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Positive solutions to a linearly perturbed

critical growth biharmonic problem

Elvise BERCHIO – Filippo GAZZOLA∗

Abstract

Existence and nonexistence results for positive solutions to a linearly perturbed critical growth
biharmonic problem under Steklov boundary conditions, are determined. Furthermore, by investi-
gating the critical dimensions for this problem, a Sobolev inequality with remainder terms, of both
interior and boundary type, is deduced.

1 Introduction

Let B ⊂ R
n (n ≥ 5) be the unit ball, 2∗ = 2n

n−4 denote the critical Sobolev exponent, λ ≥ 0 and d ∈ R.
We consider the following fourth order elliptic problem with linearly perturbed critical growth and
Steklov boundary conditions:







∆2u = λu+ u2∗−1 in B
u > 0 in B
u = ∆u− duν = 0 on ∂B,

(1)

where uν denotes the outer normal derivative of u on ∂B.
When λ = 0, it is well-known that (1) admits no solutions neither if d = 0, namely under Navier
boundary conditions (u = ∆u = 0 on ∂B), nor if d = −∞, namely Dirichlet boundary conditions
(u = uν = 0 on ∂B), see [23, 25, 33].
On the other hand, under both Dirichlet and Navier boundary conditions, existence results have been
obtained by modifying the geometry of the domain, see [2, 9, 13], or by perturbing the nonlinearity
(λ > 0), see [8, 10, 11, 18, 20, 35]. We also refer to [15] for an exhaustive treatment of the subject.
In [6] are first considered general Steklov boundary conditions. Then, existence results are determined
for problem (1), when λ = 0, without modifying the geometry of the domain, see [6, Theorem 1]. One
of the purposes of the present paper is to combine both the contribution of the modification of the
nonlinearity and of the boundary conditions. This gives rise to problem (1).
Linear perturbations λu of the critical nonlinearity u2∗−1 are quite sensitive to the space dimension
n and led Pucci-Serrin [28] to define the so-called critical dimensions. In these dimensions, one has
nonexistence of radial solutions to the Dirichlet problem in B for small linear perturbations (small
λ > 0), whereas in the other dimensions existence of radial solutions is ensured for any positive linear
perturbation with λ smaller than the first eigenvalue. Some attempts were made in order to explain
this phenomenon by means of the local summability properties of the fundamental solution of the
biharmonic operator [22, 24] or by means of summability properties of remainder terms in Sobolev
inequality [12]. According to [10, Theorem 1.1] and [28, Theorem 3], the critical dimensions for the
biharmonic operator under Dirichlet boundary conditions are n = 5, 6, 7. By [35, Theorem 1] and [13,
Theorem 3], the same dimensions are also critical for the Navier problem, at least in a weak sense, see
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Definitions 3 and 4 in Section 2. Steklov boundary conditions exhibit an unexpected feature since, for
d ∈ [4, n), the critical dimensions do not exist, see Theorem 5.
On the other hand, for d < 4 critical dimensions do exist and coincide again with n = 5, 6, 7. In
these dimensions we prove nonexistence results for (1) when λ is sufficient small. As a by-product of
the nonexistence results, we deduce a Sobolev inequality with remainder terms of both interior and
boundary type.
The paper is organized as follows: in Section 2 we state our main results, in Sections 3 and 4 we give
the proofs.

2 Results

We denote by ‖ · ‖p the Lp-norm (both on B and on R
n) and we put

‖u‖2
∂ν

=

∫

∂B
u2

ν dω for u ∈ H2 ∩H1
0 (B).

By [4] we know that the following inequality holds:

‖∆u‖2
2 ≥ n‖u‖2

∂ν
for all u ∈ H2 ∩H1

0 (B) . (2)

For d < n, this allows to endow the Sobolev space H2 ∩H1
0 (B) with the scalar product

(u, v) :=

∫

B
∆u∆v dx− d

∫

∂B
uνvν dω

and with the induced norm, which is equivalent to the H2 ∩H1
0−norm ‖∆ · ‖2.

By solutions of (1) we mean functions u ∈ H2 ∩H1
0 (B) such that u > 0 a.e. in B and

(u, v) =

∫

B
(λu+ u2∗−1) v dx for all v ∈ H2 ∩H1

0 (B) . (3)

A solution in this sense is in fact a classical solution, see [4, Proposition 23] and also [34].
For any d ≤ n we denote with λ1(d) the first eigenvalue of the operator ∆2 under Steklov boundary
conditions, namely

λ1(d) := inf
H2∩H1

0
(B)\{0}

‖∆u‖2
2 − d‖u‖2

∂ν

‖u‖2
2

. (4)

We refer to the Appendix for a possible way to compute λ1(d). Since the map H2 ∩ H1
0 (B) ∋ u 7→

uν ∈ L2(∂B) is compact, the infimum in (4) is achieved by some function φd
1. Furthermore, the

map (−∞, n] ∋ d 7→ λ1(d) is decreasing, concave and λ1(n) = 0. For any d < n, ∆2 under Steklov
boundary conditions enjoys the positivity preserving property in B, see [17]. Combining this fact with
the Krein-Rutman Theorem, it follows that φd

1 is strictly of one sign in B and λ1(d) is simple.
When λ = 0, problem (1) was studied in [6] and [16]. We recall the known results:

Theorem 1. [6, 16] For λ = 0 the following statements hold:

(i) if d ≤ 4 or d ≥ n, (1) admits no solutions;

(ii) if 4 < d < n, (1) admits a unique radially symmetric solution.
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For completeness we remark that, even if Theorem 1-(i) is proved in [6] only for d > 0, the same proof
extends to the case d ≤ 0.
As already mentioned in the introduction, when λ > 0, the equation in (1) has been extensively
studied under Navier and Dirichlet boundary conditions, corresponding to d = 0 and d = −∞ in (1).
We complement the known results by Theorems 2 and 5 below:

Theorem 2. For n ≥ 8 and λ > 0 the following statements hold:

(i) if d ≥ n or d < n and λ ≥ λ1(d), (1) admits no solutions;

(ii) if d < n, then (1) admits a radially symmetric solution for all λ ∈ (0, λ1(d)).

According to [28] we recall

Definition 3. The dimension n is called critical for problem (1) if there exists λ = λ(d) > 0 such
that a necessary condition for a radial solution to (1) (without the positivity assumption) to exist is
λ > λ.

By [10] and [28], the critical dimensions for the Dirichlet problem are known to be n = 5, 6, 7. More
precisely, when 5 ≤ n ≤ 7, by [10, Theorem 1.6] there exist 0 < λ ≤ λ∗ < λ1(−∞) such that
problem (1) with d = −∞ admits no radial solution if λ ∈ (0, λ) and admits a radial solution if
λ ∈ (λ∗, λ1(−∞)). The values of both λ∗ and λ1(−∞) are explicitly given in terms of the first positive
roots of certain functions related to Bessel functions. By means of some numerical computations with
Mathematica the following approximations hold

n 5 6 7

λ1(−∞) 769.93 1216.3 1818.1

λ∗(n) 373.28 267.59 140.67

Table 1: The bounds of the intervals where existence is known when d = −∞.

In order to study higher order polyharmonic equations for which the determination of the critical
dimensions is more difficult to handle, see [19], a notion of weakly critical dimensions was introduced
in [21]:

Definition 4. The dimension n is called weakly critical for problem (1) if there exists λ+ = λ+(d) > 0
such that a necessary condition for a positive radial solution to (1) to exist is λ > λ+.

In [13] the dimensions n = 5, 6, 7 are shown to be weakly critical also for the Navier problem (d = 0).
For the more general problem (1) we prove that the weakly critical dimensions are still n = 5, 6, 7,
when d < 4. When 4 ≤ d < n, something somehow surprising happens: the critical dimensions do not
exist.

Theorem 5. For n ∈ {5, 6, 7} and λ > 0, the following statements hold:

(i) if d ≥ n or d < n and λ ≥ λ1(d), (1) admits no solutions;

(ii) if 4 ≤ d < n, then (1) admits a radially symmetric solution for all λ ∈ (0, λ1(d)).

(iii) If d < 4, there exist C(n) > 0 such that problem (1) admits:

- no radially symmetric solution if λ < C(n) 4−d
n−d ;
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- a radially symmetric solution if

λ > min {3(8 − n)(n+ 4)(4 − d), λ∗(n)} , (5)

with λ∗(n) as defined in Table 1.

It is clear that for d close to 4 the minimum in (5) is given by 3(8−n)(n+4)(4− d) whereas for d < 4
far away from 4 the minimum is given by λ∗(n).
When d = −∞ or d = 0, by [7] and [32] we know that any solution to (1) is radially symmetric. A
similar statement is not known under Steklov boundary conditions. Then, in view of Theorem 5-(iii),
it is natural to wonder if the upper bound for the nonexistence of radial solutions to (1), is also an
upper bound for the nonexistence of any solution.
We observe that λ1(0) = Z4, where Z is the first zero of the Bessel function Jn−2

2

. According to [1]

we have:

n 5 6 7

λ1(0) 407.6653 695.6191 1103.3996

12(8 − n)(n+ 4) 324 240 132

Table 2: The lower bound for existence in (5) when d = 0.

By Tables 1 and 2, we see that when d = 0 the best lower bound for existence in (5) is 12(8−n)(n+4).

Figure 1: The existence and nonexistence regions when n = 5, 6, 7.

Figure 1 represents the existence and nonexistence regions, as d and λ vary, for radial solutions to
problem (1) as stated by Theorem 5. The question mark indicates the region not covered by our
results.

We recall that the best constant for the embedding D2,2 ⊂ L2∗(Rn) may be characterized by

S = inf
u∈D2,2(Rn)\{0}

‖∆u‖2
2

‖u‖2
2∗

. (6)
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It is shown in [34], see also [14], that for any smooth domain Ω ⊂ R
n we have

inf{‖∆u‖2
2; u ∈ H2 ∩H1

0 (Ω), ‖u‖2∗ = 1} = S

although the infimum is not achieved if Ω 6= R
n. This suggests to try to improve the Sobolev inequality

by adding remainder terms. In [13, Theorem 5], the remainder term added was of interior Lp-type
whereas in [6, Corollary 3] it was of H1 boundary type. Here, from Theorem 5-(iii), we deduce a
Sobolev inequality with both interior and boundary remainder terms:

Theorem 6. Let d ≤ 4, there exists an optimal Λ(d) ≥ 0 such that for all u ∈ H2 ∩H1
0 (B) we have

‖∆u‖2
2 ≥ S‖u‖2

2∗ + d‖u‖2
∂ν

+ Λ(d)‖u‖2
2. (7)

If n ≥ 8, Λ(d) ≡ 0. If n ∈ {5, 6, 7}, the map d 7→ Λ(d) is nonincreasing and strictly positive on
(−∞, 4). Furthermore, Λ(d) → 0 as d→ 4.

3 Existence and nonexistence for n ∈ {5, 6, 7}

3.1 Existence

Let S be as in (6). Up to translations and nontrivial real multiples, the infimum in (6) is achieved
only by the functions

uε(x) :=
1

(ε2 + |x|2)
n−4

2

(8)

for any ε > 0, see [10, Theorem 2.1] and [31, Theorem 4]. From (7.3) and (7.4) in [6] we have

∫

Rn

|uε|
2∗ =

ωn

2εn
[Γ(n

2 )]2

Γ(n)
=:

K2

εn

and
∫

Rn

|∆uε|
2 = S

K
2/2∗

2

εn−4
=:

K1

εn−4
. (9)

Here and in the sequel, ωn denotes the surface measure of the unit ball in R
n:

ωn := |∂B| =
2πn/2

Γ(n
2 )
, (10)

r := |x| denotes the radial variable. Set

H = {u ∈ H2 ∩H1
0 (B); u = u(r)}

and consider the minimization problem

Σd,λ := inf
u∈H\{0}

Qd,λ(u), (11)

where

Qd,λ : H2 ∩H1
0 (B) \ {0} → R, Qd,λ(u) =

‖∆u‖2
2 − d‖u‖2

∂ν
− λ‖u‖2

2

‖u‖2
2∗

. (12)

We have
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Proposition 7. If Σd,λ < S the infimum in (11) is achieved. Moreover, up to a change of sign and
to a Lagrange multiplier, any minimizer is a radial solution to (1).

The proof of Proposition 7 is given in [6, Proposition 13] for λ = 0 but it directly extends to the case
λ > 0.
The purpose of this section is to prove

Proposition 8. Let n ∈ {5, 6, 7} and d ≤ 4. If λ1(d) > 3(8 − n)(n+ 4)(4 − d) and

3(8 − n)(n+ 4)(4 − d) < λ < λ1(d) (13)

then (1) admits a radially symmetric solution. In particular, if d = 4, (1) admits a radial solution for
all λ ∈ (0, λ1(d)).

As shown by Table 1, it turns out that λ1(0) > 12(8− n)(n+ 4), for any n ∈ {5, 6, 7}. Since the map
d 7→ λ1(d) is concave, this allows to conclude that

λ1(d) > 3(8 − n)(n+ 4)(4 − d) for all d ≤ d ≤ 4,

for some d < 0. Hence, the assumptions of Proposition 8 make sense.

Proof. In view of Proposition 7, we are led to exhibit a nontrivial radial function Uε,δ ∈ H such that

Qd,λ(Uε,δ) < S. (14)

Our construction of this function Uε,δ depends on two parameters ε and δ and follows previous lines
of [16]. First, for δ ∈ (0, 1) we define

a :=
2(n− 2)

2 − nδn−2 + (n− 2)δn

and consider the function

Φ(δ) := a2(1 − δn)
[

(4 − d)(1 − δn) + nδn
]

−λa2

∫ 1

δ

(

2 + (n− 2)δn

2(n− 2)
−
rn−2

n− 2
−

δn

2r2

)2
dr

rn−7
−
λ δ8−n

8 − n
.

Some tedious computations show that

lim
δ→0

Φ(δ) = (n− 2)2
[

4 − d−
λ

3(8 − n)(n+ 4)

]

< 0

since (13) holds. Hence, we may fix δ > 0 such that

Φ(δ) < 0 . (15)

For such δ, let

gδ(r) :=















1 for r ∈ [0, δ]

a

(

2 + (n− 2)δn

2(n− 2)
−
rn−2

n− 2
−

δn

2r2

)

for r ∈ (δ, 1],

(16)

so that gδ ∈ C1[0, 1]∩W 2,∞(0, 1) and gδ(1) = 0. The explicit form (16) for gδ will be used at the very
end of this proof.
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Consider the family of functions

Uε,δ(x) = gδ(|x|)uε(x) =
gδ(|x|)

(ε2 + |x|2)
n−4

2

where, again, δ > 0 is fixed and satisfies (15). Then, Uε,δ ∈ H and

Uε,δ(x) = uε(x) =
1

(ε2 + |x|2)
n−4

2

in Bδ = {x ∈ R
n; |x| < δ}.

In what follows we let ε vary and we show that for ε sufficiently small (14) holds.
The asymptotic behavior of the denominator in (12) is readily obtained:

∫

B
|Uε,δ(x)|

2∗

=

∫

Rn

|uε(x)|
2∗ −

∫

Rn\B
|uε(x)|

2∗ −

∫

B\Bδ

1 − gδ(|x|)
2∗

(ε2 + |x|2)n

=
K2

εn
+O(1).

(17)

Here and below, O(1) and o(1) are intended as ε→ 0. Next, we seek an upper bound for the numerator.
By (9) we infer

∫

B
|∆uε|

2 =

∫

Rn

|∆uε|
2 −

∫

Rn\B
|∆uε|

2

=
K1

εn−4
− (n− 4)2

∫

Rn\B

(nε2 + 2|x|2)2

(ε2 + |x|2)n
=

K1

εn−4
− 4(n− 4)ωn + o(1).

Therefore, we may split the integral as follows
∫

B
|∆Uε,δ|

2 =

∫

Rn

|∆uε|
2 −

∫

B\Bδ

|∆uε|
2 +

∫

B\Bδ

|∆Uε,δ|
2 −

∫

Rn\B
|∆uε|

2

=
K1

εn−4
− 4(n− 4)ωn + o(1) +

∫

B\Bδ

(

|∆Uε,δ|
2 − |∆uε|

2
)

. (18)

In radial coordinates, after some computations we find

∆Uε,δ(r) = U ′′
ε,δ(r) +

n− 1

r
U ′

ε,δ(r)

=
g′′δ (r)

(ε2 + r2)(n−4)/2
+

g′δ(r)

r(ε2 + r2)(n−2)/2

[

(7 − n)r2 + (n− 1)ε2
]

−(n− 4)
gδ(r)

(ε2 + r2)n/2
(2r2 + nε2) .

Let us recall that g′δ(r) = g′′δ (r) = 0 for r < δ. Furthermore, as ε→ 0, we have

∆Uε,δ(r) =
g′′δ (r)

rn−4
+ (7 − n)

g′δ(r)

rn−3
− 2(n− 4)

gδ(r)

rn−2
+ o(1)

uniformly with respect to r ∈ [δ, 1]. By squaring, we get

|∆Uε,δ(r)|
2 =

g′′δ (r)2

r2n−8
+ (7 − n)2

g′δ(r)
2

r2n−6
+ 4(n− 4)2

gδ(r)
2

r2n−4
+
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+2(7 − n)
g′′δ (r)g′δ(r)

r2n−7
− 4(n− 4)

g′′δ (r)gδ(r)

r2n−6
+ 4(n− 4)(n− 7)

g′δ(r)gδ(r)

r2n−5
+ o(1).

We may now rewrite in simplified radial form the terms contained in the last integral in (18). With
some integrations by parts, and taking into account the behavior of gδ(r) for r ∈ {1, δ}, we obtain

∫ 1

δ

g′′δ (r)g′δ(r)

rn−6
dr =

n− 6

2

∫ 1

δ

g′δ(r)
2

rn−5
dr +

g′δ(1)2

2
, (19)

∫ 1

δ

g′′δ (r)gδ(r)

rn−5
dr = −

∫ 1

δ

g′δ(r)
2

rn−5
dr + (n− 5)

∫ 1

δ

g′δ(r)gδ(r)

rn−4
dr , (20)

∫ 1

δ

g′δ(r)gδ(r)

rn−4
dr =

n− 4

2

∫ 1

δ

gδ(r)
2

rn−3
dr −

1

2δn−4
. (21)

Using (19), (20) and (21) we find

∫

B\Bδ

(

|∆Uε,δ|
2 − |∆uε|

2
)

= ωn

∫ 1

δ

(

g′′δ (r)2

rn−7
+ 3(n− 3)

g′δ(r)
2

rn−5

)

dr

+(7 − n)ωng
′
δ(1)2 + 4(n− 4)ωn.

(22)

Let us now estimate the L2-norm for n ∈ {5, 6, 7}. With the change of variables r = εs we obtain

∫

B
|Uε,δ|

2 = ωnε
8−n

∫ δ/ε

0

sn−1

(1 + s2)n−4
ds+ ωn

∫ 1

δ

rn−1 gδ(r)
2

(ε2 + r2)n−4
dr .

Calculus arguments show that, as ε→ 0,

∫ δ/ε

0

s4

1 + s2
ds =

[

s3

3
− s+ arctan s

]δ/ε

0

=
δ3

3ε3
+ o(ε−3) ,

∫ δ/ε

0

s5

(1 + s2)2
ds =

[

s2 − log(1 + s2) −
s4

2(1 + s2)

]δ/ε

0

=
δ2

2ε2
+ o(ε−2) ,

∫ δ/ε

0

s6

(1 + s2)3
ds =

[

15

8
(s− arctan s) −

5

8

s3

1 + s2
−

1

4

s5

(1 + s2)2

]δ/ε

0

=
δ

ε
+ o(ε−1) .

Summarizing, we get
∫

B
|Uε,δ|

2 =
ωn δ

8−n

8 − n
+ ωn

∫ 1

δ

gδ(r)
2

rn−7
dr + o(1). (23)

Finally, simple computations show that
∫

∂B
(Uε,δ)

2
ν = ωng

′
δ(1)2 + o(1)

which, combined with (18) (22) (23), yields
∫

B
|∆Uε,δ|

2 − d

∫

∂B
(Uε,δ)

2
ν − λ

∫

B
U2

ε,δ

=
K1

εn−4
+ ωn

∫ 1

δ

(

g′′δ (r)2

rn−7
+ 3(n− 3)

g′δ(r)
2

rn−5
− λ

gδ(r)
2

rn−7

)

dr

+ωn(7 − n− d)g′δ(1)2 −
ωn δ

8−n

8 − n
λ+ o(1) .
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At this point of the proof we use the explicit form (16) of gδ. Then, some lengthy computations show
that the last equality may be rewritten as

∫

B
|∆Uε,δ|

2 − d

∫

∂B
(Uε,δ)

2
ν − λ

∫

B
U2

ε,δ =
K1

εn−4
+ ωnΦ(δ) + o(1) .

Therefore, by (15) and (17), we get

Qd,λ(Uε,δ) =
K1

εn−4 + ωnΦ(δ) + o(1)
(

K2

εn +O(1)
)2/2∗

= S +
ωnΦ(δ)

K2
εn−4 + o(εn−4) < S (24)

for sufficiently small ε. Hence, (14) follows and, by Proposition 7, we infer that there exists a positive
radial solution to (1). Proposition 8 is so proved. 2

3.2 Nonexistence

First we prove

Lemma 9. If u = u(r) is a radially symmetric solution to (1), then (−∆u)(r) and u(r) are radially
decreasing for r ∈ (0, 1) and (∆u)′(1) > 0, u′(1) < 0.

Proof. The proof follows the same idea of [29, Proposition 1], where Dirichlet boundary conditions
are considered.
Let u be a smooth radially symmetric solution to (1), then

rn−1(∆u)′(r) =

∫ r

0

(

sn−1(∆u)′(s)
)′
ds =

∫ r

0
sn−1

(

λu+ u2∗−1
)

ds > 0

for all r ∈ (0, 1]. Hence, (∆u)′(r) > 0 in (0, 1]. Now we set

v(r) :=











u′(r)

r
for r ∈ (0, 1] ,

u′′(0) for r = 0 .

Then, v is smooth in [0, 1] and satisfies























(rn+1v′(r))′ = rn−1(∆u)′(r) ≥ 0 r ∈ [0, 1] ,

v′(0) = 0 ,

v(1) = u′(1) .

By integrating we deduce that v′(r) ≥ 0 in [0, 1]. Since v(1) = u′(1) < 0, this yields v(r) < 0 in (0, 1]
and we conclude. 2

As expected, for nonexistence results to problem (1), a key tool is a Pohozaev-type identity [26, 27] in
the spirit of the one noted by Mitidieri [23]. More precisely, by arguing as in [6, Section 6], one sees
that the following identity holds

∫

∂B
[2(∆u)ν + d(n− d)uν ]uν dω = −4λ

∫

B
u2 dx

9



for any solution to (1). If we additionally require u to be radially symmetric, then we obtain

2(∆u)′(1)u′(1) + d(n− d)(u′(1))2 = −
4λ

ωn

∫

B
u2 dx = −4λ

∫ 1

0
rn−1u(r)2 dr , (25)

with ωn as in (10). Note that (25), combined with Lemma 9, readily implies that (1) admits no radial
solutions if λ = 0 and d < 0. Moreover, (25) is the key ingredient in the proof of the following

Proposition 10. Let n ∈ {5, 6, 7} and d < 4. There exists C(n) > 0 such that problem (1) admits no
radially symmetric solution for every λ < C(n) 4−d

n−d .

Proof. By the divergence Theorem we have

u′(1) =
1

ωn

∫

B
∆u and (∆u)′(1) =

1

ωn

∫

B
∆2u.

Hence, (25) becomes

−4λωn

∫

B
u2 = 2

(∫

B
∆2u

) (∫

B
∆u

)

+ d(n− d)

(∫

B
∆u

)2

. (26)

Let w(x) := (1 − |x|2)/(2n), with x ∈ B. Then, −∆w = 1 in B and w = 0 on ∂B. Next, if u is a
radial solution to (1), integrating by parts we deduce

−

∫

B
∆u =

∫

B
∆w∆u =

∫

B
w∆2u+

∫

∂B
wν∆u

=

∫

B
w∆2u−

d

n

∫

∂B
uν =

∫

B
w∆2u−

d

n

∫

B
∆u,

namely

−

∫

B
∆u =

n

n− d

∫

B
w∆2u.

This, inserted into (26), gives

4λωn(n− d)

n

∫

B
u2 =

(

2

∫

B
∆2u− nd

∫

B
w∆2u

) (∫

B
w∆2u

)

. (27)

Since
∫

B
w∆2u ≤

1

2n

∫

B
∆2u, (28)

the right hand side of (27) is positive for any d < 4. Denote by B1/2 the ball of radius 1/2. By Lemma
9, u is radially decreasing and so is ∆2u, hence

∫

B
∆2u =

∫

B1/2

∆2u+

∫

B\B1/2

∆2u ≤

∫

B1/2

∆2u+ |B \B1/2|∆
2u(1/2)

≤
1

w(1/2)

(

1 +
|B \B1/2|

|B1/2|

) ∫

B1/2

w∆2u =
n 2n+3

3

∫

B
w∆2u.

Hence,
∫

B
w∆2u ≥

3

n 2n+3

∫

B
∆2u =: K(n)

∫

B
∆2u. (29)
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In view of (28) and (29), by setting s :=
∫

B w∆2u and A :=
∫

B ∆2u, the right hand side of (27)
corresponds to the positive function

ψ(s) = 2As− nds2 , with s ∈

[

K(n)A ,
A

2n

]

.

The function ψ is concave so that the following estimate holds

ψ(s) ≥ min

{

ψ (K(n)A) , ψ

(

A

2n

)}

= A2 min

{

2K(n) − ndK2(n),
4 − d

4n

}

≥
3A2

n2n+4
(4 − d).

This, inserted into (27), gives

λ ‖u‖2
2 ≥

3

2n+6ωn

4 − d

n− d
‖∆2u‖2

1.

On the other hand, since n ∈ {5, 6, 7}, by a duality argument and elliptic estimates we know that
there exists c(n) > 0, independent of u, such that

‖∆2u‖2
1 ≥ c(n)‖u‖2

2.

Summarizing, if a radial solution of (1) exists we necessarily have that

λ ≥ C(n)
4 − d

n− d
,

for a suitable constant C(n) > 0. Hence, no solution exists if λ < C(n) 4−d
n−d . 2

4 Proof of Theorems 2, 5 and 6

4.1 Proof of Theorem 2

Proof of (i). Assume first that (1) admits a solution u for d ≥ n. Then, let φ1(x) = 1 − |x|2 be the
eigenfunction corresponding to the first Steklov boundary eigenvalue d = n of ∆2 in B, see [4]. We
recall that φ1 is the unique function, up to a multiplicative constant, for which the equality holds in
(2). By writing (3) with v = φ1, we deduce that

(n− d)

∫

∂B
uν (φ1)ν > (n− d)

∫

∂B
uν (φ1)ν − λ

∫

B
uφ1 =

∫

B
u2∗−1 φ1 > 0

and we immediately get a contradiction. Similarly, for d < n, we write (3) with v = φd
1, the first

eigenfunction corresponding to λ1(d), and we deduce that

(λ1(d) − λ)

∫

B
uφd

1 =

∫

B
u2∗−1φd

1.

Since φd
1 > 0 in B, this concludes the proof of (i).

Proof of (ii). We use the notations introduced in Section 3.1. By [10] we know that

inf
u∈H∩H2

0
(B)\{0}

Q0,λ(u) < S, for all 0 < λ < λ1(−∞),

where λ1(−∞) is the first Dirichlet eigenvalue of ∆2. Since H∩H2
0 (B) ⊂ H, this readily implies that

Σd,λ = inf
u∈H\{0}

Qd,λ(u) ≤ inf
u∈H∩H2

0
(B)\{0}

Qd,λ(u) = inf
u∈H∩H2

0
(B)\{0}

Q0,λ(u) < S,

for all 0 < λ < λ1(d) ≤ λ1(−∞). By Proposition 7 this gives the statement. 2
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4.2 Proof of Theorem 5

The proof of (i) is the same of Theorem 2-(i).

Proof of (ii). For 4 < d < n, by Theorem 1-(ii) we know that

inf
u∈H\{0}

Qd,0(u) < S,

see [6, 16] for the details. This implies that

Σd,λ = inf
u∈H\{0}

Qd,λ(u) ≤ inf
u∈H\{0}

Qd,0(u) < S,

for all 4 < d < n and for all 0 < λ < λ1(d). Then statement (ii) follows from Proposition 7.
For d = 4, the statement follows from Proposition 8.

Proof of (iii). For d < 4, the nonexistence for λ < C(n) 4−d
n−d comes from Proposition 10.

Now, by [10, Theorem 1.6], we deduce

Σd,λ = inf
u∈H\{0}

Qd,λ(u) ≤ inf
u∈H∩H2

0
(B)\{0}

Qd,λ(u) = inf
u∈H∩H2

0
(B)\{0}

Q0,λ(u) < S,

for all λ ∈ (λ∗, λ1(−∞)).
Combining the estimates so far collected with the statement of Proposition 8, with the aid of Table 1
and 3, we finally obtain the proof. 2

4.3 Proof Theorem 6

For any d ≤ 4, we set
Λ(d) := inf

u∈H2∩H1

0
(B)\{0}

Fd(u),

where

Fd : H2 ∩H1
0 (B) \ {0} → R, Fd(u) =

‖∆u‖2
2 − d‖u‖2

∂ν
− S‖u‖2

2∗

‖u‖2
2

.

By [6, Corollary 3] we know that

‖∆u‖2
2 ≥ S‖u‖2

2∗ + 4‖u‖2
∂ν
,

for all u ∈ H2 ∩H1
0 (B). Hence, Fd(u) ≥ 0 for all u ∈ H2 ∩H1

0 (B). This makes Λ(d) well-defined and
implies Λ(d) ≥ 0. Furthermore, by definition, the map d 7→ Λ(d) is nonincreasing. On the other hand,
recalling (4), we deduce that

Λ(d) ≤ λ1(d) −
S

|B|4/n
≤ λ1(−∞) −

S

|B|4/n
, for all d ≥ 4.

Assume that n ≥ 8. For any λ > 0 there exists uλ ∈ H2 ∩H1
0 (B) such that Qd,λ(uλ) < S, that is

Fd(uλ) < λ,

where uλ is the least energy solution to problem (1) as given by Theorem 2. This readily implies that
Λ(d) ≡ 0.
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When n ∈ {5, 6, 7}, in view of Theorem 5-(ii), the same argument applied above allows to deduce that
Λ(4) = 0. When d = 0, by [32] any positive solution to the Navier problem is radially symmetric. Thus,
Theorem 5-(iii) implies that problem (1) admits no solution for all λ < C(n) 4

n and by Proposition 7
we have

inf
u∈H2∩H1

0
(B)\{0}

Q0,λ(u) = S.

In particular, taking λ = C(n) 2
n , this implies

‖∆u‖2
2 ≥ S‖u‖2

2∗ + C(n)
2

n
‖u‖2

2,

for all u ∈ H2 ∩H1
0 (B). By this, F0(u) ≥ C(n) 2

n for all u ∈ H2 ∩H1
0 (B) and, in turn, we deduce that

Λ(0) > 0. Since
Fd(u) ≥ F0(u) ≥ Λ(0) for all d < 0,

we also deduce that Λ(d) > 0 for all d < 0. It remains to show that Λ(d) > 0 for any d ∈ (0, 4). Let
d1, d2 ∈ [0, 4], for any t ∈ (0, 1) there holds

Ftd1+(1−t)d2
(u) = tFd1

(u) + (1 − t)Fd2
(u) ≥ tΛ(d1) + (1 − t)Λ(d2),

for all u ∈ H2 ∩H1
0 (B). For d1 = 0 and d2 = 4 this gives

F(1−t)4(u) ≥ tΛ(0) > 0,

for all t ∈ (0, 1) and u ∈ H2 ∩H1
0 (B) and the statement follows. 2

Appendix: computation of λ1(d)

Being λ1(d) simple, the corresponding eigenfunction is a radially symmetric function.
It is known that all the radial smooth solutions to

∆2y = y on R
n

are
y(r) = r1−

n
2

(

c1Jn
2
−1(r) + c2In

2
−1(r)

)

c1, c2 ∈ R,

where the Jn
2
−1 and In

2
−1 are, respectively, the Bessel and the Bessel modified functions, see [10,

(4.19)] and [1]. We seek r0 > 0 such that y solves the problem

{

∆2y = y in Br0

y = r0∆y − dyν = 0 on ∂Br0
.

Writing the two boundary conditions in radial coordinates, we obtain the system

r
1−n

2

0

(

c1Jn
2
−1(r0) + c2In

2
−1(r0)

)

= 0 ,
[

r1−
n
2

(

c1Jn
2
−1(r) + c2In

2
−1(r)

)]′′
|r=r0

+n−1−d
r0

[

r1−
n
2

(

c1Jn
2
−1(r) + c2In

2
−1(r)

)]′
|r=r0

= 0 .
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By exploiting the identity F ′
ν(t) = Fν−1(t) −

ν
tFν(t) which holds for all ν ∈ R, for all t > 0 and

F = J, I, we deduce that nontrivial constants c1 and c2 can be determined provided

det





Jn
2
−1(r0) In

2
−1(r0)

4−n−d
r0

Jn
2
−2(r0) + Jn

2
−3(r0)

4−n−d
r0

In
2
−2(r0) + In

2
−3(r0)



 = 0. (30)

Once y is determined, we have that u(s) := y(r0s) solves

{

∆2u = r40u in B
u = ∆u− duν = 0 on ∂B.

Hence, if we put
α(d) := min{r0 = r0(d) > 0 : (30) holds},

then
λ1(d) = α4(d).

The existence of such α(d) follows from the existence of λ1(d). For fixed d, the explicit value of α(d)
as the first positive root of (30), can be determined numerically with Mathematica.

d 5 4 3 2 1 0 −∞

λ1(d) 0 133.95 231.84 305.55 362.53 407.67 769.93

Table 3: Some values of λ1(d) when n = 5.
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