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We study a generalized branching random walk where particles

breed at a rate which depends on the number of neighbouring parti-

cles. Under general assumptions on the breeding rates we prove the

existence of a phase where the population survives without exploding.

We construct a non trivial invariant measure for this case.

1. Introduction. Scientists have been studying models for the evolu-
tion of a population since the end of the 19th century, starting from the
branching process introduced by Galton and Watson in 1875 [5]. The need
for more realistic models has lead to the introduction of a spatial struc-
ture: the branching random walk and the contact process (briefly, BRW and
CP respectively) are perhaps the most natural generalizations. In the BRW
model each individual has a fixed position on a connected graph, e.g. the
integer lattice Z

d, and an exponential lifespan of parameter 1 during which
it breeds on neighbouring sites according to a Poisson process of intensity
λ > 0. The number of individuals allowed per site is unbounded. Requiring
that a site can be occupied by at most one individual, one obtains the CP.
Both these processes exhibit two possible behaviours: starting from a finite
population either the population faces almost sure extinction (subcritical
behaviour), or it survives with a positive probability (supercritical behav-
iour). In the supercritical case the BRW’s population grows indefinitely and
the mean density of the population diverges. For the contact process obvi-
ously there is no divergence of the mean density of the population because
this quantity is a priori bounded. In the supercritical phase, the CP has two
invariant extremal measures (see [8]). It is known that there exists a critical
value of λ separating the two behaviours: if λ is smaller than the critical
parameter the process exhibits the subcritical behaviour, while for larger λ

it exhibits the supercritical one. We denote by λBRW and λCP the critical
parameters of the BRW and of the CP respectively.
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2 BERTACCHI, POSTA, ZUCCA

The observation of natural environments suggests to remove any a priori
bound on the number of individuals allowed per site and to introduce a self-
regulating mechanism on the birth rates, which should provide a surviving
though non-exploding population. Indeed some ecological systems seem to
be in a sort of equilibrium where the density of a population neither tends
to zero nor to infinity. One may argue that we could be observing a sub-
critical or supercritical system during a too short time span, nevertheless
it seems natural to try to translate into mathematical terms the competi-
tion for resources (see for instance the discussion in [7]). Other authors have
introduced models for self-regulating populations. For instance, in the case
of a population living on a continuous and homogeneous space, [2] studied
a process where the death rates depend on the local density centered on
the father. A slightly different model was considered in [4] where the repro-
duction rate depends on the local density centered on the father. The main
technical tools are moment equations and stochastic differential equations
respectively. A different approach is carried out in [3] where the population
has no spatial structure and each individual can be affected by a gene mu-
tation at birth; the evolution is studied as a Markov process in the trait
space.

We introduce a self-regulating mechanism where the birth rate is a de-
creasing function of the local density at the location where the offspring
would live. Moreover noting that the spatial structure of the interaction
between individuals in a biological population might be irregular we study
a population on a discrete (possibly non-homogeneous) space. To this aim
we consider the following model, which we call restrained branching random

walk (RBRW briefly). Consider an infinite connected graph X with bounded
geometry (i.e. the number of neighbours of the vertices is bounded, e.g. Z

d)
as the environment where the population lives and let η(x) be the number
of individuals living at the site x ∈ X. The lifespan of each individual is an
exponential random variable of mean 1. During its lifetime each individual
tries to reproduce following a Poisson process of intensity λ. Every time the
clock associated to the Poisson process rings, the individual tries to send an
offspring to a randomly chosen target neighbouring site. The target neigh-
bouring site is chosen using the transition matrix P = (p(x, y))x,y∈X of a
nearest neighbour random walk on X, e.g. the simple random walk on Z

d.
Call the target site y. The reproduction on y is effective only with prob-
ability c(η(y))/λ, where c : N → R

+ is a non-increasing and nonnegative
function with c(0) = λ. In this case the population living at y increases by
one individual, otherwise nothing happens.

Observe that the process described above is a Markov process and includes
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ECOLOGICAL EQUILIBRIUM FOR RBRW 3

the BRW and the CP as special cases (c ≡ λ and c = λ1l{0} respectively).
The formal construction of this process is carried out in Section 3, where the
existence of a Markov process {ηt}t≥0 with state space Ω ⊂ N

X is proven. In
general Ω is smaller than N

X because we can only consider configurations η
such that η(x) does not diverge too fast when x goes to infinity (see Section 2
for more details). We prove that {ηt}t≥0 has different behaviours depending
on c(0), c(+∞) := limk→+∞ c(k) and on the transition kernel p(x, y) (see
Proposition 4.1 for the complete statement).

Proposition 1.1. Let Pn = (p(n)(x, y))x,y∈X be the n-th power of the
transition matrix P and {ηt}t≥0 be the RBRW described above. Let us define

ρ := lim supn→∞
n

√

p(n)(x, y) and θ := limn→∞
n

√

supx

∑

y p(n)(y, x) (notice

that θ ≥ ρ).

(i) If c(0) < 1/ρ then limt→+∞ E
η[ηt(x)] = 0 for any finite η ∈ Ω, x ∈ X;

(ii) if c(0) > λCP then limt→+∞ E
η[ηt(x)] > 0 for any η ∈ Ω \ {0}, x ∈ X

and P
η(lim supt→∞ ηt(x) > 0) > 0;

(iii) if c(+∞) > 1/ρ then limt→+∞ E
η[ηt(x)] = +∞ for any η ∈ Ω \ {0};

(iv) if c(+∞) < 1/θ then lim supt→+∞ E
η[ηt(x)] < +∞ uniformly for any

bounded η ∈ Ω, x ∈ X.

The critical parameters ρ and θ (and λCP as well) depend only on P
(hence, in the case of the simple random walk, on the geometry of the graph);
in particular λBRW = 1/ρ (see [15] and [1]). We discuss further details in
Section 2.1. The proof of Proposition 1.1 is quite simple and essentially based
on coupling techniques with the CP and the BRW (and on explicit estimates
on the moments of the BRW with immigration, see Lemma 3.3).

Notice that given a bounded initial state η ∈ Ω\{0}, if c(0) is sufficiently
large and c(+∞) is sufficiently small, then by (ii) of Proposition 1.1, the
population has a positive probability to survive indefinitely, while by (iv),
almost surely, it does not explode. This is the ecological equilibrium phase
we are looking for. It is quite natural to wonder if there is a stationary
distribution for the population in this case. We prove that this is the case
(see Theorem 4.3 for the complete statement).

Theorem 1.2. Let {ηt}t≥0 be the RBRW described above and assume
that c is such that c(0) > λCP and c(+∞) < 1/θ. Then there exists a
nontrivial probability measure µ on (Ω,B(Ω)) which is invariant for {ηt}t≥0.

We construct this invariant measure as a limit of invariant measures of
processes where the number of individuals per site is bounded.
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4 BERTACCHI, POSTA, ZUCCA

Important examples are the RBRW on the d-dimensional lattice and on
the homogeneous tree of degree n + 1 (both endowed with the transition
matrix of the simple random walk).

If X = Z
d and P is the simple random walk, we have that ρ = θ = 1.

So (i) of Proposition 1.1 implies that the population dies out when c(0) is
smaller than the death rate 1, while (iii) states that the mean density of
the population explodes when c(+∞) is larger than 1. Moreover, the system
can reach the ecological equilibrium if c(+∞) < 1 and c(0) > λCP (i.e. the
critical parameter of the CP on Z

d). In this case the stationary measure µ
given by Theorem 1.2 is translation invariant.

If X = Tn+1 (the homogeneous tree where the degree of each vertex is
n + 1) and P is the simple random walk, we have ρ = 2

√
n/(n + 1) <

1 = θ whence, to ensure ecological equilibrium we require c(+∞) < 1 and
c(0) > λCP (i.e. the critical parameter of the CP on Tn+1), while for the
almost sure extinction it is sufficient that c(0) < (n+1)/2

√
n. The stationary

measure µ given by Theorem 1.2 is translation invariant in this case as well.
Considering different random walks on Tn+1 leads to different values for θ
(see Example 5.1).

One may wonder how the two parameters ρ and θ come to surface: the
analysis of the two examples above, shows that on general graphs the behav-
ior of interacting particle systems can be different than on Z

d. For instance,
it is known that on some fast growing graphs there is the so-called weak phase

(see for instance [11] and [9] Part I, Ch. 4 for the CP on trees, [15] and [1]
for the BRW on graphs and [12] for the BRW on Galton-Watson trees): the
population can survive by drifting to infinity and leaving eventually any site.

On Z
d, λBRW = 1 and, in the subcritical phase, starting from a bounded

η with at least one individual per site, with probability one there is no
extinction and the expected number of individuals at a fixed site is a bounded
function of the time t.

On a general graph the subcritical phase of the BRW is further subdivided:
λBRW = 1/ρ, but only if λ < 1/θ one can ensure that the expected number
of individuals at a fixed site is a bounded function of the time t (starting from
a bounded η with at least one individual per site). Indeed if λ ∈ (1/θ, 1/ρ)
and η is as above then there are examples where the expected number of
individuals at a fixed site diverges as t goes to infinity (for instance if P is
the simple random walk on a homogeneous tree: see Example 5.1).

We give here a brief outline of the paper. In Section 2 we give the defini-
tions needed in the sequel and we introduce the generator of the process. The
construction of the RBRW is carried out in Section 3. Since the state space
of this process is not locally compact the classical approach of Hille-Yosida
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ECOLOGICAL EQUILIBRIUM FOR RBRW 5

cannot be used: we follow the ideas of [10]. Some of the results we prove
are obtained via a coupling argument (see Proposition 3.5) with particular
BRWs (with immortal particles). Furthermore we give explicit estimates of
some moments of these processes (see Lemma 3.3). In section 4 we prove
our main results: Proposition 1.1 and Theorem 1.2 (see Proposition 4.1 and
Theorem 4.3 respectively). Section 5 is devoted to final remarks, examples
and open questions.

2. Preliminaries.

2.1. Graph geometry and random walks. Let X be a connected, non-
oriented graph, with bounded geometry (i.e. the number of neighbours of a
vertex x, called degree of x, is uniformly bounded on X); denote by D the
maximum degree of vertices on X. Let P = (p(x, y))x,y∈X be a stochastic
matrix (although one can apply easily our methods to a substochastic P )
such that p(x, y) > 0 if and only if x and y are neighbours (we write x ∼ y

in this case). For any Λ ⊂ X let Λ◦ := {x ∈ Λ : ∀y ∼ x, y ∈ Λ} be the
interior of Λ and let

pΛ(x, y) :=

{

p(x, y) if x, y ∈ Λ;

0 otherwise.

The two parameters ρ and θ, associated to P , play a crucial role in distin-
guishing between different behaviours of the RBRW (see Proposition 1.1).

Recall that in Section 1 we defined ρ := lim supn→∞

n

√

p(n)(x, y): this is usu-
ally called the convergence parameter and it is independent of x, y ∈ X (see
[14]).

Consider the space of (infinite) matrices endowed with the norm ‖A‖ :=
supx

∑

y |axy|. As usual, each matrix with a finite norm can be identified
with a linear continuous operator from l∞(X) into itself. Let θ(A) be the
spectral radius of the operator A; note that θ(A) = limn→∞ ‖An‖1/n (see for
instance [13] Theorem 18.9). The parameter θ, defined in Section 1, satisfies
θ = θ(P T ). The estimate of θ is easy in some cases:

(a) if there exists ν : X 7→ [0, +∞), ν 6≡ 0, such that ν(x) ≤ Cν(y) for
any x, y ∈ X (and some constant C > 0) and ν(x) ≥

∑

y ν(y)p(y, x)
(resp. ν(x) ≤

∑

y ν(y)p(y, x)) then θ ≥ 1 (resp. θ ≤ 1);

(b) if limn→+∞(#{y : |y| ≤ n})1/n = 1 then θ ≤ 1.

Note that in general ρ ≤ 1 and ρ ≤ θ. Using the above result (a), given
a graph X, if P is strongly reversible (see [6]) then the amenability of X

implies ρ = θ = 1 while non amenability implies ρ < θ = 1. Roughly
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6 BERTACCHI, POSTA, ZUCCA

speaking, amenable graphs are graphs where the boundary of a finite set
may be arbitrarily small if compared to the size of the set itself (see [16] page
112). Hence ρ = θ = 1 in the case of the simple random walk on Z

d while
there are examples where θ 6= 1 and θ > ρ, for instance on homogeneous
trees Tn+1 (see Example 5.1 with p 6= 1/(n + 1)).

2.2. Configuration space. Following [10], fix a reference vertex x0 ∈ X
and denote by |x| the graph distance between x and x0. Define a strictly
positive function α : X → R

+ by α(x) = M−|x|, where M > (D − 1)2. By
this choice of M , for any z ≥ 1/2,

∑
x α(x)z < +∞ and

(2.1)
∑

y

q(x, y)α(y) ≤Mα(x)

for any substochastic matrix Q. Given η : X → N define ‖η‖ :=
∑

x η(x)α(x).
The configuration space is Ω := {η ∈ N

X such that ‖η‖ < +∞}, while
ΩΛ := {η : N

Λ such that ‖η‖ < +∞}. Note that the finite configurations,
i.e. the configurations η ∈ Ω such that

∑
x η(x) < +∞, are dense in Ω with

this norm; moreover the Borel σ-algebra induced by the norm is the same
as the one induced by the product topology. We introduce the usual partial
order on Ω, that is ξ ≤ η if ξ(x) ≤ η(x) for any x ∈ X. We denote by 0 the
configuration identically equal to 0, by 1 the configuration identically equal
to 1 and by δx the configuration which is equal to 0 at any site but x, where
it equals 1. We say that a function f : Ω → R is non decreasing if ξ ≤ η
implies f(ξ) ≤ f(η). Given µ, ν probability measures on Ω, we say that ν
stochastically dominates µ and we write µ ≤ ν if for any non-decreasing
function f we have µ(f) ≤ ν(f) (where µ(f) =

∫
Ω fdµ).

From (2.1) we derive a useful bound on the transition kernel of the con-
tinuous time random walk associated with P and with jump rate λ > 0.
Indeed let

pλ
t (x, y) := e−λt

+∞∑

n=0

(λt)n

n!
p(n)(x, y),

then the iteration of (2.1) gives

(2.2)
∑

y

pλ
t (x, y)α(y) ≤ eλt(M−1)α(x).

For Λ ⊂ X we will also denote by

(2.3) pλ
t,Λ(x, y) := e−λt

+∞∑

n=0

(λt)n

n!
p
(n)
Λ (x, y).

Clearly pλ
t,Λ(x, y) ≤ pλ

t (x, y), hence the bound in (2.2) holds for these “re-
stricted” kernels as well.

imsart-aap ver. 2006/10/13 file: popaap.tex date: April 30, 2007



ECOLOGICAL EQUILIBRIUM FOR RBRW 7

2.3. Dynamics. Denote by Lip(Ω) the set of the Lipschitz functions on
Ω, and given f ∈ Lip(Ω) let L(f) be its Lipschitz constant. For any f :
Ω → R and x ∈ X define (∂−x f)(η) = 1l[1,+∞)(η(x))[f(η − δx) − f(η)] and
(∂+

x f)(η) = f(η + δx) − f(η). Note that |(∂±x f)(η)| ≤ L(f)α(x) for any
f ∈ Lip(Ω), x ∈ X. Fix a non-increasing function c : N → R

+, a transition
matrix P on X and define L : Lip(Ω)→ R

Ω by

(2.4) (Lf)(η) :=
∑

x

η(x)

[

(∂−x f)(η) +
∑

y

c(η(y))p(x, y)(∂+
y f)(η)

]

.

It easy to check that |(Lf)(η)| ≤ L(f)[(c(0)M + 1)‖η‖] hence L is a well-
defined operator on Lip(Ω).

3. Construction of the process. The main result of this section con-
cerns the construction of a process having generator L given by (2.4). It is a
standard fact of the theory of countable state continuous time Markov chains
that there exists a unique Markov process {ηt}t≥0 with generator given by
(2.4) starting from any finite η ∈ Ω. The extension of this construction to
more general configurations requires more sophisticated techniques. Our ef-
forts in this direction may be summarized in the following proposition whose
proof is the consequence of several intermediate steps.

Proposition 3.1. There exists a unique semigroup {St}t≥0 of operators,
St : Lip(Ω)→ Lip(Ω) such that

(i) (Stf)(η) = E
η[f(ηt)] for f ∈ Lip(Ω) and η finite.

(ii) L(Stf) ≤ L(f) exp(c(0)Mt) for f ∈ Lip(Ω).
(iii) (Stf)(η) = f(η) +

∫ t

0(LSuf)(η) du for f ∈ Lip(Ω) and η ∈ Ω.
(iv) Let µ be a probability measure on Ω such that µ[‖η‖] is finite.Then

µ is invariant for {St}t≥0 ( i.e. for any t ≥ 0, µ[Stf ] = µ[f ] for any
f ∈ Lip(Ω)) if and only if µ[Lf ] = 0 for any f ∈ Lip(Ω).

Given Proposition 3.1, in order to define the process {ηt}t≥0 starting from
any η ∈ Ω, according to [10] (see discussion after Theorem 1.4) one shows
that {St}t≥0 can be extended to any measurable function f on Ω which
satisfies either f ≥ 0 or |f(η)| ≤ C(1 + ‖η‖) for some constant C. Thus it
identifies a unique Markov process on Ω (the RBRW) which we still denote
by {ηt}t≥0.

We start by constructing the process on a finite subset Λ ⊂ X. We need
an auxiliary process defined on Ω. Fix γ ≥ 0, c : N → R

+, k ∈ N and define
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8 BERTACCHI, POSTA, ZUCCA

GΛ : Lip(Ω)→ R
Ω by:

(GΛf)(η) :=
∑

x

[

γ1lΛ(x)(η(x)− k)+(∂−x f)(η)

+ η(x)
∑

y

pΛ(x, y)c(η(y))(∂+
y f)(η)

]

.
(3.1)

It is obvious that GΛ generates a Markov process {ηt}t≥0 defined on ΩΛ.
Clearly this process may be thought as a process on Ω where the particles
outside Λ are “frozen” in the initial state. Furthermore if this process starts
from η0 ∈ Ω such that η0 ≥ k1 then obviously ηt ≥ k1 for any t ≥ 0; in this
case we say that there are k immortal particles per site.

3.1. BRW with immortal particles. The estimate of the first and the
second moments of the process generated by (3.1) will follow from a coupling
with the BRW with k immortal particles, that is the process where c(·) ≡
λ. Hence we take a technical detour and study this particular process (or
equivalently the BRW with constant immigration rate, see (3.4)).

Although in this section we are treating only finite sets, the following
lemma is needed also in the countable case (see Remark 3.11).

Lemma 3.2. Let Q be a (possibly infinite) matrix with q(x, y) ∈ [0, 1]
and finite norm and define qt(x, y) := e−λt

∑∞
n=0(λt)nq(n)(x, y)/n!. Let f :

[0, +∞) → l∞(X) be such that limt→∞ f(t) = v. Given the system of linear
differential equations
(3.2)







u̇(t, x) = λ
(

∑

y q(x, y)u(t, y)− u(t, x)
)

+ βu(t, x) + f(t, x), ∀x,

u(0, ·) = ϕ(·),

where ϕ ∈ l∞(X) and β > λ(1 + θ(Q), the corresponding solution satisfies
limt→∞ u(t, x) = ((λ− β)I− λQ)−1v for any x ∈ X and ϕ ∈ l∞(X).

Proof. The proof is standard and we just sketch it. One can solve the
system by considering the (stronger) Cauchy problem in l∞(X)

{

u̇(t) = −Au(t) + f(t),

u(0) = ϕ,

where A = (λ − β)I − λQ. By our hypotheses we have that Re(σ(A)) ≥

ǫ > 0, hence ‖e−At‖
t→∞
→ 0, ‖

∫ t
0 e−Asds‖ ≤

∫ +∞
0 ‖e−As‖ds < +∞ for any

t ∈ [0, +∞] and A is invertible. The solution is given by the well-known
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ECOLOGICAL EQUILIBRIUM FOR RBRW 9

formula u(t) = e−Atϕ+
∫ t
0 e−A(t−s)f(s)ds. The first term tends to zero, while

the second one can be written as
∫ t0
0 e−A(t−s)f(s)ds+

∫ t
t0

e−A(t−s)f(s)ds and
the claim follows choosing t0 such that for t ≥ t0, ‖f(t)− v‖∞ is sufficiently
small.

Lemma 3.3. Let Λ ⊂ X be finite. Fix γ ≥ 0 and k ∈ N. Consider GΛ

defined in (3.1) with c(·) ≡ λ > 0. Let {ηt}t≥0 be the process generated by

GΛ starting from η bounded, η ≥ k1. Moreover, if λ < γ/θ, then there exists

two nonnegative constants U1,Λ(k, λ, γ) and U2,Λ(k, λ, γ) such that, for any

x ∈ Λ, we have that

(3.3) lim
t→∞

E
η[ηt(x)] ≤ U1,Λ(k, λ, γ), lim

t→∞
E

η
[

(ηt(x))2
]

≤ U2,Λ(k, λ, γ),

where the limits are attained uniformly with respect to x.

Proof. Define {ξt}t≥0 as ξt := ηt−k1. This process is a Markov process
(namely it is the branching random walk with constant immigration rate
λk) and its generator is
(3.4)

(HΛg)(ξ) :=
∑

x∈Λ

[

γξ(x)(∂−x g)(ξ) + λ(ξ(x) + k)
∑

y

pΛ(x, y)(∂+
y g)(ξ)

]

.

Obviously for any η ∈ Ω such that η ≥ k1 we have

E
η[ηt(x)] = E

η−k1[ξt(x)] + k

E
η

[

(ηt(x))2
]

= E
η−k1

[

(ξt(x))2
]

+ 2kE
η−k1[ξt(x)] + k2.

(3.5)

Choose ξ ∈ Ω and let m(t, x) := E
ξ[ξt(x)], for any x ∈ Λ; by basic semi-

group properties we have that d
dt

m(t, x) = E
ξ[(HΛπx)(ξt)] (where πx is the

projection on the x coordinate). By computing explicitly HΛπx we obtain
that m satisfies the system (3.2) with Q = P T , f(t, x) = kλ

∑

y pΛ(y, x) and
β = λ− γ. The claim follows from Lemma 3.2.

To prove the second moment assertion consider C(t, x, y) := E
ξ[ξt(x)ξt(y)],

for any x, y ∈ Λ. Using the same arguments as before, we obtain that C is
the solution following system of linear differential equations:

(3.6)

{

d
dt

C(t, x, y) = −AC(t, x, y) + f(t, x, y), ∀x, y ∈ Λ,

C(0, x, y) = ξ(x)ξ(y),
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10 BERTACCHI, POSTA, ZUCCA

where

A = 2(γI− λB), B((x, y), (x1, y1)) = δy(y1)
pΛ(x1, x)

2
+ δx(x1)

pΛ(y1, y)

2

f(t, x, y) = λk

(

m(t, x)
∑

z

pΛ(z, y) + m(t, y)
∑

z

pΛ(z, x)

)

+

δx(y)λ

(

k
∑

z

pΛ(z, x) +
∑

z

pΛ(z, x)m(t, z)

)

+ δx(y)γm(t, x).

The system (3.6) is formally equivalent to the one in (3.2) with X × X in
the place of X. The results just obtained for m ensure that f satisfies the
assumptions in Lemma 3.2. Moreover θ(B) ≤ θ, since b(n)((x, y), (x1, y1)) =
1
2n

∑n
k=0

(n
k

)

p(k)(x1, x)p(n−k)(y1, y) and the claim follows.

Remark 3.4. It is known that given the equations (3.2) with x ∈ Λ,
where Λ is finite, an explicit expression of the solution, for any ϕ ∈ Ω, is

u(t, x) = eβt
∑

y

qt(x, y)ϕ(y) +
∑

y

∫ t

0
eβ(t−s)qt−s(x, y)f(s, y)ds.

This formula represents the solution also for infinite Λ under mild assump-
tions on f : suppose, for instance, that f ≥ 0,

∑

x f(t, x)α(x) < +∞ for some
t ≥ 0 and ∂tf(t, x) is bounded on any compact set, uniformly with respect
to x ∈ Λ. Moreover if we consider two families {QΛ}Λ and {fΛ}Λ which are
non decreasing with respect to Λ and we denote by {uΛ}Λ the corresponding
solutions, then we have that uΛ ↑ uX as Λ ↑ X (hence one may replace the
upper bounds in (3.3) with U1,X and U2,X which clearly are uniform with
respect to Λ).

We note that the bound (3.3) can be obtained starting from any η ∈ Ω
(not necessarily bounded) by using similar computations, if λ < γ/‖P T ‖ ≤
γ/θ. It is easy to show that ‖P T ‖ = 1, for instance, for any symmetric
random walk.

3.2. The finite volume process. The following proposition shows how to
construct a monotone coupling of different processes generated by (3.1).

Proposition 3.5. Fix N ∈ N and let Λ1 ⊂ · · · ⊂ ΛN ⊂ X be finite
subsets. Fix k1, . . . , kN ∈ N, γ1, . . . , γN ∈ [0, +∞) and let c1, . . . , cN : N →
[0, +∞) be non-increasing functions. Then for any fixed (η0,1, . . . , η0,N ) ∈
ΩN such that η0,h ≥ kh1 for any h ∈ {1, . . . , N}, there exists a Markov
process {(ηt,1, . . . , ηt,N )}t≥0 on ΩN such that for any h ∈ {1, . . . , N} the
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ECOLOGICAL EQUILIBRIUM FOR RBRW 11

semigroup associated with the process {ηt,h}t≥0 has generator GΛh
. Further-

more assume that kh ≤ kh+1, γh ≥ γh+1, ch(kh+1 + n) ≤ ch+1(kh+1 + n) for

any n ∈ N and η0,h ≤ η0,h+1 for any h ∈ {1, . . . , N − 1}. Then ηt,1 ≤ · · · ≤
ηt,N for any t ≥ 0.

Proof. It is enough to consider the processes on ΩΛN
. Choose (η0,1, . . . , η0,N )

in (ΩΛN
)N such that η0,h ≥ kh1 for any h ∈ {1, . . . , N} as the initial

configurations. For any x ∈ ΛN let A(x) := max{η0,1(x), . . . , η0,N (x)},
γ̄ := max{γ1, . . . , γN}, c̄ := max{c1(0), . . . , cN (0)}. Choose an independent
family of exponential clocks, two per site x ∈ ΛN : one of parameter γ̄A(x)
which controls the deaths and one of parameter c̄A(x) which controls births.
Define (ηt,1, . . . , ηt,N ) := (η0,1, . . . , η0,N ) for any t < τ where τ is the time of
the first ring of the collection of clocks. Assume that the clock which rings
first is at site x.

• If the clock is a death clock then for any z 6= x put ητ,h(z) := ητ−,h(z),
pick a uniform U in the interval (0, 1) and define ητ,h(x) := ητ−,h(x)−1
for any h such that U ≤ (γh(ητ−,h(x) − kh)+)/γ̄A(x) and ητ,h(x) :=
ητ−,h(x) otherwise. Finally restart the procedure from (ητ,1, . . . , ητ,N ).

• If the clock is a birth clock then for any z 6∼ x put ητ,h(z) := ητ−,h(z).
Choose at random, accordingly to the transition matrix P , a site y
among the neighbours of x. Now pick a uniform V in (0, 1) and define
ητ,h(y) := ητ−,h(y) + 1 for any given h such that V is not larger than
ητ−,h(x)pΛh

(x, y)ch(ητ−,h(y))/(c̄A(x)p(x, y)) and ητ,h(y) = ητ−,h(y)
otherwise. Finally restart the procedure from (ητ,1, . . . , ητ,N ).

It is a simple exercise to check that this construction leads to the desired
coupling.

In the remaining part of this section we prove some basic bounds on the
semigroup {St,Λ}t≥0 generated by GΛ. We need these bounds to extend the
construction of the process to an infinite Λ ⊂ X. The next result shows that
the semigroup {St,Λ}t≥0 generated by GΛ maps Lip(Ω) into itself. The proof
follows closely the proof of Lemma 2.1 in [10].

Lemma 3.6. Let Λ ⊂ X be finite and {St,Λ}t≥0 be the semigroup gener-

ated by GΛ. Then for any f ∈ Lip(Ω)

L(St,Λf) ≤ L(f) exp(c(0)Mt).

Proof. Take ξ, ζ ∈ Ω (ξ, ζ ≥ k1) and consider the monotone cou-
pling {(η1

t , η
2
t , η

3
t , η

4
t )}t≥0 of Proposition 3.5 such that (η1

0, η
2
0, η

3
0, η

4
0) := (ξ ∧
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12 BERTACCHI, POSTA, ZUCCA

ζ, ξ, ζ, ξ ∨ ζ). This means that η1
t ≤ η2

t , η
3
t ≤ η4

t for any t ≥ 0. Therefore

|(St,Λf)(ξ)− (St,Λf)(ζ)| = |E[f(η2
t )− f(η3

t )]|

≤ E[|f(η2
t )− f(η3

t )|] ≤ L(f)E[‖η2
t − η3

t ‖].

To bound this last term notice that by monotonicity

‖η2
t − η3

t ‖ ≤
∑

x

α(x)(η4
t (x)− η1

t (x)).

Furthermore for any x ∈ Λ we claim that

(3.7)
d

dt
E[η4

t (x)− η1
t (x)] ≤ c(0)

∑

y

pΛ(y, x)E[η4
t (y)− η1

t (y)],

which implies, by (2.1), that

d

dt
E[‖η4

t − η1
t ‖] ≤ c(0)ME[‖η4

t − η1
t ‖].

This gives
E[‖η4

t − η1
t ‖] ≤ E[‖η4

0 − η1
0‖] exp(c(0)Mt)

and the proof is complete. To obtain (3.7) use the generator of the coupled
process or better notice (see the proof of Proposition 3.5) that the rate of
the transition η4

t (x)− η1
t (x) → η4

t (x)− η1
t (x) + 1 is

c(η4
t−(x))

∑

y

pΛ(y, x)(η4
t−(y)− η1

t−(y)).

The following result is a simple consequence of Lemma 3.6. The proof is
the same as the one of Corollary 2.5 in [10], hence we omit it.

Corollary 3.7. Let Λ ⊂ X be finite and {St,Λ}t≥0 be the semigroup

generated by GΛ. For any f : Ω→ R such that |f(η)| ≤ Cf‖η‖ for all η ≥ k1

and for some constant Cf > 0, we have that

|(St,Λf)(η)| ≤ Cf‖η‖ exp(c(0)Mt).

The next two results are the analogs of Lemma 2.6 and Lemma 2.7 in
[10].
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ECOLOGICAL EQUILIBRIUM FOR RBRW 13

Lemma 3.8. Let Λ ⊂ Λ′ ⊂ X be finite subsets. Fix γ ≥ 0 and k ∈ N. Let

GΛ,GΛ′ be defined by (3.1) Then for any f ∈ Lip(Ω), η ≥ k1,

|(GΛ′f)(η)− (GΛf)(η)| ≤ L(f) (γ + c(0)M)
∑
x

1lΛ′\Λ0(x)η(x)α(x).

Proof. Can be obtained by direct computation.

Lemma 3.9. Let Λ ⊂ Λ′ ⊂ X be two finite subsets. Fix γ ≥ 0 and

k ∈ N. Consider the semigroups {St,Λ}t≥0 and {St,Λ′}t≥0 associated with the

generators GΛ,GΛ′ defined by (3.1). Then for any f ∈ Lip(Ω) and η ≥ k1

|(St,Λ′f)(η)− (St,Λf)(η)| ≤

≤ L(f) (γ + c(0)M) ec(0)Mt
∑
x,y

α(x)1lΛ′\Λ0(x)η(y)

∫ t

0
p

c(0)
u,Λ′(y, x)du.

Proof. Note that

(St,Λ′f)(η)− (St,Λf)(η) =

∫ t

0
(Su,Λ′(GΛ′ − GΛ)St−u,Λf)(η)du.

By Lemma 3.8

|((GΛ′ − GΛ)St−u,Λf)(η)| ≤ L(St−u,Λf) (γ + c(0)M)
∑
x

1lΛ′\Λ0(x)η(x)α(x).

By Lemma 3.6
L(St−u,Λf) ≤ L(f)ec(0)M(t−u).

Using this last estimate and the positivity of Su,Λ′ we get

(3.8) |(Su,Λ′(GΛ′ − GΛ)St−u,Λf)(η)|

≤ L(f)ec(0)M(t−u) (γ + c(0)M)
∑
x

α(x)1lΛ′\Λ0(x)Su,Λ′(πx)(η).

By Proposition 3.5 (Su,Λ′πx)(η) ≤ E
η
Λ′ [ηu(x)], where {ηt}t≥0 is the process

generated by (3.1) with γ = 0, c(·) ≡ c(0) and k = 0. By Remark 3.4 we
know that

E
η
Λ′ [ηu(x)] = ec(0)u

∑
y

p
c(0)
u,Λ′(y, x)η(y).

Plugging this bound in (3.8) we get

|(Su,Λ′(GΛ′ − GΛ)St−u,Λf)(η)|

≤ L(f)ec(0)Mt (γ + c(0)M)
∑
x,y

α(x)1lΛ′\Λ0(x)p
c(0)
u,Λ′(y, x)η(y),

which concludes the proof.
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14 BERTACCHI, POSTA, ZUCCA

3.3. Finite volume approximation. Following [10] we construct the process
on X as a limit of processes defined on Λ finite. For any n ∈ N define
Λn := B(x0, n), that is the ball of radius n and center x0.

Proposition 3.10. Fix γ ≥ 0 and k ∈ N. For any n ∈ N, consider the
semigroups {St,Λn

}t≥0 generated by GΛn
defined in (3.1) For any fixed t ≥ 0,

f ∈ Lip(Ω) and η ∈ Ω, η ≥ k1 the sequence {St,Λn
: n ∈ N} is a Cauchy

sequence.

Proof. Assume that m ≤ n, then by Lemma 3.9

|(St,Λn
f)(η)− (St,Λm

f)(η)| ≤

≤ L(f) (γ + c(0)M) ec(0)Mt
∑
x,y

α(x)1lΛn\Λ0
m

(x)η(y)

∫ t

0
p

c(0)
u,Λn

(y, x)du.

We have to show that ∑
y

p
c(0)
u,Λn

(y, x)η(y),

can be dominated uniformly in n ∈ N by a function φ(x, u) ∈ L1(X × [0, t]),
where the measure on X is α(·). The result follows by dominated convergence
since limm,n→+∞ 1lΛn\Λ0

m

(x) ≤ limm→+∞ 1l(Λ0
m

)∁ (x) = 0. We claim that we

can take φ(x, u) =
∑

y η(y)p
c(0)
u (y, x), indeed p

c(0)
u,Λn

(y, x) ≤ p
c(0)
u (y, x) and by

(2.2) we have
∑
x

α(x)
∑
y

pc(0)
u (y, x)η(y) ≤ ec(0)(M−1)u

∑
y

η(y)α(y)

= ec(0)(M−1)u‖η‖ ∈ L1([0, t]).

The proposition above allows us to define for any t ≥ 0, f ∈ Lip(Ω) and
η ∈ Ω, η ≥ k1.

(Stf)(η) := lim
n→+∞

(St,Λn
f)(η).

Remark 3.11. It easy to show that with this definition we can drop
the hypothesis that Λ is finite (take Λ ↑ X) in Proposition 3.5, Lemma 3.6,
Corollary 3.7, Lemma 3.8 and Lemma 3.9. The same can be done in Lemma
3.3, since one proves that E

η[ηt(x)] = limΛ↑X m(t, x)+k and E
η[ηt(x)ηt(y)] =

limΛ↑X C(t, x, y), where the limit functions satisfy the corresponding differ-
ential systems. Note that in particular the latter is not obvious, because η 7→
η(x)η(y) 6∈ Lip(Ω). Moreover, the process generated by (2.4) is monotone as
a consequence of Proposition 3.5.
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Proposition 3.12. For any t ≥ 0, f ∈ Lip(Ω) and η ∈ Ω, η ≥ k1 define

(Stf)(η) := lim
n→+∞

(St,Λn
f)(η).

1. {St}t≥0 is a semigroup.
2. For all f ∈ Lip(Ω), η ∈ Ω,

(Stf)(η) = f(η) +

∫ t

0

(GSuf)(η) du.

Proof. These properties can be proven exactly as in [10] (page 451 and
Lemma 2.12) by using Lemma 3.6, Corollary 3.7, Lemma 3.3, Lemma 3.8 and
Lemma 3.9 instead of Lemma 2.1, Corollary 2.5, Lemma 2.6 and Lemma 2.7
respectively.

Among the properties of the semigroup {St}t≥0 which can be proven we
state the one which we need in the next section.

Proposition 3.13. Let µ be a probability measure on Ω such that µ[‖η‖]
is finite. Then µ is invariant for {St}t≥0 ( i.e. for any t ≥ 0, µ[Stf ] = µ[f ]
for any f ∈ Lip(Ω)) if and only if µ[Gf ] = 0 for any f ∈ Lip(Ω).

Proof. See the proof of Corollary 2.17 in [10].

Proof of Proposition 3.1. It is easy to show that (i) holds. The claim
(ii) follows from Lemma 3.6 and Remark 3.11, while Propositions 3.12 and
3.13 imply (iii) and (iv) respectively.

4. Ecological equilibrium and invariant measure. In this section
we study the behaviour of the RBRW constructed in Section 3. In partic-
ular Proposition 1.1 and Theorem 1.2 are proven (see Proposition 4.1 and
Theorem 4.3 below). The main tool is the coupling between this monotone
process and suitable contact and BRW processes.

Proposition 4.1. Let {ηt}t≥0 the RBRW generated by (2.4).

(i) If c(0) ≤ 1/ρ (resp. c(0) < 1/ρ) then limt→+∞ ηt(x) = 0 a.s. (resp.
limt→+∞ E

η[ηt(x)] = 0) for any finite η ∈ Ω, x ∈ X;
(ii) if c(0) > λCP then limt→+∞ E

η[ηt(x)] > 0 for any η ∈ Ω \ {0}, x ∈ X
and P

η(lim supt→∞ ηt(x) > 0) > 0;
(iii) if c(+∞) > 1/ρ then limt→+∞ E

η[ηt(x)] = +∞ for any η ∈ Ω \ {0};
(iv) if c(+∞) < 1/θ then lim supt→+∞ E

η[ηt(x)] < +∞ uniformly for any
bounded η ∈ Ω, x ∈ X.
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16 BERTACCHI, POSTA, ZUCCA

Proof. Recall that Proposition 3.5 and Lemma 3.3 hold for Λ = X (see
Remark 3.11).

(i) By Proposition 3.5 we can couple the process with a branching random
walk {ζt}t≥0 starting from η with birth rate c(0) such that ηt ≤ ζt.
The first part of the claim follows by noting that ζt dies out almost
surely (see [1], Theorem 3.1). As for the second part, the assertion is
a consequence of Lemma 3.3 and Remark 3.11 (since k = 0 one can
choose U1,X(0, λ, 1) = 0).

(ii) By Proposition 3.5 there exists a supercritical site-breeding CP {ζt}t≥0

starting from η ∧ 1 with birth rate c(0) > λCP and such that ζt ≤ ηt.
Theorem 4.8 of Chapter VI in [8] yields to the conclusion.

(iii) By Proposition 3.5 we can couple {ηt}t≥0 with a branching random
walk {ζt}t≥0 starting from η with birth rate c(0) > 1 such that ζt ≤ ηt

and the claim follows.
(iv) In this case there exists k̄ ∈ N such that c(k̄) < 1/θ. By Proposition 3.5

and Remark 3.11 there exists a process {ζt}t≥0 generated by (3.1) with
k = k̄, γ = 1, birth rate c(k̄), such that ζt ≥ ηt. By Lemma 3.3 and
Remark 3.11 we have

lim sup
t→∞

E
η∨k1[ηt(x)] ≤ lim

t→∞
E

η∨k1[ζt(x)] ≤ U1,X(k̄, c(k̄), 1).

Remark 4.2. The condition lim supt→+∞ E
η[ηt(x)] < +∞ implies that

P
η(limt→+∞ ηt(x) = +∞) = 0 but ηt(x), as a function of t, could be un-

bounded almost surely.

The remaining part of this section is devoted to the proof of the following
theorem.

Theorem 4.3. Let {St}t≥0 be the semigroup generated by (2.4) using

Proposition 3.1. Assume that c(0) > λCP and c(+∞) < 1/θ. Then there

exists a nontrivial probability measure µ on (Ω,B(Ω)) such that µ[Stf ] = µ[f ]
for all t ≥ 0 and f ∈ Lip(Ω).

We need some preparatory results.

Lemma 4.4. Assume that c : N → [0, +∞) is a non-increasing function

such that c(0) > λCP while c(+∞) < 1/θ. For any n ∈ N define cn :=
c1l[0,n−1] and consider the generator

(Lnf)(η) :=
∑

x

η(x)

[

(∂−x f)(η) +
∑

y

cn(η(y))p(x, y)(∂+
y f)(η)

]

.
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Then there exists µn probability measure on Ω such that:

(i) µnLn ≡ 0;
(ii) the sequence {µn : n ≥ 1} is non-decreasing with respect to the sto-

chastic ordering of measures;
(iii) denote by νλ the nontrivial invariant probability measure of the CP on

X with parameter λ := c(0) > λCP (see [8] page 265). Then νλ ≤ µn

for any n ≥ 2;
(iv) the sequence {µn}n∈N is tight.

Proof. Notice that Ln is of the form (2.4) so it generates a Markov
process {ηt,n}t≥0.

(i) The process {ηt,n}t≥0 is monotone because of Proposition 3.5 and Re-
mark 3.11. If the initial condition is n1 then by standard arguments
(see [8], Chapter III, Theorem 2.3) ηt,n ⇒ µn as t→ +∞. Furthermore
µnLn ≡ 0.

(ii) For any n ≥ 2, by Proposition 3.5 and Remark 3.11, there exists a
monotone coupling between {ηt,n}t≥0, starting from n1, and {ηt,n+1}t≥0,
starting from (n+1)1, such that ηt,n ≤ ηt,n+1 for any t ≥ 0. Let f : Ω→
R be a nondecreasing function, then E

n1[f(ηt,n)] ≤ E
(n+1)1[f(ηt,n+1)]

for any t ≥ 0. By taking the limit, as t → +∞, we get µn(f) ≤ µn+1(f).
(iii) By Proposition 3.5 we can couple {ηt,2}t≥0, starting from 21, and a

supercritical CP {ξt}t≥0, starting from 1, with parameter λ = c(0) in
such a way that ξt ≤ ηt,2 for any t ≥ 0.

(iv) Note that c(+∞) < 1/θ implies k̄ := inf{k ∈ N : c(k) < 1/θ} < +∞.
Take n ≥ k̄ and observe that by Proposition 3.5 and Remark 3.11 there
exists a monotone coupling between {ηt,n}t≥0, and the BRW {ζt}t≥0

generated by (3.1), with k := k̄, γ = 1, and parameter c(k̄), both
starting from n1. Since ηt,n ≤ ζt for any t ≥ 0 then E

n1[ηt,n(0)] ≤
E

n1[ζt(0)]. By taking the limit as t → +∞ and using Lemma 3.3 and
Remark 3.11 we have that µn(η(x)) ≤ U1,X(k̄, c(k̄), 1) for any n ≥
k̄, x ∈ X. Hence there exists a constant C := U1,X(k̄, c(k̄), 1) such that
for any r > 0 and n ≥ k̄ we have, by Chebyshev inequality, µn(η ∈ Ω :
η(x) > r) ≤ C/r. Let us fix A > 0 and define r(x) := A/

√

α(x) for
any x ∈ X. We have

µn(η ∈ Ω : η(x) ≤ r(x) for any x ∈ X)

= 1− µn(η ∈ Ω : there exists x ∈ X such that η(x) > r(x))

≥ 1−
∑

x

µn(η ∈ Ω : η(x) > r(x)) ≥ 1−C
∑

x

1

r(x)
= 1−

C

A

∑

x

√

α(x).
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18 BERTACCHI, POSTA, ZUCCA

By our assumptions,
∑

x

√
α(x) < +∞, whence for any ǫ > 0 we can

choose A so that µn(η ∈ Ω : η(x) ≤ r(x) for any x ∈ X) ≥ 1 − ǫ for
any n ≥ k̄. The subset K := {η ∈ Ω : η(x) ≤ r(x) for any x ∈ X} of Ω
is compact. In fact K =

∏
x[0, r(x)] since η ∈

∏
x([0, r(x)]∩N) implies

that ∑

x

η(x)α(x) ≤ A
∑

x

√
α(x) < +∞,

i.e. η ∈ Ω.

Since the sequence {µn}n∈N is tight and monotone and since the set of
continuous, monotone functions separates the set of probability measures,
then the sequence converges weakly to a probability measure on Ω, say µ.

Moreover µ inherits all the symmetries of X and P : if T is a bijection
of X onto itself such that x ∼ y if and only if Tx ∼ Ty and p(Tx, Ty) =
p(x, y), then µ(T−1(A)) = µ(A) for all measurable set of configurations A.
In particular if P is the simple random walk on Z

d or on the homogeneous
tree of degree n, then µ is translation invariant.

By the previous lemma µn ≤ µ for any n ∈ N. Furthermore 0 < νλ(η(x)) ≤
µ(η(x)) ≤ U1,X(k̄, c(k̄), 1) (by the same bound on µn), hence µ is not δ0 and
µ[‖η‖] < +∞. We prove that µ is invariant by showing that µ[Lf ] = 0
for any f ∈ Lip(Ω) (see Proposition 3.13). In order to see this we need
a preparatory lemma, indeed in the proof of Proposition 4.6 we need that
µn(Lf) → µ(Lf) as n → +∞ but this does not follow directly from µn ⇒ µ

because Lf is unbounded.

Lemma 4.5. Let {µn}n∈N be a non-decreasing sequence of probability
measures on Ω and assume that µn ⇒ µ as n → +∞ and µ[‖η‖] < +∞.
For any m ∈ N, η ∈ Ω and g : Ω → R define the configuration η̃m(·) :=
1lB(x0,m)(·)η(·) and g̃m(η) := g(η̃m). Assume that g : Ω → R satisfies the
following

(1) there exists C > 0 such that |g(η)| ≤ C(‖η‖+ 1) for any η ∈ Ω;
(2) µn[|g − g̃m|]→ 0 as m → +∞ uniformly in n ∈ N.

Then µn(g) → µ(g) as n → +∞.

Proof. We have that

|µn[g]− µ[g]| ≤ |µn[g − g̃m]|+ |µn[g̃m]− µ[g̃m]|+ |µ[g̃m − g]|.

By hypothesis (2) and the dominated convergence theorem the first and last
term on the right hand side of the above inequality may be made small
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uniformly in n by taking m sufficiently large. Fix m ∈ N such that these
terms are smaller than ǫ > 0 for any n ∈ N. For the middle term define
gm,k(η) := gm(η)1l(−∞,k](|g

m(η)|), k ∈ N and write

(4.1) |µn[g̃m]−µ[g̃m]| ≤ |µn[g̃m−g̃m,k]|+|µn[g̃m,k]−µ[g̃m,k]|+|µ[g̃m,k−g̃m]|.

Note that by hypothesis (1) and elementary bounds

|g̃m(η)− g̃m,k(η)| = |g̃m(η)|1l(k,+∞)(|g̃
m(η)|)

≤ C(‖η‖+ 1)1l(k/C−1,+∞)(‖η‖) := vk(η).

By monotonicity the first and the last term on the right hand side of (4.1)
can be bounded above by µ[vk]. Furthermore limk→+∞ vk = 0 and vk(η) ≤
C(‖η‖+ 1), so by dominated convergence the first and the last term on the
right hand side of (4.1) can be made smaller than ǫ by taking k large. Finally
fix k ∈ N large enough, and observe that the middle term on the right hand
side of (4.1) goes to 0 as n → +∞ by weak convergence.

Proposition 4.6. Let µ be the weak limit of the sequence {µn}n∈N de-

fined in Lemma 4.4, then µ[Lf ] = 0 for any f ∈ Lip(Ω).

Proof. We start splitting

(4.2) |µ[Lf ]| ≤ |µ[Lf ]− µn[Lf ]|+ µn[|Lf − Lnf |].

Roughly speaking the first one of these two terms goes to 0 by weak conver-
gence, while the second one goes to 0 since Lnf → Lf .

By Lemma 4.5 |µ[Lf ]− µn[Lf ]| → 0 if we can show that condition (2) is
satisfied by g := Lf (condition (1) is easily verified). Observe that

|(Lf)(η)− (Lf)(η̃m)| ≤
∑

x

1lB(x0,m)(x)η(x)
[ ∣∣(∂−x f)(η)− (∂−x f)(η̃m)

∣∣

+ c(0)
∑

y

p(x, y)
∣∣∣(∂+

y f)(η)− (∂+
y f)(η̃m)

∣∣∣
]

+
∑

x

1lB(x0,m)∁ (x)η(x)

[
|(∂−x f)(η)|+ c(0)

∑

y

p(x, y)|(∂+
y f)(η)|

]
.

(4.3)

It easy to show that L(∂±z f) ≤ 2L(f) for any f ∈ Lip(Ω), x ∈ X. Thus the
first of the two sums on the right hand side of (4.3) is dominated by

2L(f)(1 + c(0))‖η − η̃m‖
∑

x

1lB(x0,m)(x)η(x).
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Moreover

‖η − η̃m‖
∑

x

1lB(x0,m)(x)η(x) =
∑

x,y

α(y)1lB(x0,m)(x)1lB(x0,m)∁ (y)η(x)η(y).

This implies that the µn mean of the first term on the right hand side of
(4.3) is smaller or equal to

2L(f)(1 + c(0))
∑

x,y

1lB(x0,m)(x)1lB(x0,m)∁ (y)α(y)µn[η(x)η(y)].

This term goes to 0 uniformly in n ∈ N since µn[η(x)η(y)] ≤ µ[η(x)η(y)] ≤ C

by Remark 3.11 and Lemma 3.3, while by our choice of M > (D − 1)2

∑

x,y

1lB(x0,m)(x)1lB(x0,m)∁ (y)α(y)
m→∞−→ 0.

The second term on the right hand side of (4.3) can be dominated by

L(f)(1 + c(0)M)
∑

x

1lB(x0,m)∁ (x)η(x)α(x),

hence its µn mean converges uniformly in n to 0, since it is not larger than

U1,X(k̄, c(k̄), θ)
∑

x

1lB(x0,m)∁ (x)α(x)
m→∞−→ 0,

(again use Lemma 3.3).
We are left with the proof that the second term on the right hand side

of (4.2) goes to 0 as n → +∞. Observe that since µn is concentrated on
{η : η ≤ n1},

µn[|Lf − Lnf |] = c(n)
∑

x,y

p(x, y)µn[η(x)1l{n}(η(y))|∂+
y f(η)|]

≤ c(0)L(f)
∑

x,y

p(x, y)α(y)µn[η(x)1l[n, +∞)(η(y))].

By the Schwartz and Chebyshev inequalities, Lemma 3.3 and Remark 3.11
we have that

µn[η(x)1l[n,+∞)(η(y))] ≤
√

µn[η(x)2]µn(η(y) ≥ n)

≤
√

µ[η(x)2]µ(η(y) ≥ n) ≤ C√
n
→ 0,

where C does not depend on x and y.

Proof of Theorem 4.3. It follows from Lemma 4.4, Lemma 4.5 and
Proposition 4.6.
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5. Final remarks and examples. In this paper we consider mainly
local survival (that is, persistence of the population in a fixed site). We
already observed that, for general P (e.g. for the simple random walk on
a general graph), a weaker type of survival (the weak phase) is possible
for both the CP and the BRW. One can associate to this global phase two
critical parameters (which coincide with λCP and λBRW , for instance, on
Z

d). Clearly this phenomenon could be observed also in the evolution of a
RBRW.

Proposition 4.1 does not describe the behaviour of all possible RBRW:
in particular it is not clear what happens if 1/ρ < c(0) ≤ λCP or if
c(+∞) ∈ (1/θ, 1/ρ). As for this last question, one would ask whether this
interval may be non empty. We already noticed that ρ = θ on amenable
graphs with a strongly reversible random walk (such as the simple random
walk on Z

d), nevertheless there are examples of graphs (see Example 5.1)
where ρ 6= θ and for any λ ∈ (1/θ, 1/ρ), the BRW starting from a finite con-
figuration vanishes locally with probability 1, while starting from a bounded
configuration greater than 1 the expected number of individuals at a fixed
site diverges. Roughly speaking this is possible on graphs where the contri-
bution of far distant individuals is not negligible; indeed if P is symmetric
this behaviour is equivalent to the existence of a weak phase for the BRW.
One may conjecture that the critical parameter of this phenomenon may

be 1/ lim supn→∞
n

√

∑

x p(n)(x, y) (which does not depend on y). Finally,
another open question is the extremality of the invariant measure µ.

Example 5.1. Let us consider the homogeneous tree Tn+1 where the
degree of each vertex is n + 1 and choose n ≥ 2. Fix a reference vertex o
and p ∈ [0, 1/n]. Given two neighbours x and y we define p(x, y) as p if
|x|+ 1 = |y| ≥ 2 (recall that |x| is the distance from x to o), as 1/(n + 1) if
y ∼ x = o and as 1 − np otherwise. By using standard generating function

techniques and the fact that ‖P T ‖ ≥ θ ≥ lim supn→∞
n

√

∑

y p(n)(y, x) ≥ ρ

(for all x) it is easy to show that

Range of p ρ θ

[0, 1/2n] 1 1 < n−(n2−1)p≤ θ≤ (n+1)(1−np)

(1/2n, 1/(n+1)) 2
√

np(1−np) 1 < n−(n2−1)p≤ θ≤ (n+1)(1−np)

1/(n+1) 2
√

n/(n+1) θ=1

[1/(n+1), 1/n] 2
√

np(1−np) θ=n−(n2−1)p < 1

Note that ρ < 1 for all p > 1/2n and that ρ < θ, for instance, if p = 1/(n+1),
i.e. the simple random walk. In this case θ = 1; by using the explicit solution
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given in Remark 3.4 (with ϕ ≡ 1), and noting that, by translation invariance,
∑

x p(n)(x, y) = ‖(P T )n‖ ≥ θn = 1 we have that limt→∞ E
ϕ[ηt(x)] = +∞ if

λ > 1. Moreover considering the BRW with at least one immortal particle
per site, if λ > 1 then the expected number of individuals on a fixed site
diverges as t goes to infinity.
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