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VARIATIONAL APPROACH TO IMAGE SEGMENTATION

MICHELE CARRIERO, ANTONIO LEACI & FRANCO TOMARELLI

Abstract. This paper focuses on a second order functional depending
on free discontinuity and free gradient-discontinuity, whose minimizers
provide a variational solution to contour detection problem in image
segmentation.
We briefly resume the state of the art about Blake & Zisserman func-
tional under different types of boundary condition which are related to
contour enhancement in image segmentation.
We prove a new Caccioppoli inequality suitable to study regularity of
minimizers of related boundary value problems in any dimension n ≥ 1
and deduce that there are no nontrivial local minimizers in half-space.

1. Introduction

This paper deals with free discontinuity problems related to image segmenta-
tion, focusing on the mathematical analysis of Blake & Zisserman functional.

Calculus of Variations is the framework where energy minimization and
equilibrium notions find a precise language and formalizations by means of
variational principles.

Image segmentation is a relevant problem both in digital image processing
and in the understanding of biological vision.

There exist many different way to define the tasks of segmentation (tem-
plate matching, component labelling, thresholding, boundary detection, quad-
trees, texture matching, texture segmentation) and there is no universally
accepted notion (optimality criteria for segmentation, analogies and differ-
ences between biological and automata perspective in segmentation): here
the exposition is confined to one model for decomposing an image field,
where is given a function describing the signal intensity associate to each
point (typically the light intensity on a screen image). Such purpose has a
clear connection with the problem of optimal partitions of a domain mini-
mizing the length of the boundaries.

In simple words the segmentation we look for provides a cartoon of the
given image satisfying some requirements: the decomposition of the image
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is performed by choosing a pattern of lines of steepest discontinuity for light
intensity, and this pattern will be called segmentation of the image.
The variational formalizations of segmentation models ([7],[23],[30],[31],[32])
provided deeper understanding of image analysis, produced intriguing math-
ematical questions (some of them still open) and entailed global estimates
for geometric quantities in visual and automatic perception at both low and
high level vision.

We discuss some recent results based on the innovative notion of free
discontinuity problem introduced by Ennio De Giorgi ([25]). This approach
balances carefully signal smoothing and segmentation length. In such frame-
work, modern tools of Geometric Measure Theory and recent developments
about minimal surfaces and regularity of extremals in Calculus of Variations
allow the study of problems coupling bulk and surface terms: in such con-
text discontinuous (in the mathematical sense) solutions are admissible and
sometimes their discontinuities are the main features of the solution.

Usual techniques for interior regularity do not apply at the boundary
to bi-laplacian operator with homogeneous Dirichlet condition, since Duffin
extension of bi-harmonic function may increase a lot H2 norm ([19],[27]):
this fact introduces an additional difficulty in the study of regularity through
blow-up.

Nevertheless capability of dealing Dirichlet-type boundary conditions seems
a relevant point in relationship to in-painting problems ([22],[23]).

Here we focus a second order functional depending on free discontinu-
ity and free gradient-discontinuity, whose minimizers provide a variational
solution to contour detection problem in image segmentation. In Section
2 we resume the present state of the art about Blake & Zisserman func-
tional ([5],[6],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18],[19]). Then we focus
the case of homogeneous Dirichlet condition at flat boundary in any di-
mension n ≥ 1: first we prove a Caccioppoli inequality (Theorems 3.4,3.6),
suitable in further study of regularity ([20],[21]) for minimizers of related
boundary value problems, then we deduce that there are no nontrivial local
minimizers in half-space with bounded segmentation (Theorem 3.8); even-
tually we show that neither a 1-dimensional step nor an infinite wedge are
local minimizers (Theorems 3.9, 3.10).

Outline of the paper

1. Introduction
2. Research background
3. Caccioppoli inequality and some consequences
4. References
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2. Research background

Image segmentation is a relevant problem both in digital image process-
ing and in the understanding of biological vision. There are many different
ways ([23],[31],[32],[33]) to define the tasks of segmentation. Several differ-
ent variational formalizations ([2],[3],[10],[23],[24],[26],[33]) of segmentation
models provided deeper understanding of image analysis.

This paper deals with a variational model for decomposing an image field,
where is given a function describing the signal intensity associate to each
point (typically the light intensity on a screen image).

The segmentation we look for provides a cartoon of the given image sat-
isfying some requirements: the decomposition of the image is performed by
choosing a pattern of lines of steepest discontinuity for light intensity, and
this pattern will be called segmentation of the image. The analysis is based
on the notion of free discontinuity problem introduced by Ennio De Giorgi
([25]) and balances carefully signal smoothing and segmentation length by
coupling bulk and surface terms: in such context discontinuous solutions
are admissible and their discontinuity is the main features of the solution
([31],[32]).

In the book [7] a variational principle for image segmentation was in-
troduced in the context of visual reconstruction: the Blake & Zisserman
functional which depends on second derivatives, free discontinuities and free
gradient discontinuities of the intensity levels. In this approach contour de-
tection in segmentation is faced as an energy minimization problem: input
is a noisy image and two outputs are produced, say a boundary process map
which indicates the location of boundaries (jump and creases of luminance),
and a surface attribute map which indicates the smoothed (interpolated)
luminance values on the surface of objects in the field.

We introduced a weak formulation of this functional and proved the ex-
istence of weak minimizers and the corresponding optimal segmentation in
[9], [10], [16]. Then we showed regularity properties, energy and density
estimates for optimal segmentation ([10], [11], [12], [13]). Approximation
properties of the functional were studied in [4]. In [18] we derived many
necessary conditions about weak extremals by performing various kind of
first variations: these computations were performed by taking into account
the differential geometry of free discontinuity set in any dimension n ≥ 2
and arbitrary geometry of singular set; in particular we developed the full
analysis of crack-tip and crease-tip (boundaries of free discontinuity set).
Some of these results were announced in [14].

We recall the strong formulation F of Blake & Zisserman functional (see
[11]) for 2-dimensional images, say:

(2.1)

F (K0,K1, u) :=

∫

Ω\(K0∪K1)

(
|D2u|2 + µ|u− g|q

)
dy

+αH1(K0 ∩ Ω) + βH1((K1 \K0) ∩ Ω) .
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to be minimized over triplets (K0,K1, u) : if (K0,K1, u) is a minimizing
triplet of F then K0 ∪K1 can be interpreted as an optimal segmentation of
the monochromatic image of brightness intensity g.
We label the main part E of functional F as follows

(2.2)

E(K0,K1, u) :=

∫

Ω\(K0∪K1)
|D2u|2 dy

+αH1(K0 ∩ Ω) + βH1((K1 \K0) ∩ Ω) .

In (2.1), (2.2), H1 denotes 1-dimensional Hausdorff measure and the a priori
unknown triplet (K0, K1, u) must fulfil: K0, K1 ⊂ R

2 are Borel sets with
K0∪K1 closed, u belongs to C2(Ω\(K0∪K1)), u is approximately continuous
on Ω \K0, while the given data and structural assumptions about F are

(2.3)
Ω ⊂ R

2 open set, g ∈ Lq(Ω) ∩ L2q
loc(Ω),

q > 1, µ > 0, 0 < β ≤ α ≤ 2β <+∞.

Due to dependence on second derivatives the Blake & Zisserman functional
detects both jump and crease sets and avoids the inconvenient of “staircas-
ing” effect due to over-segmentation of steep gradients: that is the appearing
of one or more spurious discontinuities in the output image u determined
by Mumford & Shah model ([8],[26],[29],[31],[32]), when the datum g is a
continuous ramp with steep gradient.
Existence of global minimizers of (2.1) under assumptions (2.3) was proven
by regularization of solution of the weak formulation and a precise notion
of essential minimizing triplet ([9],[10],[11]). When g 6∈ L2q

loc(Ω) the infimum
of F cannot be achieved with general g in Lq(Ω) (see [12], section 5).
In [19] we prove the existence of globally minimizing triplets of function-
als (2.1),(2.2) under Dirichlet boundary condition and we show the follow-
ing properties for any locally minimizing triplet: it has well defined two-
sided traces and is related to a weak minimizer; it fulfils Euler equation
2∆x

2u+ µq|u− g|q−2(u− g) = 0 outside jump discontinuity set and crease
discontinuity set, say in Ω \ (K0 ∪ K1); it fulfils plate-like Neumann con-
ditions on jump and crease discontinuity sets; it exhibits a link between
curvature of free discontinuity and squared hessian jump and a variational
balance at crack-tip and crease-tip. An integral Euler equation summarizes
all the above properties in a tight formulation, by taking into account any
admissible compactly supported triplet variation (Theorem 5.1 in [18]).

Blake & Zisserman functional (2.1) depends both on bulk energy and
a lineic discontinuity energy; their coupling introduces both technical and
substantial difficulties. Moreover the discontinuities of u and of Du are
located respectively on the sets K0, K1 \K0 which are a priori unknown,
hence the associated minimization problem turns out to be essentially non-
convex: non uniqueness of minimizers may develop for some choice of data
(see [5] for explicit examples of multiple minimizers of F ). Nevertheless
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generic uniqueness of minimizers (with respect to data α, β, g) is proven in
the 1 dimensional case in [6]. Since for some data the essential minimizing
triplet may be not unique, it is far from obvious that the third term of a
minimizing triplet is also a minimizer of the weak functional: anyway this is
true as proven in [19] thanks to the analysis of associated Dirichlet problem.

Another difficulty in the mathematical analysis of the Blake & Zisserman
functional is the fact that (2.1) does not control the intermediate (first)
derivatives, moreover truncating competing functions does not reduce the
energy, while in case of Mumford & Shah functional any (not affecting da-
tum) truncation reduces energy.

Extremals of Blake & Zisserman functional and its main part must ful-
fill several Euler-type conditions of differential, integral and geometric type
([5],[18],[20]).

We proved an Almansi decomposition property in 2 dimensional disk B
with a straight cut Γ up to the center: this provided very useful heuristic
to obtain asymptotic expansion in B \Γ of functions which are bi-harmonic
outside the cut and have a jump on Γ ([1],[20]). Then ([20]) we computed all
eigenfunctions of eigenvalue 0 for operator ∆x

2 in a disk with a cut together
with natural Neumann boundary conditions on Γ related to necessary condi-
tions for extremality; as a consequence we deduced an essential asymptotic
expansion convergent in H2(BR \Γ) for any bi-harmonic function in BR \Γ
which is H2(BR \ Γ) orthogonal to smooth functions.
In [20] we deduced a complete description of all functions v which are de-
fined almost everywhere in a disk B ⊂ R

2, are bi-harmonic in B \ Γ (where
Γ is a closed radius of the disk) and fulfill all necessary conditions for locally
minimizing triplets of E in B. These properties are so many that, at a first
glance, this set must be very small (if not empty!); nevertheless at the end
of the analysis we are able to exhibit functions fulfilling all of them. A key
result is the computation (performed in [20]) of the leading terms and the
asymptotic expansion of any local minimizer of E with jump discontinu-
ity on a half-line: the evaluation is done by imposing all Euler conditions.
These leading terms are holomorphic branches of multivalued function, have
exact homogeneity 3/2 in r and are energy-invariant with respect to natural
dilations. If equipartition of energy around the origin (among the volume
integral and the segmentation length) is imposed in addition to the whole
list of Euler conditions for minimality, then the coefficients of the main part
of a local minimizer are fixed and we can evaluate them explicitly. Even-
tually (see [20]) we exhibit a nontrivial function, with jump discontinuity
along the negative real axis:

(2.4) ±
√

α

193π
r3/2

(√
21ω(ϑ) ± w(ϑ)

)
, −π < ϑ < π ,

more explicitly, by expanding the modes ω and w,

±
√

α

193π
r3/2

(√
21
(

sin
θ

2
− 5

3
sin
(3
2
θ
))

±
(

cos
θ

2
− 7

3
cos
(3
2
θ
)))

,
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so that (2.4) satisfies all extremality conditions proven for functional E in
R

2 : hence such function is a natural candidate to be a local minimizer. Such
function has jump set on the negative real axis and empty jump disconti-
nuity set of the gradient. All these facts led us to formulate the following
statement.

Conjecture 2.1. - Assume 0 < β ≤ α ≤ 2β < +∞. Then triplet

(K0 = closed negative real axis , K1 = ∅ , function (2.4) )

is a locally minimizing triplet for E in R
2 , and there are no other nontrivial

locally minimizing triplets, up to (possibly independent in each mode ω and
w) sign change, rigid motions of R

2 co-ordinates and/or addition of affine
functions.

3. Caccioppoli inequality and some consequences.

In this section we prove a Caccioppoli type inequality for local minimiz-
ers of main part of Blake & Zisserman functional in R

n under homogeneous
Dirichlet boundary conditions. Usually Caccioppoli inequality is a prelimi-
nary step to a further study of regularity through blow-up techniques, here
we apply the inequality to show that local minimizers in R

n, with finite
energy and bounded singular set, are trivial.
At the end of this section we prove that neither a 1-dimensional step nor an
infinite wedge are local minimizers.

The general strong formulation of Blake & Zisserman functional F for
monochromatic images and its main part E in any dimension n ≥ 1 requires
the minimization of, respectively, ([11]):

F (K0,K1, u) :=

∫

Ω\(K0∪K1)

(
|D2u|p + µ|u− g|q

)
dx(3.1)

+αH n−1(K0 ∩ Ω) + βH n−1((K1 \K0) ∩ Ω) ,

E(K0,K1, u) :=

∫

Ω\(K0∪K1)
|D2u|p dx(3.2)

+αH n−1(K0 ∩ Ω) + βH n−1((K1 \K0) ∩ Ω),

where Ω ⊂ R
n is an open set, n ≥ 1, p ≥ 2 and p′ = p/(p−1), H n−1 denotes

the (n− 1)-dimensional Hausdorff measure, and α, β, µ, q ∈ R, with given

(3.3) q > 1 , µ > 0 , 0 < β ≤ α ≤ 2β , g ∈ Lq(Ω) ∩ Lnq
loc(Ω) ,

while the minimization is done among admissible triplets, say (K0,K1, u)
such that K0, K1 ⊂ R

n are Borel sets fulfilling K0 ∪ K1 closed, u ∈
C2(Ω\(K0∪K1)) and u is approximately continuous (see [2],[28]) on Ω\K0.
We emphasize that (3.1) does not achieve a minimum if g 6∈ Lnq

loc(Ω), due to
counterexample of Section 5 in [12].
In the following FA and EA denotes localized version of F,E : replace Ω by
the open set A in (3.1),(3.2).
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Definition 3.1. (Locally minimizing triplet of strong functionals F and E)
An admissible triplet (K0,K1, u) is a locally minimizing triplet of functional
F defined by (3.1) if

(3.4) FA(K0,K1, u) < +∞

(3.5) FA(K0,K1, u) ≤ FA(T0, T1, v)

for every open subset A ⊂⊂ Ω and for every admissible triplet (T0, T1, v)
such that

spt(v − u) and (T0 ∪ T1)△(K0 ∪K1) are subsets of A.

An admissible triplet (K0,K1, u) is a locally minimizing triplet of the func-
tional E defined by (3.2) if (3.4),(3.5) hold true with EA in place of FA.

Definition 3.2. (Weak formulation of Blake & Zisserman functional [10])
Under the assumptions (3.3), with Ω ⊂ R

n open set, we define the weak
functional F : X(Ω) → [0,+∞] by

(3.6) F(v) :=

∫

Ω
(|∇2v|p +µ|v− g|q) dx+αH n−1(Sv) +βH n−1(S∇v \Sv)

where X(Ω) := GSBV 2(Ω) ∩ Lq(Ω).
About functions (in GSBV 2) whose second derivatives are special measures
in the sense by De Giorgi we refer to [10],[21]: here and in the following, ∇v
denotes the absolutely continuous part of distributional gradient Dv and Sv

denotes the singular set of v; notice that ∇2v may be nonsymmetric.

We consider also the localization FA of F on any Borel set A ⊆ Ω:

FA(v) :=

∫

A
(|∇2v|p+µ|v−g|q) dx+αH n−1(Sv∩A)+βH n−1((S∇v\Sv)∩A) .

We remark that the subset of GSBV 2(Ω) where F is finite is a vector space,
while GSBV 2(Ω) is not a vector space.

Definition 3.3. (Local minimizer for weak formulation) We say that u is a
local minimizer of the functional F in Ω if

(3.7) u ∈ GSBV 2(A), FA(u) < +∞, FA(u) ≤ FA(u+ ϕ)

for every open subset A ⊂⊂ Ω and for every ϕ ∈ GSBV 2(Ω) with compact
support in A.

We introduce also the weak form of functional E defined in (3.2)

(3.8) E(v) :=

∫

Ω
|∇2v|p dx + αHn−1(Sv) + βHn−1(S∇v \ Sv) .

We say that u is a local minimizer of the functional E in Ω if, by denoting
EA the localization of E ,

(3.9) u ∈ GSBV 2(A), EA(u) < +∞, EA(u) ≤ EA(u+ ϕ)

for every open subset A ⊂⊂ Ω and for every ϕ ∈ GSBV 2(Ω) with compact
support in A.
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Theorem 3.4. (Caccioppoli inequality for local weak minimizer
with homogeneous Dirichlet conditions) Assume 0 < β ≤ α ≤ 2β,
p ≥ 2, n ≥ 1, R > 0 and u is a local minimizer of E in BR ⊂ R

n among

v ∈ GSBV 2(BR) fulfilling v ≡ 0 in B−
R = BR ∩ {xn < 0}.

Then for every 0 < ̺ < R, we have

(3.10)

∫

B+
̺

|∇2u|p dx ≤ C

(R− ̺)p

∫

B+

R
\B+

̺

|∇u|pdx+
C

(R− ̺)2p

∫

B+

R
\B+

̺

|u|pdx

where C = C(n, p) is a constant independent of u, R and ̺.

Proof. If the right-hand side of (3.10) is infinite then the thesis is trivial.
Hence we are left to prove it only when right-hand side is finite, so we may
assume u ,∇u ∈ Lp(B+

R \B+
̺ ). Let ϕ ∈ C∞

0 (BR) such that

0 ≤ ϕ ≤ 1 , ϕ ≡ 1 in B̺ , |Dϕ| ≤ c1
R− ̺

, |D2ϕ| ≤ c1
(R− ̺)2

.

For |ε| ≤ 1 we set uε = u+ εϕ2pu . Then Suε = Su, S∇uε
= S∇u and

∇uε = (1 + εϕ2p)∇u+ 2pεuϕ2p−1Dϕ,

∇2uε = (1 + εϕ2p)∇2u

+2pε(ϕ2p−1Dϕ∇u+ ∇uϕ2p−1Dϕ+ (2p− 1)uϕ2p−2DϕDϕ+ uϕ2p−1D2ϕ).

Now we set ∇2uε = A+ εB , where A = ∇2u and

B = ϕ2pA+2p(ϕ2p−1Dϕ∇u+∇uϕ2p−1Dϕ+(2p−1)uϕ2p−2DϕDϕ+uϕ2p−1D2ϕ) .

For a, b, c∈R, a > 0, ε∈ [−1, 1], we exploit Taylor expansion with Lagrange

remainder of ψ(ε) = ( a+ b ε+ c ε2)p/2, notice that p ≥ 2 entails ψ ∈ C1 in
a neighborhood of ε = 0 :

ψ(ε) = ψ(0) + ψ′(ε̃) ε = ψ(0) + ψ′(0) ε + σ(ε̃ )ε, 0 < |ε̃| < |ε| ,
σ(ε̃ ) = ψ′(ε̃) − ψ′(0) , lim

ε→0
σ(ε̃ ) = 0 and

ψ(0) = ap/2 , ψ′(ε̃) =
p

2

(
a+ b ε̃ + c ε̃ 2

) p

2
−1

( b+ 2 c ε̃ ) , ψ′(0) =
p

2
a

p

2
−1 b .

We choose a = (A : A) , b = (A : B + B : A), c = (B : B) , so that
a+bε+cε2 ≥ 0 for all ε ∈ R, while ε̃ depends on a = a(x), b = b(x), c = c(x)
and ε , say ε̃ = ε̃(x, ε) and, by summarizing ψ ∈ C1([−1, 1]) and:

ψ(ε) = (a+bε+cε2)p/2 = (A : A)p/2+
p

2
(A : A)p/2−1(A :B +B :A) ε+σ

(
ε̃(x, ε)

)
ε,

where

σ
(
ε̃(x, ε)

)
= ψ′(ε̃(x, ε)) − ψ′(0) =

=
p

2

(
A : A+ (A :B +B :A)ε̃+ (B :B) ε̃ 2

)p/2−1
((A :B +B :A) + 2 ε̃ B :B)

−p
2
|A|p−2(A :B +B :A)
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and σ
(
ε̃(x, ε)

)
tends to 0 as ε→ 0 uniformly in x, since |ε̃| < |ε| ≤ 1, ψ′ ∈ C0

and A :A, A :B, B :A, B :B, belong to Lp/2(BR).
For a.e. x ∈ BR and suitable ε̃ = ε̃(x, ε), 0< |ε̃|< |ε| we get

|A+ εB|p =
(
(A+ εB) : (A+ εB)

)p/2

=
(
A : A + (A : B +B : A)ε + B : B ε2

)p/2

=
(
a + b ε + c ε2

) p/2

= a(x) +
p

2
a(x)

p

2
−1 b(x) ε + σ

(
ε̃(x, ε)

)
ε

= (A : A)p/2 +
p

2
(A : A)p/2−1 (A :B +B :A) ε + σ

(
ε̃(x, ε)

)
ε

= (A : A)p/2 + ε
p

2

(
(A :A)p/2−1

)(
2ϕ2p(A :A)+A :(B − ϕ2pA)+(B−ϕ2pA) :A

)

+o(ε)

= |A|p + ε
p

2

[
2ϕ2p|A|p + |A|p−2

(
A : (B − ϕ2pA) + (B − ϕ2pA) :A

)]
+ o(ε) .

We emphasize that a(x) , p
2 a(x)

p

2
−1 b(x) ε and σ

(
ε̃(x, ε)

)
ε belong to L1(U)

uniformly in ε ∈ [−1, 1] , for any measurable set U ⊂ BR , since p ≥ 2,
σ(ε) ε = |A+ εB|p − |A|p − ε(p/2)|A|p−2(A : B +B : A)

and A,B ∈ Lp(BR), A+ εB ∈ Lp(BR),
(
|A|p−2(A :B +B :A)

)
∈ L1(BR)).

By minimality of u we deduce the vanishing of ε coefficient, hence:

(3.11)

∫

BR

2ϕ2p|A|p dx = −
∫

BR

|A|p−2
(
A : (B−ϕ2pA)+(B−ϕ2pA) :A

)
dx.

By using the equation (3.11), spt(Dϕ), spt(D2ϕ) ⊂ BR \B̺ and Hölder
inequality (with p′ = p/(p− 1) and p) there is c2 = c2(n, p) s.t.

∫

BR

ϕ2p|∇2u|p dx

≤ c2

∫

BR

|∇2u|p−1
(
ϕ2p−1|∇u||Dϕ| + ϕ2p−2|u||Dϕ|2 + ϕ2p−1|uD2ϕ|

)
dx

≤ c2

∫

BR

(
ϕ2p−2|∇2u|p−1

) (
|ϕ∇u||Dϕ| + |u||Dϕ|2 + |ϕuD2ϕ|

)
dx

≤ c3

(∫

BR

ϕ2p |∇2u|p dx
) p−1

p

×





1

R− ̺

(∫

BR\B̺

|∇u|p dx
) 1

p

+
1

(R− ̺)2

(∫

BR\B̺

|u|p dx
) 1

p



 ,
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hence by inclusion of balls and Young inequality (with p′ and p) we get
∫

B̺

|∇2u|p dx ≤
∫

BR

ϕ2p|∇2u|p dx ≤

≤ C

(R− ̺)p

∫

BR\B̺

|∇u|p dx +
C

(R− ̺)2p

∫

BR\B̺

|u|p dx,

and the inequality is proven.
�

Remark 3.5. In the particular case p = 2, n ≥ 2 the inequality (3.10) was

proven in [15], Theorem 3.2.

Theorem 3.6. (Caccioppoli inequality for locally minimizing triplets
of strong functional with homogeneous Dirichlet conditions) As-

sume 0 < β ≤ α ≤ 2β , n ≥ 1, p ≥ 2 , R > 0 and (K0,K1, u) is a locally

minimizing triplet of E in BR ⊂ R
n among (T0, T1, v) fulfilling v ≡ 0 in

B−
R = BR ∩ {xn < 0}.

Then for every 0 < ̺ < R, we have

(3.12)

∫

B+
̺ \(K0∪K1)

|D2u|p dx ≤

C

(R−̺)p

∫

B+

R
\(K0∪K1∪B+

̺ )
|Du|pdx +

C

(R−̺)2p

∫

B+

R
\(K0∪K1∪B+

̺ )
|u|pdx

where C = C(n, p) is a constant independent of u, R and ̺.

Proof. The inequality (3.12) is a straightforward consequence of Caccioppoli
inequality (3.10) which is fulfilled by local weak minimizers, since the third
term of any locally minimizing triplet of E is a local minimizer of weak
functional E with the same boundary condition (by Theorem 1.1 in [19]) �

Remark 3.7. Theorems 3.4 and 3.6 hold true also when B+
R is substituted

by B
− , where B

− , is the part contained in BR of the hypo-graph of a C2

function ψ = ψ(x1, . . . , xn−1) with ψ(0) = 0 , Dψ(0) = 0 .

Theorem 3.8. Assume (K0,K1, u) is a locally minimizing triplet of E
among the ones such that u ≡ 0 in R

n
− = R

n ∩ {xn < 0} , the set K0 ∪K1

is bounded and

(3.13)

∫

Rn\(K0∪K1)
|D2u|p dx < +∞ .

Then u ≡ 0 in R
n.

Proof. Assume (K0 ∪K1) ⊂ B˜̺ and ̺ > ˜̺, so that D2u ∈ Lp(B2̺ \B̺) and

hence u ∈W 2,2(B2̺ \B̺), moreover sptu ⊂ Rn
+ .
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By using Theorem 3.4, and applying Poincaré inequality to u, we get
∫

B̺\(K0∪K1)
|D2u|p dx ≤

≤ C

̺ p

∫

B2̺\(B̺∪K0∪K1)
|Du|p dx +

C

̺ 2p

∫

B2̺\(B̺∪K0∪K1)
|u|p dx

≤ C ′

∫

B2̺\B̺

|D2u|p dx.

By hole-filling we obtain

(1 + C ′)

∫

B̺\(K0∪K1)
|D2u|p dx ≤ C ′

∫

B2̺\(K0∪K1)
|D2u|p dx,

so that
∫

B̺

|∇2u|p dx ≤ τ

∫

B2̺

|∇2u|p dx with τ =
C ′

1 + C ′
< 1,

and, for every k ∈ N,
∫

B̺

|∇2u|p dx ≤ τk

∫

B
2k̺

|∇2u|p dx.

By the assumption (3.13) and the arbitrariness of k we conclude that
∫

B̺

|∇2u|p dx = 0.

By the arbitrariness of ̺, D2u ≡ O in R
n \B˜̺, hence u is affine in R

n \B˜̺.
Then we get u ≡ 0 in R

n \B˜̺ by u ≡ 0 in R
n
− .

By local minimality with respect to compactly supported variations, u ≡ 0
in R

n. �

Theorem 3.9. For any x ∈ R
n we set x = (x′, xn) with x′ ∈ R

n−1, xn ∈ R.
Then, for any c 6= 0, the triplet ( {xn = 0}, ∅, cH(xn) ) is not a locally

minimizing triplets (K0,K1, v) of E in R
n among the ones whose third term

v has support contained in {x ∈ R
n : xn ≥ 0}.

Here H denotes the Heaviside function.

Proof. Set u(x) = cH(xn). Assume by contradiction ({xn = 0}, ∅, u(x) ))
is a locally minimizing triplet of E in R

n among the ones whose third term
has support contained in {x : xn ≥ 0}, hence u is a local minimizer of E
under the same support condition.
If n = 1 we define, for any δ > 0,

u1(x) =





2 c x2/δ2 if 0 ≤ x < δ/2

c
(
1 − 2(x− δ)2/δ2

)
if δ/2 ≤ x < δ,

cH(x) if either x < 0 or x > δ.
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Then |u1
′′(x)| = 4|c|/δ2 if 0 ≤ x ≤ δ, Su1

= Su̇1
= ∅, hence for any R > δ

we have

EBR
(u1) − EBR

(u) = 4p cp

δ2p−1
− α < 0 if δ2p−1 > 4p c

p

α
,

which contradicts the minimality of u.
If n > 1 we define, for any δ > 0

ū(x) =





u1(xn) if 0 ≤ xn ≤ δ and |x′| < L

u(x) elsewhere .

Then |∇2ū(x)| = |u1
′′(xn)| = 4|c|/δ2 if 0 ≤ xn ≤ δ and |x′| < L , while

Sū = {x : |x′| = L, 0 ≤ xn ≤ δ} and S∇ū \ Sū = ∅ .
Hence, for any R with R2 > L2 + δ2, we have

EBR
(ū) − EBR

(u) =
4pcp

δ2p−1
ωn−1L

n−1 +α(n−1)ωn−1L
n−2δ−αωn−1L

n−1 < 0,

where ωn−1 denotes the volume of the unit ball in R
n−1, so that (n−1)ωn−1

is the surface area of its boundary, provided we choose

δ2p−1 > 2 · 4p c
p

α
and L > 2(n− 1)δ.

This contradicts the minimality of u. �

Theorem 3.10. For any x ∈ R
n we set x = (x′, xn) with x′ ∈ R

n−1, xn ∈ R.
Then, for any c 6= 0, the triplet ( ∅, {xn = 0}, c (xn)+ )) is not a locally

minimizing triplet of E in R
n among the ones whose third term v has support

contained in {x ∈ R
n : xn ≥ 0}.

Here (xn)+ = max(xn, 0).

Proof. Set v(x) = c (xn)+ .Assume by contradiction that ( ∅, {xn = 0}, v(x) )
is a locally minimizing triplet of E in R

n among the ones whose third term
has support contained in {x : xn ≥ 0} , hence v is a local minimizer of E
under the same support condition.

If n = 1 we define, for any δ > 0,

v1(x) =





3 c x2

δ
− 3 c x3

δ2
+
c x4

δ3
if 0 ≤ x ≤ δ

c x+ elsewhere.

Then |v′′1(x)| =

∣∣∣∣
6 c

δ
− 18 c x

δ2
+

12 c x2

δ3

∣∣∣∣ ≤
6 c

δ
if 0 < x < δ, Sv1

= Sv̇1
= ∅,

hence

∀R > δ EB+

R
(v1) − EB+

R
(v) ≤ 6pcp

δp−1
− β < 0 if δp−1 >

6pcp

β

which contradicts the minimality of v.
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If n > 1 we define, for any δ > 0,

v̄(x′, xn) =





v1(xn) if 0 ≤ xn ≤ δ, |x′| ≤ L

v(x) elsewhere.

Then |∇2v̄(x)| = |v1′′(xn)| ≤ 6 c/δ if 0 < xn < δ and |x′| < L , while
Sv̄ = {x : |x′| = L, 0 ≤ xn ≤ δ} and S∇v̄ \ Sv̄ = ∅ .
By choosing δp−1 > 2 ·6pcp/β , L > 2(n−1)αδ /β and R2 > L2 + δ2, we get

EB+

R
(v̄) − EB+

R
(v) ≤ 6pcp

δp−1
ωn−1L

n−1 +αδ(n−1)ωn−1L
n−2 − βωn−1L

n−1 < 0

and this contradicts the minimality of v. �
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