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AND TREE-LIKE BRANCHING RANDOM WALKS
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Abstract. The local critical parameter λs of continuous-time branching random walks is com-
pletely understood and can be computed as a function of the reproduction rates. On the other

hand, only for some classes of branching random walks it is known that the global critical param-

eter λw is a certain function of the reproduction rates, which we denote by 1/Kw. We provide
here new sufficient conditions which guarantee that the global critical parameter equals 1/Kw.

This result extends previously known results for branching random walks on multigraphs and

general branching random walks. We show that these sufficient conditions are satisfied by pe-
riodic tree-like branching random walks. We also discuss the critical parameter and the critical

behaviour of continuous-time branching processes in varying environment. So far, only examples

where λw = 1/Kw were known; here we provide an example where λw > 1/Kw.

Keywords: branching random walk, branching process, local survival, global survival, varying
environment, tree-like, critical parameters, generating function.
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1. Introduction

The theory of time-homogeneous branching processes dates back to the work of Galton and
Watson ([12]) and the characterization of survival of these processes is very simple: the expectation
of the offspring distribution must be strictly larger than 1. One way to add complexity is to study
the process on a spatial structure: the individuals live on the vertices of a graph (X,E(X)) and
randomly reproduce; the offspring are placed onto neighbouring vertices. If we look at the trajectory
of lineages, they can be seen as random walks, which branch whenever an individual has more than
one child, whence the name Branching Random Walk (briefly, BRW) for the process. In a BRW
survival can be global or local, meaning that with positive probability there will always be someone
alive on the graph (global survival) or on a given vertex (local survival). Clearly local survival is
more restrictive than global survival and both situations become more likely when individuals get
more prolific. In continuous time an easy way to tune reproductions (and to have markovianity) is
to fix λ > 0 and to attach to each particle living at x and to each oriented edge xy of the graph
an exponential clock whose parameter is proportional to λ. The same is repeated for all particles,
sites and edges. Whenever the clock rings, the corresponding particle at x (if still alive) places an
offspring at y. The larger λ, the higher the probability of global and local survival will be.

To be more precise, the graph is endowed with a matrix K = (kxy)x,y∈X of nonnegative rates.
Each particle has an exponential lifetime of mean 1, and individuals living at x place children at
y, one at a time, at time intervals with Exp(λkxy) law (death and reproduction clocks being all
independent). Starting with one particle at time 0, it is well-known that there exist two critical
parameters, λw ≤ λs such that for 0 ≤ λ < λw the BRW goes extinct almost surely; for λ ∈ (λw, λs]
there is local extinction but global survival; for λs < λ there is local survival (when λ = λw,
depending on the cases, there can be global extinction or global survival). The two parameters λs
and λw are called local (or strong) and global (or weak) critical parameters, respectively. These
parameters in principle depend on the starting vertex, but they are actually equal for all vertices in
the same irreducible class (for more details, also on the critical cases, see Section 2).
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The characterization of λs in terms of the matrix K has been known for quite a while. Indeed, Pe-
mantle and Stacey proved ([20, Lemma 3.1]) that if the graph (X,E(X)) is irreducible, K = Adj(X)

(where by Adj(X) we mean the adjacency matrix of (X,E(X))) and M = limn→∞(k
(2n)
xx )1/2n, (where

k
(2n)
xx is the (x, x) element of the 2n-th power of the matrix K), then λs = 1/M . This result has

been extended to irreducible BRWs on multigraphs by [3, Theorem 3.1] and then to generic BRWs
with rates K by [4, Theorem 4.1]. The behaviour at λ = λs is also understood: [3, Theorem 3.5]
and [4, Theorem 4.7] prove that there is almost sure extinction in continuous time, in the case of
multigraphs and in general, respectively. The discrete-time case has been described in [25, Theorem
4.1]. The critical behaviour was also investigated independently, with different techniques, in [19].

The characterization of λw is more challenging and is the main aim of this paper. If X = Zd
and K = Adj(X), then λw = λs: it is also said that there is no weak phase. The absence of
weak phase can be found in many cases which, like Zd, are nonamenable. Nonamenability by itself
is neither necessary nor sufficient for λw = λs, as was proven in [20]. Nevertheless adding some
kind of regularity to the graph, like quasi-transitivity (see [22, Theorem 3.1]) or some more general
regularity (see [3, Theorem 3.6]) turns nonamenability into an equivalent condition for the absence
of weak phase. The presence of the weak phase was first observed on regular trees Td (endowed with
K = Adj(Td)) and in that case, λw = 1/d was computed in [18] (note that vertex transitivity makes
λw easy to determine, since the total progeny is a Galton-Watson process). When either the graph
or K lack regularity, the characterization of λw is not obvious. For instance, on Galton-Watson
trees, only some bounds for λw are known (see [20, 23]).

We note that it is possible to define λs using the entire sequence {k(n)
xx }n∈N: indeed one has λs =

1/ lim supn→∞(k
(n)
xx )1/n ([4, Theorem 4.1]). This result has an intuitive explanation in the fact that

the expected value of the cardinality of the set of n-th generation descendants living at x is λnk
(n)
xx .

Then, moving to λw it would be natural to conjecture that λw = 1/ lim supn→∞(
∑
y∈X k

(n)
xy )1/n.

The first thing to note is that this conjecture has to be modified since in [4, Example 2] we have a

BRW where λw = 1/ lim infn→∞(
∑
y∈X k

(n)
xy )1/n. We denote by Kw the last limit and then look for

conditions guaranteeing that λw = 1/Kw.
The main result of this paper, Theorem 3.2, states that for a generic continuous-time BRW, two

uniformity conditions, (U1) and (U2), together are sufficient for λw = 1/Kw (see Section 3 for the
definition of these conditions). We mention here that an adjacency matrix always satisfies (U2)
and, in the case of multigraphs with K = Adj(X), it was already known that (U1) was a sufficient
condition for λw = 1/Kw ([3, Theorem 3.2]). For generic BRWs, the proof requires a new and
different technique, which heavily relies on multidimensional generating functions and their fixed
points (generating function techniques have proven to be excellent tools to identify the extinction
probabilities of a BRW, see for instance [4, 13, 14]). So far in the general case it was proven that
λw = 1/Kw is true for BRWs which can be projected onto finite spaces, namely the F-BRWs
([4, Proposition 4.5]). Theorem 3.2 extends this result, since F-BRWs satisfy the two conditions
(U1) and (U2), while there are examples of BRWs satisfying the uniformity conditions without
being F-BRWs (for instance, a periodic tree-like BRW). Moreover, again a uniformity request, more
restrictive than (U1), had proven to be sufficient for λw = 1/Kw ([4, Proposition 4.6]).

Here is an outline of the paper. In Section 2 we formally define the process, its local and global
survival and the associated critical parameters. We also introduce the generating function G of the
BRW and recall Theorem 2.3 which links global survival with some properties of G. In Section 3 we
first prove Theorem 3.2 and then Theorem 3.4, which gives a sufficient condition for the uniformity
condition (U1) to hold. Section 4 is devoted to examples where the equality λw = 1/Kw holds. The
first example is given by periodic tree-like BRWs, which we define in this paper, much in the spirit
of [21]. In particular they are a family of self-similar BRWs, which can be neither quasi-transitive
nor F-BRWs. To figure an idea of the self-similarity we require, one can think of BRWs on tree-like
graphs. Tree-like structures arise naturally in the context of complex networks. In particular, many
social and information networks present a large-scale tree-like structure or a hierarchical structure
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(see [1], [10] and references therein). The global survival of this family of processes could not be
treated with the previously known techniques. The second example is given by continuous-time
branching processes in varying environment: namely branching processes where individuals breed
accordingly to a Poisson process whose parameter depends on the generation. It suffices to interpret
generations as space variables and BRW techniques apply. We also show that, even for such a
particular law of the process, when λ = λw still global extinction and global survival are both
possible. Examples 4.4 and 4.5 show that (U1) is not necessary for λw = 1/Kw (in the first case
λw < λs, in the second case λw = λs). Example 4.6 shows that (U2) is not necessary for λw = 1/Kw.
Finally Example 4.7 we construct an irreducible BRW where λw > 1/Kw. It is worth mentioning
that, in the reducible case, it can even happen that λw = 1/Kw if the process starts from certain
vertices and λw > 1/Kw if it starts from other vertices (see Example 4.7).

2. Basic definitions

2.1. The Branching Random Walk and its survival. Let us consider (X,K) where X is a
countable (or finite) set and K = (kxy)x,y∈X is a matrix of nonnegative entries such that

∑
y∈X kxy <

+∞ for all x ∈ X. The couple (X,K) identifies the BRW, that is a family of continuous-time
processes, depending on a positive parameter λ, where each particle has an exponentially distributed
random lifetime with parameter 1. When λ > 0 is fixed, for each particle alive at x, there is a clock
which rings at Exp(λkxy)-distributed intervals; each time the clock rings the particle places one
newborn at y. We say that the λ-BRW has a death rate 1 and a reproduction rate λkxy from x to
y. All the particles behave independently. We observe (see [6, Remark 2.1]) that the assumption
of a non-constant death rate does not represent a significant generalization. With a slight abuse
of notation, when there is no ambiguity, we omit the dependence on λ and denote by BRW also
the process with a fixed λ. It has to be mentioned that under the name BRW one can find, in the
literature, several kinds of processes: for instance processes in discrete time, with no death, where
parents randomly walk either before or after breeding, on continuous space, in random environment
or with multiple types ([9, 11, 15, 16, 17] just to mention a few).

To the process (X,K) we associate a graph (X,EK) where (x, y) ∈ EK if and only if kxy > 0.
We say that there is a path from x to y, and we write x→ y, if it is possible to find a finite sequence
{xi}ni=0 (where n ∈ N) such that x0 = x, xn = y and (xi, xi+1) ∈ EK for all i = 0, . . . , n − 1. If
x → y and y → x we write x 
 y. Observe that there is always a path of length 0 from x to
itself. The equivalence class [x] of x with respect to 
 is called irreducible class of x. We say that
the matrix K and the BRW (X,K) are irreducible if and only if the graph (X,EK) is connected,
otherwise we call it reducible. The irreducibility of K means that, in the BRW, the progeny of any
particle can spread to any site of the graph.

Depending on the initial configuration η0 ∈ NX , the BRW {ηt}t≥0 can survive in different ways.
We consider initial configurations with only one particle placed at a fixed site x: let Px be the law
of this process.

Definition 2.1.

(1) The process survives locally in A ⊆ X starting from x ∈ X if
q(x,A) := 1− Px(lim supt→∞

∑
y∈A ηt(y) > 0) < 1.

(2) The process survives globally starting from x if q̄(x) := q(x,X) < 1.

From now on, q(x, y) will be shorthand for q(x, {y}). Often we will simply say that local survival
occurs “starting from x” or “at x”: in this case we mean that q(x, x) < 1. When there is no survival,
we say that there is extinction and the fact that extinction occurs with probability 1 will be tacitly
understood.

Given x ∈ X, two critical parameters are associated to the continuous-time BRW: the global
survival critical parameter λw(x) and the local survival critical parameter λs(x). They are defined
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as

λw(x) ≡ λw(x;X,K) := inf
{
λ > 0: Px

( ∑
w∈X

ηt(w) > 0,∀t
)
> 0
}
,

λs(x) ≡ λs(x;X,K) := inf{λ > 0: Px
(

lim sup
t→∞

ηt(x) > 0
)
> 0}.

By definition, starting with one particle at x, for λ > λw(x) (respectively λ > λs(x)) we have global
or weak (respectively local or strong) survival with positive probability; for λ < λw(x) (respectively
λ ≤ λs(x)) we have almost sure global extinction (respectively local extinction). When λ = λw(x)
there might be global survival (as in [4, Example 3]) or global extinction (as in the case of F-BRWs,
see Section 2.2 for details). The critical parameters depend only on [x]: in the irreducible case we
will write λs and λw instead of λs(x) and λw(x) respectively.

We define recursively k
(n)
xy :=

∑
w∈X k

(n−1)
xw kwy (where k

(0)
xy := δxy); moreover we set Tnx :=∑

y∈X k
(n)
xy and φ

(n)
xy :=

∑
x1,...,xn−1∈X\{y} kxx1

kx1x2
· · · kxn−1y; by definition φ0

xy := 0 for all x, y ∈ X.

Clearly λnk
(n)
xy is the average size of the nth generation at y of the progeny of a particle living at x;

λnTnx is the average size of the nth generation of the whole progeny of a particle living at x. Finally,

λnφ
(n)
xy is the analog of k

(n)
xy concerning only paths reaching y for the first time at the n-th step.

We introduce the following geometrical parameters

Ks(x, y) ≡ Ks(x, y;X,K) := lim sup
n

(k(n)
xy )1/n, Kw(x) ≡ Kw(x;X,K) := lim inf

n
(Tnx )1/n.

In the rest of the paper, whenever there is no ambiguity, we will omit the dependence on X and
K. We recall that λs(x) = 1/Ks(x, x) ([4, Theorem 3]). Supermultiplicative arguments imply that

Ks(x, x) = limn→∞(k
(dn)
xx )1/dn for some d ∈ N hence, for all x ∈ X, we have that Ks(x, x) ≤ Kw(x).

As the critical parameters, also Kw(x) and Ks(x, y) depend only on the irreducible classes [x] and
[y]. For an irreducible BRW, we write Kw := Kw(x, y) and Ks := Ks(x) for all x, y ∈ X.

Not only λs(x) and Ks(x) are constant inside each irreducible class, but they also depend only
on the restriction of the BRW to the irreducible class [x] (that is, they are the same if computed for
the original BRW or for its restriction to [x]). This is due to the fact that local survival takes into
account paths starting from x and going back to x. That might not be true for λw(x) and Kw(x)
since when we restrict the BRW to [x] we might lose paths from x which exit [x] (in general λw(x)
of the restricted BRW is not smaller than the corresponding parameter for the original BRW and
the reversed inequality holds for Kw(x)).

Remark 2.2. While nothing can be said, in general, about the relationship between λs(x) and
λs(y) for [x] 6= [y], it is always true that if x → y then λw(x) ≤ λw(y) and Kw(x) ≥ Kw(y).
One may wonder under which conditions the inequality may be reversed. Given A ⊆ X, if we
know that the restriction of the BRW to X \ A dies out for all λ < inf{λw(y) : y ∈ A}, then
λw(x) ≥ inf{λw(y) : y ∈ A} for all x ∈ X; the arguments are similar to those used in the comparison
between a BRW and the associated no-death BRW as in [6, before Proposition 2.1] or [5, Section
3.2]. Applications can be found in Section 4.2.

The following power series can be useful to identify the critical parameters

H(x, y|λ) :=

∞∑
n=0

k(n)
xy λ

n, Θ(x|λ) :=

∞∑
n=0

Tnx λ
n, Φ(x, y|λ) :=

∞∑
n=1

φ(n)
xy λ

n.

Clearly 1/Ks(x, y) is the convergence radius of H(x, y|λ) and for all λ ∈ C such that |λ| <
1/ lim supn(Tnx )1/n we have Θ(x|λ) =

∑
y∈Y H(x, y|λ). The following relations hold (provided that
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λ is such that the involved series converge):

H(x, y|λ) = δxy + λ
∑
w∈X

kxwH(w, y|λ)

= δxy + λ
∑
w∈X

H(x,w|λ)kwy

= δxy + Φ(x, y|λ)H(y, y|λ),

Θ(x|λ) = 1 + λ
∑
w∈X

kxwΘ(w|λ),

Φ(x, x|λ) = λ
∑

y∈X,y 6=x

kxyΦ(y, x|λ) + λkxx.

(2.1)

Moreover if x, y, w ∈ X are distinct vertices such that every path from x to y contains w then
Φ(x, y|λ) = Φ(x,w|λ)Φ(w, y|λ). We note that, since

H(x, x|λ) =
1

1− Φ(x, x|λ)
, ∀λ ∈ C : |λ| < λs(x), (2.2)

we have that λs(x) = max{λ ≥ 0 : Φ(x, x|λ) ≤ 1} for all x ∈ X (remember that Φ(x, x|·) is
left-continuous on [0, λs(x)] and that 1/(1− Φ(x, x|λ)) has no analytic prolongation in λs(x)).

2.2. Generating functions and projections. It is well-know that each continuous-time BRW
has a discrete-time counterpart which survives/dies if and only if the original BRW does (see for
instance [25, Section 2.2] or [6, Section 2.2 and Remark 2.1]). In this sense the class of continuous-
time BRWs can be considered as a subclass of discrete-time BRWs. More precisely, let us denote
by µx(f) the probability that a particle living at x places exactly f(y) offspring at site y, before its
death. The generating function G : [0, 1]X → [0, 1]X of the corresponding discrete-time BRW has x
coordinate given by

G(z|x) :=
∑
f∈Ψ

µx(f)
∏
y∈X

z(y)f(y), (2.3)

where Ψ is the space of finitely supported functions in NX . This generating function has been
introduced in [4, Section 3] (see also [5, 8, 25] for additional properties). In the case of the discrete-
time counterpart of a continuous-time BRW, given q ∈ [0, 1]X , the x-coordinate of G(q) can be
written as

G(q|x) :=
1

1 + λK(1− q)(x)

where 1(x) = 1 for all x ∈ X while Kz(x) =
∑
y∈X kxyz(y) for all z ∈ [0, 1]X and x ∈ X. Note

that G is continuous with respect to the pointwise convergence topology of [0, 1]X and nondecreasing
with respect to the usual partial order of [0, 1]X (see [4, Sections 2 and 3] for further details); every
time we say that an element of [0, 1]X is the smallest (respectively largest) among a set of points
A, we are also implying that it is comparable with every element of the specific set A. We stress
that z < w means z(x) ≤ w(x) for all x ∈ X and z(x0) < w(x0) for some x0 ∈ X. Moreover,
G represents the 1-step reproductions; we denote by G(n) the generating function associated to
the n-step reproductions, which is inductively defined as G(n+1)(z) = G(n)(G(z)), where G(0) is
the identity. Extinction probabilities are fixed points of G and the smallest fixed point is q̄ =
limn→∞G(n)(0): more generally, given a solution of G(z) ≤ z then z ≥ q̄.

Global survival can be characterized by using G according to the following theorem (for the proof
see [25, Theorem 4.1] and [6, Theorem 3.1]; it is based on [4, Proposition 2.1]). For a short proof
see [2, Theorem 2.2].

Theorem 2.3. Consider a BRW and a fixed x ∈ X. The following assertions are equivalent:

(1) q̄(x) < 1 (i.e. there is global survival starting from x);
(2) there exists q ∈ [0, 1]X such that q(x) < 1 and G(q) ≤ q;
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(3) there exists q ∈ [0, 1]X such that q(x) < 1 and G(q) = q.

If q satisfies either (2) or (3), then q ≥ q̄. Moreover, global survival starting from x implies that

lim infn→∞ λn
∑
y∈X k

(n)
xy > 0 (or, equivalently,infn→∞ λn

∑
y∈X k

(n)
xy > 0).

As a consequence of this theorem we have that λw(x) ≥ 1/Kw(x); indeed if λ < 1/Kw(x) then

lim infn→∞ λ n

√∑
y∈X k

(n)
xy < 1 hence lim infn→∞ λn

∑
y∈X k

(n)
xy = 0. This implies immediately that

if Kw(x) = 0 then there is extinction for every λ > 0 whence λw(x) = +∞. We show that the
natural conjecture λw(x) = 1/Kw(x) is false since, even in the irreducible case, we can have a strict
inequality λw > 1/Kw (see Example 4.7); moreover, we also show that there are reducible BRWs
where λw(x) > 1/Kw(x) and λw(y) = 1/Kw(y) for some x, y ∈ X (even though λw(x) = λw(y)).
In [4] the following useful characterization of λw has been proven

λw(x) = inf{λ ∈ R : ∃v ∈ l∞(X),v(x) > 0, λKv ≥ v}. (2.4)

We recall here the concept of projection of a BRW for a continuous-time BRW. It first appeared
in [3] for multigraphs, in [4] for continuous-time BRWs and [25] for generic discrete-time BRWs (in
these papers it is called local isomorphism).

Definition 2.4. A projection of a BRW (X,K) onto (Y, K̃) is a surjective map g : X → Y such

that
∑
z∈g−1(y) kxz = k̃g(x)y for all x ∈ X and y ∈ Y . If there exists a projection of (X,K) onto a

finite (Y, K̃) then (X,K) is called F-BRW.

This is a particular case of the general definition used for discrete-time processes (see for instance
[25, Definition 4.2], [6, Definition 2.2] or [8, Definition 2.3] for the basic properties). The main idea is
to label the points in X by using the alphabet Y in such a way that the total rate at which particles
at x generate children placed in the set of vertices with “label” y, depends only on the labels y and
g(x). If {ηt}t≥0 is a realization of the BRW (X,K) then {

∑
z∈g−1(·) ηt(z)}t≥0 is a realization of the

BRW (Y, K̃).
In particular, there is global survival for (X,K) starting from x if and only if there is global survival

for (Y, K̃) starting from g(x) (for any given λ > 0) which implies λw(x;X,K) = λw(g(x);Y, K̃) for
all x ∈ X (see for instance [4, proof of Proposition 4.5] or [25, before Theorem 4.3]). On the other

hand, Kw(x;X,K) = Kw(g(x);Y, K̃) for all x ∈ X since it is easy to prove, by induction on n, that∑
z∈X k

(n)
xz =

∑
y∈Y k̃

(n)
g(x)y for all n ∈ N, x ∈ X; clearly this also implies that limn→∞

n

√∑
z∈X k

(n)
xz

exists if and only if limn→∞
n

√∑
y∈Y k̃

(n)
g(x)y does. It is worth mentioning that when (X,K) is an

F-BRW, then λw(x) = 1/Kw(x) and there is almost sure global extinction starting with one particle
at x when λ = λw(x) (see for instance [3, 4, 5, 25]).

We observe that (x, y) ∈ EK implies (g(x), g(y)) ∈ EK̃ but the converse is not true; thus, if

(X,K) is irreducible then (Y, K̃) is irreducible as well and the converse is not true in general. If

(X,K) is projected onto (Y, K̃) then, for all q ∈ [0, 1]Y and x ∈ X,

GX(q ◦ g|x) = GY (q|g(x)) (2.5)

that is
1

1 + λK(1X − q ◦ g)(x)
=

1

1 + λK̃(1Y − q)(g(x))

where 1X(x) = 1Y (y) := 1 for all x ∈ X and y ∈ Y . Moreover the following relation between the
probabilities of extinctions hold: q̄X = q̄Y ◦ g.

3. Main results

We know that 1/Kw(x) = λw, where Kw(x) = lim infn→∞(
∑
y∈X k

(n)
xy )1/n, holds in many cases

(but not in general, according to Example 4.7); in order to find more powerful conditions for this
equality to hold, it is natural to define the following.
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Definition 3.1. Given a BRW (X,K) and given ε > 0, x ∈ X, we define Nx,ε := {n ∈ N :
∑
y∈X k

(n)
xy ≥

(Kw(x)− ε)n} and nx(ε) := minNx,ε. We say that

(1) condition (U1) is satisfied if for all ε > 0, supx∈X nx(ε) < +∞;
(2) condition (U2) is satisfied if inf{kxy : x, y such that kxy > 0} > 0.

The simplest example of a BRW satisfying (U1) and (U2) is any (X,K) where X is finite.

Theorem 3.2. Let (X,K) be an irreducible, continuous-time BRW such that supx∈X
∑
y∈X kxy <

+∞. If conditions (U1) and (U2) hold then λw = 1/Kw.

Proof. By irreducibility λw and Kw do not depend on x ∈ X. Fix λ > 1/Kw: we want to prove
that the λ-BRW survives. Choose ε > 0 such that λ (Kw − ε) > 1 + ε and let nx := nx(ε) for all

x ∈ X. We study a discrete-time BRW (X, K̂) where k̂xy = k
(nx)
xy , for all x, y ∈ X. This means that,

in (X, K̂), the 1-step children of a particle living at x are the nx-th generation descendants of the

particle, in (X,K). Clearly if (X, K̂) survives, so does (X,K). The generating function of (X, K̂)
is given by

G(z|x) = G(nx)(z|x)

where G is the generating function of (X,K).

Let νx be the distribution of the total number of children of a particle at x in (X, K̂). Denote

by Ĝx the 1-dimensional generating function of νx which is given by Ĝx(t) ≡ G (t1X |x). Then the

mean number of descendants of a particle at x in (X, K̂) is

Ĝ′x(1) =

∞∑
n=0

nνx(n) = λnxTnx
x > (λ(Kw − ε))nx ≥ 1 + ε.

Since (X,K) is a continuous-time BRW, then G(z|x) = 1/(1 + λ
∑
y∈X kxy(1 − z(y))). We can

determine the first and second moments of the number of n-th generation descendants of a particle

at x, by means of G. Indeed let us denote these moments by mn,x and m
(2)
n,x respectively. If z = t1X

we have

mn,x =
d

dt
G(n)(t1X|x)

∣∣∣
t=1

= λ
∑
y∈X

kxy
d

dt
G(n−1)(t1X|y)

∣∣∣
t=1

= λ
∑
y∈X

kxymn−1,y

and

m(2)
n,x −mn,x =

d2

dt2
G(n)(t1X|x)

∣∣∣
t=1

=
∑
y∈X

λkxy
d2

dt2
G(n−1)(t1X|y)

∣∣∣
t=1

+ 2

∑
y∈X

λkxy
d

dt
G(n−1)(t1X|y)

∣∣∣
t=1

2

.

We denote by ξn,x := (m
(2)
n,x −mn,x)/m2

n,x. Then for all x ∈ X,

ξn,x := 2 +

∑
y∈X λkxy

d2

dt2G
(n−1)(t1X|y)

∣∣∣
t=1(∑

y∈X λkxy
d
dtG

(n−1)(t1X|y)
∣∣∣
t=1

)2 = 2 +

∑
y∈X λkxyξn−1,ym

2
n−1,y(∑

y∈X λkxymn−1,y

)2 . (3.6)

Define ξn := supx∈X ξn,x; a straightforward computation shows that ξ1,x = 2 = ξ1 for all x ∈ X.
From equation (3.6) we have

ξn ≤ 2 + ξn−1 sup
x∈X

∑
y∈X λkxym

2
n−1,y(∑

y∈X λkxymn−1,y

)2 ≤ 2 + ξn−1 sup
x∈X

∑
y∈X λkxym

2
n−1,y(∑

y∈X
√
λkxyδ mn−1,y

)2 ≤ 2 +
ξn−1

δ

7



where δ := λ inf{kxy : x, y such that kxy > 0}. Hence by induction

ξn ≤ 2

n−1∑
k=0

(
1

δ

)k
,

which implies ξnx
≤M := 2

∑N−1
k=0

(
1
δ

)k
where N := supx∈X nx < +∞ by condition (U1).

By Theorem 2.3 in order to prove survival of (X, K̂) it is enough to prove that Ĝx(1− t) ≤ 1− t,
for some t ∈ (0, 1) and for all x ∈ X. Writing the Taylor expansion of Ĝx at 1 and using the

monotonicity of Ĝ′′x(·), we have

Ĝx(1− t) ≤ 1−mnx,xt+
t2

2
Ĝ′′x(1)

= 1−mnx,xt+
t2

2

(
m(2)
nx,x −mnx,x

)
.

Therefore, Ĝx(1− t) ≤ 1− t for all x ∈ X if

t ≤ 2

(
sup
x∈X

m
(2)
nx,x −mnx,x

mnx,x − 1

)−1

.

Since mnx,x > 1 + ε for any x ∈ X and

m
(2)
nx,x −mnx,x

mnx,x − 1
= ξnx,x

m2
nx,x

mnx,x − 1

we get

m
(2)
nx,x −mnx,x

mnx,x − 1
≤M (λM ′)

2N

ε

where M ′ := supx∈X
∑
y∈X kxy. Thus the constant solution is obtained by choosing a strictly

positive t ≤ 2ε/(M(λM ′)2N ). �

We note that in the previous theorem irreducibility is not necessary, it suffices that (X,K) is such

that Kw(x) does not depend on x. In particular this is the case when (X, K̃) can be projected onto
an irreducible BRW, which leads to the following corollary.

Corollary 3.3. Let (X,K) be a BRW which can be projected onto an irreducible BRW (Y, K̃) which
satisfies the hypotheses of Theorem 3.2. Then λw(x;X,K) and Kw(x;X,K) do not depend on x ∈ X
and λw(X,K) = 1/Kw(X,K).

Proof. The independence comes from the equalities λw(x;X,K) = λw(g(x);Y, K̃) andKw(x;X,K) =

Kw(g(x);Y, K̃) and the fact that the two parameters computed on Y do not depend on the vertex

by irreducibility. It is enough now to apply Theorem 3.2 to (Y, K̃). �

As we remarked before, any BRW with X finite satisfies (U1) and (U2), thus the previous corollary
is a generalization, in the irreducible case, of the results for F-BRWs ([4, Proposition 4.5] and [5,
Corollary 4.10(2)]). Morevoer, our result applies to BRWs which do not satisfy (U2) but can be
projected onto a BRW which satisfy it. As an example, consider a BRW on N such that knn+1 =
1 − 1/2n+1, knn := 1/2n+1 and 0 otherwise. This is an irreducible BRW which satisfies (U1) but
not (U2) and can be projected onto a one-point BRW with rate 1; thus Corollary 3.3 applies.

The fact that (U1) is satisfied is the most tricky condition to check in Theorem 3.2; it is therefore
interesting to provide sufficient conditions on K under which condition (U1) holds. This is what
we do in the following theorem. A particularly nice application of this theorem, together with
Theorem 3.2, is given in Section 4.1 where we study the global survival critical parameter of periodic
tree-like BRWs.
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Theorem 3.4. Let (X,K) be a continuous-time BRW such that (U2) holds. Suppose there exist
x0 ∈ X, Y ⊆ X, n0 ∈ N such that

(1) for all x ∈ X, min{n ∈ N : k
(n)
xy > 0 for some y ∈ Y } ≤ n0;

(2) for all y ∈ Y , there exists an injective map ϕy : X → X such that ϕy(x0) = y and
kϕy(x)ϕy(z) ≥ kxz for all x, z ∈ X;

then (U1) holds.

Proof. Let δ = inf{kxy : x, y such that kxy > 0} > 0 and put γxy = kxy/δ for all x, y ∈ X. Define

T̂nx =
∑
w∈X γ

(n)
xw and K̂w := lim infn→∞

n

√∑
w∈X γ

(n)
xw . Clearly γxy ≥ 1 for all x, y ∈ X, Tnx = δnT̂nx

for all x ∈ X and n ∈ N, Kw = δK̂w; moreover n 7→ T̂nx is nondecreasing for all x ∈ X.

Given x ∈ X, let y(x) ∈ X be a vertex such that k
(mx)
xy(x) > 0 and mx := min{n ∈ N : k

(n)
xy >

0 for some y ∈ Y }. Note that, by the hypothesis (2), we can map x0 to y(x) and get

T̂nx0
≤ T̂ny(x) ≤ γ

(mx)
xy(x)

∑
w∈X

γ
(n)
y(x)w ≤ T̂

n+mx
x ≤ T̂n+n0

x , (3.7)

for all n ∈ N (the second inequality is due to γ
(mx)
xy(x) ≥ 1 and the last one holds since mx ≤ n0). By

irreducibility and the definition of K̂w, given ε > 0, there exists n1 ∈ N such that(
T̂n1
x0

) 1
n1+n0 ≥ K̂w −

ε

δ
. (3.8)

Applying (3.7), (
T̂n1+n0
x

) 1
n1+n0 ≥

(
T̂n1
x0

) 1
n1+n0 ≥ K̂w −

ε

δ
.

Now, (
Tn1+n0
x

) 1
n1+n0 = δ

(
T̂n1+n0
x

) 1
n1+n0 ≥ Kw − ε

thus (U1) is satisfied. �

4. Examples

This section is mainly devoted to examples of BRWs where λw = 1/Kw. In Section 4.1 we define
the family of periodic tree-like BRWs, where Theorem 3.2 applies. Next, in Section 4.2 we view
continuous-time branching processes in varying environment as BRWs and determine their critical
parameter. Finally, Section 4.3 provides two examples (Examples 4.4 and 4.5) showing that (U1)

is not necessary for λw = 1/Kw, even when Kw = limn→∞
n
√
Tnx , both in the case where there is

a weak phase (λw < λs) and where there is not (λw = λs). Example 4.6 shows that even in the

irreducible case, it can be that limn→∞
n
√
Tnx does not exist and yet λw = 1/Kw. Example 4.7 is

the first example where λw > 1/Kw.

4.1. Periodic tree-like BRWs. We describe the construction of a class of irreducible BRWs that
we call periodic tree-like BRWs. Let (I, EI) be an irreducible finite oriented graph (possibly with
loops) and let {(Bi,K(i))}i∈I be a family of finite and irreducible BRWs. It might happen that even
if i 6= j then (Bi,K(i)) and (Bj ,K(j)) are isomorphic BRWs. Denote by {ϕij}(i,j)∈EI

a family of

one-to-one maps from the domains D(ϕij) =: B−ij ⊆ Bi onto the images Im(ϕij) =: B+
ij ⊆ Bj . The

main step of the construction is attaching an isomorphic copy of Bi to an isomorphic copy of Bj ,
that is, identifying a point x ∈ B−ij with ϕ(x) ∈ B+

ij for all x ∈ B−ij (each copy of Bi is equipped

with the same family of rates K(i)).
We start by constructing recursively a labeled tree (T , ET ) which is going to be the skeleton

of the BRW. Denote by i0 ∈ I the root of I and let T0 := {(0, i0)} and E(0) := ∅; the label
of (0, i0) is the projection π((0, i0)) := i0. Suppose we defined T0, . . . , Tn and the set of edges
E(n) ⊆

⋃n
i=1 Ti ×

⋃n
i=1 Ti and suppose we defined the label π(x) for all x ∈

⋃n
i=1 Ti; then Tn+1 :=

9
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Figure 1. The graph (I, EI).
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Figure 2. The pieces {Bi}i∈I .

{(x, i) : x ∈ Tn, (π(x), i) ∈ EI} and E(n + 1) := E(n) ∪ {(x, (x, i)) : (x, i) ∈ Tn+1}. Moreover
π((x, i)) := i for all (x, i) ∈ Tn+1. Finally T :=

⋃
n∈N Tn and ET :=

⋃
n∈NE(n). Roughly speaking,

to each point in Tn of label j, we attach the same number of edges exiting j in the graph (I, EI)
and we label the new endpoints accordingly; these new endpoints belong, by definition, to Tn+1.

Note that, by construction, for every i ∈ I there is an infinite number of vertices in T with label
i; moreover, since (I, EI) is connected and finite, the minimal number of steps required to go from
i to i0 is bounded from above by some n1 with respect to i. The same bound holds for the minimal
number of steps required to go from a point with label i in T to the closest point with label i0.

We can construct now the periodic tree-like BRW. Let {(Bx,K(x))}x∈T be a family of BRWs
such that (Bx,K(x)) is an isomorphic copy of (Bπ(x),K(π(x))) (we suppose that Bx ∩ By = ∅ for
all x 6= y). For every (x, y) ∈ T , we attach Bx to By as described above. The resulting irreducible
BRW is denoted by (X,K); note that, for this BRW, condition (U2) holds since it is constructed by
means of a finite number of types of BRWs.

Let us choose x0 in the root set B(0,i0) where (0, i0) is the root of T . We denote by Y the
set of the copies of the vertex x0 (collected inside the copies of the set B(0,i0) inside X, namely
{Bx}x∈T : π(x)=i0). Given any graph, let d(x, y) be the minimal number of steps required to go from
x to y. Since {Bi}i∈I is a finite family of finite sets we have that n2 := supi∈I,x,y∈Bi

d(x, y) < +∞.
Suppose we start from a vertex x ∈ X and we want to reach the set Y ; by construction, x belongs
to a copy of Bj0 for some j0 ∈ I. Let {j0, . . . , jk ≡ i0} be the shortest path from j0 to i0 in (I, EI);
clearly, k ≤ n1. In order to reach Y from x it is enough to exit the copy of Bj0 , to cross a copy of
Bj1 , . . . , Bjk−1

(in this order), to enter a copy of Bjk ≡ Bi0 and then to reach the copy of x0 inside
the last copy of Bjk . Each one of these actions requires at most n2 steps. This implies that the
length of the shortest path from x to Y is at most (n1 + 1)n2 =: n0. Then Theorem 3.4 applies, and
since supx∈X

∑
y∈Y kxy < +∞ we can apply Theorem 3.2 and get λw = 1/Kw.

Here is an explicit example of such a construction: define I := {1, 2, 3}, i0 := 3 and consider the
graph (I, EI) pictured in Figure 1. The corresponding pieces are shown in Figure 2; Figure 3 explains
how to join the pieces. The construction of the labeled tree (T , ET ) can be found in Figure 4 and
the final graph associated to the periodic tree-like BRW is shown in Figure 5 where we denoted by
x0 the “actual x0” contained in the root set and all its copies.

4.2. Continuous-time branching process in varying environment. Consider a continuous-
time branching process where the breeding laws depend on the generation (while the death rate is
always equal to 1); this is called a branching process in varying environment or BPVE. To be precise,
pick a sequence {kn}n∈N of strictly positive real numbers. The reproduction rate of a particle of
generation n is λkn. By interpreting generations as space, the behavior of this process is equivalent
to the global behavior of a BRW on N where knm = kn if n = m− 1 and 0 otherwise.

We denote by λw(n), as usual, the weak critical parameter of the associated BRW on N starting
from n, which is the only critical parameter for this process (λs(n) = +∞ for all n since there is
clearly local extinction for every n). Being the rates strictly positive, there is always a positive
probability of reaching n from 0, hence λw(0) ≤ λw(n). On the other hand in order to survive
starting from 0 the process has to pass by n whence λw(n) ≤ λw(0). Thus λw(n) = λw(0) for every
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Figure 5. The final periodic tree-like BRW.

n ∈ N. The generating function of the associated BRW is

G(q|n) =
1

1 + λkn(1− q(n+ 1))

for all q ∈ [0, 1]N. Easy computations show that Kw = lim infn→∞
n

√∏n−1
i=0 ki. We are going to

prove in the next theorem that λw = 1/Kw. We point out that in this case if Kw = +∞ then λw = 0
and there is survival for every λ > 0 (while it is always true that if Kw = 0 then λw = +∞).

Theorem 4.1. Let {Xt}t≥0 be a continuous-time branching process in varying environment with
reproduction rates {λkn}n∈N. Then λw = 1/Kw.

Proof. We study the survival of the branching process by analyzing its associated continuous-time
BRW. Assume that Kw ∈ (0,∞]. Since λw ≥ 1/Kw for any BRW we just need to show that
the reversed inequality holds. It follows from Theorem 2.3(2) that for this purpose it suffices to
find, for any λ > 1/Kw (where 1/Kw = 0 if Kw = +∞), a solution of λKv ≥ v/(1− v) where
v ∈ [0, 1]N such that v > 0. Recall that Kv(n) = knv(n+ 1) for any n. Fix λ > 1/Kw and choose

ρ ∈ (1/Kw, λ). Then define v(n) = t/(ρn
∏n−1
i=0 ki) where t ≤ (1− ρ

λ )/M is fixed and M is an upper

bound of the sequence {1/(ρn
∏n−1
i=0 ki)}n∈N (whose existence is guaranteed by the fact that v(n)/t

11



converges to 0 as n→∞ by our choice of ρ). Now

λKv(n) =
λknt

ρn+1
∏n
i=0 ki

=
λ

ρ
· t

ρn
∏n−1
i=0 ki

≥ 1

1− tM
· t

ρn
∏n−1
i=0 ki

≥ 1

1− t/(ρn
∏n−1
i=0 ki)

· t

ρn
∏n−1
i=0 ki

=
v(n)

1− v(n)
.

(4.9)

�

Remark 4.2. The identification of the critical parameter λw = 1/ lim infn→∞
n

√∏n−1
i=0 ki does not

tell us anything about the critical behavior when λ = λw. There is not just one possible scenario: in
some cases there might be extinction while in others there might be survival.

Indeed, suppose that limn→∞ kn = k ∈ (0,+∞) and k ≥ kn for every n ≥ n0 (for some n0 ∈ N).
Then by a simple coupling argument when λ = λw = 1/k the BRW starting from n0 is stochastically
bounded from above by a BRW with rightward constant rate 1 which is well-known to die out.

Conversely, consider kn := (1+1/(n+1))2; then λw = 1. Take λ = 1 and define v(n) := 1/(n+2)
for all n ∈ N. We claim that G(1− v) ≤ 1− v, that is λKv ≥ v/(1− v); indeed

λKv(n)− v(n)

1− v(n)
= knv(n+ 1)− 1/(n+ 2)

1− 1/(n+ 2)
=

(1 + 1/(n+ 1))2

n+ 3
− 1

n+ 1

=
1

n+ 1

( (n+ 2)2

(n+ 1)(n+ 3)
− 1
)
> 0.

Hence by using q := 1−v, according to Theorem 2.3 there is global survival starting from any n ∈ N.

4.3. Other examples. One of the main technical tools that we need in this section is the following
theorem (see [7, Theorem 2.2]), which states that there cannot be a weak phase on slowly growing
BRWs.

Theorem 4.3. Let (X,K) be a continuous time non-oriented BRW and let x0 ∈ X. Suppose that
there exists κ ∈ (0, 1]X and {cn}n∈N such that, for all n ∈ N

(1) κ(y)/κ(x0) ≤ cn ∀y ∈ B(x0, n)
(2) κ(x)kxy = κ(y)kyx ∀x, y ∈ X,

where B(x, n) is the ball of center x and radius n w.r. to the natural distance of the graph (X,EK).

If limn→∞ c
1/n
n = 1 and limn→∞ |B(x0, n)|1/n = 1, then Ks(x0, x0) = Kw(x0) and there is no pure

global survival starting from x0. Moreover, in this case, lim infn→∞ n
√
Tnx = lim supn→∞

n
√
Tnx .

In the proof of [7, Theorem 2.2] it was not explicitly mentioned that the limn→∞
n
√
Tnx exists,

but it follows easily by noting that lim infn→∞
2n

√
k

(2n)
x0x0 = lim supn→∞

2n

√
k

(2n)
x0x0 .

The following is an example where condition (U1) is not satisfied, nevertheless λw = 1/Kw < λs
where, in this case, Kw = limn→∞

n
√
Tnx .

Example 4.4. Consider the irreducible continuous-time BRW on the graph obtained by identifying
each vertex of Td (d ≥ 3) with the vertex 0 of a copy of Z (each vertex is attached to a different copy
of Z) and let the rates matrix be the adjacency matrix of the graph. Denote this BRW by (X,K1).
We claim that (X,K1) can be projected into a BRW on Z with the following rates. Let K be defined
by k00 := d, knn+1 := 1 =: kn+1n and 0 otherwise. Denote this new BRW by (Z,K).

Since knm = 1 for n 6= m whenever |m−n| = 1, we conclude that κ(n)knm = κ(m)kmn ∀n,m ∈ N
if and only if κ(n) = 1 ∀n. Then condition (2) in Theorem 4.3 is satisfied. Condition (1) in

Theorem 4.3 is satisfied for any choice of n0 by taking cn = 1 for any n ∈ N. Since c
1/n
n = 1 and

|B(n0, n)|1/n → 1 as n→ +∞ for any choice of n0, we conclude that Ks(Z,K) = Kw(Z,K) ≥ 1/d,

where Kw(Z,K) = limn→∞
n

√∑
y∈X k

(n)
n0y (the existence of the limit is guaranteed by Theorem 4.3).

12



Since projecting a BRW does not modified the value of the critical weak parameter neither the value
of Kw, we conclude that λw(X,K1) = λw(Z,K) = 1/Kw(Z,K) = 1/Kw(X,K1) ≤ 1/d.

Clearly, by going along a copy of Z in X at arbitrarily long distance from the junction with Td,
we have that (U1) is not satisfied; more precisely, if x(n) is a point in a copy of Z in X at distance n

from the junction with Td, then n

√∑
y∈X k

(n)(x(n), y) = 2 < d− ε ≤ Kw(Z,K)− ε for all ε ∈ (0, 1).

Finally, we recall that the critical strong parameter can change in a projection; indeed it is not
difficult to see that λs(X,K1) = 1/(2

√
d) > 1/d ≥ λw(X,K1) for all d ≥ 3. This can be proven

by using the characterization λs(X,K1) = max{λ : Φ(x, x|λ) ≤ 1} where, by standard generating
function computations (see equation (2.1) or the proof of [24, Lemma 1.24]),

Φ(x, x|λ) = 1− d− 2

d− 1

√
1− 4λ2 − d

2(d− 1)

√
1− 4λ2d,

x being a vertex in the tree Td.

In the following example, condition (U1) is not satisfied, nevertheless λw = 1/Kw = λs; as before

Kw = limn→∞
n
√
Tnx .

Example 4.5. Consider the BRW obtained by attaching d copies of the graph N to a common origin
0 and by defining the rates according to the adjacency matrix as in the previous example. As before,
this BRW can be projected onto N but we discuss this example without any projection. As before, the
key for computing λw is to observe that Theorem 4.3 applies by taking κ(x) = cn = 1 for all n ∈ N
and every vertex x. This implies λw = 1/Kw = 1/Ks = λs and Kw = limn→∞

n

√∑
y∈X k

(n)
n0y. What

we have to do now is to compute Ks; we can do that by using the same technique as before. In this
case

Φ(0, 0|λ) = d
1−
√

1− 4λ2

2

which implies 1/Ks = max{λ : Φ(0, 0|λ) ≤ 1} =
√

1/d− 1/d2 =
√
d− 1/d. Thus Kw = ks =

d/
√
d− 1; thus, as before, if x(n) is a point in a copy of Z at distance n from the origin then

n

√∑
y∈X1

k(n)(x(n), y) = 2 < Kw − ε for all ε ∈ (0,Kw − 2). Whence (U1) does not hold.

The following is an example of an irreducible BRW on N, where λw = 1/Kw and limn→∞
n
√
Tnx

does not exist. The idea is to pick outgoing rates which are either 1 or 2 (alternating long stretches
of 1s and 2s in order to keep the sequence oscillating). Then we add rates from each n to 0, so that
the BRW is irreducible. If these rates are small enough, their presence will neither affect λw nor
Kw.

Example 4.6. Consider the BRW on X = N with the following rates. Let K be defined by knn+1 :=
kn ≥ δ > 0, kn0 := εn and 0 otherwise. Observe that {Tn0 /δn}n∈N is nondecreasing; indeed, since
kx/δ ≥ 1,

Tn0
δn

=
∑
x∈N

k
(n)
0x

δn
≤
∑
x∈N

k
(n)
0x

δn
· kx
δ
≤
∑
y∈N

k
(n+1)
0y

δn+1
≤ Tn+1

0

δn+1
.

Choose the sequence {εn}n∈N in such a way that β :=
∑+∞
i=0 εi(

∏i−1
j=0 kj)/δ

i+1 < 1. Since T 0
0 := 1

and

Tn0
δn

=

n−1∏
j=0

kj
δ

+

n−2∑
i=0

εi
δ

( i−1∏
j=0

kj
δ

) Tn−i−1
0

δn−i−1
≤
n−1∏
j=0

kj
δ

+

n−2∑
i=0

εi
δ

( i−1∏
j=0

kj
δ

) Tn0
δn

we get
n−1∏
j=0

kj ≤ Tn0 ≤
∏n−1
j=0 kj

1− β
. (4.10)
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Therefore

Kw = lim inf
n→∞

(Tn0 )
1/n

= lim inf
n→∞

n−1∏
j=0

kj

1/n

. (4.11)

A straightforward computation shows that v(n) := 1/(λn
∏n−1
j=0 kj) is a solution in l∞(N) with

v > 0 of λKv ≥ v whenever λ > 1/Kw; equation (2.4) yields λw ≤ 1/Kw. Since λw ≥ 1/Kw, we
may conclude that λw = 1/Kw. In [4], the following choice for the sequence {kn}n∈N is made. Define
an := dlog 2/ log(1 + 1/n)e, bn := dlog 2/(log 2 log(2 − 1/n))e and {cn}n∈N recursively by c1, c2r =
a2rc2r−1, c2r+1 = b2r+1c2r for any r ≥ 1. Let ki := 1 if i ∈ (c2r−1, c2r] (for some r ∈ N) and ki = 2

if i ∈ (c2r, c2r−1] (for some r ∈ N). It follows from this definition that lim infn→∞

(∏n−1
j=0 kj

)1/n

= 1

and that lim supn→∞

(∏n−1
j=0 kj

)1/n

= 2. Therefore, lim infn→∞ (Tn0 )
1/n

= 1 (note that in this last

explicit example
∑
y∈X k

(n)
xy ∈ [1, 2n] for all x ∈ X and n ≥ 1, thus Theorem 3.2 applies).

In the following example we have an irreducible BRW where λw > 1/Kw; moreover, we also
provide an example of a reducible BRW where λw(x) > 1/Kw(x) and λw(y) = 1/Kw(y) for some
x, y ∈ X (nevertheless λw(x) = λw(y) for all x, y ∈ X).

Example 4.7. To avoid confusion in the notation, in this example we denote the rates by kx,y instead
of kxy. For simplicity we start with a reducible BRW on Z: for all n ∈ N we take kn,n+1 ∈ {1, 2} as

in Example 4.6 in such a way that lim infn→∞
n

√∏n−1
i=0 ki,i+1 = 1 < 2 = lim supn→∞

n

√∏n−1
i=0 ki,i+1,

while k−n,−n−1 := 3− kn,n+1 for all n ∈ N. Note that k−n,−n−1kn,n+1 = 2 for all n ∈ N; thus

n−1∏
i=0

k−i,−i−1 =
2n∏n−1

i=0 ki,i+1

.

Hence, lim infn→∞
n

√∏n−1
i=0 k−i,−i−1 = 1 < 2 = lim supn→∞

n

√∏n−1
i=0 k−i,−i−1. Applying Theo-

rem 4.1 to the process restricted to N and to the process restricted to −N := {−n : n ∈ N}, we have
that λw(n) = 1 = 1/Kw(n) for all n 6= 0. According to Remark 2.2, on the one hand λw(0) ≤ λw(1)
(since 0 → 1), on the other hand (by taking A := Z \ {0} in Remark 2.2) λw(0) ≥ λw(1); hence
λw(0) = 1. In order to compute Kw(0) we note that∑

i∈Z
k

(n)
0,i =

n−1∏
i=0

ki,i+1 +

n−1∏
i=0

k−i,−i−1 =

n−1∏
i=0

ki,i+1 +
2n∏n−1

i=0 ki,i+1

≥ 21+n/2,

whence Kw(0) = lim infn→∞
n

√∑
i∈Z k

(n)
0,i ≥

√
2. This implies that λw(0) > 1/

√
2 ≥ 1/Kw(0); thus

we have a reducible example where λw(0) > 1/Kw(0) and λw(n) = 1/Kw(n) for all n ≥ 1.
Let us modify this BRW to make it irreducible, as we did in Example 4.6. We add kn,0 := εn,

such that β+ :=
∑+∞
i=0 εi(

∏i−1
j=0 kj,j+1) < 1/3 and β− :=

∑+∞
i=0 ε−i(

∏i−1
j=0 k−j,−j−1) < 1/3. Note that,

as in Example 4.6, {Tn0 }n∈N is nondecreasing (in this case δ = 1); moreover T 0
0 = 1 and

Tn0 =

n−1∏
j=0

kj,j+1 +

n−1∏
j=0

k−j,−j−1 +

n−2∑
i=0

[
εi

( i−1∏
j=0

kj,j+1

)
+ ε−i

( i−1∏
j=0

k−j,−j−1

)]
Tn−i−1

0

≤
n−1∏
j=0

kj,j+1 +

n−1∏
j=0

k−j,−j−1 +

n−2∑
i=0

[
εi

( i−1∏
j=0

kj,j+1

)
+ ε−i

( i−1∏
j=0

k−j,−j−1

)]
Tn0 .

Hence
n−1∏
j=0

kj,j+1 +

n−1∏
j=0

k−j,−j−1 ≤ Tn0 ≤
∏n−1
j=0 kj,j+1 +

∏n−1
j=0 k−j,−j−1

1− β+ − β−
,
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and Kw = lim infn→∞

(∏n−1
j=0 kj,j+1 +

∏n−1
j=0 k−j,−j−1

)1/n

≥
√

2. We prove that λw := λw(Z,K) =

1; indeed, suppose, by contradiction, that λw < 1. For any fixed λ ∈ (λw, 1), equation (2.4) guar-
antees the existence v ∈ l∞(Z) such that v(0) > 0 and λKv ≥ v. In particular v+ (defined by
v+(n) := v(n) for all n ∈ N) satisfies λK+v+ ≥ v+ where k+

0,1 = k0,1 + (3 − k0,1)v(−1)/v(1)

and k+
i,j = ki,j for (i, j) ∈ N2 \ {(0, 1)}; this would imply λw(N,K+) < 1. Similarly, v− (de-

fined by v−(n) := v(−n) for all n ∈ N) satisfies λK−v− ≥ v− where k−0,1 = k0,−1 + (3 −
k0,−1)v(1)/v(−1) and k−i,j = k−i,−j for (i, j) ∈ N2 \ {(0, 1)}; this would imply λw(N,K−) < 1.

Note that min(k+
0,1, k

−
0,1) ≤ 3. Suppose, without loss of generality that k+

0,1 ≤ 3. In this case,∑+∞
i=0 εi(

∏i−1
j=0 k

+
j,j+1) ≤ (3/k0,1)

∑+∞
i=0 εi(

∏i−1
j=0 kj,j+1) < 1, whence, by using the same above argu-

ments, Kw(N,K+) = lim infn→∞
n

√∏n−1
j=0 k

+
j,j+1 = 1; thus Kw(N,K+) = 1 > λw(N,K+) and this

is a contradiction (as a consequence of Theorem 2.3).

5. Final Remarks

As we already mentioned, the local critical value λs(x) admits a complete and general description

in terms of the matrix K, namely, λs(x) = 1/ lim supn→∞
n

√
k

(n)
xx . Moreover, at the global criti-

cal value there is always almost sure local extinction starting from x (see [3, 4, 25]). The global
behavior is somehow more elusive. On the one hand, in [4] it has been shown that at the global
critical value there might be almost sure global extinction starting from x as well as global survival
(even in the irreducible case). On the other hand, a general description of λw(x) is still missing
even for irreducible BRWs except for some classes of processes (some of them described in this

paper). The natural candidate, 1/ lim supn→∞
n

√∑
y∈X k

(n)
xy , has been proven wrong in [4] (see

also Example 4.6 for an irreducible BRW). The results in [4] suggested a new candidate, namely

1/ lim infn→∞
n

√∑
y∈X k

(n)
xy , which coincides with λw(x) in many cases, such as BRWs satisfying

Theorem 3.2 and Examples 4.4 and 4.5. In Example 4.7 we showed that this cannot be a general
characterization, not even for irreducible BRWs. Hence, even though general characterizations for
λw(x) in terms of functional inequalities are known (see equation (2.4)), the search for an explicit
expression, similar to the one available for λs(x), in the case of λw(X) is still open.

Acknowledgements

The first and third authors acknowledge support from INDAM-GNAMPA (Istituto Nazionale di
Alta Matematica). The second author thanks FAPESP (Grant 2015/20110-0) for financial support.
This work was carried out during a stay of the second author at Dipartimento di Matematica,
Politecnico di Milano. He is grateful for the hospitality and support.

References

[1] A.B. Adcock, B.D. Sullivan, M.W. Mahoney, Tree-like structure in large social and information networks, Proc.

IEEE ICDM 2013, 1–10.
[2] D. Bertacchi, P. M. Rodriguez, F. Zucca, Galton-Watson processes in varying environment and accessibility

percolation, preprint, arXiv:1611.03286.
[3] D. Bertacchi, F. Zucca, Critical behaviours and critical values of branching random walks on multigraphs,

J. Appl. Probab. 45 (2008), 481–497.
[4] D. Bertacchi, F. Zucca, Characterization of the critical values of branching random walks on weighted graphs

through infinite-type branching processes, J. Stat. Phys. 134 n.1 (2009), 53–65.
[5] D. Bertacchi, F. Zucca, Recent results on branching random walks, Statistical Mechanics and Random Walks:

Principles, Processes and Applications, Nova Science Publishers (2012), 289-340.
[6] D. Bertacchi, F. Zucca, Strong local survival of branching random walks is not monotone, Adv. Appl. Probab. 46

n.2 (2014), 400–421.

[7] D. Bertacchi, F. Zucca, Branching random walks and multi-type contact-processes on the percolation cluster of
Zd, Ann. Appl. Probab. 25 n.4 (2015), 1993–2012.

15



[8] D. Bertacchi, F. Zucca, A generating function approach for branching random walks, to appear on Brazilian

J. Prob., arXiv:1511.07734.
[9] M. Bramson,P. Ney, J. Tao, The population composition of a multitype branching random walk,

Ann. Appl. Probab. 2 n.3 (1992), 575–596.

[10] W. Chen, Fang, W.; Hu, G.; M.W. Mahoney, On the hyperbolicity of small-world and tree-like random graphs,
Lecture Notes Comp. Sci. 7676, 278–288, Springer-Verlag Berlin Heidelberg 2012.

[11] F. den Hollander, M.V. Menshikov, S.Yu. Popov, A note on transience versus recurrence for a branching random

walk in random environment, J. Statist. Phys. 95 n.3-4 (1999), 587–614.
[12] F. Galton, H.W. Watson, On the probability of the extinction of families, Journal of the Anthropological Institute

of Great Britain and Ireland 4 (1875), 138–144.

[13] S. Hautphenne, Extinction probabilities of supercritical decomposable branching processes, J. Appl. Probab. 49
n.3 (2012), 639–651.

[14] S. Hautphenne, G. Latouche, G. Nguyen, Extinction probabilities of branching processes with countably infinitely

many types, Adv. Appl. Probab. 45 n.4 (2013), 1068–1082.
[15] I. Hueter, S.P. Lalley, Anisotropic branching random walks on homogeneous trees, Probab. Theory Related Fields

116 n.1 (2000), 57–88.
[16] F.P. Machado, M. V. Menshikov, S.Yu. Popov, Recurrence and transience of multitype branching random walks,

Stoch. Proc. Appl. 91 (2001), 21–37.

[17] F.P. Machado, S.Yu. Popov, Branching random walk in random environment on trees, Stoch. Proc. Appl. 106
(2003), 95–106.

[18] N. Madras, R. Schinazi, Branching random walks on trees, Stoch. Proc. Appl. 42 n.2 (1992), 255–267.

[19] S. Müller, A criterion for transience of multidimensional branching random walk in random environment, Elec-
tron. J. Probab. 13 n.41 (2008), 1189–1202.

[20] R. Pemantle, A.M. Stacey, The branching random walk and contact process on Galton–Watson and nonhomo-

geneous trees, Ann. Prob. 29 n.4 (2001), 1563–1590.

[21] I. Špakulová, Critical percolation of virtually free groups and other tree-like graphs, Ann. Probab. 37 n.6 (2009),

2262–2296.
[22] A.M. Stacey, Branching random walks on quasi-transitive graphs, Combin. Probab. Comput. 12 n.3 (2003),

345–358.

[23] W. Su, Branching random walks and contact processes on Galton-Watson trees, Electron. J. Probab. 19 n.41
(2014), 12 pp.

[24] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, 138, Cambridge

Univ. Press, 2000.
[25] F. Zucca, Survival, extinction and approximation of discrete-time branching random walks, J. Stat. Phys., 142

n.4 (2011), 726–753.

D. Bertacchi, Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca, via Cozzi 53,
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