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Abstract

Drop out during the first year at university STEM courses is a plague spreading all around the world: it has
been estimated that, on average, 40% of freshmen abandon their studies before the end of the first academic year.
Research in Mathematics Education has revealed that mathematics is one of the main causes for drop out: not only
the students’ mathematical knowledge, but also affective issues such as attitudes towards learning mathematics, views
about mathematics itself, as well as emotions determine the students’ success or failure in university career. On the
one’s hand, thus, it is important to develop suitable and reliable means for investigating both cognitive and affective
dimensions, and on the other hand it becomes necessary to reflect on the kind of information the researcher can get from
these means of investigation. One of the central issues is the private versus public dimension of learning mathematics.
This is connected to the public and private nature of telling about one’s emotions and views. We understand “public”
versus “private” as identifiable versus anonymous questionnaires and tests, respectively. In this paper, we discuss gains
and drawbacks of either approach. In doing so, we also investigate the intertwining of cognitive and affective dimensions
in freshmen Engineering students attending a bridge course in mathematics at the beginning of the first semester at
the Politecnico di Milano.

Keywords: Anonimous tests; Community analysis; Massive Open Ounline Courses (MOOC); Regression trees; Stu-
dents’ attitudes; Students’ performance

1 Introduction

Every year, at the beginning of the first semester, in all the universities in the world, thousands and thousands of freshmen
enrolled at STEM university courses come to attend their first lessons. We know that around 40% of them would not sit
in the same classroom few months later, because of dropout. What kind of information can we get from these first days
at university, which can help universities to reduce dropout? How do students arrive at university? What is their first
impact with the courses, and with mathematics in particular?

In this paper, we aim at contributing to these big, overarching questions by: firstly, recalling the main findings concern-
ing mathematics difficulties at first year STEM university courses; secondly, focusing on the factors that have revealed to
be central to understand the issue, and thus relevant for policy-makers to intervene on dropout; and thirdly, narrowing our
perspective on one particular issue, namely the distinction between private and public nature of mathematical learning.
We, thus, aim at identifying sub-groups of students (we will call them “profiles”) who need special and differentiated
interventions. Literature review in the following paragraphs discusses briefly the students’ difficulties with mathematics
at first year university STEM courses and the role that gender gap, differences in the kind of school (read in terms of
different mathematical backgrounds), and attitudes towards mathematics and its teaching and learning play.

Literature review, then, focuses of the private and public nature of mathematical thinking, and learning. Two datasets
are considered: one coming from an anonymous investigation and the other coming from a non-anonymous one. In order
to understand the role played by affective factors in mathematical understanding, we resort to a tool provided by a data
mining approach: i.e., classification trees. Once relevant factors are pinpointed, we resort to network analysis in order
to identify different profiles of students — who may need specific, differentiated intervention. Data analysis allows us to
discuss, first of all, drawbacks and advantages of two different kinds of investigation. Secondly, we discuss the relationship
between cognitive and affective factors in shaping the students’ difficulties with mathematics at first year university STEM
courses.



1.1 Mathematics and STEM university courses

University mathematics causes difficulties to students with STEM majors in general and to Engineering students in
particular (Gémez-Chacén et al., 2015). These difficulties can be traced back to several aspects that generally concern
differences between secondary school and university (Gueudet, 2008)): for example, the different thinking modes that are
required at university, as evidenced by all the studies on Advanced Mathematical Thinking (Tall, [1991); the different
organization of knowledge and the intrinsic complexity of the new contents to be learnt (Robert) 1998)); the different
processes and activities that are at issue, proof for one (Moore, 1994); the different didactical contract (Bosch et al.l
2004)), or, more generally, university courses organization (Hoyles et al.l 2001]).

In their fundamental study, |Clark and Lovric| (2008) contend that at the basis of the leap between secondary and
tertiary studies there is a shock: from procedural mathematics to conceptual understanding that university mathematics
entails. According to Hibert and Lefevre| (1986), conceptual knowledge describes knowledge of the principles and relations
between pieces of information in a certain domain, while procedural is the knowledge of the ways in which to solve problems
quickly and efficiently. [Pettersson and Schejal (2008]) discovered that students develop their knowledge in an algorithmic
way, not because of misconceptions, but because it is more suitable for them and enables them to deal functionally and
successfully with the presented tasks. The aforementioned findings reveal that not only it is the transition from procedural
to conceptual to be sustained, but also that - for the students’ sake - it is neither possible, nor advisable, to give away the
former and focus only on the latter.

Clark and Lovric| (2008) further suggest that transition should be smooth, and communication between the two
institutions (school and university) should be improved. According to this view, preparatory courses are available from
universities almost all around the world. The goal for such courses is to bridge the gaps between school and university,
supporting freshmen students to recapitulate certain mathematical topics. In the sequel, we name this kind of courses
“Bridge Courses”.

The focus of this paper is on sub-groups of students who may find the transition more difficult, compared to their
mates. The differences in mathematical attainments between groups of students, and across schools is a topic of crucial
interest for both educators and policy-makers (see e.g. Masci et al., 2016). In the sequel, we briefly recall the main findings
to this regard.

1.2 Gender issues

There is an increasing number of studies focusing on the crucial role of social and affective factors—besides the cognitive
ones, in undergraduate mathematics learning. [Masci et al.[ (2018]), for example, underlie that the students’ features —such
as gender and attitude towards study— influence students’ attainment. In particular, it is well acknowledged that women
are under-represented in STEM disciplines (Fox, 2002; [Fox and Weisberg,, 2011} |[Pinheiro and Bates, [2000), and we refer
to|[Deaux and Major| (1987)) model to capture stability and flexibility of gender differences in social behaviour. This model
allows us to conceptualize gender as a component of ongoing interactions in which individuals emit expectancies, selves
negotiate their own identities, and the context in which interaction occurs shapes the resultant behaviour. This model is
distinctly social and psychological in its roots and takes into account both the social influences on boys and girls enrolled
in STEM courses, and inner reflections and disposition.

1.3 Mathematical backgrounds

Students’ views of mathematics take also a key role. |Roesken et al.| (2011))’s study has for us many sources of interest. First
of all, it discusses from a theoretical point of view the concept of “view of mathematics” and the related concept of “beliefs
about mathematics”. The authors state that “students’ beliefs, wants and feelings are part of their view of mathematics”.
Secondly, the authors argue about the key role of different school backgrounds, different math curricula and different views
and expectations in freshmen students attending a Bridge Course. Within this perspective, we also consider |Daskalogianni
and Simpson! (2001))’s study, which discusses the concept of “beliefs overhang”: some beliefs, developed during school days,
are carried forward in university, and this may cause difficulties. The study points out the crucial role of beliefs (about
mathematics) in determining university success or failure. This is also confirmed by |Andra et al.| (2013). Specific to the
Ttalian context, [Lombardo| (2015 has proved that the kind of high school influences both cognitive and affective factors
in the transition. Also Masci et al. (2018) proved that school-level characteristics influence the students’ mathematical
performances: however, they focused on single schools features such as their size, their Dean’s views and management
practices, while in our study we focus on the kind of mathematics the students experience at school. In fact, in the
Italian context, students who enroll in STEM courses mostly come from three kinds of secondary school: scientific (LS),
humanistic (HU), and technical (TE). LS is a type of secondary school with a strong curriculum in math and sciences,
while HU is stronger in history, phylosophy, languages and arts. And, while LS and HU curricula are specifically designed
to prepare students to go to university, TE one is mostly related to workplace, but it is not rare that students from this
type of school enroll at university. A focus of this sort (Andra et al., [2013; Lombardo, |2015|) allows us to understand the
role that both mathematical prerequisites (at cognitive level), and views about the importance of mathematics in real life



(mirrored by the importance assigned to mathematics in each school type time schedule) may play in the transition to
university STEM courses.

1.4 The digital turn

There is a further factor that is gaining more and more attention in the last years: this factor is related to distance learning
and e-learning in general. In particular, the students’ disposition toward on line teaching material plays a key role in our
study, given the organisation of the Bridge Course under investigation. More generally, this factor is related to differences
between conceptual and procedural aspects in mathematics, as we argue in what follows.

Some researchers (e.g., |Gamer and Gamer} 2001)) found that teacher-centred (or teacher-oriented) methods (TO)
favour the development of procedural knowledge while student-centered (or student-oriented) methods (SO) favour the
development of conceptual knowledge. A TO lesson provides the students with a linear and organised exposition of
knowledge, while a SO one engages students in groupwork activities, classroom discussion and in the production of
meanings that are inevitably other than final or “authorized”—they are personal and provisional, not universal and
absolute. A Massive Open On line Course (MOOC) has a SO pedagogical format, in that the students are required to:
(a) watch videos and get sense of their content (without any guidance from the teacher); (b) in case parts of the videos
are not clear for the student, search for other sources in order to make sense of the content; (¢) make interactive exercises
and in some cases engage in forum discussions. All this entails a production of meanings that is personal and that emerges
from the mathematical activity in which the student is engaged. MOOCs are becoming a teaching format common to
many universities around the world. Also the Bridge Course under study takes on a blended learning format, as we will
describe more into details in the section dedicated to the context of the research.

2 Anonymous or identifiable?

In the previous section, we highlighted the factors that shape and influence the students’ transition from secondary school
to university, and hence their success or failure in the latter. We label them as: gender, beliefs, secondary school type,
and MOOC attendance.

In order to investigate their role at the beginning of STEM studies, both questionnaires and tests are necessary.
The former allow the researcher to get an insight on affective and social aspects, and the latter give information about
mathematical knowledge. If the students attend a Bridge Course that lasts some days, it can be interesting to administer
a questionnaire in the first day and another questionnaire in the last day, plus some tests to measure also the students’
understanding of the mathematical concepts delivered during the course. At this point, it comes the research question
that frames this paper: should the questionnaires and tests be anonymous or identifiable?

The question has methodological implications, as we will discuss extensively in the next sections, but it has also
foundational premises, as we briefly illustrate now. The categories of public and private seem to correspond to various
important aspects and activities of mathematical learning. Among the private aspects of mathematical learning, for
example, may be counted reflection, internalization, visualization, and the creation of mathematical meanings, which have
been given considerable weight in mathematics education and mathematics education reform (e.g., (Clarke), 2001; [Skemp,
1987} |Fried and Amit}, 2003; [Schoenfeld 1992; |National Council of Teachers of Mathematics, |2000). When learning is
private, the students feel free to make mistakes, to express their doubts and to be creative (Fried and Amit}, |2003]).

In our use of the words ‘public’ and ‘private’, we have primarily in mind the way they are employed in political theory,
where these terms refer to ‘access’ and, especially, ‘accountability’ (Benn and Gaus| [1983). By public activities, then,
we mean those activities with regards to which one is accountable to teachers, peers, or co-workers; these are activities,
therefore, in which one is bound by common practices and by the necessity of formal communication. Questionnaires and
tests, where to show one’s identity is requested, belong to this sphere.

By private activities, on the other hand, we mean those with regards to which one is not accountable to teachers,
peers, or co-workers; these are activities in which one is free from the expectations and constraints of common practice,
activities that, as one writer puts it, take place in ‘a zone of immunity’ (Duby} 1985 p. 10); here, one is free to explore,
backtrack, and reflect. Anonymous tests and questionnaires belong to this sphere.

The distinction between identifiable and anonymous questionnaires and tests is tied to the more general consideration
that different pedagogical practices or assessment regimes may cause a given mathematical activity to be termed private
or public. Students’” homework, for example, might in one pedagogical setting be discussed, collected, and marked, and,
therefore, take on a public character; in a different pedagogical setting, homework might be given only to reinforce
classroom material and never be seen by anyone except the students themselves. Some aspects of mathematical activity,
on the other hand, seem to resist relocation from one sphere to another; for example, mathematical papers or projects as
public and individual preliminary reflections as private would be hard to reclassify as private and public (Fried and Amit,
2003)). Tests, quizzes and questionnaires in a Bridge Course can take a private or a public form, and the next section
illustrates the methodological details.
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Figure 1: The timeline of the Bridge Course

3 The context of the research

The Bridge Course, delivered every year at the Polytechnic of Milan, is a preparatory course before the beginning of the
first semester. The funding source of the course is the Polytechnic of Milan, which had no involvement in any phase of this
research. Data analysis had been partly funded by the Italian National Project “Lauree Scientifiche” (STEM degrees),
which aims at enhancing interest towards scientific career in young people. The Bridge Course recapitulates the basic
math knowledge learned at school and is made of an e-Learning part (i.e., the Pre-Calculus MOOC on POK platform)
and an attendance part. Students who enroll at university are invited to attend the MOOC course before the attendance
one.

e In the e-learning part, the students are asked to recap essential mathematics on Pre-Calculus MOOC (www.pok.
polimi.it|), where they can watch videos on theory and exercises, and assess their basic knowledge in mathematics
through quizzes. In addition, they can interact in a forum. The MOOC course is structured in 6 learning weeks,
one for each of the following topics: arithmetics, algebra, geometry, logics, functions, probability.

e The in-presence part features the students in SO activities, such as group work activity and discussions built upon
the syllabus of the Pre-Calculus MOOC. The attendance part consists in 32 hours of lessons, spread in the first 2
weeks of September.

With Niegemann et al.| (2008)), we maintain that the Bridge Course combines self-directed (i.e., MOOC) and externally-
regulated (i.e., attendance) learning types of instructional formats. There’s a need for the latter, since learners are new
at the university, they have to acclimatise with the new learning environment and attendance helps them to familiarize
with the new didactical contract and the new organisation of courses. There’s a need for the former, since learners at
university have to be more self-directed and e-Learning helps to adapt their learning behaviour (Mandl and Kopp}, [2006).
The first author is a researcher in Mathematics Education and designed the attendance part (both learning materials and
schedule of the activities). Her role in the research has been also to identify relevant issues in Mathematics Education
concerning difficulties for STEM students in the transition from school to university. The second author is a PhD student
in Mathematical Modelling in Engineering and, with a team of researchers, realised the MOOC. His role in the research
has been to perform network analysis. The third author is a researcher in Statistics and her role has been to conduct
statistical analyses of the data. All the authors had been also tutors teaching the in-presence part.

The data for this study come from two questionnaires, which investigate affective factors, and four tests, which assess
the students’ knowledge on algebra, geometry and logics, calculus, and probability and statistics. The first questionnaire
has been given to the students at the very beginning of the attendance part, while the second one was administered at
the end of it, see Figure|l}] The two questionnaires (referred to as Q1 and Q2) are composed by two main sections: 1) the
personal data (QO in the sequel), and 2) the affective section (QA1 and QA2, respectively).

QO asked about: gender, school type and MOOC attendance.

QA1 is made of five questions. Question QA1.1 allows us to know how students see the math they have experienced
at school, QA1.2 and QA1.3 open a window on the students’ expectations about math at university, QA1.4 and QA1.5
investigate whether the students have been exposed to SO learning formats.

QA2 is made of 6 questions. Question QA2.1 asked whether they faced new math topics in the Bridge Course, while
Question QA2.2 asked whether they saw exercises formulated in a different way. QA2.3 and QA2.4 were the same of QA1.3
and QA1.4 in the initial affective questionnaire QA1l. QA2.5 and QA2.6 were dedicated to MOOC/course appreciation.

The students were also engaged in four math tests, made up of 10 multiple-choice math questions each. The tests
provide information about the students’ mathematical knowledge and skills and have been administered on the second
day of the attendance course (algebra), on the fourth one (geometry and logics), on the sixth one (calculus), and on the
eight and last one (probability and statistics). We refer the reader to Figure [1| for an overview of the entire timeline of
the Bridge Course at the Polytechnic of Milan.
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4 Background

From Section 3 we can see that the type of data that we would like to analyse are heterogeneous. Indeed, we have
both quantitative variables measuring students’ performances, and qualitative ones related to personal-level features
and affective aspects. Moreover, there is a plea in Mathematics Education research for studies that do not assume linear
correlations between variables that are complex in nature. This is especially true when affective aspects are under scrutiny.

For these reasons, we resort to methods that do not rely on strong modelistic assumptions on the structure of data, nor
on linearity of connections. We employ classification trees to investigate the influence of personal-level features (i.e., gender,
school type, and MOOC attendance) on mathematical test performances. We recall that previous studies in Mathematics
Education have resorted to classification trees to investigate the interplay of cognitive and affective factors in determining
students’ performances. For example, |Andra et al. (2013)) have analysed how taking the degree in Mathematics can be
influenced by the same personal-level features considered here (gender, school type, and students’ views of mathematics),
plus other information coming from students’ university career (such as, CFU and grades at exams earned at each session
during the academic year).

Parallel to classification tree to understand the interplay of personal-level features and test performance, in the present
study, in order to identify how students clusterize when they expose their views of mathematics, we resort to network
analysis and specifically community detection. To our knowledge, despite it represents a powerful tool in many contexts
such as in criminal networks (Calderoni et all |2017), this method has never been employed in an educational context.
One can wonder whether a more classical unsupervised clustering method was not employed for this purpose. We argue
that in qualitative questionnaires the strong limitation of the latter approach is the need of defining a suitable metric to
measure differences between students’ answers, which can be avoided using a network analysis approach.

In the present section we describe the details of these two methods.

4.1 Classification and regression trees

The classification and regression trees (CART) are methods that aim at predicting the value of a target variable on the
basis of several input variables, and selecting the input variables that explain the most the target variable. If the target
variable is dichotomic (e.g., gender) or cathegorical (e.g., school), classification trees are used; if the target variable is
numerical (e.g., a score ranging from 0 to 10), regression trees are used. For the analysis presented in this paper, we will
use the tree for predicting the score of a test, that is a numerical variable. So, we will employ regression trees.
Specifically, a tree T is a set of successive splits that group the initial set into C' groups, corresponding to the leaves of
T. A tree is constructed by computing, for each factor to be considered, the information gain (with respect to the target
variable) given by splitting the initial population into two groups, using some threshold value of the input variables. In the
case of regression trees, the gain is computed as the amount of variance reduction of a split. Every possible split in terms
of the input variables lead to a division of the sample units into two separate groups (i.e., their intersection is empty).
For growing the tree, an iterative algorithm is used. The algorithm starts with a tree with a single node and successively
splits it exploring all possible splits and performing the one that most reduces the variance (see [Friedman et al., [2001)).

4.2 Network analysis

While classification trees allow us to examine the relationship between the students’ performance on tests (i.e., a measure
of cognitive aspects) and personal characteristics of the students like gender, school type and MOOC attendance, we need a
different mathematical tool to identify clusters within the set of students who answered the questionnaires, which represent
a very big and complex set of data. Since the data are qualitative and not quantitative we decided to use network analysis
and one of its most challenging area of investigation (Boccaletti et al., |2006; Barrat et al., |2008; [Newman, [2010)), that is
the community analysis. Community analysis reveals possible sub-networks (i.e., groups of nodes called communities, or
clusters, or modules) characterised by comparatively large internal connectivity, namely the nodes that tend to connect
much more with the other nodes of the group than with the rest of the network.

Hence, we use community analysis to recognise clusters of students and figure out students’ profiles according to their
attitudes. To that end, two students’ networks are designed, one for the set of answers to Q1 and one for the set of answers
to Q2. The method proposed by (Calderoni et all [2017) is used to design the networks, where two nodes are linked if
they co-participate at the same ‘meeting’. In this work, the nodes of the network are the students while the ‘meetings’ are
represented by the same answer to the questions of the affective section QA1 and QA2: the more answer have in common
the stronger the link between two nodes, Figure [2] exemplifies such an idea. The personal data collected in Q1 and Q2
represent further attributes of the nodes.

As a consequence of this approach, the two networks are undirected and weighted, the first one (N1 in continuation of
the section) is associated to the answers to QA1, while the other one (N2 in the continuation of the section) is associated
to QA2.
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Figure 2: Schema for the design of students’ network: students ¢ and j gave 8 same responses to the questionnaire, hence
there exists a link between nodes ¢ and j, and its weight is 8.

Since we are interested in identifying sub-networks of students according to their attitudes, we seek for a specific
partition of the set of nodes induced by a certain measurable quantity. To that end, we adopt the so-called “Louvain
method” (Blondel et al., |2008)) based on the optimization of the modularity Q. Roughly speaking, given a partition
{C1,Cs,...,Ck} of the network, modularity @ is the (normalized) difference between the total weight of links internal to
the sub-graphs C}, and the expected value of such a total weight in a randomized “null network model” suitably defined
(Newman,, [2006)).

To evaluate the goodness or triviality of each community we adopt the persistence probability oy, that measures the
‘cohesiveness’ of the sub-graph Cy. Radicchi et al. (Radicchi et al., |2004)) argue that a sub-network which has oy > 0.5 is
defined as community. Obviously, the larger ay, the larger the internal cohesiveness of C. Notice that, since ay, tends to
grow with the size Ny of C} it is necessary to test the non triviality of the community (Calderoni et al., 2017} |[Fortunato
and Hric| 2016)) introducing the significance of ay, identified by the standard z-score.

| AA [QI[T1 [ T2 [ T3] T4] Q2]
September 2016 || 589 | 535 | 505 | 500 | 331 | 369
September 2017 || 231 | 103 | 163 | 181 | 136 | 38

Table 1: Number of questionnaires and tests answered by students in the two years under study.

’ AA. H Total H Males ‘ Females H LS ‘ HU ‘ TE ‘ Other ‘
September 2016 589 402 150 415 | 57 | 55 42
September 2017 231 159 72 128 | 42 | 39 22

Table 2: Number and characteristics of students in the two years.

5 Descriptive statistics

Every year, around 1200 freshmen at the Polytechnic of Milan attend the course. Table 1 shows the number of students
who answered to 2 questionnaires and 4 tests in the two years under study. Data collected in 2016 were anonymous, while
data collected in 2017 were not. This difference between 2016 and 2017 impacts the number of respondents, as Table []
displays.

In 2016, when questionnaires and tests were anonymous, more students answered than in 2017, when the identity of the
respondents was asked. Interestingly, in the non-anonymous setting, the dropout regarding Q2 is huge: only 38 students
responded, which corresponds to 16% of the students who answered to Q1 in the same edition. In the anonymous setting
(i.e., September 2016), there is a dropout as well, but the percentage of respondents is 63% of the ones who participated
to Q1 in the same edition. A first, empirical observation is that, when the students are asked to provide a feedback about
the course, being anonymous encourages them to respond. When they are asked to answer to math tests, instead, being
anonymous or not seems not to affect their will to respond.

Table [2 shows the distribution of gender and school type of the students in September 2016 and 2017. We can see that
the number of males is greater than the one of females, and that the students coming from LS high school represent the
majority. This confirms a general trend in STEM studies.
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Figure 3: Histograms of the scores in the four tests

6 Results from anonymous investigation

Data were collected anonymously on September 2016. We firstly focus on the cognitive variables and see how the students
performed in the tests, in the next subsection. At the same time, we also comment on how gender, school type and MOOC
attendance impact test performance.

6.1 2016 test performances

The students’ performances during the four mathematical tests is shown in Figure [3] Each test consisted of 10 multiple
choice questions. Figure|3|shows the histograms of the number of correct answers out of 10 in each test. Even though it is
clear from Figure [3[ that some tests are harder for the students than others (e.g., the number of correct answers in test 3
seems to be generally lower than the number of correct answers in the other tests), the distributions in the four histograms
is similar. In general we have an asymmetric distribution with a heavy left tail and centred in the medium-high range of
the scores. Further, it is also clear that the distributions of the scores can not assumed to be Gaussian: first of all we have
only a discrete set of 11 possible score values, and secondly the distributions are asymmetric. While it would be possible
- applying some transformation - to symmetrise the data, it is definitely not possible to turn them from a discrete to a
continuous distribution. Hence, we avoid to apply transformations to data and focus on nonparametric statistical tools,
e.g., methods that do not assume the normality of data.

Since all tests were done in different days, and since data were anonymous, it is not possible to link the scores within
students and the distributions of the scores gained in the four tests are considered separately. In order to understand how
gender, school type and MOOC attendance influence the test scores, Figure [f] reports the boxplots indicating the relations
between these variables and the test scores. The titles of the boxplots report the p-values of a Kruskal-Wallis rank test,
that is a nonparametric test for comparing the medians of several groups. The score is significanlty related to the school
in the first three tests, it is not related to the gender apart from test 2, and it is not related to the MOOC level.

Note that all statistical tests are performed separately on each factor. For instance, the test on the school does not
take into consideration students’ gender nor their MOOC level. To be able to consider all variables at the same time, we
fit four regression trees to estimate the score of each test. We consider the test score as the target variable, which ranges
between 0 and 10. We apply the classification tree method to single out which test score “characterize” different groups of
students. We have at our disposal 3 input variables: gender, school type and MOOC attendance. The construction of the
classification tree is controlled by the parameter -, that is used to decide the minimum information gain to be considered
for a split. Setting v to zero would lead to consider all available factors to build the tree, which maximizes the predictive
power on the available data, but is likely to be overfitting. Setting 7 to values close to one would lead to a tree constituted
by a very low number of factors and splits considered, with a very low predictive power. Usually, quite low values of v are
used, for instance performing a cut if it contributes to a decrease of 1% — 5% of the total variance. For exploratory reasons
(for both 2016 and 2017 data) we set the threshold v very low, and equal to 0.5%. Our choice has a practical reason, since
if we set the threshold at 1% in all the threes we obtain only one split, which is not much informative. The choice of 0.5%
means that the final leaves of the tree only contribute to a very small decrease of the variance. In all representations and
for all nodes, we always include the average score and the percentage of students concerned.

The results of the four regression trees are similar, in terms of the order of the splits that are performed. Here we
present and comment the tree obtained for the fourth test, that is the one characterized by a less significant relation
between the covariates (school type, gender, and MOOC attendance) and the final score, at least when considering one
covariate at a time. Our aim is to show that also in this situation, a regression tree is able to identify a relation between
the covariates and the test score and to classify the students into groups with different characteristics. Furthermore, in
the context of our research, the students who answered to test 4 were the ones who were present in the last day of the
Bridge Course: in this way, we are somehow (and indirectly) able to exclude from the sample those who came to the
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Figure 4: Boxplots indicating the relations between community, covariates (school type, gender and MOOC attendance),
and test scores. The titles of each boxplot reports the p-values of a Kruskal-Wallis rank test for comparing the groups’
medians.

Bridge Course only for one or two days at the beginning of it, and to consider those who actually attended a significant
portion of the Bridge Course. The regression tree for test 4 is reported in Figure [5| The other three ones are provided as
Supplementary Material.

From classification tree in Figure [}] we can see that the first split is determined by the school type: students from LS
perform better than the ones coming from other school types. In the latter case, no further distinction is made and the
average test score for these students is 7.6. Among the students who come from LS, a second split is given by MOOC
attendance: those with high attendance perform better than those who attended the MOOC less. However, those who
almost never attended the MOOC perform better than the students who partly attended it. Who are these students? Two
groups of students are identified, at this stage: one group is made by those students who come from LS and dedicated
time to watch the videos in the MOOC and to make exercises (these are the ones with the highest test average, namely
8.9); the other group is made of the students who come from LS, a school type where math curriculum is strong, and
hence they do not feel the need to learn more math (on the MOOC). In fact, their performance is good (their average
test scores is 8.3, which is higher than 7.6, namely the average of those who come from HU or TE school types). Among
those students from LS who partly attended the MOOC, males perform much better than females.

From this analysis, we have seen that the school types is the most influencing variable in test scores, but within the
same school type we can identify different sub-groups of students who have different attendance at the MOOC. These
differences may be better understood by looking specifically at affective variables (beliefs, attitudes, ...). This is the aim
of the next subsection.

6.2 Community analysis on Q1
Students’ network N1

Let N1 be the undirected weighted network of the students’ for Q1. The number of nodes of N1 is n; = 589 with
Ly = 170533 links, so the density of the network is p; = 0.985, which is very high for a social network. Despite this high
density, community analysis allows us to identify a partition with 3 clusters (modularity Q1 = 0.0567), whose details are
reported in Table[3] that is the dimension of the community, the persistence probability ay and the z-score z, computed on
the sub-graphs corresponding to the community. Table [3]shows that community Cj is the biggest one, while communities
C:1 and Cy are of comparative sizes. All in all, the three communities are pretty big in size. Persistence probability
ay, measures the probability that a random walker on the network would not get out from community Cj, once she has
reached a node of it. Even though the low values of persistence probability (aj < 0.5) we can assume that the communities
are not trivial due to the high values of the z—score. We recall that this score measures the significance of persistence
probability, and if z; > 5 we can conclude that the internal cohesiveness of community C} is good. Therefore, three sub
networks of the whole students’ network are identified through the students’ answers to QA1.

Figure [6] shows the communities’ frequency of answers to QO in test Q1: we can notice that C3 has more males in
percentage, more LS students (and fewer students from other school type), and more students who did not attend the
MOOC course. C7 has relatively higher percentage of HU students, while community 2 has relatively higher percentage
of TE ones. Performing x?-tests on the differences between the frequencies of answer to Q1 according to the identified
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Figure 5: Regression tree for test 4

Ni  Ni %] ax 2k
C2016 170 28.86 0.321 8.732
C296 182 30.9 0369 155
C2916 237 4024 0477 18.04

Table 3: Results of max-modularity community analysis for students’ network N1

communities gives the results reported in Table [ it shows that high school is the only one, among the personal-level
characteristics, that is statistically different in the three communities. At the same time, it shows that the students in
the three communities have answered in significantly different ways at all the questions but QA1.3. The answers mostly
given by the students belonging to the different communities to questionnaire QA1 allow us to characterise the three
communities as follows.

For the students in C, math in high school (question QA1.1) had been mostly formulas to apply and reasoning, and
their expectations about math at university (QA1.2) is that it will be used also in other subjects. The role of problems
with respect to mathematical learning is, for the students in C4, to get the students confused. From figure [6] we also see
that the majority of these students comes from LS. Community C is, thus, mostly made of students who have a strong
mathematical curriculum but have been exposed to procedural mathematics: in fact, math is seen as “formulas”, and
problems that enhance conceptual understanding are not part of their everyday experience with math.

Community C5 is made of students who experienced math in high school as problems to solve and reasoning, and
their expectations towards math at university is to learn new topics. We can notice a more conceptual approach to
mathematics from the students of this community. Even if there are students from LS, there’s a significant percentage of
students coming from HU and TE.

Finally, in community C5 the relative percentage of males is higher with respect to the other two communities, and
MOOC attendance is lower (see Figure @ The most frequent answer to question QA1.1 (math in school) is reasoning,
followed by problems to solve. Their expectations towards math at university is to deepen their knowledge —and this is
not surprising given that the huge majority of them comes from LS, where math curriculum is strong. These students are
aware that they have learned many mathematical topics, and their approach to math is rather conceptual.

6.3 Community analysis on Q2

The analysis of the students network N2 is the same of N1. The main properties of the network N2 are similar to the
N1’s ones, that is the density is ps = 0.9822 since the number of nodes of N2 is ny = 369 and the number of links is
Ly = 66687. The community analysis allows us to identify a partition with three cluster (modularity Q2 = 0.0650),
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section of Q1 grouped by community.

6: Students’ network N1: frequencies (top panel) and percentage (bottom

panel) of answers to personal data

variables X-squared df p-value relevant
Gender 1.647 2 0.4389 X
High School 34.425 6  5.568-107F

MOOC attendance 0.60899 2 0.7375 X
QA1.1 96.575 14 2.143-10714

QA1.2 584.62 8 <22-10716

QA1.3 8.7484 4 0.06771 X
QA14 19.014 10 0.04008

QA1l.5 98.378 8 <22-10716

Table 4: Chi-squared test of the frequencies of answers to Q1 for the three communities.
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Community Ny Nj [%] g 2k
C3,016 79 21409 0.250  8.647
(3,016 144 39.024 0.482 17.989
C3 3016 146  39.566 0.455 12.413

Table 5: Results of max-modularity community analysis for students’ network N2
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Figure 7: Students’ network N2: frequencies (top panel) and percentage (bottom panel) of answers to personal data
section of QA2 grouped by community.

whose details are reported in Table |5} The persistence probabilities are ay, < 0.5 but the z-score for each one is very high
(zr > 5). Therefore three sub networks of the whole students’ network are identified due to some some characteristics
induced by the students’ answers to the QA2.

Figure [7] shows the communities’ frequency of answers to QO in test Q2: we can notice that community 3 has more
males in percentage, more LS students (and fewer students from other school type), and more students who did not attend
the MOOC course. Similarly, community 1 has relatively higher percentage of male and LS students, while community
2 has relatively lower percentage of LS ones and the MOOC attendance is almost uniformly distributed among the three
level of attendance. Performing y?-tests on the differences between the frequencies of answer to Q2 according to the
identified communities gives the results reported in Table [6} it shows that the three personal-level characteristics are
statistically different in the three communities. At the same time, it shows that the students in the three communities
have answered in significantly different ways at all the questions but QA2.3 and QA2.4. The answers mostly given by the
students belonging to the different communities to questionnaire QA2 allow us to characterise the three communities as
follows.

Profile P;: The Profile is composed by students who claimed that they did not seen new topics during the course (QA2.1),
however they declared that they saw some problems in some ways different from the ones they were used to (QA2.2).
These students would appreciate some extra tutoring as the same style of this course. Furthermore, these students
did not attend the Pre-Calculus MOOC at all and the majority of them came from LS. We can infer that the students
of this profile belong to community C; that emerged from questionnaire Q1: coming from LS and, thus, having a
strong math curriculum, they did not experience new math during the Bridge Course and, being used to procedural
mathematics, they appreciated more the attendance part of the course, instead of the e-learning part, since the latter
fosters conceptual understanding. The fact that they declare to have been exposed to problems different from the
ones they were used to confirms their unfamiliarity with problem-based learning.
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Profile Py:

Profile Ps:

variables X-squared value degree freedom p-value relevant
Gender 21.214 2 2.474-107°

High School 50.309 4 3.112-10719

MOOC attendance 16.338 4 0.002598

QA2.1 179.13 6 <22-10716

QA2.2 217.76 6 <22-10716

QA2.3 2.8962 2 0.235 X
QA24 11.251 14 0.6662 X
QA2.5 141.79 6 <22-10716

QA2.6 38.878 6 7.562 - 1077

Table 6: Chi-square test of the frequencies of answers to QA2 for the three communities.

The students who belong to this profile said that they have seen some new topics (QA2.1) and some problems were
different from the ones they were used to (QA2.2), moreover they appreciated the bridging course (QA2.5) and
would like a support on MOOC (QA2.6). The students’ sample has a large part of females and the majority of them
came from HU, TE and Other school, moreover two third of them attended the Pre-Calculus MOOC. This profile
recalls community Cs that emerged from questionnaire Q1.

This profile is characterised by students who declared that they did not see any new topics (QA2.1) and problems
posed in different ways (QA2.2). The sample is almost composed by LS students who have not attended the Pre-
Calculus MOOC however half of them would like a future support to the math exam as the some extra tutoring as
the same style of this course and even a support on MOOC (QAZ2.6). This profile somehow mirrors community Cs

in Q1.

These are the three profiles of students who attended the last day of attendance course of the bridging course. In the
next subsection we come back to the classification tree and try to connect cognitive and affective variables.

6.4

Connections between affective questionnaires and cognitive tests in the anonymous
setting

How do affective variables influence test performances of the students? If we go back to the classification tree shown in
Figure |5 we can identify the three profiles that emerged from networks N1 and N2:

after the first split, it emerges a group of students who come from HU, TE and Other schools and who have a lower
test performance (average 7.6). These students can be identified by profile P»: we know that they attended the
MOOC more than the students belonging to the other two profiles (and they would like to find a support like a
MOOC in the future), that math in high school for them has been mostly problems to solve, that they expect to
learn new math topics (and they encountered new math even in the Bridge Course), and that a problem for them
serves the purpose of practising and of giving a further example. Hence a procedural view of mathematics emerges
from the students belonging to this profile.

To the right of the split, LS students are identified and the ones with the highest test performance (average test
score is 8.9) have also attended the MOOC almost entirely. This group of students, which corresponds to 15% of
the sample, seem not to be identified within one of the profiles.

Among the students who come from LS and attended the MOOC less, we see another split: the leaf of the tree with
the students who attended almost no MOOC identifies profile P;, whose average test score is pretty high (namely,
8.3). We know that these students had been used to a procedural approach to mathematics: the mixed nature of
the Bridge Course, however, did not highlighted the weaknesses of their approach to mathematics and we claim that
this is good, for two main reasons: the first one is that, among the purposes of the Bridge Course, there is the goal of
not discouraging students; the second one, is that these students have a very high performance in mathematics, and
hence they do not need to feel as weak learners. Our conjecture is that their rather strong mathematical knowledge,
even if procedural in nature, will assist these students in the transition to more conceptual mathematics.
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Test 4

PL P2 P3 P4 P5 P6

Figure 8: Students’ network N1: Test performance by student profiles. P1:Male Students from LS with Partial MOOC
attendance. P2: Students from HU, TE and Other with High MOOC attendance and Female students with Hihg MOOC
attendance. P3: Students from LS with partial MOOC attendance. P4: Male students from LS with high MOOC
attendance. P5: Female students from LS with low MOOC attendace. P6: Students from HU, TE and Other with low
and partial MOOC attendance.

e The other leaf of the tree identifies the students coming from profile P3: males are the majority and perform better
that females in the test (average test score is 8.1 versus 6.1). We know that math for them had been mostly reasoning
and that they expect to deepen their knowledge.

In an anonymous setting we cannot link students’ answers to affective questionnaires with students’ answers to mathe-
matical tests. In our context, however, we were able to establish a connection between the two questionnaires and the tests
by looking at the features of the students that most characterize the communities (i.e., gender, school type and MOOC
attendance), and seeing if the same features influence the test scores. On one hand, this is a limitation since the three
profiles emerging from the detected communities are not a partition of the students in terms of gender, school type, and
MOOC attendanceﬂ On the other hand, we claim that - even in a totally anonymous setting - it is possible to identify
four overarching, general trends that at a gross grain give a representative picture of well-known phenomena related to
dropout.

In order to address the aforementioned limitation, we now dwell on a non-anonymous setting and explore whether a
different scenario emerges.

7 Results from non-anonymous investigation

Data collected in 2017 were not anonymous. We have already commented that this feature of the data collection had
impacted the percentage of students who gave a feedback on the Bridge Course. We now see whether it is possible to
identify profiles that are similar to the anonymous setting, or whether other characteristics emerge. Since, in this case, it
is possible to link all the students’ answers, we start with community analysis.

7.1 2017 community analysis

In 2017, there is only one network of students. We refer to this network as N2017. It comprises all the students who
answered to at least one questionnaire or test during the Bridge Course. However, since only in Q1 we collected personal
information, we can perform community analysis only on those nodes (i.e., the students) in the network that have replied
to Q1.

The number of students involved is 395, but only 231 answered to Q1. Therefore network N2017 has 231 nodes, and
the number of links is 26392 with a high density: p = 0.9935. Table [7] reports the data related to the community analysis,
with 3 communities and modularity @ = 0.0556, Q' = 0.667, @Q/Q" = 0.083

IFigure |8 shows test performances based on a true partition of the sample into six “profiles”. We notice that, to the three main profiles
P1, P> and Ps we can add other three minority profiles: Py corresponds to the split that appear in the classification tree and represent 15% of
students with very high mathematical performance; P; and Pg correspond to less than 5% of the sample.
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Table 7: Results of max-modularity community analysis for students’ network N2017
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Figure 9: Students’ network N2017: frequencies (top panel) and percentage (bottom panel) of answers to personal data
section of Q1 grouped by community.

variables X-squared df p-value relevant
Gender 10.976 2 0.0041

High School 40.89 6 3.043-1077

MOOC attendance 4.9214 4 0.2955 X
QA1.1 126 12 <22-10716

QA1.2 136.76 12 <22-10716

QA1.3 57.787 8 1.264-107°

QA1.4 258.54 12 <22-10716

QA1l.5 479.44 24 <22-1071¢

Table 8: Network N2017: Chi-squared test of the frequencies of answers to QA1 for the three communities.
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Figure 10: Diagonal: barplots of number of correct answers. Upper and lower diagonals: pairwise correlations among
tests. The colour gradation of each cell is proportional to the number of students in the cell. The titles of each upper and
lower diagonal plot reports the p-values of an exact-Fisher test of independence.

Student profiles

Profile 1:

Profile 2:

Profile 3:

7.2

We now focus on students’ performance on the four tests that were done during the course.
correlations of the scores of the four tests are displayed in Figure

The students were exposed to a more procedural mathematics in high school, they used to resort to an easier
exercise/problem/task when they deal with a task they are not able to solve. These students think that a similar
exercise helps them to better understand the topic and improve their computational skills. They expect that the
mathematics at university is more focused on reasoning and they will be exposed to many new topics. The group is
composed by 80% of males, 70% of LS and about 20% of TE students.

The students were exposed to a more conceptual mathematics in high school, they used to resort to an easier
exercise/problem/task when they deal with a task they are not able to solve. These students think that a similar
exercise helps them to better understand the topic and improve their computational skills. They think that the
mathematics at university is more focused on reasoning. The sample is composed by 70% of males, 70% of LS and
about 20% of HU students.

The students were exposed to a more procedural mathematics in high school, they used to resort to an easier
exercise/problem/task and to web resources when they deal with a task they are not able to solve. These students
think that a similar exercise helps them to better understand the topic and improve their computational skills. They
think that the mathematics at university is more conceptual. The sample is composed by 60% of males, the students
come from all kind of high school (25% uniformly).

2017 test performances (and communities)

The distributions and
The diagonal panels show the barplots of the
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Figure 11: Boxplots indicating the relations between community, covariates (school type, gender and MOOC attendance),
and test scores. The titles of each boxplot reports the p-values of a Kruskal-Wallis rank test for comparing the groups’
medians.

histograms of the scores on each test. In addition, in this database we have information about which student did the
tests. So, it is possible to relate the score of the four tests between them. In detail, the upper and lower diagonal panels
show a representation of the correlation between the number of correct answers of students across the tests: the grey color
gradation of each cell is proportional to the number of students in the cell. On the title of the plots we report the p-value
of a Fisher-exact test of dependence between the scores of each pair of tests. Again, for computing the p-value we used a
nonparametric test without assuming Gaussianity of data. Indeed, looking at the histograms on the diagonal, it is clear
that Gaussianity cannot be assumed. Looking at the figure, we note that the distribution of the scores of different tests
is similar. In addition, the scores of the first three tests are significantly dependent.

The relation between the scores and the other covariates are displayed in Figure As for 2016 data analysis, we
indicate in the title of each boxplot the p-value of a Kruskal-Wallis rank test. Furthermore, we include as covariate also
the community, that was obtained from the previous network analysis on affect variables. Indeed, since here we can relate
students to tests, it is also possible to consider the information about in which community they have been classified.
Note that there is a non negligible number of students that performed at least one test but did not answered to the affect
questionnaire. All those students are associated to the community “zero” (Cp). The results for school, gender, and MOOC
attendance are very similar to the ones observed from 2016 data. In addition, we note that there is a significant relation
between test score and community in the first three tests, while we have a high p-value for the fourth one. In general (with
the possible exception of test 4), it can be seen that the test score is related to the community: students in communities 1
and 2 have generally a higher score than students in community 3. Students in community 0 have in many cases a higher
variability of performances and in some cases a lower score. For the fourth test all p-values of tests on covariates are high,
suggesting no significant relations between the score and the covariates, at least when considering one covariate at a time
only.

For sake of homogeneity with the 2016 case, we focus on the regression tree for test 4, that is presented in Figure
The tree is similar to the one obtained from 2016 data. The first split regards the school, with the students from
LS and HU performing better than the ones coming from other school types. Among the LS and HU students, a second
split is given by MOOC attendance: those who attended the MOOC perform better than those who did not attended the
MOOC. Among the students who did not attended the MOOC, males perform better than females, while among students
who attended the MOOC, those who attended it only in part perform better than those who attended it completely.

Finally, since in this case students are identifiable, it is possible to see how the test score is affected by the community
that was identified with the network analysis. From the boxplot and Kruskal-Wallis test we already saw that in case of test
4 there isn’t a significant statistical relation between the test score and the community, but this was only the test 4 case
(for all other test, the score is significantly dependent from the community). The lack of significance in case of test 4 might
be due from the lower sample size and from the fact that the relation in this case is less strong. For exploratory purposes
we present in Figure the regression tree obtained for this test using the community as explanatory variable. For the
sake of comparison, the trees for the other tests are reported as supplementary material. For test 4 we see that the first
split of the tree separates community 3 from the others, with students in community 3 performing worse than students
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Figure 12: Regression tree for test 4 with: (a) students’ features as explanatory variables, and (b) community as explana-
tory variable

in other communities. The second split of the tree separates community 0 (i.e., all students that did not answered to the
affect test) from communities 1 and 2. Students in these latter two communities perform in average better than students
in community zero. The final split is between communities 1 and 2, but the average score of these two communities is
very similar.

8 Conclusions

In this paper, we aim at contributing to understand the phenomenon of drop out among first year STEM university
students, phenomenon that is considered as a plague almost anywhere in the world. We, thus, recalled the main factors
that can help decision-makers to activate resources in order to reduce drop out by identifying and then intervening on
subgroups of students who need personalised intervention at the first year of STEM university studies.

Our findings reveal that three main communities can be identified. The first community is populated by students
who had been exposed to a strong curriculum in high school, and who have a rather conceptual view of mathematics.
They show good performance in mathematics and they declare that in the Bridge Course they encountered mathematical
content that was familiar for them: in fact, their acquaintance with conceptual mathematics (e.g., reasoning) allows
them to feel comfortable with the new context of university mathematics, and not to live it as a shock. Finally, they
seem to be able to discern which online content is useful for them: indeed, they declared to have partly attended the
MOOC and our interpretation is that, since these students are good in mathematics, they selected the contents they
actually felt “useful” for them to recall—being able to discard the others and not loosing their time. As pertains this
community of students, who represent the strongest group, our suggestion (following upon Clark & Lovric (Clark and
Lovric, 2008)) for policy-makers at STEM university is to promote and reinforce their relationships with high schools,
especially focusing on secondary school math teacher training, so that teachers will teach their students more conceptual
math, in a student-oriented fashion, and their learners will enter the university “well equipped” to deal with the transition.

A second community is as well populated by students who had been exposed to a strong curriculum in mathematics,
but with a procedural approach. These students perform less well than their mates in the first community, they did not
attended the MOOC and they are able to appreciate only traditional ways of teaching. A majority of males is present
in this group. We can further comment that their math performance in tests is good enough, and they declare not to be
shocked by the Bridge Course, because their strong mathematical knowledge sustains them in the transition. However,
these students seem not to be ready neither for a self-organised way of studying, nor for student-centred learning formats.
We expect that these students will face difficulties in the first semester at university, as Andra, Magnano & Morselli
(Andra et al.l 2011)) observed in a study conducted in a similar context. Andra, Magnano & Morselli’s (Andra et al., 2011)
findings reveal that these students have the highest probability of not taking the degree, with respect to the students with
weakest mathematical curriculum in high school-—namely, those belonging to the third community.

Students in the third community are aware that their mathematical knowledge is not enough to attend first year
STEM university, and they start to work hard in order to bridge the gap: they attend the MOOC and they come to the
Bridge Course. They appreciate the new format of learning, as well as they see novelty in the Bridge Course. According
to (Andra et al., 2011), these students have a probability of getting the degree on time that is comparable to the one of
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the students in the first community. This tells us that mathematical knowledge is important, but it is also important
the student’s awareness about her weaknesses. For this reason, we suggest policy-makers at university to make use of
(or develop their own) questionnaires that help them detecting the students’ attitudes towards mathematics, their beliefs
about themselves as learners, and their resilience.

From our findings, it emerges a confirmation of well established findings in analogous contexts. However, there
are two elements of novelty in this study: one is the taking into account the students’ attitudes towards e-learning
materials (MOOCs, in particular), the other one is the idea of clustering students with respect to both personal-level
characteristics such as gender and school type, and their views of mathematics, as variables that can explain their
mathematics performances. Such an approach allows the researcher to identify groups of students who need differentiated
interventions, and hence to take on a decision-oriented approach.

Finally, our study aimed at comparing two ways of collecting data: anonymously, which leaves space for the student to
think and to feel free to “be herself”, but also encourages them to respond; or identifiable, which allows the researcher to
establish stronger connections among data. This is another element of novelty for our research: questioning about better
settings for respondents to provide data for the researcher seems to be an under-researched area—which may deserve
some attention from a statisticians’ perspective. In the identifiable setting the number of analyses that can be performed
on data increases, and thus the amount of information that can be possibly gained from such an analysis also increases.
Nonetheless, the number of students that are willing to answer to a non-anonymous questionnaire is lower, and results from
this setting might be less strong due to the smaller sample size. In addition, nothing can be said about the selection bias
in the identifiable setting: it is natural to assume that students willing to answer a non-anonymous questionnaire are not a
random sample of all students, but they are likely to be the most interested to the course and the most comfortable about
answering. In the case of the data analysed in this paper, taking on an overarching perspective of the phenomenon, we
can comment that data collected in the two settings are consistent with each other. Hence we are prone to conclude that
- especially in contexts when a finer grain analysis is not at hand - the anonymous setting is slightly better than the other
one. In other words, to know the students’ names did not add richness in data analysis. This is particularly important
in the educational setting, since anonymous data on learners fit within ethical requirements about the accessibility to
sensitive data concerning their knowledge, abilities and skills.
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A Supplementary material

A.1 Regression trees for 2016 data

Regression Tree for Test 1
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Figure 13: Regression tree for test 1 - 2016 data
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Regression Tree for Test 2
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Figure 14: Regression tree for test 2 - 2016 data

Regression Tree for Test 3
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Figure 15: Regression tree for test 3 - 2016 data
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A.2 Regression trees for 2017 data
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Figure 16: Regression tree for test 1 with students’ features as explanatory variables - 2017 data
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Figure 17: Regression tree for test 1 with community as explanatory variable - 2017 data

23



(6.5 )
\100%)

| 100%
School = HU,Other, TE

|
LS
6 (7.1)
53% | \ 47% |

Gender =F MOOC >=3.5 <3.5

M
39%
i Gender =M
MOOC >=2.5 -
7.1
<25
MOOC < 1.5 >=1.5

5.7 5.8 6.6 6.2 6.8 7.4 7.8
17% 18% 19% 8% 14% 15% 10%

Figure 18: Regression tree for test 2 with students’ features as explanatory variables - 2017 data
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Figure 19: Regression tree for test 2 with community as explanatory variable - 2017 data
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Figure 20: Regression tree for test 3 with students’ features as explanatory variables - 2017 data
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Figure 21: Regression tree for test 3 with community as explanatory variable - 2017 data
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