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Abstract
We study two elliptic problems, respectively in the second and in the fourth order case, both

under Steklov-type boundary conditions and critical growth. In the second order case, by stan-
dard tools of critical point theory, we give existence and nonexistence regions for nontrivial nodal
solutions. The basic ideas here are to concentrate the Sobolev minimizers on the boundary and to
perform a suitable orthogonal decomposition of the functional set of the solutions. In the fourth or-
der, in spite of the similarity between the variational structures of the two problems, concentration
doesn’t work and we only have partial results.

1 Introduction

In a celebrated paper, Pohozaev [25] proved that the semilinear elliptic equation

−∆u = |u|2∗−2u in Ω (1)

admits no positive solutions in a bounded smooth starshaped domain Ω ⊂ Rn (n ≥ 3) under homo-
geneous Dirichlet boundary conditions. In fact, in these domains, Pohozaev’s identity combined with
the unique continuation property rules out also the existence of nodal solutions (see [19]) so that (1)
admits only the trivial solution u ≡ 0. Here 2∗ = 2n

n−2 denotes the critical exponent for the embedding
H1(Ω) ⊂ L2∗(Ω). Since then, in order to obtain existence results for the Dirichlet problem associated
to (1), many attempts were made to modify the geometry (topology) of the domain Ω or to perturb
the critical nonlinearity |u|2∗−2u in (1). It appears an impossible task to exhaust all the literature. In
these papers, existence of nontrivial solutions was obtained.
Much less is known when different boundary value problems are considered. Brezis [10, Section 6.4]
suggested to study (1) under Neumann boundary conditions:

uν = 0 on ∂Ω (2)

where uν denotes the outer normal derivative of u on ∂Ω. Problem (1)-(2) was studied by Compte-
Knaap [15]: it is shown there that if n ≥ 4 then it admits nontrivial solutions in any domain Ω.
One of the purposes of the present paper is to study existence of nodal solutions for a different
boundary value problem. For δ ∈ R, we consider the following (second order) elliptic problem with
purely critical growth and Steklov boundary conditions:

{ −∆u = |u|2∗−2u in Ω
uν = δu on ∂Ω.

(3)
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Clearly, (3) becomes the Neumann problem when δ = 0 and tends to the Dirichlet problem as δ → −∞.
Hence, one expects nonexistence results in the spirit of [25] for δ sufficiently negative: when Ω is the
ball, this was proved independently in [1, 29]. When δ < 0, existence of positive solutions to (3) in
general domains was studied in [1, 29], see also [18] for the case n = 3 in the ball. In these papers,
the authors take advantage of the mountain-pass variational structure (constrained minimization over
the whole space).
We are here interested in the case where δ > 0 and we obtain existence results for (3) by using
variational methods. Since the variational structure of the problem is no longer of mountain-pass
type, linking arguments are required. In this case, it is well-known that in order to lower the energy
level of Palais-Smale sequences one needs to estimate “mixed terms” which are difficult to estimate,
see [14, 17]. The basic idea is to concentrate Sobolev minimizers on the boundary as in [2, 3] but
before concentrating we need to subtract their mean value on the boundary.
A further goal of this paper is to highlight the nonstandard variational structure of (3). The space
spanned by the eigenfunctions of the linear boundary value problem does not exhaust all the functional
space under consideration. Therefore, the linking argument used for its study has somehow a more
complicated behaviour. We collect the main properties describing the variational structure in the
Appendix.
Finally, we emphasize that a quite similar structure may also be observed for the corresponding fourth
order critical growth problem

{
∆2u = |u|2∗−2u in Ω
u = 0, ∆u = duν on ∂Ω

(4)

where Ω ⊂ Rn (n ≥ 5) is a smooth bounded domain, d ∈ R and 2∗ = 2n
n−4 is the critical Sobolev

exponent for the embedding H2(Ω) ⊂ L2∗(Ω). Also the boundary conditions in (4) are named after
Steklov. They were first studied for the eigenvalue problem in the two dimensional case [20, 23] and
more recently for the same problem in any dimension [16]. For some nonlinear problems and for the
positivity preserving property we refer to [7, 8]. In particular, in [8] the existence of positive solutions
of (4) was studied. Here, we are again concerned with the existence of nodal solutions. Although (4)
has the same variational structure as (3), it exhibits several different features. In particular, we cannot
expect concentration phenomena on the boundary since u = 0 on ∂Ω. Moreover, since (4) requires
several hard computations, we obtain existence results only when Ω is the unit ball in dimensions
n = 5, 6, 8.

2 Main results

We say that a function u ∈ H1(Ω) is a weak solution of (3) if
∫

Ω
∇u∇v − δ

∫

∂Ω
uv =

∫

Ω
|u|2∗−2uv for all v ∈ H1(Ω) .

We say that a function u ∈ H2 ∩H1
0 (Ω) is a weak solution of (4) if

∫

Ω
∆u∆v − d

∫

∂Ω
uνvν =

∫

Ω
|u|2∗−2uv for all v ∈ H2 ∩H1

0 (Ω) .

It can be shown that weak solutions in these senses are in fact strong (classical) solutions, see [11] for
the second order equation and [7, Proposition 23] for the fourth order equation.
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Here and in the following, we denote by ‖ · ‖p the Lp(Ω)-norm (1 ≤ p ≤ ∞), and we put

‖u‖2
∂ =

∫

∂Ω
u2 for u ∈ H1(Ω) , ‖u‖2

∂ν
=

∫

∂Ω
u2

ν for u ∈ H2 ∩H1
0 (Ω).

Set
Hmax := max

x∈∂Ω
H(x), (5)

where H(x) is the mean curvature of ∂Ω. Let us recall the statement concerning positive solutions:

Theorem 1. [1, 29]
Let Ω ⊂ Rn (n ≥ 4) be a smooth bounded domain.
(i) If δ ≥ 0, then (3) admits no positive solutions.
(ii) If δ ∈ (

2−n
2 Hmax, 0

)
, then (3) admits a positive solution.

Moreover, if Ω = B (the unit ball of Rn, n ≥ 3), then:
(iii) If δ ≤ 2− n, (3) admits no positive radial solutions.
(iv) If δ ∈ (2 − n, 0), then problem (3) admits a unique positive radial solution uδ which is explicitly
given by

uδ(x) =
[n(n− 2)Cδ,n]

n−2
4

(Cδ,n + |x|2)n−2
2

,

where Cδ,n := 2−n
δ − 1.

In order to state our result about nodal solutions, we introduce the set

X (Ω) :=
{

u ∈ H1(Ω) :
∫

∂Ω
u = 0

}
\H1

0 (Ω)

and define

δ1 := inf
u∈X (Ω)

‖∇u‖2
2

‖u‖2
∂

(6)

so that δ1 is the largest constant satisfying

‖∇u‖2
2 ≥ δ1‖u‖2

∂ for all u ∈ X (Ω).

Moreover, δ1 is the first nontrivial eigenvalue of −∆ under the Steklov boundary conditions, see the
Appendix. Then, we have

Theorem 2. Let Ω ⊂ Rn (n ≥ 4) be a smooth bounded domain. If δ ∈ (0, δ1), then (3) admits a pair
of nontrivial nodal solutions.

In the case where Ω is the unit ball, Theorem 2 combined with Theorem 13 in the Appendix, states
that (3) has nontrivial nonradial solutions for all δ ∈ (0, 1).

For the fourth order problem (4) we only consider the case where Ω = B so that the first boundary
eigenvalue is d1 = n, see [7] and Theorem 16 in the Appendix. Let us also recall results from [8] about
positive solutions. For n ≥ 5, let

σn =





n− (n− 4)(n2 − 4) Γ(n
2
)

2
8
n +1

(
nΓ(n

2
)

Γ(n)

) 4
n

(
Γ( 2n

n−4
)

Γ( n2

2(n−4)
)

)1− 4
n

if n = 5 or n = 6

4(n−3)
n−4 if n ≥ 7 .

In particular, σ5 ≈ 4.5 and σ6 ≈ 5.2, see [4]. Then, we have
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Theorem 3. [8]
Assume that Ω = B (the unit ball of Rn, n ≥ 5).
(i) If d ≤ 4 or d ≥ n, then (4) admits no positive solution.
(ii) If d ∈ (σn, n) problem (4) admits a radial positive solution.
(iii) For every d ∈ R, problem (4) admits no radial nodal solutions.

For n ≥ 5, put

g(n) :=
n2(n− 2)Γ

(
n
2

)

4

[
(n− 4)(n + 2)Γ(n

2 )
2Γ(n)

]4/n
[

(n + 4)Γ( 2n
n−4)Γ( n+4

2(n−4))√
π Γ( n2+2n

2(n−4))

]1−4/n

. (7)

Then, in some dimensions, we can prove existence and multiplicity results for d ≥ n:

Theorem 4. Assume that Ω = B (the unit ball of Rn) and let n = 5, 6, 8.
If d ∈ (n + 2− g(n), n + 2) problem (4) admits at least n pairs of nontrivial solutions.

Remark 5. As we explain in Section 5, even if we do not have a complete proof, we believe that
Theorem 4 holds for every n ≥ 5. If this is true, since g(n) ≥ 2 for n ≥ 16, this means that the
existence result, for n large, covers the whole range between n and n + 2.

3 The Palais-Smale condition

Let

S2 = min
u∈D1,2(Rn)\{0}

‖∇u‖2
2

‖u‖2
2∗

.

By [21] we know that there exists K = K(Ω) > 0 such that

S2

22/n
‖u‖2

2∗ ≤ ‖∇u‖2
2 + K‖u‖2

∂ for all u ∈ H1(Ω). (8)

Consider the space H1(Ω) endowed with the scalar product

(u, v)1 :=
∫

Ω
∇u∇v +

∫

∂Ω
uv for all u, v ∈ H1(Ω) (9)

and the induced norm

‖u‖2 :=
∫

Ω
|∇u|2 +

∫

∂Ω
|u|2 for all u ∈ H1(Ω). (10)

Consider the functional
I(u) =

1
2

∫

Ω
|∇u|2 − δ

2

∫

∂Ω
u2 − 1

2∗

∫

Ω
|u|2∗ (11)

whose critical points are weak solutions of (3). We prove

Lemma 6. The functional I satisfies the Palais-Smale condition at levels c ∈ (−∞,
S

n/2
2
2n ), that is, if

{um}m≥0 ⊂ H1(Ω) is such that

I(um) → c <
S

n/2
2

2n
, dI(um) → 0 in (H1(Ω))′, (12)

then there exists u ∈ H1(Ω) such that um → u in H1(Ω), up to a subsequence.
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Proof. To deduce that {um}m≥0 is bounded in H1(Ω) we follow [26, Theorem 4.12]. Let {δj}j≥0

be the set of the eigenvalues of −∆ under the Steklov boundary condition and denote with Mj the
eigenspace associated to δj . If δ = δk, for some k ≥ 0, we define:

H+ :=
⊕

j≥k+1

Mj

⊕
H1

0 (Ω), H0 := Mk and H− :=
⊕

j≤k−1

Mj

and, in view of Theorem 13 in the Appendix, we have

H1(Ω) = H+ ⊕H0 ⊕H−.

Thus we may decompose um = u+
m + u0

m + u−m, where u+
m ∈ H+, u0

m ∈ H0 and u−m ∈ H−. If δ 6= δk,
for every k ≥ 0, and δk < δ < δk+1, we just have the two spaces H+ and H− but the decomposition
works similarly. By (12) and arguing as in [26], one can prove that each of the components of um,
and in turn um, is bounded in H1(Ω). By this we conclude that (up to a subsequence) there exists
u ∈ H1(Ω) such that

um ⇀ u in H1(Ω) and um → u a.e. in Ω. (13)

Hence, by compactness of the map H1(Ω) → L2(∂Ω) defined by u 7→ u|∂Ω, we have:

um |∂Ω→ u |∂Ω in L2(∂Ω). (14)

We apply (8) to the function um − u and, in view of (14), we get

S2

22/n
‖um − u‖2

2∗ ≤ ‖∇(um − u)‖2
2 + o(1). (15)

On the other hand, by the Brezis-Lieb Lemma [12], we know that

‖um‖2∗
2∗ − ‖u‖2∗

2∗ = ‖um − u‖2∗
2∗ + o(1). (16)

Exploiting (12), (13), (14) and (16) we have

o(1) = 〈dI(um), um − u〉

=
∫

Ω
|∇um|2 −

∫

Ω
∇um · ∇u− δ

∫

∂Ω
um(um − u)−

∫

Ω
|um|2∗−2um(um − u)

=
∫

Ω
(|∇um|2 − 2∇um · ∇u + |∇u|2)−

∫

Ω
|um|2∗ +

∫

Ω
|u|2∗ + o(1)

=
∫

Ω
|∇(um − u)|2 −

∫

Ω
|um − u|2∗ + o(1),

so that
‖∇(um − u)‖2

2 = ‖um − u‖2∗
2∗ + o(1). (17)

By (12) we also get that

o(1) = 〈dI(um), um〉 = ‖∇um‖2
2 − δ‖um‖2

∂ − ‖um‖2∗
2∗ ,

that is,
‖um‖2∗

2∗ = ‖∇um‖2
2 − δ‖um‖2

∂ + o(1). (18)
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Inserting (18) into (12) we obtain

1
n
‖∇um‖2

2 −
δ

n
‖um‖2

∂ = c + o(1)

and therefore
‖∇u‖2

2 − δ‖u‖2
∂ + ‖∇(um − u)‖2

2 = nc + o(1). (19)

On the other hand, exploiting the convergence 〈dI(um), v〉 → 〈dI(u), v〉 for any fixed v ∈ H1(Ω), we
deduce that u solves (3) (that is, dI(u) = 0) so that

‖∇u‖2
2 − δ‖u‖2

∂ = ‖u‖2∗
2∗ ≥ 0.

The last inequality combined with (19) gives

‖∇(um − u)‖2
2 ≤ nc + o(1) <

S
n/2
2

2
+ o(1). (20)

Furthermore (15) and (17) give

‖∇(um − u)‖2− 4
n

2

(
S2

22/n
− ‖∇(um − u)‖

4
n
2

)
≤ o(1).

This, combined with (20), shows that ‖∇(um−u)‖2 = o(1). And this, together with (14), proves that
um → u in H1(Ω). 2

We now turn to the fourth order problem. Let

S4 = min
u∈D2,2(Rn)\{0}

‖∆u‖2
2

‖u‖2
2∗

.

Consider the space H2 ∩H1
0 (Ω) endowed with the scalar product

(u, v)2 :=
∫

Ω
∆u∆v for all u, v ∈ H2 ∩H1

0 (Ω) (21)

and the induced norm
|||u|||2 :=

∫

Ω
|∆u|2 for all u ∈ H2 ∩H1

0 (Ω). (22)

Consider the functional
J(u) =

1
2

∫

Ω
|∆u|2 − d

2

∫

∂Ω
u2

ν −
1
2∗

∫

Ω
|u|2∗ (23)

whose critical points are weak solutions of (4). We have

Lemma 7. The functional J satisfies the Palais-Smale condition at levels c ∈ (−∞,
2S

n/4
4
n ), that is, if

{um}m≥0 ⊂ H2 ∩H1
0 (Ω) is such that

J(um) → c <
2
n

S
n/4
4 , dJ(um) → 0 in (H2 ∩H1

0 (Ω))′, (24)

then there exists u ∈ H2 ∩H1
0 (Ω) such that um → u in H2 ∩H1

0 (Ω), up to a subsequence.

Proof. The first step consists in showing that {um}m≥0 is bounded in H2 ∩H1
0 (Ω). As in Lemma 6,

this follows by arguing as in Theorem 4.12 in [26], suitably adapted to this case. For the rest of the
proof one can follow the same lines as the proof of Lemma 6 except that, now, one has to exploit the
compactness of the linear map H2 ∩ H1

0 (Ω) 3 u 7→ uν |∂Ω ∈ L2(∂Ω) and the inequality (8) must be
replaced by the Sobolev inequality: S4‖u‖2

2∗ ≤ ‖∆u‖2
2, for all u ∈ H2 ∩H1

0 (Ω). 2
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4 Proof of Theorem 2

The nonexistence result for δ ≥ 0 is a consequence of the divergence Theorem combined with the
boundary condition. Indeed, if u > 0 is a solution of (3) and δ ≥ 0, we have:

0 <

∫

Ω
u2∗−1 = −

∫

Ω
∆u = −

∫

∂Ω
uν = −δ

∫

∂Ω
u ≤ 0,

which is impossible.
Concerning the existence result, we prove it by showing that there exists a critical level for the
functional (11) below the compactness threshold found in Lemma 6. In order to do this, we need some
estimates that we collect in the following subsection.

4.1 Estimates

For our convenience, we introduce the notation x ≡ (x1, ..., xn−1), ∇ ≡ (∂x1 , ..., ∂xn−1). We choose a
point x0 ∈ ∂Ω such that H(x0) = Hmax (see (5)), a neighborhood N of x0 and a coordinate system
with origin in x0 such that the domain Ω ∩N is described by the relation

Ω ∩N = {x ∈ N : xn ≥ f(x)}, (25)

where f : Rn−1 → R is a smooth function satisfying f(0) = 0, ∇f(0) = 0. Define the transformation
Φ : Rn → Rn by

Φ :=
{

y = x ,
yn = xn − f(x) .

(26)

It is easily checked that Φ transforms the region xn ≥ f(x) into the half-space yn ≥ 0 and that its

Jacobian is 1. Moreover, we have the relation between the surface elements dσ =
√

1 + |∇f |2dy. We
may also assume that N contains Φ−1(Br × [0, 1]), where Br is the closed ball of radius r centered at
the origin in Rn−1. Let η ∈ C∞0 (Rn) be a fixed cut-off function such that η ◦Φ has support contained
in N and is equal to one in Φ−1(Br × [0, 1]). Then, we define

u∗ε (y) = η(y)uε(y), (27)

where

uε(y) =
[n(n− 2)]

n−2
4 ε

n−2
2

(ε2 + |y|2)n−2
2

. (28)

Finally, we set
v∗ε (x) = u∗ε (Φ(x)). (29)

When ε → 0 the functions v∗ε ”concentrate” at the origin which, by construction, is a point of ∂Ω
where the mean curvature attains its maximum.
We now prove some estimates when ε → 0. We first observe that from (27)-(29) the following identities
are easily verified ∫

Ω
|v∗ε (x)|2∗dx =

∫

Rn
+

|u∗ε (y)|2∗dy, (30)

∫

∂Ω
|v∗ε (x)|2dσ =

∫

Rn−1

|u∗ε (y, 0)|2
√

1 + |∇f(y)|2dy. (31)
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From [13] we have ∫

Rn
+

|u∗ε (y)|2∗dy =
∫

Rn
+

|uε(y)|2∗dy + O(εn)

which, combined with (30), yields
∫

Ω
|v∗ε (x)|2∗dx =

∫

Rn
+

|uε(y)|2∗dy + O(εn). (32)

The last term in (31) can be estimated by bounding |∇f | and scaling, see [24]; then we obtain

∫

Rn−1

|u∗ε (y, 0)|2
√

1 + |∇f(y)|2dy =
∫

Br

|uε(y, 0)|2dy +





O(ε2) if n = 4
O(ε3| log ε|) if n = 5
O(ε3) if n ≥ 6.

By scaling we also get
∫

Br

|uε(y, 0)|2dy = ε

∫

Br/ε

|u1(y, 0)|2dy = ε

∫

Rn−1

|u1(y, 0)|2dy + O(εn) ≡ Kε + O(εn), (33)

so that, for any n ≥ 4, ∫

∂Ω
|v∗ε (x)|2dσ = Kε + o(ε) . (34)

Next, from ∇v∗ε (x) = DΦ(x)∇u∗ε (Φ(x)) we obtain after some calculations
∫

Ω
|∇v∗ε (x)|2dx =

∫

Rn
+

[|∇u∗ε (y)|2 − 2∇f(y)∇u∗ε (y)∂νu
∗
ε (y) + |∇f(y)∇u∗ε (y)|2]dy.

Hence, assuming that ∆f is bounded in Br, by [24, Lemmas 5.2 and 5.3], we have for ε → 0:
∫

Ω
|∇v∗ε (x)|2dx =

∫

Rn
+

|∇uε(y)|2dy − n− 2
2(n− 1)

∫

Br

∆f(y)u2
ε (y, 0)dy + R(ε), (35)

where, for some positive constant c,

R(ε) =
{

cε2| log ε|+ O(ε2) if n = 4
cε2 + O(εn−2) if n ≥ 5.

Set h(y) = ∆f(y)/(n− 1) so that h(0) = Hmax is the mean curvature of the boundary at the origin.
Therefore, for every γ < Hmax, we have h(y) ≥ γ for y ∈ Br with small enough r. This combined with
(33) gives ∫

Ω
|∇v∗ε (x)|2dx ≤

∫

Rn
+

|∇uε(y)|2dy − γ
n− 2

2
Kε + R(ε). (36)

We conclude with two further estimates. Let BR ⊂ Rn be a ball containing the support of u∗ε ; then,
for any α > 0 we have

Iα ≡
∫

Ω
|v∗ε (x)|αdx =

∫

Rn
+

|u∗ε (y)|αdy =
∫

Rn
+∩BR

|uε(y)|αdy = (by (28))

= Cεα n−2
2

∫

Rn
+∩BR

dy

(ε2 + |y|2)α n−2
2

= (y = εz, |z| = ρ)
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= Cεn−α n−2
2

∫ R/ε

0

ρn−1

(1 + ρ2)α n−2
2

dρ ≤ Cεn−α n−2
2

(
C0 +

∫ R/ε

1
ρn−1−α(n−2)dρ

)

≤
{

C1ε
n−α n−2

2 + C2ε
α n−2

2 for α 6= n
n−2

εn/2(C1 + C2| ln ε|) for α = n
n−2 .

In particular, we get (for n ≥ 4)

I(2∗−1) = In+2
n−2

= O(ε(n−2)/2), I1 = O(ε(n−2)/2); (37)

I(2∗−2) =

{
I2 = O(ε2 ln ε) if n = 4
I 4

n−2
= O(ε2) if n ≥ 5. (38)

4.2 Linking argument

For any u ∈ H1(Ω) \ {0} define the functional

F (v) =
∫

Ω
|∇v|2dx− δ

∫

∂Ω
|v|2dσ. (39)

We consider H1(Ω) equipped with the norm (10). Let M0 be the closed subspace of H1(Ω) of the
functions with zero mean value on ∂Ω. From Theorem 13 in the Appendix, we know that M0 =
H1

0 (Ω) ⊕ V +, where V + is the subspace spanned by the eigenfunctions en of problem (53) with
positive eigenvalues 0 < δ1 < δ2 < ...

Let F be the functional defined in (39). We want to minimize the ratio

F (v)
‖v‖2

2∗

over M0. Note that if δ < δ1, then F (v) > 0 for all v ∈ M0.
We consider the functions v∗ε in (29) and we define v̄∗ε = v∗ε −mε, where

mε =
1
|∂Ω|

∫

∂Ω
v∗ε dσ, (40)

so that v̄∗ε ∈ M0. We have
∫

∂Ω
v∗ε dσ =

∫

Rn−1

u∗ε (y, 0)
√

1 + |∇f(y)|2dy ≤ C

∫

BR

uε(y, 0)dy,

where BR ⊂ Rn−1 is a ball containing the support of η(y, 0) and C = maxBR

√
1 + |∇f |2; hence, by

scaling as before we get
mε = O(ε(n−2)/2).

Then we obtain:

F (v̄∗ε ) =
∫

Ω
|∇v̄∗ε |2dx−δ

∫

∂Ω
|v̄∗ε |2dσ =

∫

Ω
|∇v∗ε |2dx−δ

∫

∂Ω
|v∗ε |2dσ+δm2

ε |Ω| = F (v∗ε )+O(εn−2). (41)

Furthermore, we have

∫

Ω
|v̄∗ε |2

∗
dx =

∫

Ω
|v∗ε |2

∗
dx− 2∗mε

∫ 1

0
dt

∫

Ω
|v∗ε − tmε|2∗−2(v∗ε − tmε)dx.

9



The estimate of the last term (see (37) above) gives
∫

Ω
|v̄∗ε |2

∗
dx =

∫

Ω
|v∗ε |2

∗
dx + O(εn−2). (42)

Finally, by the last identities and by (34), (32), (36), we get

F (v̄∗ε )(∫
Ω |v̄∗ε |2∗dx

)2/2∗ =
F (v∗ε ) + O(εn−2)

(∫
Ω |v∗ε |2∗dx + O(εn−2)

)2/2∗

≤
∫
Rn

+
|∇uε(y)|2 − εK

(
δ + γ n−2

2

)
+ R(ε)

(∫
Rn

+
|uε(y)|2∗dy + O(εn−2)

)2/2∗

=
1
2S

n/2
2 − εK

(
δ + γ n−2

2

)
+ R(ε)

(
1
2S

n/2
2 + O(εn−2)

)2/2∗ =
S2

22/n
− εK ′(δ + γ

n− 2
2

)
+ R(ε), (43)

where K ′ > 0. Conclusion: since R(ε) comes from (35), we go below the critical level for ε sufficiently
small.

Let us consider the direct sum
H1(Ω) = M0 ⊕ R;

furthermore, suppose 0 < ρ < R1, 0 < R2 and let

S =
{

u ∈ V : ‖u‖ = ρ
}

Q =
{

sv̄∗ε + c, 0 ≤ s ≤ R1, |c| ≤ R2

}
. (44)

Assume that ‖v̄∗ε ‖ = 1 in (44), then S and ∂Q link (see [27] Example 8.3).
We are now ready to prove the existence of a critical level below the compactness threshold for the
functional (11). We first remark that for δ < δ1 one has infv∈S I(v) = α > 0 for small enough ρ. Let
us now evaluate the functional I on the manifold Q:

I(sv̄∗ε + c) =
s2

2

[∫

Ω
|∇v̄∗ε |2dx− δ

∫

∂Ω
|v̄∗ε |2dσ

]
− δ|∂Ω|c2 − 1

2∗

∫

Ω
|sv̄∗ε + c|2∗dx

=
s2

2

[∫

Ω
|∇v̄∗ε |2dx− δ

∫

∂Ω
|v̄∗ε |2dσ

]
− δ|∂Ω|c2 − s2∗

2∗

∫

Ω
|v̄∗ε |2

∗
dx

−c

∫ 1

0
dt

∫

Ω
|sv̄∗ε + tc|2∗−2(sv̄∗ε + tc)dx. (45)

By using the inequality (a + b + c)2
∗−2 ≤ K(a2∗−2 + b2∗−2 + c2∗−2) we estimate :

∣∣∣
∫

Ω
v̄∗ε |sv̄∗ε + tc|2∗−2dx

∣∣∣ ≤
∫

Ω
v∗ε |sv∗ε − smε + tc|2∗−2dx + mε

∫

Ω
|sv∗ε − smε + tc|2∗−2dx

≤ K
{

s2∗−2
[∫

Ω
|v∗ε |2

∗−1dx + mε

∫

Ω
|v∗ε |2

∗−2dx + m2∗−2
ε

∫

Ω
v∗ε dx + m2∗−1

ε |Ω|
]

+(tc)2
∗−2

[∫

Ω
v∗ε dx + mε|Ω|

]}

10



Then, by (37), (38) and (40) and recalling that s is bounded in Q, we can estimate the non negative
term in the last line of (45) as follows :

∣∣∣c
∫ 1

0
dt

∫

Ω
|sv̄∗ε + tc|2∗−2sv̄∗ε dx

∣∣∣ ≤ K(ε)
(|c|+ |c|2∗−1

)
,

where K(ε) = O(ε(n−2)/2). Therefore, we can write :

I(sv̄∗ε + c) ≤ s2

2

[∫

Ω
|∇v̄∗ε |2dx− δ

∫

∂Ω
|v̄∗ε |2dσ

]
− s2∗

2∗

∫

Ω
|v̄∗ε |2

∗
dx− pε(|c|), (46)

where
pε(τ) = δ|∂Ω|τ2 −K(ε)(τ + τ2∗−1).

Since 2∗−1 = n+2
n−2 ∈ (1, 3] (for n ≥ 4) we see that (for small enough ε) pε(τ) ≥ 0 for every τ ≥ 2

δ|∂Ω|K(ε)

if n ≥ 6 and for τ in the interval [ 2
δ|∂Ω|K(ε), R(ε)] if n = 4 or n = 5, where R(ε) ≈ K(ε)

n−2
n−6 ; note that

the latter quantity is O(1/ε) for n = 4 and O((1/ε)9/2) for n = 5. In these two cases, the function pε

takes a maximum value of order 1/ε2 and 1/ε9 respectively.
By the above discussion, it follows in particular that the term −pε(|c|) in the right hand side of (46)
is positive of order ε(n−2) for |c| ≤ O(ε(n−2)/2) and assumes arbitrarily large negative values for large
|c| (and small enough ε if n = 4, 5).
We can now verify the assumptions of [27, Theorem 8.4] : by the definition of I we have I(c) ≤ 0 for
every c. Moreover, by taking |c| = R2 large enough in (46), one easily get I(sv̄∗ε ± R2) ≤ 0 for all
s ≥ 0. Finally, let R1 be chosen to satisfy I(R1v̄

∗
ε ) < 0; then, again by (46) and recalling that the

term −pε(|c|) is either negative or arbitrarily small for ε → 0, we obtain I(R1v̄
∗
ε + c) ≤ 0 ∀ |c| ≤ R2.

Then, we have proved that
α = inf

v∈S
I(v) > sup

v∈∂Q
I(v) = 0.

Now, by defining
Γ = {h ∈ C0(H1,H1) ; h|∂Q = I},

it follows that the number
β = inf

h∈Γ
sup
v∈Q

I(h(v))

is a critical value of I, whenever β < S
n/2
2 /2n. Since β ≤ supu∈Q I(v) ≡ β0, it is sufficient to prove

that β0 < S
n/2
2 /2n. Actually, by the estimate (43) and by standard arguments we have

I(sv̄∗ε + c) ≤ 1
n

[ S2

22/n
− εk

(
δ + γ

n− 2
2

)
+ R(ε)

]n/2
− pε(|c|),

where k > 0. As previously remarked, for |c| ≤ R2 the last term is either negative or O(ε(n−2)), so
that our claim follows.

5 Proof of Theorem 4

As shown in Lemma 7, the compactness threshold for the corresponding functional J (see (23)) is
2S

n/4
4 /n. Since (4) does not admit nodal radial solutions (see Theorem 3 (iii)), to go below the

compactness threshold one cannot exploit the functions uε(x) := (ε2 + |x|2)−n−4
2 (ε > 0), which attain

11



the constant S4. Moreover, in view of the first boundary condition (u = 0 on ∂B), we cannot bypass
this difficulty by concentrating the functions uε on the boundary as done in the second order case.
This makes necessary to introduce a different procedure. For j ≥ 1, we denote by Mj the eigenspace
associated to dj , where the dj ’s are the positive eigenvalues of ∆2 under Steklov boundary conditions
in the ball and we define

M+ :=
⊕

j≥2

Mj and M− := M1

⊕
M2.

By Theorem 16 in the Appendix we have

M1 = span{φ1} and M2 = span{φi
2}1≤i≤n,

where φ1(x) = (1− |x|2) and φi
2 = xi(1− |x|2), for i = 1, ..., n. We set

Q(u) :=
‖∆u‖2

2

‖u‖2
2∗

, K := sup
M−

Q(u) , (47)

and we prove

Lemma 8. If n = 5, 6, 8, then K = Q(φ1
2).

Proof. Let ωn := |∂B|. First we note that

‖∆φi
2‖2

2 = 4
n + 2

n
ωn, ‖∆φ1‖2

2 = 4nωn. (48)

Next, let u ∈ M2 so that u(x) =
∑n

1 αiφ
i
2(x) = (1−|x|2)∑n

1 αixi, where the αi are the components of
a real vector α ∈ Rn. We denote by {yi}1≤i≤n a complete orthonormal system of coordinates in Rn,
obtained by rotating {xi}1≤i≤n and such that y1 := 1

|α|
∑n

1 αixi. Then, we get

Q(u) =
∑n

1 α2
i ‖∆φi

2‖2
2(∫

B |
∑n

1 αixi|2∗(1− |x|2)2∗ dx
)2/2∗

=
4n+2

n ωn|α|2(∫
B |α|2∗ |y1|2∗(1− |y|2)2∗ dy

)2/2∗
= Q(φ1

2),

for all u ∈ M2. Similarly, one can prove that ‖u + tφ1‖2∗
2∗ = ‖φ1

2 + tφ1‖2∗
2∗ , for all t ≥ 0 and all u ∈ M2

such that |α| = 1. This, combined with (48), shows that it suffices to study the real function

f(t) = Q(φ1
2 + tφ1) =

‖∆φ1
2‖2

2 + t2‖∆φ1‖2
2

‖φ1
2 + tφ1‖2

2∗
, t ≥ 0

and prove that
max
t≥0

f(t) = f(0). (49)

Let us simplify (49). Writing x = (x1, x
′), where x′ ∈ Rn−1, and denoting with Br the ball in Rn−1 of

radius r and center 0, we deduce:

‖φ1
2 + tφ1‖2∗

2∗ =
∫

B
(1− |x|2)2∗ |x1 + t|2∗ dx =

∫ 1

−1

∫

B
(1−x2

1)1/2

(1− x2
1 − |x′|2)2∗ |x1 + t|2∗ dx′ dx1

= ωn−1

(∫ 1

−1
|x1 + t|2∗

∫ (1−x2
1)1/2

0
(1− x2

1 − ρ2)2∗ρn−2 dρ dx1

)

12



[ρ = (1− x2
1)

1/2r] = ωn−1

(∫ 1

−1
|x1 + t|2∗(1− x2

1)
2∗+(n−1)/2 dx1

)(∫ 1

0
(1− r2)2∗rn−2 dr

)

=
ωn−1

2
β

(
n− 1

2
,
3n− 4
n− 4

)(∫ 1

−1
|s + t|2∗(1− s2)

n2−n+4
2(n−4) ds

)
=:

ωn−1

2
β

(
n− 1

2
,
3n− 4
n− 4

)
ϕ(t).

We have so found that f(t) = CnF (t), where Cn = 8ωn

n(ωn−1β(n−1
2

, 3n−4
n−4 ))2/2∗ and

F (t) =
n + 2 + n2t2

(ϕ(t))2/2∗
.

The claim (49) becomes
max
t≥0

F (t) = F (0). (50)

When n = 5, 6, 8, the number 2∗ is an even integer so we may expand the term |s + t|2∗ and write ϕ

explicitly.
Case n = 5. Here, 2∗ = 10 and

ϕ(t) =
∫ 1

−1
(s + t)10(1− s2)12 ds =

10∑

k=0

(
10
k

)
tk

∫ 1

−1
s10−k(1− s2)12 ds

=
β(1

2 , 13)
29667

(
1 + 175t2 + 3850t4 + 23870t6 + 49445t8 + 29667t10

)

so that

F (t) = C5
7 + 25t2

(1 + 175t2 + 3850t4 + 23870t6 + 49445t8 + 29667t10)
1
5

,

where C5 :=
(

29667
β( 1

2
,13)

) 1
5
. Let now

F̃ (t) :=
F (
√

t)
C5

=
7 + 25t

(1 + 175t + 3850t2 + 23870t3 + 49445t4 + 29667t5)
1
5

,

so that by direct computations we get

F̃ ′(t) = 4
9889t4 − 9548t3 − 10626t2 − 1820t− 55

(1 + 175t + 3850t2 + 23870t3 + 49445t4 + 29667t5)
6
5

.

Consider the function

g(t) := 9889t4 − 9548t3 − 10626t2 − 1820t− 55, t ≥ 0,

we have g′(t) = 4
(
9889t3 − 7161t2 − 5313t− 455

)
and g′′(t) = 132

(
161t2 − 434t− 899

)
. Therefore

there exists a unique t > 0 such that

g′′(t) < 0 if t < t, g′′(t) = 0, g′′(t) > 0 if t > t.

This, together with g′(0) < 0 and lim
t→+∞g′(t) = +∞, shows that g′ has a global minimum at t and

g′(t) < 0. Hence, there exists a unique σ > t such that

g′(t) < 0 if t < σ, g′(σ) = 0, g′(t) > 0 if t > σ.
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Similarly, since g(0) < 0 and lim
t→+∞g(t) = +∞, we know that g has a global minimum at σ and

g(σ) < 0. This proves that there exists a unique τ > σ such that

g(t) < 0 if t < τ, g(τ) = 0, g(t) > 0 if t > τ.

Finally, this shows that F̃ has a global minimum at τ , whereas F has a global minimum at
√

τ . Since
F (0) = 7C5 > lim

t→+∞F (t) = 25C5(29667)−1/5, this proves that (50) holds when n = 5.

Case n = 6. Here 2∗ = 6,

ϕ(t) =
∫ 1

−1
(s + t)6(1− s2)

17
2 ds =

β(1
2 , 19

2 )
704

(
1 + 72t2 + 528t4 + 704t6

)

and

F (t) = C6
8 + 36t2

(1 + 72t2 + 528t4 + 704t6)
1
3

,

where C6 :=
(

704
β( 1

2
, 19

2
)

) 1
3
. To simplify further, we set

F̃ (t) :=
F (
√

t/2)
C6

=
8 + 9t

(1 + 18t + 33t2 + 11t3)
1
3

and we compute

F̃ ′(t) =
11t2 − 68t− 39

(1 + 18t + 33t2 + 11t3)
4
3

.

This shows that F has a global minimum for t = t > 0 and no local maximum for t > 0. Hence, since
F (0) = 8C6 > lim

t→+∞F (t) = 36C6(704)−1/3, we conclude that (50) holds when n = 6.

Case n = 8. Here 2∗ = 4,

ϕ(t) =
∫ 1

−1
(s + t)4(1− s2)

15
2 ds =

β(1
2 , 17

2 )
120

(
1 + 40t2 + 120t4

)

and

F (t) = C8
10 + 64t2

(1 + 40t2 + 120t4)
1
2

,

where C8 :=
(

120
β( 1

2
, 17

2
)

) 1
2
. Consider

F̃ (t) =:
F (

√
t/2)

2C8
=

5 + 16t

(1 + 20t + 30t2)
1
2

,

we have
F̃ ′(t) = 2

5t− 17

(1 + 20t + 30t2)
3
2

.

Coming back to the function F , this means that F has a global minimum for t = t > 0 and no local
maximum for t > 0. Thus, since F (0) = 10C8 > lim

t→+∞F (t) = 64C8(120)−1/2, we conclude that (50)

holds also when n = 8.
2
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Lemma 9. Let K be as in (47). If

d > n + 2− n + 2
K

S4,

then
µ := sup

u∈M−
J(u) <

2
n

S
n/4
4 .

Moreover, there exist ρ, η > 0 such that

J(u) ≥ η, for all u ∈ M+ ⊕H2
0 (B) : ‖∆u‖2 = ρ.

Proof. Let u ∈ M−. Since d2 = n + 2 (see Theorem 16), we have

J(u) =
1
2

(‖∆u‖2
2 − d‖u‖2

∂ν

)− 1
2∗
‖u‖2∗

2∗ ≤
1
2

(
n + 2− d

n + 2

)
‖∆u‖2

2 −
1
2∗
‖u‖2∗

2∗

≤ 1
2

(
n + 2− d

n + 2

)
K ‖u‖2

2∗ −
1
2∗
‖u‖2∗

2∗ ≤
2
n

(
n + 2− d

n + 2
K

)n
4

,

where the last inequality follows from

max
s≥0

(
as− bs

n
n−4

)
=

(
n− 4

n

)n−4
4 4

n

an/4

b(n−4)/4
, for all a, b > 0.

Therefore,

µ ≤ 2
n

(
n + 2− d

n + 2
K

)n
4

. (51)

Let now u ∈ M+ ⊕H2
0 (B) and ρ = S

n
8
4

(
n + 2− d

n + 2

)n−4
8

, for ‖∆u‖2 = ρ we have

J(u) ≥ 1
2

(
n + 2− d

n + 2

)
‖∆u‖2

2 −
1

2∗S
n/(n−4)
4

‖∆u‖2∗
2 =

2
n

(
n + 2− d

n + 2
S4

)n
4

=: η.

To conclude we observe that µ < 2
nS

n
4
4 for n + 2− d <

S4(n + 2)
K

. 2

Lemma 9 allows us to apply a result of Bartolo-Benci-Fortunato [5, Theorem 2.4] from which we
deduce that, if n + 2 − d < S4(n + 2)/K, then J admits at least n (the multiplicity of d2) pairs of
critical points at levels below (2/n) S

n/4
4 . Set g(n) := S4(n+2)

K and compute directly (using Lemma 8)
to obtain (7).

6 Remarks on Theorem 4 in general dimensions

As already mentioned in Section 2, we do not have a proof of Theorem 4 in general dimensions n ≥ 5.
However, we make the following

Conjecture 10. Assume that Ω = B (the unit ball of Rn) and let n ≥ 5.
If d ∈ (n + 2− g(n), n + 2) problem (4) admits at least n pairs of nontrivial solutions.
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Let us explain the two main reasons why we believe this conjecture to be true. First, we notice
that what is missing for the proof of this conjecture is Lemma 8. In turn, this reduces to show that
F (0) ≥ F (t), for every t ≥ 0, or that G(t) ≥ 0, where

G(t) := (n + 2)
n

n−4 ϕ(t)− ϕ(0)(n + 2 + n2t2)
n

n−4 = (n + 2)
n

n−4 ϕ(t)− b(n + 2 + n2t2)
n

n−4 (52)

and b := β
(

3n−4
2(n−4) ,

n2+n−4
2(n−4)

)
.

We can prove this property only locally:

Lemma 11. For any n ≥ 5, we have G(0) = G′(0) = 0 and G′′(0) > 0.

Proof. Consider first the function ϕ. We have

ϕ′(t) = 2∗
∫ 1

−1
|s + t|2∗−2(s + t)(1− s2)a ds > 0 for t > 0 and ϕ′(0) = 0,

ϕ′′(t) = 2∗(2∗ − 1)
∫ 1

−1
|s + t|2∗−2(1− s2)a ds > 0 for t ≥ 0,

where a := n2−n+4
2(n−4) . Thus ϕ is an increasing and convex function. Since

G′(t) = (n + 2)
n

n−4 ϕ′(t)− b 2∗n2t(n + 2 + n2t2)
4

n−4 ,

we have G(0) = G′(0) = 0. On the other hand,

G′′(t) = (n + 2)
n

n−4 ϕ′′(t)− b 2∗n2(n + 2 + n2t2)
8−n
n−4 (n + 2 + n2t2 + 4n2∗t2),

so that

G′′(0) = (n + 2)
n

n−4 ϕ′′(0)− b 2∗n2(n + 2)
4

n−4 =
8n2(n + 2)

4
n−4 (2n + 1)

(n− 4)2
b > 0,

where in the last step we exploited the property β(p + 1, q) = p
p+qβ(p, q) to deduce that

ϕ′′(0) = 2∗(2∗ − 1) b

(
n + 4

2(n− 4)
,
n2 + n− 4
2(n− 4)

)
= 2∗(2∗ − 1)

n(n + 2)
n + 4

b.

2

The second argument which brings some evidence to Conjecture 6 are the numerical plots (obtained
with Mathematica) of the functions G defined in (52) when n = 7, 9, 10, ..., 20. Not only it seems that
G(t) ≥ 0 for all t ≥ 0 but also that G is increasing and convex.

Remark 12. The above proofs can be extended to get an existence result for d lying in a suitable
left neighborhood of any eigenvalue dk. Of course the computations become very difficult.

7 Appendix: some results about the eigenvalue problems

In this section we collect some facts about the two boundary eigenvalue problems
{

∆u = 0 in Ω
uν = δu on ∂Ω

(53)
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and {
∆2u = 0 in Ω
u = ∆u− duν = 0 on ∂Ω .

(54)

Consider first (53); its smallest eigenvalue is δ0 = 0. This turns (53) into a Neumann problem which
is solved by any constant function in Ω. The smallest (positive) nontrivial eigenvalue δ1 of (53) is
characterized variationally by (6).
Consider the space

Z1 = {v ∈ C∞(Ω) : ∆u = 0 in Ω}
and denote by V its completion with respect to the norm (10). Then, we have:

Theorem 13. Let Ω ⊂ Rn (n ≥ 2) be an open bounded domain with smooth boundary. Then:
– Problem (53) admits infinitely many (countable) eigenvalues.
– The first eigenvalue δ0 = 0 is simple, it is associated to constant eigenfunctions and eigenfunctions
of one sign necessarily correspond to δ0.
– The set of eigenfunctions forms a complete orthonormal system in V .
– Any eigenfunction e of (53) corresponding to a positive eigenvalue satisfies

∫
∂Ω e = 0.

– The space H1(Ω) endowed with (9) admits the following orthogonal decomposition

H1(Ω) = V ⊕H1
0 (Ω).

– If v ∈ H1(Ω) and if v = v1 + v2 is the corresponding orthogonal decomposition with v1 ∈ V and
v2 ∈ H1

0 (Ω), then v1 and v2 are weak solutions of
{

∆v1 = 0 in Ω
v1 = v on ∂Ω

and
{

∆v2 = ∆v in Ω
v2 = 0 on ∂Ω .

Proof. With the scalar product (9) we decompose the space H1(Ω) as

H1(Ω) = H1
0 (Ω)⊕H1

0 (Ω)⊥.

Thus, every v ∈ H1(Ω) may be written in a unique way as v = v1 + v2, where v2 ∈ H1
0 (Ω) and v1

satisfies
v1 = v on ∂Ω and

∫

Ω
∇v1∇v0 = 0 for all v0 ∈ H1

0 (Ω).

Hence, v1 weakly solves the problem
{

∆v1 = 0 in Ω
v1 = v on ∂Ω

and v2 = v − v1 weakly solves {
∆v2 = ∆v in Ω
v2 = 0 on ∂Ω .

The kernel of the trace operator γ of H1(Ω) is H1
0 (Ω) so that γ is an isomorphism between H1

0 (Ω)⊥

and H1/2(∂Ω). Therefore, the embedding I1 : H1
0 (Ω)⊥ ⊂ L2(∂Ω) is compact and L2(∂Ω) can be

identified to a subspace of the dual space (H1
0 (Ω)⊥)′. In view of this, we have

H1
0 (Ω)⊥ ⊂ L2(∂Ω) ⊂ (H1

0 (Ω)⊥)′.
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Next, let I2 : L2(∂Ω) → (H1
0 (Ω)⊥)′ be the continuous linear operator such that

〈I2u, v〉 =
∫

∂Ω
uv for all u ∈ L2(∂Ω), v ∈ H1

0 (Ω)⊥

and by L : H1
0 (Ω)⊥ → (H1

0 (Ω)⊥)′ the linear operator defined by:

〈Lu, v〉 =
∫

Ω
∇u∇v +

∫

∂Ω
uv for all u, v ∈ H1

0 (Ω)⊥.

Then, L is an isomorphism and the linear operator K = L−1I2I1 : H1
0 (Ω)⊥ → H1

0 (Ω)⊥ is a compact
self-adjoint operator with strictly positive eigenvalues, H1

0 (Ω)⊥ admits an othonormal basis of eigen-
functions of K and the set of eigenvalues of K can be ordered in a strictly decreasing sequence λi

which converges to zero. Thus, problem (53) admits infinitely many eigenvalues given by δi = 1
λi

and
the eigenfunctions coincide with the eigenfunctions of K. Hence, H1

0 (Ω)⊥ ≡ V .
By the divergence Theorem, we see that any solution u of (53) with δ > 0 satisfies

∫
∂Ω u = 0.

To conclude the proof it remains to show that the unique eigenvalue corresponding to a positive
eigenfunction is δ0 = 0. To see this, let δ ≥ 0 be an eigenvalue corresponding to a positive eigenfunction
e > 0 in Ω. By definition, we know that e satisfies

∫

Ω
∇e∇v = δ

∫

∂Ω
ev for all v ∈ H1(Ω).

Choosing v ≡ 1 and recalling that e ∈ V , the above identity shows that necessarily δ = 0. 2

When Ω = B (the unit ball) we may determine explicitly all the eigenvalues of (53). To this end,
consider the spaces of harmonic polynomials [4, Sect. 9.3-9.4]:

Dk := {P ∈ C∞(Rn); ∆P = 0 in Rn, P is an homogeneous polynomial of degree k}.

Also, denote by µk the dimension of Dk so that [4, p.450]

µk =
(2k + n− 2)(k + n− 3)!

k!(n− 2)!
.

Then, from [9, p.160] we easily infer

Theorem 14. [9]
If n ≥ 2 and Ω = B, then for all k = 0, 1, 2, ...:
(i) the eigenvalues of (53) are δk = k;
(ii) the multiplicity of δk equals µk;
(iii) any ψ ∈ Dk is an eigenfunction corresponding to δk.

We now turn to the fourth order problem (54). Let H(Ω) := [H2 ∩ H1
0 (Ω)] \ H2

0 (Ω). The smallest
(positive) eigenvalue d1 of (54) is characterized variationally as

d1 := inf
u∈H(Ω)

‖∆u‖2
2

‖u‖2
∂ν

.

Hence, d1 is the largest constant satisfying

‖∆u‖2
2 ≥ d1‖u‖2

∂ν
for all u ∈ H2 ∩H1

0 (Ω)
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and d
−1/2
1 is the norm of the compact linear operator H2 ∩H1

0 (Ω) → L2(∂Ω), u 7→ uν .
Consider the space

Z2 =
{
v ∈ C∞(Ω) : ∆2u = 0, u = 0 on ∂Ω

}

and denote by W its completion with respect to the norm (22). Then, we have

Theorem 15. [16]
Assume that Ω ⊂ Rn (n ≥ 2) is an open bounded domain with smooth boundary. Then:
– Problem (54) admits infinitely many (countable) eigenvalues.
– The first eigenvalue d1 is simple and eigenfunctions of one sign necessarily correspond to d1.
– The set of eigenfunctions forms a complete orthonormal system in W .
– The space H2 ∩H1

0 (Ω) endowed with (21) admits the following orthogonal decomposition

H2 ∩H1
0 (Ω) = W ⊕H2

0 (Ω).

– If v ∈ H2 ∩H1
0 (Ω) and if v = v1 + v2 is the corresponding orthogonal decomposition with v1 ∈ W

and v2 ∈ H2
0 (Ω), then v1 and v2 are weak solutions of





∆2v1 = 0 in Ω
v1 = 0 on ∂Ω
(v1)ν = vν on ∂Ω

and





∆2v2 = ∆2v in Ω
v2 = 0 on ∂Ω
(v2)ν = 0 on ∂Ω .

Again, when Ω = B (the unit ball) we may determine explicitly all the eigenvalues of (54):

Theorem 16. [16]
If n ≥ 2 and Ω = B, then for all k = 1, 2, 3, ...:
(i) the eigenvalues of (54) are dk = n + 2(k − 1);
(ii) the multiplicity of dk equals µk−1;
(iii) for all ψ ∈ Dk−1, the function φ(x) := (1− |x|2)ψ(x) is an eigenfunction corresponding to dk.
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