7	2	9999998	$rac{1}{2} < lpha < rac{99999999}{19999997}$	lb	2.78×10^{-11}
8	2	99999998	$rac{1}{2} \ < lpha < \ rac{999999999}{199999997}$	lb	2.78×10^{-11}
9	2	9999999998	$rac{1}{2} < lpha < rac{9999999999}{1999999997}$	lb	2.78×10^{-11}
10	4	0	$\frac{900000002}{1800000003} < \alpha < \frac{9000000001}{1800000001}$	lb	1.18×10^{-21}

Table 8: best approximations of α by rationals with at most k-digit numerators

Table 9: best approximations of α by rationals with exactly k-digit numerators

k	n_k	m_k	M_k	plb < lpha < pub	pbra	a.er.
1	2	8	-	$rac{1}{2} < lpha < rac{9}{17}$	lb	2.78×10^{-11}
2	2	98	99	$\frac{99}{199} < \alpha < \frac{99}{197}$	lb	2.51×10^{-3}
3	2	998	999	$\frac{999}{1999} < \alpha < \frac{999}{1997}$	lb	2.50×10^{-4}
4	2	9998	9999	$\frac{9999}{19999} < \alpha < \frac{9999}{19997}$	lb	2.50×10^{-5}
5	2	99998	99999	$\frac{99999}{199999} < \alpha < \frac{99999}{199997}$	ub	2.50×10^{-6}
6	2	999998	999999	$\frac{9999999}{19999999} < \alpha < \frac{9999999}{1999997}$	ub	2.50×10^{-7}

(table continued from previous page)

k	n_k	m_k	M_k	$plb \ < lpha <$	pub	pbra	a.er.
7	2	9999998	99999999	${99999999\over 199999999} < lpha < lpha$	$\frac{99999999}{19999997}$	ub	2.50×10^{-8}
8	2	999999998	999999999	$\frac{999999999}{1999999999} < \alpha <$	$\frac{999999999}{199999997}$	ub	2.47×10^{-9}
9	2	9999999998	9999999999	$\frac{9999999999}{19999999999} < \alpha <$	$\frac{9999999999}{19999999997}$	ub	2.22×10^{-10}
10	4	0	_	$\frac{900000002}{1800000003} < \alpha <$	$\frac{900000001}{1800000001}$	lb	1.18×10^{-21}

Example 6. We might consider the rational number

$$\alpha' = \frac{9000000001}{18000000001} = [0; 1, 1, 9000000000] ,$$

whose set of convergents is $\{s_0 = 0, s_1 = 1, s_2 = 1/2, s_3 = \alpha'\}$. For $1 \le k \le$ 9, the number α' has the same approximations of the irrational number α introduced in Example 5. The 10-best-N-approximation of α' is clearly α' , while k-digit approximations do not seem to be interesting for $k > d(\alpha') = 10$.

Acknowledgments

The authors gratefully acknowledge the many helpful suggestions of Professor Rodolfo Talamo during the preparation of this paper.

References

- A.Ya. Khintchine. *Continued fractions*. P. Noordhoff Ltd., Groningen, 1963. (trans. from 3rd Russian ed. by Peter Wynn).
- [2] S. Lang. Introduction to Diophantine approximations. Springer-Verlag, New York, second edition, 1995.
- [3] A. M. Rockett and P. Szüsz. Continued Fractions. World Scientific Publishing, Singapore, 1992.
- [4] S. K. Sen, R. P. Agarwal, and R. Pavani. Best k-digit rational bounds for irrational numbers: pre- and super-computer era. *Math. Comput. Modelling*, 49(7-8):1465–1482, 2009.

[5] S. K. Sen, R. P. Agarwal, and G. A. Shaykhian. Best k-digit rational approximations -true versus convergent-, decimal-based ones: quality, cost, scope. Advanced Studies in Contemporary Mathematics, Kyungshang, Memoirs of the Jangjeon Mathematical Society, 19(1):59–96, 2009.

Appendix: the programs

Here we report the scripts of used programs just for convenience of the reader. We point out that they are not optimized. Authors welcome any comments by interested users.

A) Script of MATLAB[®] program. We recall that the computation of convergents is adapted from [5].

```
% Algorithm CPT
\% to compute the best k-digit rational approximation to an irrational number
\% Warning: this version of the program works with k<10.
      % input : r-> number to be approximated,
      \% N -> number of convergents to be calculated,
      % Nd -> digits of extended precision,
      % Kfin -> final value of k to be considered
      % Authors : M. Citterio, R. Pavani
r=pi,
%r=(1+sqrt(5))/2,
%r = \exp(1),
Kfin=14,
Nd=50;
r=vpa(r,Nd)
flagp=0;
flagpb=0;
for k=1:Kfin,
      N=5*k+2.
      k, tic,
\% continued fraction representation
% by Sen-Agarwal-Shaykhian
p1=vpa(r,Nd);
a0=floor(r);
qq=p1;
for i=1:N,
      qq=1/frac(qq);
      a(i)=qq-frac(qq);
end
%disp('sequence of the simple continued fraction of')
%disp(r)
% [a0; a'] % continued fraction representation
p0=a0;
q0=1;
p(1)=a(1)*a0+1;
q(1)=a(1);
p(2)=a(2)*p(1)+p0;
q(2)=a(2)*q(1)+q0;
```

```
for kk=2:N-1,
      p(kk+1)=a(kk+1)*p(kk)+p(kk-1);
      q(kk+1)=a(kk+1)*q(kk)+q(kk-1);
end
% disp('convergents for the continued fraction expansion of'),
% disp(r)
%disp([p0 q0])
%disp([p' q'])
% best k-digit rational approximation
% assumption: p(-2)=0,p(-1)=1,q(-2)=1,q(-1)=0
P=[0 1 p0 p];
Q=[1 0 q0 q];
a=[0 \ 0 \ a0 \ a];
i=3;
       while double(P(i))< 10^k;i=i+1; end</pre>
       i=i-1;
       cst=((10<sup>k</sup>)-1-P(i-1))/P(i);
       m=floor(cst);
       dst=((10<sup>k</sup>)-1-(a(i)-1)*P(i-1)-P(i-2))/P(i);
       MM=floor(dst);
       num1=m*P(i)+P(i-1); den1=m*Q(i)+Q(i-1);
       num2=P(i); den2=Q(i);
       num3=(MM*P(i)+(a(i)-1)*P(i-1)+P(i-2));
       den3=(MM*Q(i)+(a(i)-1)*Q(i-1)+Q(i-2));
       AA=num1/den1;
       BB=num2/den2;
       CC=num3/den3;
      if rem((i-3), 2) == 0 % i is even
        LB=BB; UB=AA; PLB=CC; PUB=AA; flag=1;
      else
        LB=AA; UB=BB; PLB=AA; PUB=CC; flag=2;
      end
      if double(r-LB) < double(UB-r),</pre>
        bra=LB; flagb=1;
      else
        bra=UB; flagb=2;
      end
   if double(P(i))<10<sup>(k-1)</sup>,
        if abs(double(r-PLB)) < abs(double(PUB-r)),</pre>
             PBRA=PLB; flagpb=1;
        else
            PBRA=PUB; flagpb=2;
        end.
 % disp(' n_k m_k M_k ')
 % disp( [ i-3 m MM ])
      disp('++++++++++++ at most k digits')
      if flag==1 & flagb==1,
        disp('lower bound'), disp( bra),
        disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num2),double(den2))
        disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
      elseif flag==1 & flagb==2,
        disp('upper bound'), disp( bra),
        disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num2),double(den2))
        disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
      elseif flag==2 & flagb==1,
        disp('lower bound'), disp( bra),
        disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
        disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num2),double(den2))
```

```
else %flag==2 & flagb==2,
       disp('upper bound'), disp( bra),
       disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
      disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num2),double(den2))
    end.
    erra=double(abs(r-bra));
    disp('abs. err. with at most k digits'), disp(erra)
    disp(' exactly k digits')
    if flag==1 & flagpb==1,
      disp('lower bound'), disp( PBRA),
       disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num3),double(den3))
       disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
     elseif flag==1 & flagpb==2,
       disp('upper bound'), disp( PBRA),
       disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num3),double(den3))
       disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
    elseif flag==2 & flagpb==1,
       disp('lower bound'), disp( PBRA),
      disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
       disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num3),double(den3))
     else %flag==2 & flagpb==2,
      disp('upper bound'), disp( PBRA),
      disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
      disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num3),double(den3))
     end,
    perra=double(abs(r-PBRA));
      disp('abs. err. with exactly k digits'), disp(perra)
else
% disp(' n_k m_k M_k ')
% disp([ i-3 m MM])
    disp('----- at most k digits')
    if flag==1 & flagb==1,
      disp('lower bound'), disp( bra),
       disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num2),double(den2))
      disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
     elseif flag==1 & flagb==2,
      disp('upper bound'), disp( bra),
       disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num2),double(den2))
       disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
     elseif flag==2 & flagb==1,
       disp('lower bound'), disp( bra),
      disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
      disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num2),double(den2))
    else
      disp('upper bound'), disp( bra),
      disp('lower bound'), fprintf('%17.0f%17.0f\n',double(num1),double(den1))
      disp('upper bound'), fprintf('%17.0f%17.0f\n',double(num2),double(den2))
     end,
    erra=double(abs(r-bra));
    disp('abs. err. with at most k digits'), disp(erra)
 end
      toc,
    disp('********')
    disp(' ')
    clear AA BB CC LB UB PLB PUB m MM
```

end,

B) Script of Mathematica[®] program.

```
(* Algorithm CPT *)
(* Authors : M. Citterio, R. Pavani *)
(* This algorithm supplies a positive irrational number with the best rational
approximation with at most k digits at the numerator (the k-best-N-approximation),
the best rational approximation with exactly k digits at the numerator
(the k-proper-N-approximation), the best rational lower and upper bounds with at most
k digits at the numerator and, in all the cases but the one in which the k-proper-N-
-approximation is obtained without extra computation, the best rational lower and
upper bounds with exactly k digits at the numerator. The number k is any integer from
the number of digits of the integer part of irrational number to a convenient stop.*)
(* Inputs: *)
r = Pi
            (* positive irrational number to be approximated *);
kTOk = 20
            (* final value of k *);
(* Definitions: *)
a[n_] := ContinuedFraction[r, n + 1][[n + 1]];
Conv[n_] := Convergents[r, n + 1][[n + 1]];
p[-2] := 0; p[-1] := 1; p[n_] := Numerator[Conv[n]];
q[-2] := 1; q[-1] := 0; q[n_] := Denominator[Conv[n]];
sp[n_{, m_{]}} := m p[n] + p[n - 1];
sq[n_{, m_{]}} := m q[n] + q[n - 1];
sConv[n_, m_] := sp[n_, m_]/sq[n_, m_] ;
pConv[n_, m_] := (m p[n] + sp[n - 1, a[n] - 1])/(m q[n] + sq[n - 1, a[n] - 1]);
(* The program: *)
If[r < 1, ALPHA = 1, ALPHA = r]; kFROMk=Floor[Log10[ALPHA]+1];</pre>
Timing[n = 0;
Print[" \alpha = ", r, " \simeq ", N[r, 50] ];
Do[i = n; While[p[i] < 10^k, i++]; n = i - 1;</pre>
  m = Floor[(10^k - 1 - p[n - 1])/p[n]];
  AA = sConv[n, m]; BB = Conv[n];
   If[OddQ[n],
      \{LB = AA, UB = BB, PLB = AA, PUB = CC\},\
      \{LB = BB, UB = AA, PLB = CC, PUB = AA\};
   If [r - LB < UB - r, BRA = LB, BRA = UB];
   If[p[n] < 10^{(k - 1)},
     M = Floor[(10^k - 1 - (a[n] - 1) p[n - 1] - p[n - 2])/p[n]],
        CC = pConv[n, M],
        If[r - PLB < PUB - r, PBRA = PLB, PBRA = PUB],</pre>
        LB, " < \alpha < ", UB, "; bra = ", BRA, "."],
        \label{eq:print_state} \Pr[ |\alpha - s_{n_k,m_k}| = ", \ \mbox{N[Abs[r - AA], 50], " ;"],}
     Print[];
   Clear[AA, BB, CC, LB, UB, PLB, PUB, m, M, BRA, PBRA],
   {k, kFROMk, kTOk}]]
```