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Abstract

We study the fourth order nonlinear critical problem ∆2u = u2∗−1 in the unit ball of Rn (n ≥ 5),
subject to the Steklov boundary conditions u = ∆u− duν = 0 on ∂B. We provide the exact range
of the parameter d for which this problem admits a positive (radial) solution. We also show that the
solution is unique in this range and in the class of radially symmetric functions. Finally, we study
the behavior of the solution when d tends to the extremals of this range. These results complement
previous results in [3].
AMS Subject Classification: 35J35, 35J40.

1 Introduction

Let B ⊂ Rn (n ≥ 5) be the unit ball, let 2∗ = 2n
n−4 denote the critical Sobolev exponent for the

embedding H2(B) ⊂ L2∗(B), let d ∈ R. We consider the following fourth order elliptic problem with
purely critical growth and Steklov boundary conditions:

{
∆2u = u2∗−1, u > 0 in B

u = 0, ∆u− duν = 0 on ∂B.
(1)

Here uν denotes the outer normal derivative of u on ∂B.
The widely studied second order semilinear elliptic equation shows that nonlinearities at critical growth
present highly interesting phenomena concerning the existence/nonexistence of positive solutions, see
the seminal paper by Brezis-Nirenberg [4] and [5, Chapter III] for a survey. For fourth order equations
the existence/nonexistence problem is even more challenging, since the available techniques strongly
depend on the imposed boundary conditions. The present paper is motivated by the growing interest
in recent years for the corresponding Dirichlet boundary value problem (corresponding to d = −∞ in
(1)) and Navier boundary value problem (corresponding to d = 0). We refer to the introduction in [3]
for a survey of the known results.
By solution of (1) we mean here a function u ∈ H2 ∩H1

0 (B) such that u > 0 a.e. in B and
∫

B
∆u∆ϕ− d

∫

∂B
uνϕν =

∫

B
u2∗−1ϕ for all ϕ ∈ H2 ∩H1

0 (B) . (2)

A solution in this sense is in fact a strong (classical) solution in C4,α(B), see [1, Proposition 23] and
also [6].
Preliminary results concerning (1) were obtained in [3] where it is shown that (1) admits no solution
whenever d ≤ 4 or d ≥ n. It was conjectured in [3] that the existence range for (1) is d ∈ (4, n)
although the existence of solutions was shown only for d ∈ (σn, n) for a suitable σn > 4. The purpose
of the present paper is to fill the gap and to prove existence in the whole range d ∈ (4, n). Moreover,
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in such range we show that the solution is unique in the class of radially symmetric functions and we
determine the asymptotic behavior of the solution in the limit cases where d → n and d → 4:

Theorem 1. If d ≤ 4 or d ≥ n, then (1) admits no solutions.
If 4 < d < n, then (1) admits a unique radially symmetric solution ud.
Moreover:
(i) as d → n− we have ud → 0 uniformly in B;
(ii) as d → 4+ we have ud(0) → +∞, ud(x) → 0 for all x ∈ B \ {0} and (ud)ν → 0 on ∂B.

The nonexistence part and the asymptotic behavior as d → n− were already proved in [3]. We also
refer to [2] for results concerning sign-changing solutions to (1).
In order to prove the existence of solutions (Section 2), we use a refined compactness method. More
precisely, we use a sequence of suitably modified Sobolev minimizers which tend to concentrate and
show that their energy lies below the compactness threshold. The “optimal” modification is determined
by solving a variational problem which leads to a quite simple Euler-Lagrange equation, see (15) below.
Concerning uniqueness of radially symmetric solutions (Section 3), we consider the related ode, see
(16). Then, with a suitable change of variables we transform it into an autonomous ode, see (19). By
using the boundary conditions and the corresponding integral equation we can exclude the existence
of two different solutions. Finally, in Section 4 we prove the asymptotic behavior of the solution ud in
the limit cases by refining some results in [3].

2 Proof of existence

We denote by ‖ · ‖p the Lp-norm (both on B and on Rn) and we put

‖u‖2
∂ν

=
∫

∂B
u2

ν for u ∈ H2 ∩H1
0 (B).

Set

S = min
u∈D2,2(Rn)\{0}

‖∆u‖2
2

‖u‖2
2∗

,

and recall that the minimum is achieved by the radial entire functions

uε(x) :=
1

(ε2 + |x|2)n−4
2

for any ε > 0. Moreover, from (7.3) and (7.4) in [3] we have

∫

Rn

|uε|2∗ =
ωn

2εn

[Γ(n
2 )]2

Γ(n)
=:

K2

εn

and ∫

Rn

|∆uε|2 = S
K

2/2∗
2

εn−4
=:

K1

εn−4
.

Here and in the sequel, ωn denotes the surface measure of the unit ball:

ωn := |∂B| = 2πn/2

Γ(n
2 )

.
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Let H = {u ∈ H2 ∩ H1
0 (B); u = u(|x|)} denote the closed subspace of radially symmetric functions

and for all nontrivial u ∈ H consider the ratio

Qd(u) :=
‖∆u‖2

2 − d‖u‖2
∂ν

‖u‖2
2∗

. (3)

Finally, we consider the minimization problem

Σd := inf
u∈H\{0}

Qd(u) (4)

and we recall [3, Proposition 13]:

Proposition 2. Assume that 0 < d < n. Then if Σd < S the infimum in (4) is achieved. Moreover,
up to a change of sign and up to a Lagrange multiplier, any minimizer is a positive radial solution of
(1).

In view of Proposition 2, the existence part of Theorem 1 is proved if we exhibit a nontrivial radial
function Uε,δ ∈ H such that

Qd(Uε,δ) < S. (5)

Assume that d > 4, fix a real number

0 < δ < n

√
d− 4

n + d− 4
(6)

and consider the following two-parameters family of functions

Uε,δ(x) = gδ(|x|)uε(x) ≡ gδ(|x|)
(ε2 + |x|2)n−4

2

,

where gδ ∈ C1[0, 1] ∩W 2,∞(0, 1), gδ(r) = 1 for 0 ≤ r ≤ δ and gδ(1) = 0. Then, Uε,δ ∈ H and

Uε,δ(x) = uε(x) =
1

(ε2 + |x|2)n−4
2

in Bδ = {x ∈ Rn; |x| < δ}.

We now estimate the ratio Qd(Uε,δ). A lower bound for the denominator in (3) is readily obtained:

∫

B
|Uε,δ(x)|2∗ =

∫

Rn

|uε(x)|2∗ −
∫

Rn\B
|uε(x)|2∗ −

∫

B\Bδ

1− gδ(|x|)2∗
(ε2 + |x|2)n

≥ K2

εn
+ O(1). (7)

We now look for an upper bound of the numerator; in radial coordinates r = |x|, after some compu-
tations we find

∆Uε,δ(r) = U ′′
ε,δ(r) +

n− 1
r

U ′
ε,δ(r)

=
g′′δ (r)

(ε2 + r2)(n−4)/2
+

g′δ(r)
r(ε2 + r2)(n−2)/2

[
(7− n)r2 + (n− 1)ε2

]
− (n− 4)

gδ(r)
(ε2 + r2)n/2

(2r2 + nε2) .

Let us recall that g′δ(r) = g′′δ (r) = 0 for r < δ. Furthermore, as ε → 0, we have

∆Uε,δ(r) =
g′′δ (r)
rn−4

+ (7− n)
g′δ(r)
rn−3

− 2(n− 4)
gδ(r)
rn−2

+ o(1)
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uniformly with respect to r ∈ [δ, 1]. By squaring, we get

|∆Uε,δ(r)|2 =
g′′δ (r)2

r2n−8
+ (7− n)2

g′δ(r)
2

r2n−6
+ 4(n− 4)2

gδ(r)2

r2n−4
+

+2(7− n)
g′′δ (r)g′δ(r)

r2n−7
− 4(n− 4)

g′′δ (r)gδ(r)
r2n−6

+ 4(n− 4)(n− 7)
g′δ(r)gδ(r)

r2n−5
+ o(1).

We may now compute
∫

B
|∆Uε,δ|2 =

∫

Rn

|∆uε|2 −
∫

B\Bδ

|∆uε|2 +
∫

B\Bδ

|∆Uε,δ|2 −
∫

Rn\B
|∆uε|2

=
K1

εn−4
− 4(n− 4)ωn + o(1) +

∫

B\Bδ

(
|∆Uε,δ|2 − |∆uε|2

)
(8)

where we used formula (7.7) in [3]. We now rewrite in simplified radial form the terms contained in
the last integral in (8). With some integrations by parts, and taking into account the behavior of gδ(r)
for r ∈ {1, δ}, we obtain

∫ 1

δ

g′′δ (r)g′δ(r)
rn−6

dr =
n− 6

2

∫ 1

δ

g′δ(r)
2

rn−5
dr +

g′δ(1)2

2
, (9)

∫ 1

δ

g′′δ (r)gδ(r)
rn−5

dr = −
∫ 1

δ

g′δ(r)
2

rn−5
dr + (n− 5)

∫ 1

δ

g′δ(r)gδ(r)
rn−4

dr , (10)

∫ 1

δ

g′δ(r)gδ(r)
rn−4

dr =
n− 4

2

∫ 1

δ

gδ(r)2

rn−3
dr − 1

2δn−4
. (11)

Using (9), (10) and (11) we find

∫

B\Bδ

(
|∆Uε,δ|2−|∆uε|2

)
= ωn

∫ 1

δ

(
g′′δ (r)2

rn−7
+ 3(n− 3)

g′δ(r)
2

rn−5

)
dr+(7−n)ωng′δ(1)2+4(n−4)ωn. (12)

Moreover, simple computations show that
∫

∂B
(Uε,δ)2ν = ωng′δ(1)2 + o(1)

which, combined with (8) and (12), yields

∫

B
|∆Uε,δ|2−d

∫

∂B
(Uε,δ)2ν =

K1

εn−2
+ωn

∫ 1

δ

(
g′′δ (r)2

rn−7
+ 3(n− 3)

g′δ(r)
2

rn−5

)
dr+ωn(7−n−d)g′δ(1)2+o(1) .

(13)
Putting f = g′δ, we are so led to minimize the functional

J(f) :=
∫ 1

δ

(
f ′(r)2

rn−7
+ 3(n− 3)

f(r)2

rn−5

)
dr + (7− n− d)f(1)2

among functions f ∈ C0[δ, 1] ∩W 1,∞(δ, 1) such that

f(δ) = 0 and
∫ 1

δ
f(r) dr = −1. (14)
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The Euler-Lagrange equation relative to the integral part of the functional J reads

r2f ′′(r) + (7− n)rf ′(r)− 3(n− 3)f(r) = 0 δ ≤ r ≤ 1, (15)

whose solutions have the following general form f(r) = arn−3 + br−3 for any a, b ∈ R. The first
condition in (14) yields b = −aδn. To determine the value of a, we use the second condition in (14)
and obtain

a = − 2(n− 2)
2− nδn−2 + 2δn

.

So, let us consider the function f(r) = a(rn−3 − δnr−3) and let us compute

J(f)
a2

=
∫ 1

δ

[
n(n− 3)rn−1 +

3nδ2n

rn+1

]
dr+(7−n−d)(1−δn)2 = (1−δn)

[
(4−d)(1−δn)+nδn

]
=: γ < 0

where the sign of γ follows from our initial choice of δ in (6). Summarizing, with the above choice of
f and recalling that gδ(r) =

∫ 1
r f(s)ds, from (13) we obtain

∫

B
|∆Uε,δ|2 − d

∫

∂B
(Uε,δ)2ν =

K1

εn−4
+ ωna2γ + o(1) .

Finally, by combining this estimate with (7) and recalling the definition in (3), we find

Qd(Uε,δ) ≤
K1

εn−4 + ωna2γ + o(1)

[K2
εn + O(1)]2/2∗

= S +
ωna2γ

K
2/2∗
2

εn−4 + o(εn−4) as ε → 0

so that (5) holds for sufficiently small ε. This completes the proof of the existence part in Theorem 1.

3 Proof of uniqueness

If we consider radially symmetric solutions and put r = |x|, then the equation in (1) reads

uiv(r) +
2(n− 1)

r
u′′′(r) +

(n− 1)(n− 3)
r2

u′′(r)− (n− 1)(n− 3)
r3

u′(r) = u
n+4
n−4 (r) r ∈ [0, 1) , (16)

while the boundary conditions become

u(1) = 0 , u′′(1) + (n− 1− d)u′(1) = 0 . (17)

In turn, with the change of variables

u(r) = r−
n−4

2 v(log r) (0 < r ≤ 1) , v(t) = e
n−4

2
t u(et) (t ≤ 0), (18)

equation (16) may be rewritten as

viv(t)−K2v
′′(t) +K1v(t) = v

n+4
n−4 (t) t ∈ (−∞, 0) , (19)

where

K1 =
(

n(n− 4)
4

)2

, K2 =
n2 − 4n + 8

2
> 0. (20)

Moreover, by [3, Lemma 18], we know that

v(0) = 0, v′(0) < 0, v′′(0) = (d− 2)v′(0), v′′′(0) =
n2 − 4n + 2d2 − 8d + 16

4
v′(0). (21)
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Assume that there exist two solutions u1 and u2 of (16) and let v1 and v2 be the corresponding
functions obtained through the change of variables (18). Then, both v1 and v2 satisfy (19) and (21).
Put

wi(t) :=
vi(t)
|v′i(0)| (i = 1, 2)

so that
wiv

i (t)−K2w
′′
i (t) +K1wi(t) = λiw

(n+4)/(n−4)
i (t), t ∈ (−∞, 0), (22)

with

wi(0) = 0, w′i(0) = −1, w′′i (0) = 2− d, w′′′i (0) = −n2 − 4n + 2d2 − 8d + 16
4

,

λi = |v′i(0)|8/(n−4) > 0.

With no loss of generality we may assume that λ1 ≥ λ2. Let w := w1 − w2 so that w satisfies

wiv(t)−K2w
′′(t) +K1w(t) = λ1w

(n+4)/(n−4)
1 (t)− λ2w

(n+4)/(n−4)
2 (t)

with homogeneous initial conditions at t = 0. This equation may be rewritten as

wiv(t)−K2w
′′(t) +K1w(t) = (λ1 − λ2)w

(n+4)/(n−4)
1 (t) + f(t)w(t), (23)

where, by Lagrange Theorem,

f(t) =
n + 4
n− 4

λ2

∫ 1

0
[sw1(t) + (1− s)w2(t)]8/(n−4) ds ≥ 0.

We now prove a technical result:

Lemma 3. Let h ∈ C0(−∞, 0], then the unique solution w ∈ C4(−∞, 0] of the Cauchy problem
{

wiv(t)−K2w
′′(t) +K1w(t) = h(t), t ∈ (−∞, 0)

w(0) = w′(0) = w′′(0) = w′′′(0) = 0

is given by

w(t) =
4

n(n− 4)

∫ 0

t
sinh

[n

2
(τ − t)

] ∫ 0

τ
sinh

[
n− 4

2
(s− τ)

]
h(s) ds dτ =

∫ 0

t
G(s− t) h(s) ds, (24)

where
G(σ) =

1
n(n− 2)

sinh[nσ/2]− 1
(n− 2)(n− 4)

sinh[(n− 4)σ/2]

is positive for σ > 0.

Proof. It follows by combining three simple facts.
First, the unique solution w of the problem

{
w′′(t)− n2

4 w(t) = z(t), t ∈ (−∞, 0)
w(0) = w′(0) = 0

is given by

w(t) =
2
n

∫ 0

t
sinh

[n

2
(τ − t)

]
z(τ) dτ .
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Second, the unique solution z of the problem
{

z′′(t)− (n−4)2

4 z(t) = h(t), t ∈ (−∞, 0)
z(0) = z′(0) = 0

is given by

z(t) =
2

n− 4

∫ 0

t
sinh

[
n− 4

2
(τ − t)

]
h(τ) dτ .

Third, by (20) the left hand side of (23) may be written as
[

d2

dt2
− (n− 4)2

4

] [
d2

dt2
− n2

4

]
w.

Finally, by changing the order of integration in the second term of (24) we get

G(s− t) =
4

n(n− 4)

∫ s

t
sinh

[
n− 4

2
(s− τ)

]
sinh

[n

2
(τ − t)

]
dτ, t < s < 0,

and the explicit form of G follows by elementary calculations. 2

By Lemma 3, the homogeneous Cauchy problem for (23) is equivalent to the following integral equation:

w(t) = (λ1 − λ2)
∫ 0

t
G(s− t) w

(n+4)/(n−4)
1 (s) ds +

∫ 0

t
G(s− t) f(s)w(s) ds .

In turn, by putting

W (t) := (λ1 − λ2)
∫ 0

t
G(s− t) w

(n+4)/(n−4)
1 (s) ds ≥ 0 ,

the above integral equation reads

w(t) = W (t) +
∫ 0

t
G(s− t) f(s)w(s) ds .

The solution to this problem is obtained by iteration; by recalling that W ≥ 0, f ≥ 0 on (−∞, 0] and
that G(s− t) ≥ 0 for s > t, we readily obtain

w(t) ≥ 0 for all t ≤ 0.

Finally, if we multiply (23) by ent/2 we may rewrite it as

d

dt

[
ent/2

(
w′′′(t)− n

2
w′′(t)− (n− 4)2

4
w′(t) +

n(n− 4)2

8
w(t)

)]
=

= ent/2
[
(λ1 − λ2)w

(n+4)/(n−4)
1 (t) + f(t)w(t)

]
. (25)

By integrating (25) over (−∞, 0) and using the homogeneous boundary conditions we obtain
∫ 0

−∞
ent/2

[
(λ1 − λ2)w

(n+4)/(n−4)
1 (t) + f(t)w(t)

]
dt = 0 .

In view of the sign conditions

λ1 − λ2 ≥ 0, w1 > 0, f, w ≥ 0,

this implies that λ1 = λ2, w ≡ 0 and u1 = u2. Uniqueness is so proved.
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4 Asymptotic behavior in the limit cases

Statement (i) when d → n− is proved in [3, Theorem 1].
When d → 4+, from [3, Theorem 7] we recall that

ud(r) → 0 for all r ∈ (0, 1] (26)

which is the second statement of (ii).
Next, [3, Theorem 7] also states that for all d ∈ (4, n) the following identity holds:

d(d− n)
2

u′d(1) =
∫ 1

0
rn−1u2∗−1

d (r) dr. (27)

By combining [3, Lemma 17] with the change of variables (18) we infer that for all d ∈ (4, n) we have

ud(r) ≤
(

(n− 4)n3

16

)(n−4)/8

r−(n−4)/2 for all r > 0.

In particular, this shows that rn−1u2∗−1
d (r) ≤ Cnr(n−6)/2 ∈ L1(0, 1) since n > 4. This, combined with

(26), enables us to apply Lebesgue Theorem and to obtain that

lim
d→4+

∫ 1

0
rn−1u2∗−1

d (r) dr = 0.

From (27) we then infer
lim

d→4+
u′d(1) = 0 (28)

which is the third statement of (ii).
In order to prove the first statement of (ii) we recall that, due to the variational characterization in
Proposition 2, we have

‖∆ud‖2
2 − d‖ud‖2

∂ν

‖ud‖2
2∗

= Σd < S (29)

for all d ∈ (4, n). Moreover, by taking ϕ = ud in (2) we obtain

‖∆ud‖2
2 − d‖ud‖2

∂ν
= ‖ud‖2∗

2∗

These two equalities yield
‖ud‖2∗ = Σ(n−4)/8

d . (30)

By combining the Sobolev inequality in H2 ∩H1
0 (B) (see [6]) with (28) and (29) we obtain

S‖ud‖2
2∗ + o(1) ≤ ‖∆ud‖2

2 − d‖ud‖2
∂ν

= Σd‖ud‖2
2∗ < S‖ud‖2

2∗

which shows that Σd → S as d → 4+. Therefore, (30) entails ‖ud‖2∗ → S(n−4)/8 > 0 proving that ud(0)
cannot remain bounded since otherwise by (26) and Lebesgue Theorem we would get a contradiction.
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