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Abstract

In this article, we deal with the mathematical modeling and numerical simula-
tion of photocurrent transients in nanoscale mono-layer Organic polymer Solar
Cells (OSCs). The mathematical model consists of a system of non-linear diffusion-
reaction partial differential equations (PDEs) with electrostatic convection, coupled
to a kinetic ordinary differential equation (ODE). We propose a suitable reformu-
lation of the model which makes it similar to the classical drift-diffusion system for
inorganic semiconductor devices. This allows us, on the one hand, to prove the exis-
tence of a solution for the problem in both stationary and transient conditions and,
on the other hand, to better highlight the role of exciton dynamics in determining
the device turn-on time. For the numerical treatment of the problem, we carry out
a temporal semi-discretization using an implicit adaptive method, and the result-
ing sequence of differential subproblems is linearized using the Newton-Raphson
method with inexact evaluation of the Jacobian. Then, we use exponentially fitted
finite elements for the spatial discretization, and we carry out a thorough validation
of the computational model by extensively investigating the impact of the model
parameters on photocurrent transient times.

Key words: Organic photovoltaic devices; solar cells; reaction-diffusion systems
with electrostatic convection; numerical simulation; finite element method.

1 Introduction and Motivation

A continuously growing attention has been paid over the last years by the
international community and government authorities to monitoring the effect
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of the increase of global concentrations of carbon dioxide, methane and ni-
trous oxide on the quality of our every day’s life. Results on the investigation
carried out by the Intergovernmental Panel on Climate Change (IPCC) are
documented in a recent report [2], where it is shown that i) the increase in
carbon dioxide, the most important greenhouse gas, is primarily due to fos-
sil fuel use; and ii) the increased concentrations of carbon dioxide, methane,
and nitrous oxide have increased the average global temperature, strongly
contributing to the so-called ”global warming”.

Based on the aforementioned IPCC report, specific guidelines for governance
of energy waste emissions and sustainable future have then been ruled out by
the European Union (EU) in [15]. In this document, the EU has decided that
carbon dioxide emissions should decrease by 20 percent and that 20 percent
of the energy produced in EU should originate from renewable energy sources,
such as wind, water, biomass, and solar, not later than 2020. According to
these indications, research and design of third generation photovoltaic cells
and devices [20] for solar energy conversion into electrical and thermal energy
turns out to be a central topic in the wider area of renewable energy sources.
Roughly speaking, presently studied photovoltaic devices can be divided into
two main classes: organic cells [33,32,22] and electrochemical cells [19,18,4].
Most of investigation activity is devoted to the experimental study of inno-
vative materials to be employed for efficient and flexible technologies, and is
not presently accompanied by a systematic use of computational models that
allows to predict and optimize their performance.

In this article, we focus on the mathematical study of a special, and rele-
vant, class of OSCs, namely the Bulk Hetero-Junctions (BHJ), because they
currently represent the most promising technology in the area due to their
ability in maximizing the harvesting of photogenerated charge by mixing to-
gether the donor and acceptor materials into a single blended layer. A first
objective of this article is to carry out a mathematical investigation of the
charge transport model proposed in [25], to gain insight in the understanding
of the performance of the OSC, especially in terms of its dependence on the
main physical modeling parameters. As a matter of fact, the complexity of
the nanostructured BHJ material reflects into a high complexity of the sys-
tem equations, which consist of a set of non-linear PDEs of diffusion-reaction
type with electrostatic convection coupled with a kinetic ODE describing the
temporal evolution of exciton concentration in the cell, and strongly demands
for an a-priori analysis of the problem solution. With this aim, under suitable
assumptions on the model coefficients, i) we prove the existence of a solution
of the problem in stationary conditions; and ii) we derive a simplified model
in transient conditions, that is amenable for a qualitative analysis of the time
response of the device, and for which we again prove existence of a solution.
A second objective of this article is to develop and implement a robust nu-
merical algorithm for the computer-aided-design of advanced OSCs in both
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steady and time-dependent regimes. As a matter of fact, the computational
experiments of [25] indicate that the response of an OSC to a sharp turn-
on illumination, besides depending on carrier transport time, is significantly
determined by both geminate and bimolecular recombination processes. The
heavily non-linear interplay between these two-scale phenomena must, there-
fore, be properly accounted for, to allow an accurate and detailed description
of the input/output behaviour of the device, even under extreme working
conditions. With this aim, for the numerical treatment of the problem, we
carry out a temporal semi-discretization using an implicit adaptive method,
and the resulting sequence of differential subproblems is linearized using the
Newton-Raphson method with inexact evaluation of the Jacobian. Then, we
use exponentially fitted finite elements for the spatial discretization, in such
a way to ensure a stable approximation of steep internal and boundary layers
arising in the distribution profile of the photogenerated carriers in the OSC.
Both mathematical model and computational tool are then subject to a thor-
ough validation of the computational model by extensively investigating the
impact of the model parameters on photocurrent transient times.

A brief outline of the article is as follows. In Sect. 2, we describe the mathe-
matical model for organic solar cells; in Sect. 3, we carry out the analysis of
existence of a solution of the model, in both stationary and transient regimes;
in Sect. 4, we discuss the numerical formulation of the problem; in Sect. 5 we
illustrate the performance of model and methods in the simulation of a realis-
tic organic solar cell of nanoscale size; in Sect. 6 we address some concluding
remarks and indicate possible future research directions.

2 The Mathematical Model

In this section, we illustrate the mathematical model, proposed and numeri-
cally investigated in [25], that is used to describe the photogeneration mecha-
nisms that drive charge transport in BHJ solar cells. In view of the analysis of
the existence of a solution and of the discretization of the problem, we prefer
to present the system equations under a more general perspective than in [25],
following the treatment and notation of [36,42,43].

Let Ω be a bounded domain in R
d, d ≥ 1, with a Lipschitz boundary Γ ≡ ∂Ω

divided into two disjoint subregions, ΓD and ΓN , with meas(ΓD) > 0 and such
that ΓD ∩ ΓN = ∅, and denote by ν the outward unit normal vector along
Γ. Then, given any T ∈ (0, +∞), the initial-boundary value problem that we
wish to solve in ΩT ≡ Ω × (0, T ) to mathematically study and predict the
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macroscopic input/output behavior of the organic solar cell, reads:





−div(ε∇ϕ) =
2∑

i=1

qiui,

∂ui

∂t
−divJi(ui; ∇ϕ) = Gi(∇ϕ, X) − Ri(u)ui, i = 1, 2,

∂X

∂t
= g(u) − r(∇ϕ, X),

(1)

where u = [u1, u2]
T , ε is the dielectric permittivity of the material constituting

the cell, and q1 = −q, q2 = +q, q > 0 being the electron charge. Equations (1)
are supplied with the following constitutive relations for the flux densities Ji

Ji = Di(∇ϕ)∇ui + vi(∇ϕ)ui, (2)

and are subject to the following boundary and initial conditions:





u = U , ϕ = Ψ on ΓD × (0, T ),

Ji · ν = ∇ϕ · ν = 0 on ΓN × (0, T ),

u(x, 0) = U (x, 0) for x ∈ Ω,

X(x, 0) = X0(x) for x ∈ Ω,

(3)

where U = [U1, U2]
T and Ψ are given functions defined on ΩT , such that

Ui|ΓD
> 0, i = 1, 2, for all t ∈ (0, T ), and X0 is a given function defined on

Ω, with X0 ≥ 0 for almost every (a.e.) x ∈ Ω. The above Dirichlet-Neumann
boundary conditions represent the standard choice in semiconductor device
modeling [30,31,27]. More general Robin-type boundary conditions are con-
sidered in [25], and will be discussed in the numerical experiments of Sect. 5.

Problem (1)-(3) is a system of non-linearly coupled partial differential equa-
tions for the scalar unknowns u1, u2 and X. Equations (1)2, for i = 1, 2,
are advection-diffusion-reaction conservation laws analogous to those consid-
ered in [36,42,43] in the case of inorganic semiconductors, with convective
velocities vi depending on the electric field E = −∇ϕ consistently deter-
mined by the solution of the Poisson equation (1)1. Unlike the case considered
in [36,42,43], the above system is coupled with a kinetic ordinary differential
equation describing the time evolution of the variable X. In the application
at hand, the variables ui represent the concentrations of photogenerated elec-
trons (q1 = −q) and holes (q2 = +q), while X is the concentration of geminate
charge pairs. It is interesting to notice that the model (1)-(3) can be easily
extended to cover the more general case of an electro-chemical system of Ncarr

charged carriers ui interacting with Mchem chemical species Xj. This allows to
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adopt the analytical and computational techniques developed in the present
work to study other advanced photovoltaic devices for energy solar conver-
sion, such as the dye-sensitized solar cells proposed in [19,18] and numerically
investigated in [14], and will be the object of a forthcoming article.

According to conventional drift-diffusion theory (see, e.g., [27]), the convective
velocities vi are assumed to be proportional to the applied electric field

v1 = µ1E, v2 = −µ2E, (4)

the coefficients µi being the electron and hole mobilities, described by the
following Poole-Frenkel model [17,24], combined with a velocity saturation
model

µi =
(
µ−1

i,PF + µ−1
i,sat

)
−1

i = 1, 2, (5)

where

µi,PF = µi0 exp

(
− δi

KBTeff

+
√
|E|

(
βi

KBTeff

− γi

))

and

µi,sat =
vi,max

|E| ,

KB denoting the Boltzmann constant. A discussion of physically consistent
values for the model parameters δi, βi, γi, Teff and vi,sat is given along with the
numerical results in Section 5. Moreover, as done also in [25,43], the Einstein
relation between mobilities and diffusivities Di is assumed to hold

Di = Vthµi i = 1, 2, (6)

Vth = KBT/q denoting the thermal voltage corresponding to an absolute tem-
perature T . Relation (6) will be conveniently exploited in the analysis of the
existence of a solution of model (1)-(3) in the stationary case.

The specific form of the generation/recombination terms Ri, Gi, r and g is as
follows:





G1 = G2 = kdiss(|E|)X,

R1 = γu2, R2 = γu1,

g = G + γu1u2, r = (kdiss(|E|) + krec)X,

(7)

where the charge pairs recombination rate krec is a given constant, the photon
generation rate G is a given function of x and t, the bimolecular recombination
rate γ is of the Langevin form [33]

γ =
q

ε
(µ1 + µ2), (8)
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and the dissociation rate is [33]

kdiss(|E|) =
3 γ

4πa3
exp

(
− EB

KBT

)
Φ(b(|E|)), (9)

a being the initial separation of the bound electron-hole (e − h) pair, EB the
e−h pair binding energy, Φ(x) = J1(2

√
−2x)/

√
−2x = 1+x+x2/3+x3/18+

x4/180 + · · · (where J1 is the Bessel function of the first kind), and

b(|E|) =
q3 |E|

8πεK2
BT 2

.

3 System Analysis of the Model

In this section, we deal with the analysis of the existence of a solution of
system (1)-(3) in both stationary and transient regimes. From now on, as
commonly done in the case of inorganic semiconductor device modeling, we
indicate by n and p the concentrations of photogenerated electrons and holes,
resp., (formerly denoted by u1 and u2). Moreover, we assume that the model
parameters γ, kdiss, krec and G are all positive constant quantities in ΩT .
This allows us to express in an easy manner the dependent variable X as a
function of n, p and of the input data G and X0, in such a way that the re-
sulting equivalent system of PDEs (in the reduced set of unknowns ϕ, n and
p) can be written in the form of a two-carrier drift-diffusion (DD) model. In
the stationary case, it is possible to apply the techniques of [31] to prove the
existence of a solution of the problem, and it is expected that an analogous
result can be obtained by properly adapting the invariant region theory pro-
posed in [10,12] if the generation/recombination terms are as in (7)-(9). In the
transient case, the extension to the present setting of available results for the
DD model (see, e.g., [37,36,42,43] and the more recent work [44]) turns out
to be a non-trivial matter, because of the presence of an integro-differential
term at the right-hand side of the continuity equations for n and p. A first
attempt of the present work to address the study of the transient problem in
an OSC consists of approximating the above integro-differential term by the
trapezoidal quadrature rule. This model reduction approach allows us, on the
one hand, to use the techniques of [42,43] to prove the existence of a solution
of the (approximate) differential system, and, on the other hand, to better
highlight the role of exciton dynamics in determining the device turn-on time.
In the case of one-dimensional mono-layer structures as those considered in
the numerical experiments of Sect. 5, an alternative approach for the analysis
of the existence of a solution in the transient regime of the full model (1)-
(3) with (7)-(9), based on a temporal semi-discretization using the Backward
Euler method as proposed in [11], is currently under investigation.
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3.1 Notation

We let H := W 1,2(Ω) denote the usual (real) Sobolev space and let H0 be
the subspace of H defined by H0 = {v ∈ H | v|ΓD

= 0}. To study the time
evolution of system (1)-(3), we also introduce the space Y := L2(0, T ; H0) of
square integrable functions on (0, T ), with values in H0.

3.2 Analysis in the Stationary Regime

Setting ∂X/∂t = 0 in (1)3, we can eliminate the dependent variable X in favor
of n, p and of the input function G to obtain

X(x) = τ (G + γp(x)n(x)) , (10)

where τ := (kdiss + krec)
−1 is the time of response of the generation/recombi-

nation terms to light stimuli. Upon replacing (10) into the right-hand side of
the continuity equations (1)2, system (1)–(2) in stationary conditions assumes
the following form:





−div(ε∇ϕ) = q(p − n),

−divJn = τ (kdiss G − γ krec pn) ,

Jn = Dn∇n − µnn∇ϕ,

−divJp = τ (kdiss G − γ krec pn) ,

Jp = Dp∇p + µpp∇ϕ.

(11)

The analysis of the existence of a solution of (11) simplifies considerably by
exploiting the Einstein relation (6) to write the two flux densities as





Jn = Dn nr eϕ/Vth ∇u,

Jp = Dp nr e−ϕ/Vth ∇v,

(12)

where the new (adimensional) dependent variables u and v are related to the
carrier densities n and p by the Maxwell–Boltzmann statistics

n = nr u eϕ/Vth , p = nr v e−ϕ/Vth , (13)
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nr > 0 being a yet unspecified reference carrier concentration. From (13), we
see that u and v must be positive in Ω since n and p represent ”physical”
concentrations. Replacing (12) and (13) into (11), and choosing nr in such
a way that (γkrecn

2
r)/(kdissG) = 1, leads to study, for x ∈ Ω, the following

non-linear elliptic partial differential system in the unknowns ϕ, u and v:





−div(ε∇ϕ) = q nr(u eϕ/Vth −v e−ϕ/Vth),

−div(Dn eϕ/Vth ∇u) =
τkdissG

nr

(1 − uv),

−div(Dp e−ϕ/Vth ∇v) =
τkdissG

nr

(1 − uv),

(14)

supplied with the boundary conditions





ϕ = ΨD, u = (nD/nr) e−ΨD/Vth , v = (pD/nr) eΨD/Vth on ΓD,

Jn · ν = Jp · ν = ∇ϕ · ν = 0 on ΓN ,

(15)

where (ΨD, nD, pD) ∈ (L∞(ΓD))3, nD > 0 and pD > 0 being the Dirichlet
boundary data for n and p, respectively. Let us set

uD := (nD/nr) e−ΨD/Vth ≡ e−ϕnD/Vth , vD := (pD/nr) eΨD/Vth ≡ eϕpD/Vth ,

with uD > 0, vD > 0, and where

ϕnD := ΨD − Vth ln(nD/nr), ϕpD := ΨD + Vth ln(pD/nr).

Then, we can see that there exists Ψ+ ≥ 0 such that

e−Ψ+/Vth ≤ uD(x), vD(x) ≤ eΨ+/Vth for a.e. x ∈ ΓD, (16)

where

Ψ+ := max

{
max(sup

ΓD

(−ϕnD), sup
ΓD

(ϕpD)),−min(inf
ΓD

(−ϕnD), inf
ΓD

(ϕpD))

}
.

Following the guideline of [31], Sect.3.3, we can prove the result below.

Theorem 1 (Existence of a solution in stationary regime) Let uD and
vD satisfy (16). Then, system (14)–(15) admits a weak solution (ϕ∗, u∗, v∗) ∈
(H1(Ω) ∩ L∞(Ω))3 which satisfies the L∞-estimate

e−Ψ+/Vth ≤ u∗(x), v∗(x) ≤ eΨ+/Vth for a.e. x ∈ Ω,

min
(
inf
ΓD

ΨD, −Ψ+
)
≤ ϕ∗(x) ≤ max

(
sup
ΓD

ΨD, Ψ+

)
for a.e. x ∈ Ω.

(17)
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Going back to the original variables n and p through (13), we immediately
conclude that system (11) admits a solution (ϕ∗, n∗, p∗) ∈ (H1(Ω) ∩ L∞(Ω))3

which satisfies the L∞-estimate

nr e−Ψ̂+/Vth ≤ n∗(x), p∗(x) ≤ nr eΨ̂
+/Vth for a.e. x ∈ Ω, (18)

where Ψ̂+ := sup
ΓD

|ΨD| + Ψ+.

3.3 Analysis in Transient Regime

Analogously to what we have done in Sect. 3.2 in the stationary case, we can
use (1)3 to eliminate the dependent variable X in favor of n, p and of the
input functions G and X0, to obtain

X(x, t) = ξ(x, t) + γ
∫ t

0
p n e−(t−s)/τ ds, (19)

where ξ(x, t) := X0(x) e−t/τ +τ G(1 − e−t/τ ). Upon replacing (19) into
the right-hand side of (1)2, we can write the continuity equations for the
photogenerated electrons and holes in the following form:





∂n

∂t
− divJn = f(x, t) − γ τ p n

(
krec + kdiss e−t/τ

)
+ Iλ(t)

∂p

∂t
− divJp = f(x, t) − γ τ p n

(
krec + kdiss e−t/τ

)
+ Iλ(t),

(20)

where f(x, t) := kdissξ(x, t) and

Iλ(t) := γ kdiss

∫ t

0
[λ(s) − λ(t)] e−(t−s)/τ ds, (21)

with λ(t) := p(·, t) n(·, t). The three contributions at the right-hand sides
of (20)1 and (20)2 have an interesting physical meaning. The first two con-
tributions (one strictly positive, the other strictly negative) account for the
generation and recombination mechanisms occurring instantaneously (i.e., at
time t), while the third contribution (that does not have a-priori a definite
sign) is a convolution term, which makes the dependence of the current on
the electron and hole densities to be non-local in time but with a “memory
window” of size proportional to τ , acting in a similar manner to non–linear vis-
cosity mechanisms in viscoelastic models [39]. The presence of the convolution
term Iλ makes the form of the production terms in the OSC continuity equa-
tions significantly different from those in the classical DD continuity equations
for inorganic semiconductor device modeling [38,30,31,27]. This fact has two
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important consequences, one of physical nature, the other of mathematical
nature. On the one hand, devising a simple physical picture to interpret the
photocurrent transient in an OSC is far from immediate, thus clearly justi-
fying the continuous increase in the use of simulation tools (see, e.g.., [8,25]
and the references cited therein). On the other hand, extending to the case
of OSCs the existence results available in the case of the transient DD model
(see, e.g., [36,42,43] and [1,44]) is an absolutely non-trivial task.

The above considerations suggest to operate a consistent simplification of the
model equations (20)–(21) through a suitable approximation of Iλ(t). With
this aim, we assume that the dependent variables n and p are sufficiently
smooth functions of x and t, and we let

gτ (s; t) := [λ(s) − λ(t)] e−(t−s)/τ ,

from which we have gτ (t; t) = 0 for all t. Then, replacing Iλ(t) with its quadra-
ture given by the trapezoidal rule, yields

Iλ(t) ≃ Ĩλ(t) = γ kdiss
t

2
[gτ (0; t) + gτ (t; t)] = γ kdiss

t

2
e−t/τ [λ(0) − λ(t)] ,

(22)

where the positive term proportional to λ(0) can be regarded as a contribution
to the free carrier generation process and the negative term proportional to
−λ(t) can be regarded as a contribution to the free carrier recombination
process. The approximate model to describe photocurrent transients in an
OSC is then obtained replacing the convolution term Iλ(t) in (20) with Ĩλ(t),
and reads:





−div(ε∇ϕ) = q(p − n),

∂n

∂t
− divJn = Gn(x, t, n, p) − Rn(x, t, n, p)n,

Jn = Dn∇n − µnn∇ϕ,

∂p

∂t
− divJp = Gp(x, t, n, p) − Rp(x, t, n, p)p,

Jp = Dp∇p + µpp∇ϕ,

(23)

where the modified generation/recombination mechanisms are defined as





Gn(x, t, n, p) = Gp(x, t, n, p) = f(x, t) + γ kdiss
t

2
e−t/τ n(·, 0) p(·, 0)

Rn(x, t, n, p)n = Rp(x, t, n, p)p = γ
[
τ(krec + kdiss e−t/τ ) + kdiss

t

2
e−t/τ

]
np.

(24)
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Having derived a new, simplified, model, it is natural to ask to which extent
the novel formulation is capable to describe correctly the main features of
the performance of an OSC. With this aim, we first investigate the quality of
the approximation provided by Ĩλ(t), and then we address the analysis of the
existence of a solution for the approximate model.

The quadrature error E(t) := Iλ(t) − Ĩλ(t) associated with the use of the
trapezoidal rule in (22) is given by the following relation [34]

E(t) = − t3

12

(
λ′′(η)e−(t−η)/τ + 1/τ 2gτ (η; t)

)

= − t3

12
e−t/τ

(
λ′′(η) + 1/τ 2(λ(η) − λ(t))es/τ )

)
,

(25)

where η ∈ (0, t). Eq. (25) shows that E(t) becomes negligible as t → 0 or
t → +∞. This means that the predicted (computed) stationary current is
independent of the use of (22) or the exact expression Iλ(t) in (20), as numer-
ically verified by the simulations discussed in Sect. 5.1. However, for a finite
value of time t, the discrepancy between the exact convolution term and its ap-
proximation may be non-negligible. A reasonable estimate of the error would
require a knowledge on the temporal behavior of the photogenerated carrier
densities n and p as a function of time. This knowledge not being available, we
can still gain some information on the quadrature error by an analogy with the
approximation of the recombination/generation term that is usually carried
out in the study of currents in a p−n junction in the inorganic case (see [40]).
This analogy suggests that the value of E(t) during the photocurrent transient
(i.e., for t sufficiently far from 0 but also sufficiently far from stationary con-
ditions) might become significant if the OSC is operating under high injection
conditions, or, equivalently, high current level conditions. Again, this latter
statement is numerically verified by the simulations discussed in Sect. 5.1.

We conclude the analysis of the simplified model for an OSC proving the
existence of a solution of system (23)-(24) subject to the initial/boundary
conditions (3). For this, we refer to [42,43], and check whether the problem
coefficients Dν , vν and Rν , for ν = {n, p}, satisfy all of the assumptions (Ei)–
(Eiv) of [42], p. 296 and (H1)–(H4) of [43], p. 1202. It is immediate to see that
the functions Rn and Rp are positive for p > 0 and n > 0 and satisfy locally
Lipschitz conditions, with a Lipschitz constant which is uniform in time and
equal to 2γ. As a matter of fact, for Rn we have, for all n′, p′, n′′, p′′ and for
all x and t

|Rn(x, t, n′, p′) − Rn(x, t, n′′, p′′)| ≤ γ (τ(krec + kdiss) + τkdiss) |p′ − p′′|

≤ 2γ|p′ − p′′|,

and the same estimate holds for Rp provided to exchange |p′−p′′| with |n′−n′′|.
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Moreover, the choice of the mobility model (5) ensures that there exist positive
constants Dmin, Dmax and vmax such that

0 < Dmin ≤ Dn(x, t), Dp(x, t) ≤ Dmax for a.e. (x, t) ∈ ΩT ,

and
|vn(x, t)|, |vp(x, t)| ≤ vmax for a.e. (x, t) ∈ ΩT .

The above properties of the problem coefficients ensure that the required as-
sumptions of [42] and [43] are verified, so that we can prove the result below.

Theorem 2 (Existence of a solution in the transient regime) Let the
initial data U and X0, and the function Ψ be such that U ∈ H1(ΩT )∩L∞(ΩT ),
with U > 0, X0 ∈ L∞(Ω) with X0 ≥ 0, and Ψ ∈ H1(ΩT ) ∩ L∞(ΩT ). Then,
setting u = [n, p]T , system (23)-(24), supplied with the initial/boundary con-
ditions (3), admits a weak solution (ϕ, u) such that:

(1) u > 0 a.e. in ΩT ;
(2) u(x, 0) = U (x, 0) and u − U ∈ L2(0, T ; H0);
(3) u ∈ C(0, T ; L2(Ω)) ∩ L∞(ΩT );

(4)
∂u

∂t
∈ L2(0, T ; H ′

0);

(5) ϕ − Ψ ∈ L2(0, T ; H0) with ϕ ∈ L∞(ΩT );

and satisfying




∫

Ω
ε∇ϕ(t) · ∇η =

∫

Ω

(
2∑

i=1

qiui(t)

)
η for a.e. t ∈ [0, T ],

∫

ΩT

∂ui

∂t
ρi +

∫

ΩT

Ji · ∇ρi

+
∫

ΩT

Ri(x, t,u)uiρi =
∫

ΩT

Gi(x, t,u)ρi i = 1, 2,

(26)

for all η ∈ H0 and ρ = [ρ1, ρ2]
T ∈ Y .

Using the representation formula (19) and the regularity of X0, n and p, we
have that

X,
∂X

∂t
∈ C(0, T ; L2(Ω)) ∩ L∞(ΩT )

with X(x, t) > 0 for all t > 0 and for a.e. x ∈ Ω.

4 Numerical Discretization

In this section, we illustrate the numerical techniques for the simulation of
the full model (1)–(3), as the same approach can be used, with slight mod-
ifications, to treat the reduced approximate model (23)–(24). In designing
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the algorithm presented here, our aim is twofold: on the one hand, it seems
natural to try to adapt methods that are known to work efficiently and re-
liably for transient simulation of inorganic semiconductor devices (see, e.g.,
[38] Chapt. 6, Sect. 4); on the other hand, as the emphasis of the present pa-
per is on accurately estimating photocurrent transient times, it is necessary to
apply advanced time-step control techniques [3,23]. To this end, our chosen ap-
proach is based on Rothe’s method (also known as method of horizontal lines)
which consists of three main steps: first, the time dependent problem is trans-
formed into a sequence of stationary differential problems by approximating
the time derivatives by a suitable difference formula; then, the resulting non-
linear problems are linearized by an appropriate functional iteration scheme;
and, finally, the linear differential problems obtained are solved numerically
using a Galerkin–Finite Element Method (G–FEM) for the spatial discretiza-
tion. Sects. 4.1, 4.2 and 4.3 below discuss in more detail each of these steps;
it is worth noting that, with minor modifications, the linearization techniques
of Sect. 4.2 can also be applied to treat the stationary model (11).

4.1 Time Discretization

To transform the time dependent problem (1)–(3) into a sequence of stationary
problems, we replace the partial time derivative with a suitable finite differ-
ence approximation, specifically, the Backward Differencing Formulas (BDF)
of order m ≤ 5 (see, e.g., [3], Sect. 10.1.2). To describe the resulting station-
ary problem, let 0 = t0 < . . . < tK−1 < tK < T be a strictly increasing, not
necessarily uniformly spaced, finite sequence of time levels and assume the
quantities u1 = n, u2 = p, X and ϕ to be known functions of x for every tk,
k = 0 . . . K − 1. Then we can then rewrite (1) as:





−div(ε∇ϕK) + q (nK − pK) = 0

m∑

k=0

θknK−k − divJn(nK ; ∇ϕK) − UK = 0

m∑

k=0

θkpK−k − divJp(pK ; ∇ϕK) − UK = 0

m∑

k=0

θkXK−k − WK = 0,

(27)

where fk = f(x, tk) for any generic function f = f(x, t), and
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UK := U(∇ϕK , nK , pK , XK , tK)

= Gn(∇ϕK , nK , pK , XK , tK) − Rn(∇ϕK , nK , pK , XK , tK) nK

= Gp(∇ϕK , nK , pK , XK , tK) − Rp(∇ϕK , nK , pK , XK , tK) pK ,

WK := W (∇ϕK , nK , pK , XK , tK)

= g(∇ϕK , nK , pK , XK , tK) − r(∇ϕK , nK , pK , XK , tK).

System (27), together with the constitutive relations for the fluxes given in (2)
and the set of boundary conditions (3), constitutes a system of non-linear ellip-
tic differential equations ((27)1−3) coupled to an algebraic constraint equation
((27)4). In our implementation, the selection of the next time level tK and
of the formula’s order m, as well as the computation of the corresponding
coefficients θk, k = 0, . . . ,m, is performed adaptively to minimize the time
discretization error while minimizing the total number of time steps via the
DAE solver software library DASPK [7,41]. Notice that, if m = 1, we have
θ0 = −θ1 = 1

tK−tK−1
, θk = 0, k > 1, and the temporal semi-discretization of

system (1)–(3) coincides with the Backward Euler method.

4.2 Linearization

To ease the notation, throughout this section the subscripts denoting the cur-
rent time level will be dropped. Let y := [ϕ, n, p, X]T denote the vector of
dependent variables and let 0 denote the null vector in R

4. Then, the non-linear
system (27) can be written in compact form as

F(y) = 0, with F(y) =





fϕ(ϕ, n, p)

fn(ϕ, n, p,X)

fp(ϕ, n, p,X)

fX(ϕ, n, p,X)





. (28)

The adopted functional iteration technique for the linearization and successive
solution of problem (27) is the Newton-Raphson method. One step of this
scheme can be written as



∂ϕ(fϕ) ∂n(fϕ) ∂p(fϕ) 0

∂ϕ(fn) ∂n(fn) ∂p(fn) ∂X(fn)

∂ϕ(fp) ∂n(fp) ∂p(fp) ∂X(fp)

∂ϕ(fX) ∂n(fX) ∂p(fX) ∂X(fX)




(ϕ,n,p,X)




∆ϕ

∆n

∆p

∆X




=




−fϕ(ϕ, n, p)

−fn(ϕ, n, p,X)

−fp(ϕ, n, p,X)

−fX(ϕ, n, p,X)




(29)
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where ∂a(f) denotes the Frechét derivative of the non-linear operator f with
respect to the function a. More concisely, we can express (29) in matrix form
as

J(y) ∆y = −F(y),

where J is the Jacobian matrix and ∆y := [∆ϕ, ∆n, ∆p, ∆X]T is the un-
known increment vector. The exact computation of all the derivatives in the
Jacobian on the left hand side in (29) can become quite complicated if the
full model for all the coefficients (most notably the electric field dependence
of kdiss, µn and µp) is taken into account. Moreover, this would require non-
trivial modifications to the solver code whenever a new coefficient model is
to be implemented. One alternative could be to employ a staggered solution
algorithm, often referred to as Gummel-type approach in the semiconductor
simulation context [21,12]. The decoupled approach is well known to be more
robust as compared to the fully coupled Newton approach (29) with respect
to the choice the initial guess and also less memory consuming. As in this par-
ticular study we can rely on the knowledge of the system variables at previous
time levels to construct a reasonable initial guess and as we are dealing with an
intrinsically one-dimensional problem (see Sect. 5), memory occupation is not
likely to be a stringent constraint, so that we adopt a quasi-Newton method
where, rather than the exact Jacobian J(y) we use an approximation J̃(y)
in which the dependence of the mobilities, of the diffusion coefficients and of
the dissociation coefficient on the electric field is neglected. This approach has
the further advantage of facilitating the use of a standard software library like
DASPK for advancing in time.

4.3 Spatial Discretization and Balancing of the Linear System

Once the linearization described in the previous section is applied, the result-
ing linear system of PDEs is numerically approximated by means of a suitable
G–FEM. Precisely, to avoid instabilities and spurious oscillations that may
arise when the drift terms become dominant, we employ an exponential fitting
finite element discretization [5,16,46,29]. This formulation provides a natu-
ral multi-dimensional extension of the classical Scharfetter-Gummel difference
scheme [35,6] and ensures, when applied to a carrier continuity equation in
the DD model, that the computed carrier concentration is strictly positive
under the condition that the triangulation of the domain Ω is of Delaunay
type. It is important to notice that, when implementing on the computer the
above described procedure, the different physical nature of the unknowns of
the system and their wide range of variation may lead to badly scaled and
therefore ill-conditioned linear algebraic problems, which in turn can nega-
tively affect the accuracy and efficiency of the algorithm. To work around this
issue, we introduce two sets of scaling coefficients, denoted {σϕ, σn, σp, σX}
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and {ϕ̄, n̄, p̄, X̄}, and restate problem (28) as





1

σϕ

fϕ(ϕ̄ϕ̂, n̄n̂, p̄p̂) = 0

1

σn

fn(ϕ̄ϕ̂, n̄n̂, p̄p̂, X̄X̂) = 0

1

σp

fp(ϕ̄ϕ̂, n̄n̂, p̄p̂, X̄X̂) = 0

1

σX

fX(ϕ̄ϕ̂, n̄n̂, p̄p̂, X̄X̂) = 0,

(30)

where ϕ̂ := ϕ/ϕ̄, n̂ := n/n̄, p̂ := p/p̄ and X̂ := X/X̄. Solving (30) for the
scaled dependent variables [ϕ̂, n̂, p̂, X̂]T corresponds to solving a system
equivalent to (29) where the rows of the Jacobian J and of the residual F are
multiplied by the factors {1/σϕ, 1/σn, 1/σp, 1/σX} while the columns of J
are multiplied by the factors {ϕ̄, n̄, p̄, X̄}. Computational experience reveals
that a proper choice of the scaling coefficients might have a strong impact on
the performance of the algorithm. For example, to obtain the results of Fig. 7
a suitable choice was found to be that of setting σϕ = 1, σn = σp, = 103, σX =
102 and ϕ̄ = 1, n̄ = p̄, = 1022, X̄ = 1019 while values differing by more than
one order of magnitude from such choice were found to hinder the ability of
the DAE solver to reach convergence.

5 Numerical Results

In this section, we carry out a thorough validation of the models and numerical
techniques discussed and analyzed in the previous sections of the article. Given
the intrinsically one-dimensional structure of BHJ cells, we assume henceforth
that the computational domain is the interval Ω = [0, LOSC ]. To allow an
immediate comparison with [25], we set LOSC = 70nm, T = 300 K and
EB = 0.5 eV , while the relative permittivity constant is εr = 4 and the
applied voltage is ∆V := ΨD(0) − ΨD(LOSC) = 0.5 V .

5.1 The Case of Constant Problem Coefficients

In this section, the positive constant quantities kdiss is computed by replacing
the spatially varying electric field E with its constant approximation < E >:=
−∆V/LOSC . Electron and hole mobilities are given constant values and, as
a result of (8), also the bimolecular recombination rate is constant. In all
subsequent graphical results, the dotted line refers to the solution computed
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with the full model (19)-(20)-(21) while the solid line refers to the simplified
approximate model (23)-(24).

Figures 1-2-3 refer to a device under low light intensity conditions and show
the impact on the turn-on transient time of the value of the mobilities, of the
geminate pair dissociation rate and of the recombination rate, respectively.

(a) Low mobilities: µn = µp = 2 ×
10−9m2V −1s−1

(b) High mobilities: µn = µp = 2 ×
10−8m2V −1s−1

Figure 1. Photocurrent transient at low light intensity: effect of mobility on rise
time.

(a) kdiss = 4.4 × 105s−1 (b) kdiss = 8 × 106s−1

Figure 2. Photocurrent transient at low light intensity: effect of dissociation rate on
rise time.

One may observe that, while at low intensity a change of one order of mag-
nitude in the value of the mobility produces an almost equal change in the
transient time, at high light intensity a similar change in the mobility has
an almost negligible impact. In this latter regime, variations in the dissocia-
tion rate kdiss and, more notably the recombination rate krec, produce a more
dramatic effect.

The analysis of the above results clearly shows that, even in the simple case of
constant model coefficients, it is absolutely non-trivial to relate the transient
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(a) krec = 105s−1 (b) krec = 107s−1

Figure 3. Photocurrent transient at low light intensity: effect of geminate pair re-
combination rate on rise time.

(a) Low mobilities: µn = µp = 2 ×
10−9m2V −1s−1

(b) High mobilities: µn = µp = 2 ×
10−8m2V −1s−1

Figure 4. Photocurrent transient at high light intensity: effect of mobility on rise
time.

(a) kdiss = 4.4 × 105s−1 (b) kdiss = 8 × 106s−1

Figure 5. Photocurrent transient at high light intensity: effect of dissociation rate
on rise time.

behavior of the device to a single model parameter, because of the strongly
non-linear interplay of the several occurring physical phenomena.

As for the comparison of the simplified model (23)-(24) with respect to the full
model (19)-(20)-(21) we observe that, as shown by the analysis of Sect. 3.3,
the steady-state currents predicted by the two models always agree perfectly.
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(a) krec = 105s−1 (b) krec = 107s−1

Figure 6. Photocurrent transient at high light intensity: effect of geminate pair
recombination rate on rise time.

As for the prediction of the transient duration, the two models are in very good
agreement except for the case of a device with high generation efficiency (i.e.,
a low value of krec) under high light intensity (cf. Fig. 6(a)), as anticipated in
Sect. 3.3. This trend is confirmed by several other numerical experiments, not
reported here, which seem to clearly indicate that the discrepancy between the
model with exact evaluation of the convolution term Iλ(t) and its approximate
counterpart tends to occur in the high photocurrent regime.

5.2 The Case of Varying Problem Coefficients

In this section we compare the results of simulations performed by our code
to that of [25]. With this aim, instead of the simple Dirichlet boundary con-
ditions considered in this article, we have employed the more involved current
injection model of [9]. Figure 7 shows the time evolution of the electron density

(a) krec = 105s−1 (b) krec = 107s−1

Figure 7. Time evolution of the electron distribution at high intensity with (a) high
charge generation efficiency and (b) low charge generation efficiency.

in the device under strong illumination conditions (G = 4.3 · 1030 m−3s−1).
Hole density is not shown in the figures but, due to the choice of equal mobil-
ities, it is the exact mirror image of the electron density. Notice that, for this
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particular application, the carrier densities at a given point in the device are
non-decreasing functions of time. As a consequence, the quantity Iλ(t) defined
in (21) has a positive sign and can therefore be regarded as an additional
recombination term.

Figure 8 compares the impact on turn-on transient time of the various model
parameters. As noted in the previous section, while at low intensities the
carrier mobilities significantly impact the transient time, at high intensity their
effect is almost negligible if compared to that of geminate pair dynamics. The
results shown are in perfect agreement with those of [25].

(a) (b)

(c) (d)

Figure 8. Transient currents at low and high intensities with different mobilities
and geminate recombination rate constants. Generation rates, G , charge generation
efficiencies, P , and net charge generation efficiencies, Pnet, are shown in each case.
For (a) and (b) the mobility was 2× 10−4cm2V −1s−1 with geminate recombination
rate constants krec = 1 × 105s−1 and 1 × 107s−1 respectively. For (c) and (d)
the mobility was 2 × 10−5cm2V −1s−1 with geminate recombination rate constants
krec = 1 × 104s−1 and 1 × 106s−1 respectively. .
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6 Conclusions and Future Work

In this article, we have dealt with the mathematical modeling and numeri-
cal simulation of photocurrent transients in nanoscale mono-layer OSCs. The
model consists of a system of non-linear diffusion-reaction PDEs with elec-
trostatic convection, coupled to a kinetic ODE. We have proposed a suitable
reformulation of the model which makes it similar to the drift-diffusion sys-
tem for inorganic semiconductor devices. This has allowed us to prove the
existence of a solution for the problem in both stationary and transient condi-
tions and to highlight the role of exciton dynamics in determining the device
turn-on time. For the numerical treatment, we carried out a temporal semi-
discretization using an implicit adaptive method, and the resulting sequence
of differential subproblems was linearized using the Newton-Raphson method
with inexact Jacobian. Exponentially fitted finite elements were used for spa-
tial discretization, and a thorough validation of the computational model was
carried out by extensively investigating the impact of the model parameters
on photocurrent transient times.

Future work is warranted in the following three main areas: 1) extensions to
the model; 2) improvement of the analytical results; and 3) development of
more specialized numerical algorithms. In detail:

1) we intend to include exciton transport in order to be able to simulate
multi-layer or nano-structured devices [8,32,28,45];

2) we aim to extend Theorem 2 to cover the full problem (1)–(2)–(3). A
possible approach to achieve this result is to apply Theorem 2 locally on a
partition of [0, T ] into sub-intervals of size ∆t, and verify the hypotheses of
the Aubin lemma [26] to extract a limiting solution as ∆t → 0;

3) starting from the above idea, we intend to devise a numerical algorithm for
the local approximation of the full model system over each sub-interval of
size ∆t using the reduced model (23)–(24). The computer implementation
of this approach is straightforward as it basically amounts to a successive
application of the formulation discussed in Sect. 4 on each time slab. A
further improvement to the algorithm might be to improve the robustness
of the non-linear solver with respect to the choice of scaling parameters (cf.
Sect. 4.3) by adopting a staggered solution scheme based on some variant
of Gummel’s Map [21,13]. Such scheme could be either employed as an
alternative to the current Newton solver or, even more effectively, combined
with this latter in a predictor-corrector fashion.
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