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Abstract

We consider the problem of finding a harmonic function u in a bounded domain Ω ⊂ R
n, n ≥ 2,

satisfying a nonlinear boundary condition of the form ∂νu(x) = λ µ(x)h(u(x)), x ∈ ∂Ω where µ
changes sign and h is an increasing function with superlinear, subcritical growth at infinity. We
study the solvability of the problem depending on the parameter λ by using min-max methods.

1 Statement of the problem and main result

We discuss the solvability of the boundary value problem

∆u(x) = 0 in Ω

∂νu(x) = λµ(x)h(u(x)) on ∂Ω (1.1)

where Ω ⊂ R
n, n ≥ 2 is a bounded smooth domain and λ ∈ R\{0}. We suppose that h is an increasing

C1 function on R, satisfying h(0) = 0 and with superlinear, subcritical growth at infinity. Finally, we
assume µ(x) ∈ L∞(∂Ω) and consider the case that µ(x) changes its sign along ∂Ω.
Problems of the above type have been recently discussed in quite different contexts, e.g. in [1] mo-
tivated by the study of conformal metrics with prescribed (sign-changing) mean curvature on the
boundary of a Riemannian manifold (see also [2], [3]) and in [4], [5] in corrosion modeling.
In this latter framework, we mention in particular the model described in [4], where one has problem
(1.1) in a two dimensional domain with

h(u) = [eαu − e−(1−α)u], (1.2)

(α is a known parameter ranging in [0, 1]) and where µ is equal to 1 or to the characteristic function
of a subset Γ ⊂ ∂Ω; note that the condition of subcritical growth of the exponential boundary term
is satisfied in two dimensions. The above boundary condition (Butler-Volmer formula) expresses the
relation, on a conducting surface, between a suitably defined internal voltage potential of an electrolyte
(overpotential) and the current density; this exponential formula is an accurate model of the physical
process in two cases: when the overpotential is ”small” (in the so-called ”active region”) by taking
in (1.1) positive values of the parameter λ, or when the overpotential ranges in some interval of
intermediate values (the ”transition region”) and for negative values of the parameter.
Actually, in the model discussed in [4], condition (1.2) is justified by assuming a priori that the
overpotential at the surface (or at some portion of the surface) lies entirely in the active or in the
transition region. However, especially when the surface is made of several conducting pieces Γ1, Γ2,...,
separated by insulating parts, it seems natural to consider the more general situation of a potential in
the active region on Γi and in the transition region on Γj for i 6= j. This means that we will consider
the boundary term (1.2) with a function µ which changes its sign on the contour ∂Ω.
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The case of indefinite µ is also treated for λ = 1 in [1], where existence of positive solutions was
proved (see theorems 1.2 and 1.3) under the additional assumption that h′(0) = 0 (valid in the case
of zero mean curvature at a given manifold’s boundary) which implies that the linearized problem at
the origin is positive semidefinite.
Motivated by the previous discussion, we study the problem (1.1) in the case of indefinite µ and
assuming h′(0) > 0. In this case, we can not treat the problem as an indefinite perturbation of a
non negative linear operator as the indefinite weight is already involved in the linearized boundary
condition; this requires a particularly careful analysis of the linear eigenvalue problem. Note that,
although linear and semi-linear eigenvalue problems with indefinite weight have been widely studied
for elliptic operators [7]-[10], less is known about the corresponding problems involving boundary
operators.
In this work we begin to address the problem of existence of solutions by assuming that the nonlinear
term h is a strictly increasing function and that the indefinite weight satisfies

∫

∂Ω µ 6= 0; then, provided
the boundary Ω and the function µ satisfy some regularity conditions (depending on the dimension
n ≥ 2) we find solutions to problem (1.1) for λ ranging in some intervals determined by the eigenvalues
λk, k ∈ Z, of the first order approximation to the problem at u = 0 (see section 2 below).
In particular, if the derivative h′ assumes the global minimum at zero, we get a solution for λk <
λ < λk+1 (with k 6= 0, −1 if

∫

∂Ω µ < 0); otherwise, there is at least one solution for small enough λ
provided

∫

∂Ω µ > 0; in this case, the solution is necessarily sign-changing.
We prove the above results by a variational approach, by looking at the solutions of (1.1) as critical
points of a functional Eλ on H1(Ω). As we remarked before, the first step of the proof is the study
of a linear Steklov eigenvalue problem with indefinite weight on the boundary (section 2); then, by
the properties of the eigenfunctions, we define suitable linking manifolds in H1(Ω) and obtain crucial
estimates for Eλ on these manifolds in both the cases

∫

∂Ω µ > 0 and
∫

∂Ω µ < 0 (section 3); finally, we
prove that the functional Eλ satisfies the Palais-Smale condition with two different kind of assumptions
on the functions µ and h (section 4). The main theorem is stated in the last section, together with a
discussion of possible developments (positivity, multiplicity, etc.) and open problems .

2 The linear eigenvalue problem

In this section, we first consider the linear eigenvalue problem related to (1.1) in a variational setting;
then, we will discuss the regularity of solutions. Let Ω ⊂ R

n be a bounded Lipschitz domain; we
investigate the existence of non trivial solutions in H1(Ω) to the problem:

∆u(x) = 0 in Ω

γ(∂νu)(x) = λµ(x)γ(u)(x) on ∂Ω (2.1)

where λ ∈ R\{0}, µ(x) ∈ L∞(∂Ω) and γ denotes the trace operator on ∂Ω.
We recall that, for a Lipschitz domain Ω, the trace on ∂Ω of the normal derivative of a H1(Ω)
function satisfying ∆u ∈ L2(Ω) (in the weak sense) is well defined as an element of the Sobolev space
H−1/2(∂Ω).
The main result of this section is:

Theorem 2.1. Assume that
∫

∂Ω
µ 6= 0. (2.2)

Then, problem (2.1) has infinitely many eigenvalues λn with |λn| → +∞.
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2.1 Preliminary results

We define the following subspace

H1
µ ≡

{

u ∈ H1(Ω),

∫

∂Ω
µγ(u) = 0

}

. (2.3)

By the continuity of the linear functional

u 7→
∫

∂Ω
µγ(u)

on H1(Ω), it follows that H1
µ is a closed subspace of H1(Ω).

Lemma 2.2. Problem (2.1) is equivalent to the variational problem : find u ∈ H1
µ such that

∫

Ω
∇u∇v = λ

∫

Ω
µγ(u)γ(v) (2.4)

holds for every v ∈ H1
µ.

Proof. We first note that every solution u of problem (2.1) must satisfy
∫

∂Ω µγ(u) = 0, that is
u ∈ H1

µ; moreover, by applying the first Green’s formula (which holds in a Lipschitz domain Ω for u,
v in H1(Ω) and ∆u ∈ L2(Ω)) to the relation

0 =

∫

Ω
−∆u v,

and using the boundary condition, we readily get (2.4).
Conversely, let (2.4) holds; by taking v in the subspace of the smooth functions with support in Ω we
first obtain that ∆u = 0. Moreover, by applying again Green’s formula to the left hand side of (2.4),
we get

∫

∂Ω
γ(∂νu) γ(v) =

∫

∂Ω
λµγ(u) γ(v)

for every v ∈ H1
µ. By the definition of H1

µ, this implies

γ(∂νu) − λ µγ(u) = cµ

for some c ∈ R. But the integral on ∂Ω of the left side vanishes, so that, by condition (2.2), c = 0. 2

Lemma 2.3. The Dirichlet norm

‖u‖2
D =

∫

Ω
|∇u|2 (2.5)

is a norm in H1
µ equivalent to the H1 norm ‖u‖H1(Ω).

Proof.
By a classical reductio ad absurdum argument, we will show that there is a constant C such that

‖u‖2
L2(Ω) ≤ C‖u‖2

D, (2.6)

for every u ∈ H1
µ.

If not, one can find a sequence un ∈ H1
µ such that
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‖un‖2
L2(Ω) ≥ n ‖un‖2

D (2.7)

By omogeneity, we may normalize ‖un‖L2(Ω) = 1. Then, ‖un‖H1(Ω) is bounded and we may assume
that un ⇀ u weakly in H1(Ω); by the compactness of the immersions, we also have un → u in L2(Ω)
and γ(un) → γ(u) in L2(∂Ω). But from (2.7) we also have |∇un| → 0 in L2(Ω); hence u satisfies
∇u = 0 and therefore u = c costant in Ω.
However, we also have

0 =

∫

∂Ω
µγ(un) → c

∫

∂Ω
µ,

so that, by (2.2) c = 0. But this contradicts ‖u‖L2(Ω) = 1 that follows from un → u in L2(Ω). Hence,
(2.6) holds. 2

Remark 2.4. By the previous lemma, it follows that the expression

‖u‖2
1 =

∫

Ω
|∇u|2 +

(

∫

∂Ω
µγ(u)

)2
, (2.8)

defines an equivalent norm in H1(Ω).

Finally we define the Hilbert space

H⊥
µ ≡

{

u ∈ H1
µ,

∫

Ω
∇u∇v = 0 ∀ v ∈ H1

0 (Ω)
}

(2.9)

Lemma 2.5. A function u ∈ H1
µ is a variational solution of the Steklov problem if and only if u ∈ H⊥

µ

and (2.4) holds for every v ∈ H⊥
µ . Moreover, by denoting with H

1/2
µ (∂Ω) the subspace of the functions

w ∈ H1/2(∂Ω) satisfying
∫

∂Ω µw = 0, the trace operator γ restricted to H⊥
µ is an isomorphism between

H⊥
µ and H

1/2
µ (∂Ω).

Proof. By definition, the functions in H⊥
µ are weakly harmonic, hence they satisfy (2.4) for every

v ∈ H1
0 (Ω); conversely, every solution of (2.4) belongs to H⊥

µ . Since any v ∈ H1
µ has a unique

decomposition v = v0 + v1 with v0 ∈ H1
0 (Ω) and v1 ∈ H⊥

µ , we are reduced to solve the variational
problem in the latter space.
Finally, it is well known that the trace operator γ is continuous from H1(Ω) onto H1/2(∂Ω). Then,

by definition (2.3), γ is also continuous from H1
µ(Ω) onto H

1/2
µ (∂Ω). But Ker γ = H1

0 (Ω), so that γ is

one-to-one from H⊥
µ onto H

1/2
µ (∂Ω). Then, the Lemma follows by the bounded inverse theorem.

2

2.2 Proof of theorem 2.1

By the results of the previous section, problem (2.1) is equivalent to the variational problem:
find u ∈ H⊥

µ satisfying
∫

Ω
∇u∇v = λ

∫

∂Ω
µγ(u)γ(v) (2.10)

for every v ∈ H⊥
µ .

Let us denote by L2
µ(∂Ω) the space of the functions in L2(∂Ω) orthogonal to µ and introduce the

following operators:

I : H1/2
µ (∂Ω) → L2

µ(∂Ω), I w = w,
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which is compact, by Sobolev imbeddings.

M : L2
µ(∂Ω) → L2(∂Ω), (M w)(x) = µ(x)w(x),

that is the bounded, self-adjoint multiplication operator by the bounded function µ.

J : L2(∂Ω) → H−1/2
µ (∂Ω), H−1/2 < J w, z >H1/2=

∫

∂Ω
w z,

for every w ∈ L2(∂Ω) and z ∈ H
1/2
µ (∂Ω); J is the immersion of L2 in the dual space of H

1/2
µ and it is

also bounded.
Finally, let

L : H⊥
µ → (H⊥

µ )∗

be the Riesz isomorphism defined by

(H1)∗ < L u, v >H1=

∫

Ω
∇u∇v,

for every u, v ∈ H⊥
µ .

Then, the operator

K : H⊥
µ → H⊥

µ , K = L−1γ∗ J M I γ (2.11)

is compact, being the product of bounded operators with the compact imbedding I; furthermore, K
is self-adjoint since, by the previous definitions, we have:

∫

Ω
∇(Ku)∇v =(H1)∗< γ∗ J M I γ(u), v >H1=H−1/2< J M I γ(u), γ(v) >H1/2

=

∫

∂Ω
µγ(u)γ(v) =

∫

∂Ω
µγ(v)γ(u) =

∫

Ω
∇(Kv)∇u.

Then K has a complete set of eigenfunctions corresponding to real eigenvalues µn, with µn → 0. Note
that K has the zero eigenvalue if and only if there exists a non trivial u ∈ H⊥

µ such that

∫

∂Ω
µγ(u)γ(v) = 0

for every v ∈ H⊥
µ ; by definition (2.3) and again by condition (2.2), this may happen only if µγ(u) =

cµ = 0, that is if the function µ(x) vanishes on a set of positive Hausdorff measure in ∂Ω. Otherwise,
all the eigenvalues are not vanishing. In any case, since by condition (2.2) µ 6= 0 on a set of positive
measure, the range of K has infinite dimension and therefore, by compactness, there are infinite non
zero eigenvalues (of finite multiplicity). Let un, n 6= 0, be an eigenfunction corresponding to an
eigenvalue µn 6= 0; from K un = µn un and by the previous relations we have

µn

∫

Ω
∇un ∇v =

∫

∂Ω
µ γ(un)γ(v),

for every v ∈ H⊥
µ . Hence un solves (2.10) with λn = 1/µn. Finally, as µn → 0, we have |λn| → +∞.

In the sequel, we will list all the eigenvalues to problem (2.1) as follows

...λ−2 ≤ λ−1 < 0 < λ1 ≤ λ2...
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The eigenvalue λ0 = 0 corresponds to the constant solutions of the homogeneous Neumann problem.
Note that from the relations

∫

Ω
|∇un|2 = λn

∫

∂Ω
µ γ(un)2,

we get the inequalities
∫

∂Ω
µγ(un)2 > 0, for n > 0;

∫

∂Ω
µγ(un)2 < 0, for n < 0. (2.12)

Moreover, we can take all the un orthogonal and normalized with respect to the scalar product
associated to the Dirichlet norm (2.5) and even to the equivalent norm (2.8) by defining u0 =

(∫

∂Ω µ
)−1

;
then, we have

∫

Ω
∇un ∇um =

∫

∂Ω
µγ(un)γ(um) = 0, (2.13)

for n 6= m.
Now, if we denote by Vµ the subspace spanned by the un, n ∈ Z\{0}, and by V0 the one spanned by
the null eigenfunctions wm, m = 1, 2, ... of K (recall that V0 is non trivial only if there exists w 6= 0
such that µγ(w) = 0 a.e. on ∂Ω) we have

H⊥
µ = Vµ ⊕ V0.

Finally, it is not difficult to show that

H1 = H1
0 ⊕ c ⊕ H⊥

µ = H1
0 ⊕ c ⊕ Vµ ⊕ V0. (2.14)

where the orthogonal decomposition refers to the scalar product associated to (2.8).
It follows in particular that the variational equation

∫

Ω
∇un ∇v = λn

∫

∂Ω
µ γ(un)γ(v) (2.15)

is satisfied for any n ∈ Z, and for every v ∈ H1(Ω).

Remark 2.6. We stress that the condition (2.2) is not necessary for the existence of non zero eigen-
values to problem (2.1), as it is shown by the following example:
Let Ω be the rectangle [−π

2 , π
2 ] × [a, b], a < b. The harmonic functions um(x, y) = eλmy

(

sin(λmx) +
cos(λmx)

)

, where λm = 2m + 1, m ∈ Z, solve problem (2.1) with λ = λm, µ = 1 on the left and upper
sides of Ω, µ = −1 on the other sides.
Note however that by (2.2) we got the orthogonal decomposition (2.14), which will be crucial for the
estimates of the next section.

Remark on the regularity of eigenfunctions.

Global regularity of the eigenfunctions of (2.1) depends on the indefinite weight µ and on the regularity
of the boundary ∂Ω. For the subsequent discussion of the nonlinear problem, it is important to
guarantee that the eigenfunctions um are bounded. Recall that any solution of (2.15) belongs to
H1(Ω) and is harmonic in Ω; hence the trace of its normal derivative, being proportional to µγ(u),
belongs to L2(∂Ω), so that we have um ∈ H3/2(Ω) even in a Lipschitz domain [11]. Then, in case of
dimension n = 2 we get um ∈ C(Ω) (by Sobolev imbedding) without any additional assumption. For
n ≥ 3, more regularity of µ and of the boundary ∂Ω will be required in order to achieve um ∈ Hs(Ω)
with s > n/2, which implies the continuity of um up to the boundary. For the sake of brevity, we
assume in the following that µ and ∂Ω are smooth enough to satisfy such conditions without entering
into further details.
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3 Linking manifolds

By the results of the previous sections, we will discuss the solvability of the non linear problem 1.1 by
assuming the condition (2.2); since the function µ is indefinite, we may restrict to the case λ > 0 and
consider both the cases

∫

∂Ω µ > 0 and
∫

∂Ω µ < 0. We point out that for positive λ the latter case is a
necessary condition for the existence of positive solutions; in fact, if u > 0 solves (1.1) and if 1/h(u)
is integrable at infinity, the function

v =

∫ +∞

u

ds

h(s)

satisfies ∆v = h′(u)
h(u)2

|∇u|2 > 0 in Ω and ∂νv = −λµ on ∂Ω. By the divergence theorem, it follows that

the two conditions on v imply
∫

∂Ω
µ < 0, (3.1)

In any case, we will assume that the function h in (1.1) is strictly increasing, so that the derivative h′

has a positive global minimum h′
m. For the sake of simplicity in the estimates below, we also assume

that h′
m = h′(0) (this holds, e.g., for h(u) = sinhu); at the end of the section, we will show how the

discussion changes in the general case.
By rescaling the parameter λ we can now take

h′(u) ≥ h′(0) = 1. (3.2)

Let us define H(u) =
∫ u
0 h(t)dt (note that H ≥ 0) and consider the functional

Eλ(u) =
1

2

∫

Ω
|∇u|2 − λ

∫

∂Ω
µH(u) (3.3)

where u ∈ H1
µ. We will prove that problem (1.1) has a solution by applying a linking argument to the

functional Eλ. To begin with, we assume the condition (3.1) and suppose further that

λk < λ < λk+1 (3.4)

where λk, k > 0 are positive eigenvalues of (2.1).
We now set H1(Ω) = V1 ⊕ V2, where

V2 = span 1≤j≤k {uj} (3.5)

Then, comparing with the decomposition (2.14), we have

V1 = H1
0 ⊕ V0 ⊕ spann≤0 {un} ⊕ spann≥k+1 {un} (3.6)

Let us fix positive R, R1, R2 and define the following subsets

S = {v ∈ V1 : ‖v‖1 = R} (3.7)

Qn = {sun + u, n > k, u ∈ V2, 0 ≤ s ≤ R1, ‖u‖1 ≤ R2} (3.8)

It is known that S and ∂Qn link (see [6]); we need some estimates for the functional Eλ on these subsets.
Recalling that h(0) = 0 and h′(0) = 1, we make the following assumption on the nonquadratic term
of the functional:
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Let 0 < ǫ < 2
n−2 (ǫ > 0 for n = 2) and q ≥ 2(n−1)

2−ǫ(n−2) (any q > 1 for n = 2) and suppose that

∣

∣

∣
H(u) − 1

2
u2

∣

∣

∣
≤ |u|2+ǫH̃(u), (3.9)

where H̃ : H1(Ω) → Lq(∂Ω) is bounded. For n ≥ 3, it is readily verified that the above condition

holds if there is C > 0 such that h′(u) ≤ 1+C|u|ǫ; in the case n = 2, it can be shown ([5], lemma 2.1)
that the function H(u) = coshu − 1 also satisfies the assumption; the same is true for the primitive
function of the more general nonlinear term (1.2). Then, we have

Lemma 3.1. Assuming conditions (3.1), (3.2), (3.4), and (3.9), there exists R > 0 such that Eλ(v) ≥
a > 0, for every v ∈ S.

Proof. By (3.9) we have

Eλ(u) ≥ 1

2

∫

Ω
|∇u|2 − λ

2

∫

∂Ω
µu2 − λ‖µ‖L∞(∂Ω)

∫

∂Ω
|u|2+ǫH̃(u), (3.10)

and the integral in the last term can be bounded as follows

∣

∣

∣

∫

∂Ω
u2+ǫH̃(u)

∣

∣

∣
≤ ‖H̃(u)‖Lq(∂Ω)

(

∫

∂Ω
|u|(2+ǫ)p

)1/p
≤ C ‖u‖2+ǫ

1 = C R2+ǫ, (3.11)

where the last estimate follows by (2 + ǫ)p = (2 + ǫ) q
q−1 ≤ 2(n−1)

n−2 .
Let us decompose an element u ∈ S as u = c ⊕ ũ; by the definition (2.8) of the equivalent norm we
have

∫

Ω
|∇ũ|2 + c2

(

∫

∂Ω
µ
)2

= R2.

Now, by the decomposition (3.6) and recalling the second of inequalities (2.12) and the definition of
the subspace V0, we get the following estimate of the quadratic part of the functional

1

2

∫

Ω
|∇u|2 − λ

2

∫

∂Ω
µu2 =

1

2

∫

Ω
|∇ũ|2 − λ

2

∫

∂Ω
µũ2 − λ

2
c2

∫

∂Ω
µ

≥ 1

2

(

1 − λ

λk+1

)

∫

Ω
|∇ũ|2 − λ

2
c2

∫

∂Ω
µ ≥ 1

2
min

[

(1 − λ/λk+1), λ
(

−
∫

∂Ω
µ
)−1

]

R2 (3.12)

for every u ∈ S. Then, the lemma follows by the assumption (3.1) and taking R small enough.
2

Next we prove that the functional Eλ is non positive on the subspace V2 given by (3.5).

Proposition 3.2. With the same assumptions of lemma 3.1, we have Eλ(u) < 0 for every non zero
u ∈ V2; moreover, Eλ(u) → −∞ for ‖u‖1 → ∞.

Proof. As in the proof of the previous lemma, one can show that Eλ(u) < 0 for every non vanishing
u ∈ V2 with small enough norm; for any u ∈ V2 we can write

u =

k
∑

i=1

tiui

and consider the function

f(t1, ..., tk) ≡ Eλ(u) =
k

∑

i=1

t2i
2

∫

Ω
|∇ui|2 − λ

∫

∂Ω
µH(u) =

1

2

k
∑

i=1

t2i − λ

∫

∂Ω
µH(u), (3.13)
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where the last equality follows from
∫

Ω
|∇ui|2 = ‖ui‖2

1 = 1.

We already know that f < 0 in a neighborhood of the origin; we will prove that the inequality holds
in the whole space R

k\{0}.
Let 1 ≤ j ≤ k and consider the variational equation

∫

Ω
∇uj ∇h(u) = λj

∫

∂Ω
µ uj h(u) (3.14)

where h(u) = h(
∑k

i=1 tiui); we stress that, by the regularity results of the previous section, u is a
bounded continuous function on Ω, so that h(u) ∈ H1(Ω) and (3.14) holds by the discussion at the
end of section 2. Then, we get

k
∑

i=1

ti

∫

Ω
∇uj ∇uih

′(u) = λj

∫

∂Ω
µuj h(u).

Multiplying by tj and summing up from j = 1 to k, we find

k
∑

i,j=1

titj

∫

Ω
∇uj ∇uih

′(u) =
k

∑

j=1

λjtj

∫

∂Ω
µuj h(u),

that is
∫

Ω
|∇u|2h′(u) =

k
∑

j=1

λjtj

∫

∂Ω
µuj h(u). (3.15)

Let us now calculate

(

k
∑

j=1

λjtj∂tj

)

f(t0, t1, ..., tk) =

k
∑

j=1

λjt
2
j − λ

k
∑

j=1

λjtj

∫

∂Ω
µuj h(u) =

(by (3.15))

=
k

∑

j=1

λjt
2
j − λ

∫

Ω
|∇u|2h′(u) ≤ λk

k
∑

j=1

t2j − λ

∫

Ω
|∇u|2h′(u) =

∫

Ω
|∇u|2

[

λk − λh′(u)
]

(3.16)

Then, recalling that λ > λk and h′ ≥ 1, we obtain

(

k
∑

j=1

λjtj∂tj

)

f(t1, ..., tk) < −(λ − λk)(t
2
1 + ... + t2k) < 0, (3.17)

for (t1, ..., tk) 6= (0, ..., 0).
Now, the right hand side of (3.17) is (proportional to) the derivative of the function f in the direction of
the vector (λ1t1, ..., λktk); this vector is normal to the hypersurface in R

k of equation λ1x
2
1+...+λkx

2
k =

c at the point (t1, ..., tk). We conclude that the function is strictly decreasing along the orthogonal
curve x1 = t1e

λ1s, ..., xk = tke
λks, s ∈ R, passing through the point (t1, ..., tk); since the origin is an

unstable node for all the orbits, we conclude that f < 0 in R
k\{0}. Moreover, by (3.17) we also have

lim‖u‖1→∞ Eλ(u) = −∞ in V2. 2

By the above proposition, we may prove a crucial estimate on the boundary ∂Qn of the set (3.8).
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Lemma 3.3. With the same assumptions of lemma 3.1, one can choose R1, R2 in (3.8) such that

sup
u∈∂Qn

Eλ(u) = 0. (3.18)

Proof. We first evaluate the derivative of the functional Eλ along the ray tun, t ≥ 0:

∂tEλ(tun) = t

∫

Ω
|∇un|2 − λ

∫

∂Ω
µunh(tun)

From the variational equation

∫

Ω
∇un∇h(tun) = λn

∫

∂Ω
µunh(tun), (3.19)

(see the proof of proposition 3.2) we get

∂tEλ(tun) = t
(

∫

Ω
|∇un|2

[

1 − λ

λn
h′(tun)

]

)

(3.20)

Since h′(s) → +∞ for |s| → +∞, the expression in the square brackets is positive only for t|un| ≤ K,
where K only depends on h′ and λ/λn; hence, the integrand in (3.20) may be non negative only on
the sublevel set Ωt = {x ∈ Ω, |u(x)| ≤ K/t}, where it is bounded by |∇un|2. Since un is harmonic in
Ω, we have limt→+∞ |Ωt| = 0; moreover, the integrand is negative and not identically zero on Ω\Ωt. It
follows that ∂tEλ(tun) → −∞ for t → +∞. Then, Eλ(tun) is non negative only on a bounded interval,
0 ≤ t ≤ bn and therefore it is bounded from above by some positive constant.
Finally, consider u = tun+

∑k
i=1 tiui ∈ Qn and set f(t, t1, ..., tk) = Eλ(u). As in the proof of proposition

3.2, one can show that the function (t1, ..., tk) 7→ f(t, t1, ..., tk) decreases to −∞ for t21 + ...t2k → +∞.

Hence, by taking large enough R1 and R2 we find that Eλ(u) ≤ 0 for t = 0, t = R1 or for
√

t21 + ...t2k =

R2, that is on the boundary ∂Qn. 2

By lemmas 3.1 and 3.3 we now get

α = inf
u∈S

Eλ(u) > sup
u∈∂Qn

Eλ(u) = 0, (3.21)

for suitably chosen R, R1 and R2 in (3.7) and (3.8).
We stress that the above estimate follows assuming (3.1), (3.4) and by the definitions (3.6), (3.5) of
the subspaces V1 and V2. We claim that an analogous result holds when

∫

∂Ω
µ > 0, (3.22)

and
λk < λ < λk+1, k ≥ 0; (3.23)

note that we now allow the case 0 < λ < λ1 which was excluded in (3.4).
We only have to change the decomposition of H1(Ω) by shifting the constants from V1 to V2 and to
define the subsets S and Qn as before; thus, we now set H1(Ω) = Ṽ1 ⊕ Ṽ2, where

Ṽ2 = c ⊕ V2 = span 0≤j≤k {uj}, (3.24)

Ṽ1 = H1
0 ⊕ V0 ⊕ spann<0 {un} ⊕ spann≥k+1 {un} (3.25)
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Furthermore, for positive R, R1, R2 we set

S̃ = {v ∈ Ṽ1 : ‖v‖1 = R} (3.26)

Q̃n = {sun + u, n > k, u ∈ Ṽ2, 0 ≤ s ≤ R1, ‖u‖1 ≤ R2} (3.27)

We first note that lemma 3.1 still holds for S̃ (the proof is even simpler, since the norm on Ṽ1 is
the Dirichlet norm). Furthermore, we can show that Eλ(u) < 0 for every non zero u ∈ Ṽ2, with
Eλ(u) → −∞ for ‖u‖1 → ∞. In fact, by (3.22) we get

Eλ(c) = −λH(c)

∫

∂Ω
µ < 0 (3.28)

for every c 6= 0. By continuity, we conclude that Eλ(u) < 0 for every u ∈ Ṽ2 having projection on
V2 sufficiently close to zero. Then by writing any u ∈ V2 in the form u =

∑k
i=0 tiui (t0u0 = c) and

defining as in (3.13)

f(t0, t1, ..., tk) ≡ Eλ(u) =
k

∑

i=1

t2i
2

∫

Ω
|∇ui|2 − λ

∫

∂Ω
µH(u) =

1

2

k
∑

i=1

t2i − λ

∫

∂Ω
µH(u), (3.29)

we obtain, by the same arguments as in proposition 3.2, that the function f is strictly decreasing
along the curves (t0, t1e

λ1s, ..., tke
λks), s ∈ R for every (t0, t1, ..., tn) ∈ R

k+1; thus, f < 0 in R
k+1\{0}.

Moreover, we also have lim‖u‖1→∞ Eλ(u) = −∞ in Ṽ2. Thus, in order to prove our claim, we are left
with the analogous of lemma 3.3:

Lemma 3.4. If now (3.22) and (3.23) hold (instead of (3.1) and (3.4)) one can choose R1, R2 in
(3.27) such that

sup
u∈∂Q̃n

Eλ(u) = 0. (3.30)

Proof. We first estimate the functional Eλ on the two-dimensional subset (of Q̃n) of the vectors
c + tun, where c = t0u0 ∈ R and t ≥ 0. Then we can write

Eλ(c + tun) =
t2

2

∫

Ω
|un|2 − λ

∫

∂Ω
µH(c + tun) =

t2

2
− λH(c)

∫

∂Ω
µ − λt

∫ 1

0
dτ

∫

∂Ω
µunh(c + τtun).

Now, from the variational equation
∫

Ω
∇un∇h(c + τtun) = λn

∫

∂Ω
µunh(c + τtun), (3.31)

(see the proof of proposition 3.2) we get

∫

∂Ω
µunh(c + τtun) =

τt

λn

∫

Ω
|∇un|2h′(c + τtun) ≥ τt

λn
,

where the last bound follows from h′ ≥ 1. Thus, we have the estimate

Eλ(c + tun) ≤ t2

2

(

1 − λ

λn

)

− λH(c)

∫

∂Ω
µ (3.32)

From this estimate we conclude that Eλ(c + tun) ≤ 0 for

0 ≤ t ≤ Cn(λ, µ)H(c)1/2, (3.33)
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where Cn(λ, µ) =
(

2λλn
∫

∂Ω µ

λn−λ

)1/2
. Note that in the domain where t ≥ CnH(c)1/2 the ratio H(c)1/2/t

is bounded and therefore, by the growth assumption on H at infinity, c/t → 0 for t → +∞ in that
region. Let us now calculate the derivative

∂tEλ(c + tun) = t

∫

Ω
|un|2 − λ

∫

∂Ω
µunh(c + tun)

By using again the variational equation (3.31) (with τ = 1) we now get

∂tEλ(c + tun) = t
(

∫

Ω
|un|2

[

1 − λ

λn
h′(c + tun)

]

)

(3.34)

Since h′(s) → +∞ for |s| → +∞, the expression in the square brackets is positive for |c + tun| ≤ K,
where K only depends on h′ and λ/λn. Summing up the previous discussion, for (c, t) outside the
region (3.33) the integrand in (3.34) may be non negative only if |un(x)| = O(1/t). As in the proof of
lemma 3.3, we conclude that Eλ(c + tun) ≥ 0 only on a bounded domain of the plane (c, t), contained
in the region (3.33); hence, Eλ(c + tun) ≤ M in the half-plane t ≥ 0 for some positive constant M .
Finally, by considering u = tun +

∑k
i=0 tiui ∈ Q̃n and setting f(t, t0, t1, ..., tk) = Eλ(u) we find as in

lemma 3.3 that f ≤ 0 for t = R1 or for
√

t20 + t21 + ...t2k = R2 (that is on the boundary ∂Q̃n) provided

R1 and R2 are large enough. 2

Thus, we conclude
α̃ = inf

u∈S̃
Eλ(u) > sup

u∈∂Q̃n

Eλ(u) = 0, (3.35)

for suitably chosen R, R1 and R2 in (3.26) and (3.27).

We point out that the crucial estimates (3.21) and (3.35) have been obtained (for λ respectively in
the intervals (3.4) and (3.23)) under the assumption (3.2) that the derivative of the non linear term
assumes the global minimum (= 1) precisely at u = 0. Note that this is not true for the Butler-Volmer
condition (1.2) whenever α 6= 1/2.
Thus, by defining h′

m ≡ minu∈R h′(u), we now consider the case 0 < h′
m < 1, still normalizing h′(0) = 1.

Proposition 3.5. Define the following sets

Ik =
( λk

h′
m

, λk+1

)

, for
λk

λk+1
< h′

m, Ik = ∅ otherwise, (3.36)

where λk, k = 0, 1, ... are the (non negative) eigenvalues of problem (2.1).
We now have:
If

∫

∂Ω µ < 0, then estimate (3.21) holds for λ ∈ Ik, with k ≥ 1.
If

∫

∂Ω µ > 0, then estimate (3.35) holds for λ ∈ Ik, with k ≥ 0.

Proof. The proof closely follows the one given by assuming (3.2). The main difference concerns the
estimates (3.16)-(3.17); actually, one can check that the conclusion of proposition 3.2 remains valid if
λk − λh′

m < 0. Then, the conclusions in the two cases follow as before. Note that I0 = (0, λ1) is never
the empty set. 2

4 The Palais-Smale condition

By (3.21), (3.35), the existence of critical values at levels greater than α or α̃ is assured if Eλ satisfies the
Palais-Smale condition (see [6] thm. 8.4). The main difficulty in this task is to prove the boundedness
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of a Palais-Smale sequence, since the usual inequality assumptions relating Eλ and E′
λ could not be

helpful in presence of an indefinite weight; in addition, we would like to include the case of exponential
growth of the nonlinear term for n = 2. We will obtain below the desired result with two different
kind of hypotheses: in the first case, we assume that the functional H and its derivative h satisfy a
kind of ’standard’ inequality (see [6], theorems 6.2, 8.5) allowing an exponential growth at infinity of
the non linear term, at the cost of introducing an additional assumption on the indefinite weight µ
(which is however quite reasonable in the framework of corrosion modeling, see the remark below).
In the second case, we make more specific requirements on the functional, which are similar to those
previously considered for other problems with indefinite nonlinearities [8], [9].
Let us introduce the following decomposition of the boundary ∂Ω:

∂Ω = Γ+ ∪ Γ− ∪ Γ0, (4.1)

where µ > 0 on Γ+, µ < 0 on Γ− and µ = 0 on Γ0; recall that |Γ±| > 0, while Γ0 may have vanishing
measure. We further define µ± = max{±µ, 0}. Finally, we recall that the functional Eλ is given by
Eλ(u) = 1

2

∫

Ω |∇u|2 − λ
∫

∂Ω µH(u), with H ′ = h strictly increasing and superlinear at infinity.
Let us now state our first set of assumptions:
Condition PS1.

1.
Γ+ ∩ Γ− = ∅;

2.
qH(u) ≤ uh(u) + Au2 + B, (4.2)

for some constant q > 2, A ≥ 0, B ≥ 0.

We can now state:

Proposition 4.1. Let um ∈ H1(Ω) be a sequence such that Eλ(um) → c and E′
λ(um) → 0 in H1(Ω)′.

Assume that (PS1) holds.
Then, the sequence ‖um‖ is bounded.
Suppose further that h has subcritical growth at infinity; more precisely, |h(u)| ≤ Ceα|u| for some
α ∈ R if n = 2 (see [5], lemmas 2.1 and 2.2) and |h(u)| ≤ C(1 + |u|β) (with β < n

n−2) if n ≥ 3.
Then, the functional (3.3) satisfies the Palais-Smale condition.

Remark 4.2. We stress that condition 2 is satisfied by the functions H(u) = 1
β+1 |u|β+1 +G(u) where

|G(u)| ≤ |u|γ, 1 < γ ≤ 2 . In fact, in this case the estimate (4.2) holds with q = β +1 > 2 and suitably
chosen A, B. Moreover, in the case n = 2, it is readily verified that H(u) = coshu − 1 also satisfies
(4.2) with q = 4, A = 1 and B = 0. We point out that in the framework of corrosion modeling,
condition 1 corresponds to the requirement that the boundary is made of conducting pieces separated
by insulating parts (see the introduction).

Proof of Proposition 4.1. Assume by contradiction (considering a subsequence if necessary) that
‖um‖1 → +∞ and define vm = t−1

m um, where tm = ‖um‖1. Substituting in the condition E′
λ(um)v =

o(1)‖v‖1, v ∈ H1(Ω), we get

∫

Ω
∇vm∇v − λ

∫

∂Ω
µ

h(tmvm)

tm
v = o(1)‖v‖1/tm (4.3)

Since vm is bounded in H1(Ω), there is a subsequence (still denoted by vm) such that vm converges
strongly in L2(Ω) and vm|∂Ω converges strongly in L2(∂Ω). We claim that vm|Γ± → 0 a.e. If not,
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there exists δ > 0 such that |vm| ≥ δ on a set of positive measure Γδ ⊂ Γ±; take now v = ϕ+vm,
where 0 ≤ ϕ+ ≤ 1 is a smooth function defined in Ω, vanishing on Γ− and such that ϕ+|Γ+ = 1 (such
a function exists by assumption 1). From (4.3) we have

∫

Ω
[|∇vm|2ϕ+ + ∇vm∇ϕ+vm] − λ

∫

Γ+

µ+
h(tmvm)

tm
vm = o(1)‖ϕ+vm‖1/tm, (4.4)

where the first term at the left hand side is uniformly bounded. On the other hand

∫

Γ+

µ+
h(tmvm)

tm
vm ≥

∫

Γδ

µ+
h(tmvm)

tm
vm ≥ δ

h(tmδ)

tm

∫

Γδ

µ → +∞

for tm → ∞, thus contradicting (4.4). We may repeat the previous considerations by choosing a
function ϕ− vanishing on Γ+ and equal to 1 on Γ−; then, the claim is proved.
Thus, we have vm ⇀ w weakly in H1(Ω), with w harmonic function in Ω satisfying w|Γ± = 0.
Moreover, by choosing v in (4.3) with supp v|∂Ω ⊂ Γ0 and taking again the limit for m → ∞ we also
find (in a weak sense) ∂νw|Γ0 = 0. We conclude that w = 0, so that vm → 0 in L2(Ω).
Then, we obtain from (4.4) (and from the corresponding formula with ϕ−)

∫

Ω
|∇vm|2ϕ+ − λ

∫

Γ+

µ+
h(tmvm)

tm
vm = o(1), (4.5)

∫

Ω
|∇vm|2ϕ− + λ

∫

Γ−

µ−
h(tmvm)

tm
vm = o(1). (4.6)

We readily get that both the terms at the left side of the last equation goes to zero for m → ∞. On
the other hand, from Eλ(um) → c we also get

1

2

∫

Ω
|∇vm|2 − λ

∫

Γ+

µ+
H(tmvm)

t2m
+ λ

∫

Γ−

µ−
H(tmvm)

t2m
= O(1/t2m). (4.7)

Note that, by assumption 2 and by vm → 0 in L2(Γ−), also the last integral at the left side is
infinitesimal. Then, by comparison of (4.5) and (4.7) we find

0 ≤
∫

Ω
|∇vm|2(1 − ϕ+) = λ

∫

Γ+

µ+

[2H(tmvm)

t2m
− h(tmvm)

tm
vm

]

+ o(1) ≤

(again by 2 and vm → 0 in L2(Γ+))

≤ −(q − 2)

∫

Γ+

µ+
H(tmvm)

t2m
+ o(1). (4.8)

By the above relation and again by (4.7) we finally have ‖∇vm‖L2(Ω) → 0 and therefore vm → 0 in
H1(Ω), thus contradicting ‖vm‖1 = 1.
Thus, the sequence ‖um‖1 is bounded and in particular we have um = cm + ũm with |cm| bounded
sequence and ũm ∈ H1

µ(Ω) (see definition (2.3)) such that ‖ũm‖1 (= ‖∇ũm‖L2(Ω)) is also bounded; by
lemma 2.3 and the Lax-Milgram theorem, the linear map L : H1

µ(Ω) → H1(Ω)′ defined by L(u)v =
∫

Ω ∇u∇v is boundedly invertible.
Finally, by the growth assumptions on h, the operator defined through the bilinear form

∫

∂Ω µh(u)v
maps bounded sets in H1(Ω) to relatively compact sets in H1(Ω)′. By standard results [6], Prop.2.2,
it follows that ũm is relatively compact in H1

µ(Ω); then, the same holds for um in H1(Ω). 2
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We now describe in detail the second kind of assumptions discussed above; recall that λ1 and λ−1

denote respectively the lowest positive eigenvalue and the highest negative eigenvalue of the linear
problem.

Condition PS2.

1. Assume n ≥ 3 and

(β + 1)H(u) − uh(u) = Au2 + g(u), 1 < β < n/(n − 2) and A ∈ R, (4.9)

where g(u) = o(u2) for large u and
∫

|u|≥R
|g(u)|
|u|3

≤ ∞ for every R > 0.

2. Either one of the following holds:

i) A

∫

∂Ω
µ < 0 and λ−1

β − 1

2
< λA < λ1

β − 1

2
(λ > 0); (4.10)

ii) A = 0 and h′(u) ≤ C(1 + |u|β−1) (4.11)

for some C > 0.

We now have:

Proposition 4.3. Let um ∈ H1(Ω) (Ω ⊂ R
n, n ≥ 3) be a sequence such that Eλ(um) → c and

E′
λ(um) → 0 in H1(Ω)′. Assume that (PS2) holds.

Then, the sequence ‖um‖1 is bounded and the functional (3.3) satisfies the Palais-Smale condition.

Proof. We first show that, assuming h superlinear, (4.9) implies that h is also subcritical. By defining

K(u) = H(u) − A

β − 1
u2,

one readily finds that K solves the linear equation

K ′(u) =
β + 1

u
K(u) − g(u)

u
.

Since h is superlinear, we have K(u) ≥ u2 for |u| ≥ R large enough; then, dividing the above equation
by K, integrating for u ≥ R and taking the exponential of both members, we get

K−(R)uβ+1 ≤ K(u) ≤ K+(R)uβ+1, (4.12)

for u ≥ R, where

K±(R) =
K(R)

Rβ+1
e±

∫ +∞
R

|g(u)|

u3

An analogous estimate holds for u ≤ −R.
Now let A 6= 0 and assume 2 i) in PS2; by (4.9) we have

C + o(1)‖um‖1 = (β + 1)Eλ(um)− < um, E′
λ(um) >

=
β − 1

2

∫

Ω
|∇um|2 − λ

∫

∂Ω
µ[(β + 1)H(um) − umh(um)]

≥ β − 1

2

∫

Ω
|∇um|2 − λA

∫

∂Ω
µu2

m − C(ǫ) − ǫ‖um‖2
1,
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for any positive ǫ and suitably chosen C(ǫ) > 0. Then, by writing again um = ũm + cm, we conclude
that for any ǫ > 0 there exists a constant K(ǫ) such that

K(ǫ) + o(1)‖um‖H1 ≥ β − 1

2

∫

Ω
|∇ũm|2 − λA

∫

∂Ω
µũ2

m − λc2
mA

∫

∂Ω
µ − ǫ‖um‖2

1 (4.13)

Thus, by recalling (2.8), we get

K(ǫ) + o(1)‖um‖1 ≥ min
{β − 1

2
− λ

λ1
A − ǫ; λA

(

−
∫

∂Ω
µ
)−1 − ǫ

}

‖um‖2
1

if A > 0 and

K(ǫ) + o(1)‖um‖1 ≥ min
{β − 1

2
− λ

λ−1
A − ǫ;λA

(

−
∫

∂Ω
µ
)−1 − ǫ

}

‖um‖2
1

if A < 0. From the previous estimates the boundedness of a Palais-Smale sequence follows.

Let us now consider the case 2 ii) . By putting A = 0 in (4.13) and again by (2.8) we get

K(ǫ) + o(1)
[

‖∇ũm‖L2(Ω) + M |cm|
]

+ ǫM2c2
m ≥

(β − 1

2
− ǫ

)

‖∇ũm‖2
L2(Ω),

where M =
∣

∣

∫

∂Ω µ
∣

∣. Note that if cm is bounded, we readily get that the same is true for ‖∇ũm‖L2(Ω)

and therefore for ‖um‖1. Thus, we may assume that cm → +∞; hence, for large enough m we may
write

K(ǫ) + o(1)‖∇ũm‖L2(Ω) + 2ǫM2c2
m ≥

(β − 1

2
− ǫ

)

‖∇ũm‖2
L2(Ω),

which also implies

K(ǫ) + 3ǫM2c2
m ≥

(β − 1

2
− 2ǫ

)

‖∇ũm‖2
L2(Ω),

From the last estimate it follows that for small positive ǫ there exist constants B1(ǫ) and B2 such that

‖∇ũm‖L2(Ω) ≤ B1(ǫ) + ǫ1/2B2|cm|

that is,
‖ũm‖1 ≤ B1(ǫ) + ǫ1/2B2|cm| (4.14)

Consider again the condition E′
λ(um)v → 0; by choosing v = 1 we obtain

∫

∂Ω
µh(um) → 0,

that is

h(cm)

∫

∂Ω
µ +

∫

∂Ω

∫ 1

0
µh′(cm + tũm) ũm dt → 0. (4.15)

By the second assumption ii), we have

|h′(cm + tũm) ũm| ≤ C̃
[

(1 + |cm|β−1)|ũm| + |ũm|β
]

for some positive constant C̃; hence, by (4.14) and by Sobolev immersion, it can be shown that for
|cm| large enough

∣

∣

∣

∫

∂Ω

∫ 1

0
µh′(cm + tũm) ũm dt

∣

∣

∣
≤ B̃1(ǫ)|cm|β−1 +

√
ǫB̃2|cm|β
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where B̃1(ǫ), B̃2 are suitable constants. We now observe that for A = 0 the bound (4.12) holds with

K(u) = H(u); then, by assumption (4.9) we obtain that h(cm)/cβ
m is bounded away from zero for

cm → +∞; hence, by taking ǫ small enough in the previous estimate, we contradict (4.15). Then, the
sequence cm must be bounded and the same holds for um.
Finally, by the previously established subcritical growth of h, the operator defined through the bilinear
form

∫

∂Ω µh(u)v maps bounded sets in H1(Ω) to relatively compact sets in H1(Ω)′, so that Palais-
Smale condition again follows by [6], Prop. 2.2. 2

5 Main theorem and final comments

In order to clearly state our existence results, we recall here the general assumptions about problem
(1.1).

• Ω ⊂ R
n, n ≥ 2, is a bounded open set with sufficiently regular boundary ∂Ω (see below);

• h is a strictly increasing C1 function, h(0) = 0; in addition h is superlinear and subcritical at
infinity;

• µ is a bounded function satisfying
∫

∂Ω µ 6= 0 and with some additional regularity depending on
dimension (see below);

A more specific assumption is needed in connection with the eigenfunctions of the linear problem (2.1):

• for n ≥ 3 we suppose that ∂Ω and µ are regular enough to guarantee that the eigenfunctions uk

belong to Hs(Ω) with s > n/2, so that uk ∈ C(Ω).

We can now state our main result; recall that we may assume λ > 0 since µ is indefinite.

Theorem 5.1. Let condition (3.9) hold and assume PS1 or PS2. Let Ik be defined by (3.36).
Then, if

∫

∂Ω µ 6= 0 there exists a solution u of problem (1.1) for every λ ∈ ∪∞
k=1Ik.

Furthermore if
∫

∂Ω µ > 0 there exists a solution u of problem (1.1) for 0 < λ < λ1.

Proof. By the results of sections 3 and 4, we get existence of critical points for the functional Eλ

defined by (3.3) when the hypotheses of the theorem are satisfied. Then, problem (1.1) has a solution
in H1(Ω). By the regularity results in [2], if Ω is smooth and µ ∈ C∞(∂Ω), we have u ∈ C∞(Ω) 2

Concluding remarks.

By the definition (3.36), we see that some Ik with k ≥ 1 could be empty if h′
m = minu∈R h′(u) < 1

(recall the normalization h′(0) = 1). Consider, e.g., h(u) = [eαu − e−(1−α)u]; a straightforward

computation gives h′(0) = 1 and h′
m =

(

1−α
α

)2α−1
< 1 if α 6= 1/2 (the minimum is achieved at

u = 2 log
(

1−α
α

)

6= 0 if α 6= 1/2). Now take Ω = B1, the unit ball in R
2, and µ = 1. The eigenvalues of

the linearized problem (Steklov eigenvalues) are λk = k, k = 0, 1, ... For α 6= 1/2 in the interval [0, 1],
we have only a finite number of intervals Ik =

(

k
h′

m
, k + 1

)

; in the limit cases α = 0, α = 1, we are

left with the interval I0 = (0, 1). Thus, for α 6= 1/2 theorem 5.1 asserts that the nonlinear problem
admits a solution for every λ belonging to a finite set of bounded intervals. We may compare this
result with the one given in [4] (for g = 0) where the authors prove that a solution does exist for λ
positive and less than some value λ∗. Here, we characterize λ∗ as the first positive eigenvalue of the
linear problem, and furthermore we obtain a number of other intervals of existence.
The case α = 1/2 is quite special since h(u) = 2 sinh(u/2) and Eλ is a symmetric functional. In this
case it was proved [5] that, still with µ = 1, problem (1.1) has infinitely many solutions for every
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positive λ. Multiplicity of solutions in the general case (no symmetry and µ sign changing) seems to
be an open problem.
Another interesting question is the existence of positive solutions; we notice, for instance, that a
positive solutions of (1.1) with h(u) = u + c|u|β−1u, and with c ∈ R+, 1 < β < n

n−2 , solves a special
case of a problem studied by Escobar ([3] problem (2.1)) in connection with the problem of finding
conformal metrics already quoted in the introduction.
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