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Abstract

Longitudinal clinical trials often collect long sequences of binary data moni-
toring a disease process over time. Our application is a medical study conducted
by VACURG to assess the effectiveness of a chemioterapic treatment (thiotepa) in
preventing recurrence on subjects affected by bladder cancer. We propose a gen-
eralized linear model with latent autoregressive structure for longitudinal binary
data following a Bayesian approach. We describe a suitable posterior simulation

scheme and discuss inference and sensitivity issues for the bladder cancer data.
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1 Introduction

Many prediction studies in medical research lead to discrete longitudinal data with
continuous, ordinal or categorical outcomes. For instance, longitudinal data arise in
clinical trials when a time sequence of measurements is taken from each of a number
of experimental units allocated to one of several treatments. The main peculiarity of
longitudinal data is the dependency of multiple responses from the same individual.

We consider here a generalized linear model for binary longitudinal variables. Specif-
ically, we develop a Bayesian first order autoregressive model with the introduction of
latent variables for a set of binary repeated measurements. The dataset is part of a
bladder cancer study conducted in the USA by the Veterans Administration Coop-
erative Urological Research Group (VACURG) about comparing the effectiveness of
three treatments (placebo, pyridoxine, and topical thiotepa) in preventing recurrence
of Stage I bladder cancer (Byar et al., 1977). Davis and Wei (1988) analyzed data
coming from placebo and thiotepa treatment groups. They considered a class of uni-
variate one-sided global asymptotically distribution-free tests for the equality of the
two treatments. Their testing and estimation procedures take advantage of the fact
that repeated measurements of the same characteristic scheduled to be taken over a
common set of time points for each study subject are non-decreasing. Davis (1996)
extended the non-parametric methods to the case of comparison of multiple treatment
groups with a control group, using data from placebo, pyridoxine and topical thiotepa
treatment groups. Quintana and Miiller (2004) considered the problem of optimal
sampling design approaching it as a Bayesian decision problem. They transformed the
original non-decreasing data from placebo and thiotepa treatment group of VACURG
study into binary repeated measurements, assuming a nonparametric Bayesian model,
together with partial exchangeability, as meant in Quintana and Newton (1998).

We revisit the binary data discussed in Quintana and Miiller (2004), assuming a
first order autoregressive structure for the latent variables, as suggested by them. We
construct a generalized linear model for binary longitudinal variables, with the intro-
duction of normal latent variables or, which is the same, by means of the probit link

function. The dependence between consecutive binary variables is obtained through an



autoregressive model for the latent variables. A consequence of assuming serial depen-
dence at the level of latent variables is that the induced marginal correlation structure
for observations is richer than first order homogeneous Markovian. We specifically in-
troduce terms that allow for trends in the conditional probability and for treatment
effect. As will be explained later, our analysis does reveal a significant treatment effect.
Furthermore, we conduct sensitivity analysis on all the parameters of the model show-
ing a certain robustness across different specification of prior distributions. A Gibbs
sampler algorithm was implemented in Matlab to compute all the Bayesian estimates
of the parameters as well as the predictive probabilities of recurrence for individuals
in the study and new patients. As a double-check, we compared the results with those
obtained using WinBUGS (Lunn et al., 2000).

The article is organized as follows. In Section 2 we illustrate the medical problem
while Section 3 describes the main features of the proposed model, emphasizing the
role of the latent variables and calculating predictive distributions. In Section 4 we
present posterior simulation results and discuss inference on the quantities of interest.
We also present the results of a sensitivity analysis conducted to assess changes in the
posterior distribution under different prior scenarios. We conclude with a discussion
and possible extensions of our analysis in Section 5. The full conditionals used in the

Gibbs sampler are presented in the Appendix.

2 Data

Because of its high recurrence rate and the need for lifelong surveillance, bladder can-
cer is the most expensive cancer to treat on a per-patient basis. If a bladder cancer
only affects the inner lining of the bladder, it is known as a superficial cancer or
Stage I bladder cancer. Stage I bladder tumors can usually be completely removed
by transurethral resection, but many patients have multiple recurrences. The subse-
quent tumors sometimes show a higher degree of malignancy and may even progress
to invasive carcinoma.

At the beginning of the randomized clinical trial conducted by the VACURG all



patients had superficial bladder tumors. In order to determine if recurrences of Stage I
bladder cancer can be prevented, these tumors are removed transurethrally and patients
are assigned to one of three treatments: placebo, thiotepa, or pyridoxine (Vitamin B-
6). At subsequent follow-up visits, all recurrent tumors are removed and treatment is
continued. Although patients are scheduled to be reexamined every three months for
tumor recurrences, there are many missing observations. Observations from thiotepa
treatment patients are generally obtained more frequently than from those in placebo
group and pyridoxine group, since the thiotepa is scheduled to be administered on a
regular basis. Thiotepa is a chemotherapy drug used to reduce the size of a cancerous
tumor and prevent the growth of new cancer cells.

The study conducted by VACURG consists of m = 82 patients with up to a maxi-
mum of n; = 12 observations taken every three months for each patient. We consider
only patients grouped into treatment (thiotepa) and placebo: group 7' (36 subjects)
and group P (46 subjects). The original data set (see Davis and Wei, 1988) consists
of non-decreasing repeated measures of the same characteristics, specifically the cu-
mulative counts of recurrent tumors at each visit j for patients from groups 7" and
P.

Since the aim here is evaluating the treatment effect, we decide to look at differences
between every response variable of subject ¢ at time j and the value taken at the
previous visit. Each response variable is indicated with Y;; where ¢ = 1,..., m denotes
individuals and 7 = 1,...,n; denotes the measurements (or the measurement time for
each individual 7). Of course, each observation records an indicator of recurrence of
bladder cancer tumors, ¢.e. y;; = 1 if an increased number of tumors was detected at
time j for patient ¢, and y;; = 0 otherwise. Each missing value was substituted by a

linear interpolation and rounding before the reduction to binary data.

3 The model

Forany ¢ = 1,...,m, and j = 1,...,n;, Y;; is a Bernoulli r.v. with mean p;;, which

represents the probability of recurrence in bladder cancer tumors. Patients are grouped



into P (placebo) group, x; = 0, and T (treatment) group, x; = 1, for i = 1,... m.
This variable will represent the only covariate considered in our regression analysis. Of
course, the proposed model can be straightforwardly adapted to datasets with more
covariates than the VACURG data. Latent variable models have gradually become
a standard tool and an active area of study in a wide range of problems in medical
research. Such models provide a useful and intuitive way to motivate the distribution
of a discrete outcome assuming that the binary event occurs only if an unobservable
continuous variable (latent variable) exceeds a certain level.

Here we introduce N latent variables Z;;, where N = 221 n; is the total number
of observations. The binary r.v.’s Y;; are modelled as

1 it Z;; > ¢

Yij = (3.1)
0 if Zij <,

c being a fixed threshold that we assume equal to zero for reference. Moreover,
Y, YnlZy, . Zy ™ asin (3.1), (3.2)

where Z,; = (Zil,---,Zmi)/- The latent vectors Zi,...,Z,, are independent but a

Markovian dependence within each Z; is introduced via
Zz]‘Z’Ljfl NN(ﬂo—i—ﬁlei—f—OéZij,l,Oz), L= 17"'7m7 j:27"'7ni7 (33)

where [y is the intercept of the regression model and 3, represents the treatment effect
on the response variable. The parameter « is the autoregressive coefficient, of the first
order, the parameter standing for the dependence on the previous response (through

latent variables). The model is completed by assuming
ZﬂNN(Mo,O'2), izl,...,m, (34)

where 11 is considered constant and ¢? unknown.
Model (3.1)-(3.4) represents a generalized linear model for longitudinal data. The
normal regression model on the latent variables leads to a probit model for the bi-

nary variables. The underlying autoregressive structure makes the model belonging to



the conditional models class for longitudinal data as described in Diggle et al. (2002).
Specifically, the latent variables are represented as a transition model since each vari-
able Z;; of subject 7 at visit j only depends on the past value Z;;_;. In the above
construction, 3, represents a population baseline probability of tumor recurrence, and
(1 is a treatment-specific offset, with negative values representing a decreased proba-
bility of recurrence. Finally, « is the autoregressive effect of lagged responses.

It is straightforward to show that, marginally (of course conditioning on the pa-

rameters), for every individual 4,

E[Z;;] = 1o (Bo + Brxi) + o7 o, j=1,...,n
1—a%
Var[Zij] = 170420_2’ j: 1,...,77/1',
—

COV[Zija Zlk] = Oé‘jim Var[Zimin(j,k)]v j7 k= 17 N 72 .] 7& k.

Moreover, for each individual i, the probability of tumor recurrence, conditional on

the parameters, is

P(Yil = 1) = / P(Yh = 1‘Zil)f(zi1) dzy =
R

B T —7 (2a — M0)2 _
= /]R]I[C,+OO)(Zi1) \/;exp {f} dzin = [V (1o — ¢)],

where 7 = 1/0? and ® denotes the standard gaussian d.f., and

(3.5)

PYp=1)= / P (Yia = 1zig, zi1) f (2i2l2in) f (2i1) d2io dzia
RQ
- L/ dziy /+°° dziz exp { —7lziz = (Bo + Brzi + aza)|” } X
™ JR ¢ 2
2
X exXp {M})

and so on. From the above integrals it is clear that the likelihood has not a simple

expression, if compared to the conditional likelihood

L(yl|z,x) = H Io,400) (i) H I~ 0,0y (%ij)-

{vi;=1} {vi;=0}



The parameter of interest is the vector @ = (3,7,Z)’, where B = (8, 31, )", 7 = 1/0?
and Z = (Z,,...,7Z,,) are the latent variables. Note that we treat the latent variables
{Z;;} as random parameters, since they are unobserved variables.

We assign the following prior distributions:

noSo Mo

B~ MN (B, V), T ~ gamma (T, 5

), Blr (3.6)

i.e. 3 follows a multivariate normal distribution with mean 3,,, and variance-covariance
matrix V, 7 has gamma prior distribution with mean Sy and variance 25;/ng. The
conditional distribution of the latent variables Z;; for : = 1,...,m,j = 2,...,n; given

their previous Z;;_; can be written as

f (zijlzij—1) = \/;exp { 7l _Q(B/Wij)] }

where w;; = (1, z;, zij_l)’. The joint prior distribution will be expressed by the product

m n;

m(0) =7 (B)n (1) Hf (zi1) Hf(zij|zij—1>7

i=1
where 7 (8), 7 (7) denote the prior pdfs of the parameters 3 and 7 in (3.6).

Due to mathematical convenience, we decide to choose conditionally-conjugate pri-
ors, i.e. all full conditional distributions have the same functional form of the priors.

Based on the priors and the likelihood given, the posterior distribution of € is given

by

™ (0]y,x) o< (0) L(y|z, x)

=7 (B) 7 (D) ][ f ) ] f Gilzi-0) x ][ Toaeo (i) [T Tcoon(2i)- D
i=1 Jj=2 {yi;j=1} {yi;=0}

As far as the posterior predictive distributions are concerned, first of all, we will
compute the probability of recurrence of the tumor at the n; + 1-st time for every
subject i, which is present in the study with n; outcomes:

P(Yin41 = 1Y, x) = / Ljo,+o0) (Zin+1)f (Zin;+1|Y, %, 0)7(0]Y, x) dOdzi,, 41
OxR



Secondly, we aim at estimating the probability that a new subject & (in the 7" or P
group) will have a recurrence in the number of tumors in all the 12 quarterly measure-

ment times. For any j = 2,...,12, if Y,(ijl) = (Yi1, Yi2, ..., Yij—1), then
P (ij 1Y, YUY x, :ck)

:/ ]I[07+OO)(ij)f(ij‘Y,Y,(gjil),O(j),X,xk)ﬂ' (O(j_l)\Y,Y,(j),x,xk> dB(j_l)dzkj,
e

UG- xR

where 80U~V = (8,7,Z,Z}1,...,Zkj—1) and ©U~Y denotes its space. An obvious

modification of the last expression is due when j = 1.

4 Analysis

In this section we explore the differences among the Bayesian estimates of the param-
eters across different prior specifications, investigating also the effect of prior depen-
dence among the B-components. All estimates were computed via a Gibbs sampler
algorithm, whose full conditional distributions are given in the Appendix. Moreover,
all results obtained in Matlab were checked using WinBUGS (Lunn at al. 2000; see

also http://www.mrc-bsu.cam.ac.uk/bugs/).

4.1 Results

For each simulation in Matlab we run a chain of 751 000 iterations with a burn-in period
of 1000 and thinning period of 30 iterations. Therefore, our estimates are based on
an actual number of 25000 iterations. Of course, we evaluated several diagnostics
implemented in the CODA package (Cowles and Carlin, 1996) in R and found no
evidence against convergence. Furthermore, for every chain we run, we also calculated
the batch standard errors obtaining very small values. This is a useful tool to determine
the accuracy on estimations, as suggested by Gilks et al. (1996).
First of all, we assumed o = 0 and the prior (3.6) with 3,, =0, V =1, ny = 4,
So =3/2, i.e.
B~ MN(0,I), T ~ gamma(3,2), B LT (4.1)



where I is the identity matrix of size 3. Posterior means and standard deviations of
the parameters «a, 3y, 31 and 7 are summarized in Table 5 (first row). The posterior
mean of «, is 0.6269 confirming that the assumption of an autoregressive structure is
reasonable. The posterior distributions of 3y and (; are both mostly concentrated on
the negative numbers. This means that there is a baseline probability of recurrence of
less than 50% and that the treatment (thiotepa) contributes to reduce the probability
of a recurrence in the number of tumors of the bladder cancer study.

Figure 1 shows the posterior kernel density plots of the parameters, obtained via
the rule of thumb suggested by Silverman (1986) as the default option of R. From
such plot for (; it is clear that this distribution lies mainly on the negative reals,
indicating evidence of the treatment effect. Turning now our attention to predictions,
we considered four patients in the P-group and three patients in the 7T-group. For the

reader’s sake, data concerning these patients are included here (Table 1).

Patient Month
ID 12 15 18 21 24 27 30 33 36
10 1 1
17
24
34
60
71
74

= O Ol O O = |Ww
o O R, | O O O oo
o O Ol o o o o | ©»
o O R, |O ©O o ©
o O oO|lo o O =
oo R O

o

o

o

0
0 0
0 0
0 0
1 0
0 0
0 0

o O o |o = O

Table 1: Data for some Placebo and Treatment patients

For every patient we evaluated the probability of recurrence at a future time, ob-
taining the estimates in Table 2.

As expected, Patient 10 from group P has a quite high probability of recurrence
at the next (9-th) check, since he/she presented four recurrences during the clinical
trial. Subject 17 at the 10-th check, as well as Patient 34 at the 13-th check, shows
a small probability of recurrence, because of their medical history. Subject 24 reveals

a probability of recurrence of around 0.45, because of the responses of the last visits.



Predictive probabilities of recurrence

Yioo | Yiz,00 | Yea11 | Yaas || Yeo0,10 | Y710 | Yra12
0.4439 | 0.0617 | 0.4562 | 0.0618 || 0.0666 | 0.0514 | 0.0502

Table 2: Estimates of the predictive probabilities in a new measurement for subject 10,17,24,34

(placebo) and 60,71,74 (treatment).

Treated individuals (7-group) seem to present a smaller probability of recurrence at
future checks.

On the other hand, for two new subjects assigned to the 7" and P groups, respec-
tively, the estimated probabilities of recurrence are in Table 3. It can be observed that,
at least during the period under consideration, the recurrence probability is decreasing
in both subjects but it is definitely lower for the subject in the T-group. It seems
there is a natural decrease in the number of recurrences but this is more marked when

subjects are treated with thiotepa.

Predictive probabilities of recurrence

1 2 3 4 5 6 7 8 9 10 11 12
0.3439 | 0.2875 | 0.1957 | 0.1507 | 0.1200 | 0.1081 | 0.1020 | 0.0914 | 0.0897 | 0.0863 | 0.0850 | 0.0844
0.4759 | 0.3856 | 0.3542 | 0.3212 | 0.2765 | 0.2501 | 0.2103 | 0.1987 | 0.1901 | 0.1898 | 0.1822 | 0.1801

Table 3: Estimates of the predictive probabilities for two new subjects in the T' (first row) and P

(second row) groups at every measurement times under prior (4.1).

Finally, we compute the posterior cross correlation for (g, 51, a, T7), obtaining values
in Table 4. The correlation between regression parameters are all moderate and similar.
Both parameters 3y and (3; are highly correlated with the precision parameter 7, but
the autoregression parameter « is seen to have almost null posterior correlation with

T.

4.2 Sensitivity analysis for 5y, 5, and «

In order to assess the impact of choosing different priors, we conducted a sensitivity

analysis of the inference, varying the parameters of mean and precision of the prior
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CROSS CORRELATION
Bo b1 a T
Gy | 1.0000 | 0.2261 | 0.2842 0.7365
Gy | 0.2261 | 1.0000 | 0.1769 0.4212
a | 0.2842 | 0.1769 1.000 —0.0060
7 1 0.7365 | 0.4212 | —0.0060 | 1.0000

Table 4: Cross correlation of the parameters.
distributions of «, §y and 3; without modifying the distribution of 7. We assume first
B ~ MN(0,4I), T ~ gamma(3,2), B LT (4.2)

and

B ~ MN(0,251), T ~ gamma(3,2), B LT (4.3)
Moreover, the values in Table 4 justify the choice of the prior (3.6) with

1 05 05
B~MNO, V), V=105 1 05|, 7~gamma(3,2), BLT (4.4)
05 05 1
Here the marginal prior distributions for 3y, 5; and « are all standard normal, but the
parameters are no longer independent. The prior distribution of 7 remains the same,
7 being independent on ((o, (1, «).

We see that Bayesian estimates of the parameters present very close values in all
cases. All the Bayesian estimates obtained under (4.2)-(4.4) are summarized in Table 5.
Furthermore, if we compare those Bayesian estimates with the ones resulting from (4.1)
(independent standard normal priors for the B-components), no significative differences
are detected. Kernel density plots represented in Figures 2, 3 and 4 show the same
behavior as the one represented in Figure 1. We can conclude that the Bayesian
estimates of the parameters are robust across reasonably different specifications of the

parameters of the 3 prior.

11



Prior Bo b1 Q 7

VoI —0.3961 | —0.2054 | 0.6269 1.4851
- (0.1302) | (0.1147) | (0.0667) | (0.7015)
Vil —0.3879 | —0.1992 | 0.6259 1.5293
a (0.1203) | (0.1077) | (0.0667) | (0.7079)
—0.3898 | —0.2011 | 0.6270 1.5126

V=251
(0.1224) | (0.1103) | (0.0676) | (0.7098)
—0.3856 | —0.1985 | 0.6242 | 1.5456

V as in (4.4)

(0.1188) | (0.1076) | (0.0670) | (0.7149)

Table 5: Posterior means and standard deviations of the parameters for priors as in (3.6).

4.3 Sensitivity analysis for 7

So far we have assigned a gamma with mean E[r| = 3/2 and variance Var[r] = 3/4 as
prior distribution for 7. Now we want to investigate the effect of an increased /decreased
precision 7 of the latent variables Z;; on the parameters estimates, retaining the inde-
pendence between 7 and (5, 51, ). First, the prior distributions considered for «, (3,
and (4 are independent standard normal distributions (as in (4.1)). We fix different
values for E[7] and Var[r|; the estimates obtained are in Table 6.

It is worth mentioning that, in case (ii), the mean of 1/7 (which expresses the
variance of the latent variables) is infinite. Comparing (i), (i¢), (¢ii) (as a function of
the precision), we see that the estimate of « is really robust, while the estimates of
Bo and 3 reveal some sensitivity, although in all cases the respective posterior distri-
butions remain mostly concentrated on the negative numbers. The case of precision
7 is different though. We find the posterior precision to be highly sensitive to prior
assumptions. Similar findings relating to scale parameters in models involving related
terms have been reported elsewhere (e.g. Gelman, 2006). We return to this particular
point later.

We computed the predictive probabilities of recurrence for the same patients in the

study considered before, that is, Patient 10,17,24,34 from the P-group, and 60,71,74

12



(treatment) from the T-group, when 3 and 7 are a priori independent, with E[r] =1
and Var[r] = 1; see Table 8 (first row). There are no significative differences with
values in Table 2, corresponding to independent standard gaussian distribution for the
(B-components.

Moreover, under the same prior, in Table 9 we display the predictive probabilities
of recurrence for two new subjects, one in the P-group, the other in the T-group. We
started from an ignorance situation in which we had no opinion about tumor recurrence
within the first 3-month period. We modelled ignorance by taking pg = ¢ = 0 in (3.5)
so that we started with a recurrence probability at the first visit equal to 0.5. Of
course, we expect that information will be available in other experiments conducted
with physicians and different choices of 1y and ¢ will be possible. From Table 9 we can
see that our choice was rather conservative: after an estimated recurrence probability
at the first visit near 0.5 for both groups, we can see it drops dramatically to, at least,
0.29 for the T-group and 0.36 for the P-group.

Since the hypothesis of independence between 3 and 7 could be restrictive, as an

alternative to (3.6), we assumed the following prior
1
BT ~ MN(0,-V) and 7 ~ gamma (nySy/2,n0/2) . (4.5)
T

As before, we choose different values of E[7] and Var|r] and computed the Bayesian
estimates; see Table 6 (iv), (v), (vi). In particular, we computed, under the same
prior as in Table 6 (vi), the probabilities of recurrence for new patients, as well as for
some patients already included in the study. See Table 8 and 9. In all these compu-
tational experiments we observe some common features. The predicted probabilities
and regression coefficients do not change drastically across different scenarios. But the
precision 7 is considerably affected by prior assumptions, as before.

Given the previous discussion, we decided to follow Gelman’s recommendations
for prior distributions on variance parameters in hierarchical generalized linear models
(Gelman, 2006). Specifically, we assigned a noninformative diffuse uniform prior for

the standard deviation o, i.e. we assume
B~ MN(0,I), o~U(0,100), B Lo (4.6)

13



see Table 6 (vii) for the estimates.

Prior Bo b1 o T
—0.3713 | —0.1930 | 0.6253 1.5690
(0.0989) | (0.0988) | (0.0669) | (0.5906)
—0.2596 | —0.1342 | 0.6247 | 3.5551
(0.0924) | (0.0778) | (0.0671) | (1.8139)
—0.8550 | —0.4406 | 0.6302 0.2615
(0.1506) | (0.2034) | (0.0669) | (0.0319)
—0.3941 | —0.2010 | 0.6361 1.4329
(0.11031) | (0.1055) | (0.0651) | (0.6501)
—0.7638 | —0.3435 | 0.6313 0.2425
(0.1417) | (0.2135) | (0.0655) | (0.0304)
—0.2088 | —0.1082 | 0.6269 | 4.6208
(0.0018) | (0.0027) | (0.0045) | (1.1730)
—0.9521 | —0.7682 | 0.6451 0.1307
(0.6001) | (0.4552) | (0.0649) | (0.1515)

(0): E[r] =1, Varlr]=3/4,8 L T

(t3): E[r] =1, Var[r]=1,8 L7

(ti1): E[r] =4, Var[tr]=1/4, 8 L 1

() Elr] = 3/2, Var[r] = 3/4, B L T

(v) E[r] =4, Var[r| =1/4, B L T

(vi): E[r] =4, Var[r|=1, 8 LT

(vii): ¢ ~ U(0,100), B L o as in (4.6)

Table 6: Posterior means and standard deviations of the parameters across different prior specifica-

tion.

Finally, we include a treatment-specific parameter a, in the autoregression of the
latent variables. We assume the following distribution of Z;; for ¢ = 1,...,m and

J=1,...,n; “given the past”
1
Zij|\Zij—1 ~ N | Bo + frxi + 0qzij—1 + 0oxizi-1, — (4.7)

and fy, [1,a1,00 and 7 a priori independent, with standard gaussian distributions
for all parameters except 7, which is given a gamma distribution with E[r] = 3/2
and Var[r] = 3/4. Such model allows for an autoregressive interaction effect, i.e.
different linear trends for 7" and P groups. Table 7 shows the inferences. The posterior
distribution of as is not significantly away from 0, which suggests that its addition

to the model does not produce substantial changes with respect to what was already

14



reported. In other words, the data suggest that there is no such interaction effect. See
Tables 8 and 9 for predictive probabilities.

As a final remark on predictive probabilities of recurrence for a new subject, Ta-
ble 3 and 9 show that both sets of predictions are somewhat sensitive to the introduced
prior changes, as to be expected from the changes in the parameters discussed earlier.
Nevertheless, we still observe the decreased pattern, and the highest recurrence proba-
bility values for the P-group. However the different 7-prior specification has an effect
on predictive probabilities at the first three visits, but later the sensitivity with respect

to the prior assumption fades away.

ﬁo ﬁl aq (8% T
—0.7946 | —0.3418 | 0.6333 0.0205 1.6031
(0.6470) | (0.3889) | (0.0903) | (0.1960) | (0.6652)

Table 7: Posterior means and standard deviations of the parameters for model (4.7).

Predictive probabilities of recurrence
Prior/Model Yioo | Yiri0 | Yoau1 | Yaa13 || Yeo,00 | Yrio | Y7aio
as in Table 6(i¢) | 0.4351 | 0.0652 | 0.4550 | 0.0674 || 0.0645 | 0.0514 | 0.0489
as in Table 6(vi) | 0.4364 | 0.0663 | 0.4522 | 0.0642 || 0.0620 | 0.0485 | 0.0508
(4.7) 0.4567 | 0.0673 | 0.4628 | 0.0654 || 0.0628 | 0.0498 | 0.0518

Table 8: Estimates of the predictive probabilities in a new measurement for subject 10,17,24,34

(placebo) and 60,71,74 (treatment).

5 Conclusions

We have presented a Bayesian generalized linear model for longitudinal binary se-
quences. It has been applied to a medical study conducted in the USA by the VACURG
(Veterans Administration Cooperative Urological Research Group) about recurrence

of Stage I bladder cancer. Data available from this study consist of the cumulative
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Predictive probabilities of recurrence

Prior/Model

4

5

6

7

10

11

12

as in Table 6(i1)

0.5001
0.5003

0.2875
0.3576

0.1932
0.2897

0.1515
0.2472

0.1266
0.2210

0.1086
0.2070

0.0978
0.1990

0.0905
0.1946

0.0909
0.1937

0.0902
0.1905

0.0868
0.1853

0.0862
0.1802

as in Table 6(vi)

0.5004
0.5102

0.2886
0.3876

0.1915
0.2983

0.1500
0.2574

0.1240
0.2375

0.1105
0.2184

0.0998
0.2093

0.0964
0.2074

0.0939
0.1955

0.0916
0.1934

0.0848
0.1879

0.0869
0.1867

(.7

0.4537
0.4672

0.2326
0.3567

0.1873
0.3636

0.1463
0.3353

0.1182
0.2863

0.1033
0.2764

0.0945
0.2852

0.0837
0.2851

0.0816
0.2277

0.0763
0.2198

0.0701
0.2076

0.0698
0.1982

Table 9: Estimates of the predictive probabilities for two new subjects in the T' (first row) and P

(second row) groups at every measurement times.

counts of recurrent tumors at each visit for 82 patients, 36 assigned to treatment group
(thiotepa) and 46 assigned to the placebo group. We have no further information about
the patients in the clinical trial.

Generally, factors like gender, age or other clinical variables that can be related
with the illness constitute very useful information about the evaluation of a treatment
effect. In our case, the only covariate x; we can assume in the model represents the
treatment group assigned to patient . Despite the lack of information in our case
study, we can conclude that thiotepa treatment has a sensible effect on preventing
recurrence of Stage I bladder cancer. In fact, the posterior mean of (3; indicates that the
treatment (thiotepa) contributes to reduce the probability of a recurrence in the number
of tumors of the bladder cancer study. Since the estimate of [, assumes a negative
value, thus latent variables for individuals belonging to the treatment group will have
a lower probability of assuming positive values than latent variables corresponding to
individuals in the placebo group. This fact leads to a lower probability of Y;; =1, i.e.
a smaller probability of a recurrence in the number of tumors for individuals belonging
to the treatment group.

Furthermore, the Markovian structure we introduce in the latent variables seems
to be very useful to model the correlation of the longitudinal values. The parameter
«, that represents the dependence of the latent variables on the previous one, is very
robust as we can conclude from the sensitivity analysis that we have conducted. On
the other hand, extra efforts are needed to specify the prior distribution for 7, the
precision of the latent variables, by the extreme sensitivity of the posterior estimates

to the prior specification. However, it could be very interesting to analyze the same
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set of data with more covariates representing for instance age and other factors that
could have an influence on the recurrence in bladder cancer tumors, or to apply the

same model to a case study with more covariates.
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APPENDIX

In this section we briefly illustrate the full conditionals required in the Gibbs sampler
to provide the Bayesian estimates of 8. The calculations are straightforward; more
details can be found in Giardina (2008). The full conditional of 7 is

n6S5 1o )

T10_; ~ gamma <

2 72

where

Sy moSo + T 0y (2 = Bwy)  + X0 (2 — i)’ mg mo+ 7

2 2 ) 2 ’

if the prior is as in (3.6), while
1550

2

noSo + (f—f + % %:) + 300 (2 = o)+ 2 2 (2 — o — B — azig )’

5 ;
and ng/2 = (ng+ Y v n; +3) /2 under (4.5). Of course, O_, is the standard way to
denote all components of 8 except for 7.

Because of the Markovian structure (see equation (3.3)), the full-conditional distri-
bution of Z;; for all j = 2,...,n; — 1 and any subject i = 1,...,m, is a function of

both the previous and the next latent variables Z;;_; and Z;;
No,400 (Mziﬂ'*.l.) ifY; =1
Zij‘efZij ~ | : " ’ )
N(-oe0) (,LLZZ.J.,TZ_$> ity =0
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where 17, = ((1—a) (B0 + Bimi) + a (2ijs1 + 25-1)) /(1 + 0?), 72! = (r(1+a?))™

and Njg _yo0) (u 25T, ) denotes the distribution proportional to the normal with mean
ttz,; and variance TZZ,], restricted to the interval [0, 4+00).

Analogously,

Npo1o0) (121,77 ifY;; =1
ZZ;ngizl1 ~ [ + ) ( 1 Zzl) ’
N(—oc,0) (“Zil’TZ_i) if Yip =0

where jiz, = (o + o (z — fo — fi)) /(1 +a?), 771 = (v (1 +a2) ™", and

N[Ov'i'oo) <IuZznZ ’ Tzil) lf an = 1

Zin: |0
Neoeo) (172 ) i Vi, =0

Zin; ™ )
Kzin, = Bo + Prx; + azin,—1 and Tz_i =7 L
On the other hand, from (3.7) we have
1 / T U , 2
log (m (5|9—ﬁ)) X D) (B—0Bn)V 5 Bm) — 5 Z sz - Wz’j) )

i=1 j=2
so that the full-conditional distribution of 3 (of a conjugate type) is a multivariate

normal distribution

BlO-p ~ MN (B, V")

where
m  n; m  n; -1
/8;:1 = \ﬂ< (V_l,gm —+ 7 Z Z Wijzij> and V* = (V_l —+ 7 Z Z Wm’W%) .
i=1 j=2 i=1 j=2
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Figure 1: Posterior kernel density plots of the parameters under prior (4.1).
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Figure 2: Posterior kernel density plots of the parameters under prior (4.2).
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Figure 3: Posterior kernel density plots of the parameters under prior (4.3).
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Figure 4: Posterior kernel density plots of the parameters under prior (4.4).
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