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OPTIMIZATION OF THE POSITIVE PRINCIPAL EIGENVALUE FOR

INDEFINITE FRACTIONAL NEUMANN PROBLEMS

BENEDETTA PELLACCI AND GIANMARIA VERZINI

Abstract. We study the positive principal eigenvalue of a weighted problem associated with

the Neumann spectral fractional Laplacian. This analysis is related to the investigation of the

survival threshold in population dynamic. Our main result concerns the optimization of such
eigenvalue with respect to the fractional order s ∈ (0, 1], the case s = 1 corresponding to the

standard Neumann Laplacian: when the habitat is not too hostile in average, the principal

positive eigenvalue can not have local minima for 0 < s < 1. As a consequence, the best
strategy for survival is either following the diffusion with the lowest possible s, or with s = 1,

depending on the size of the domain. In addition, we show that analogous results hold for the
standard fractional Laplacian in RN , in periodic environments.

1. Introduction

Let u = u(x, t) denote the density of a population in position x at time t. The common
mathematical model [30] for the evolution of u, in case it undergoes some kind of dispersal, is
given by a reaction-diffusion equation

ut + Lu = f(x, u),

on some spatial domain Ω ⊂ RN , N ≥ 1, with suitable boundary conditions. The internal
reaction f(x, u), which takes into account also the heterogeneity of the habitat, can take various
forms: for our purposes it is sufficient to consider the simplest case, i.e. that of a logistic
nonlinearity

f(x, u) = m(x)u− u2,

where the weight m changes sign, distinguishing regions of either favorable or hostile habitat.
The diffusion operator is denoted by L, and in principle it can incorporate a number of different
features of the model. Here, we consider linear, homogeneous and isotropic, but possibly non-
local, operators. If the individuals tend to move within the nearest neighborhoods, then the
spatial spread of u is triggered by an underlying random walk of Brownian type, and it is
customary to choose L = −K∆, for some motility coefficient K > 0. On the other hand, in
case the resources are sparse, it is expected that more elaborate hunting strategies, allowing for
long jumps, may favour the population survival. Actually, this guess has been supported also
by experimental studies [38, 22]. In this case the underlying random walk is of Levy flight-type,
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rather that Brownian, and one is lead to consider fractional diffusion operators, where −∆ is
replaced by (−∆)s [28, 36].

When 0 < s < 1 the fractional Laplacian in the entire space RN can be defined via different—
but equivalent—definitions [7]: for instance via an integral expression

(−∆RN )su(x) = CN,s P.V.

∫
RN

u(x)− u(ξ)

|x− ξ|N+2s
dξ,

for some dimensional constant CN,s, or as a pseudo-differential operator, in terms of its Fourier
transform:

(1) ̂(−∆RN )su(ξ) = |ξ|2sû(ξ).

When dealing with a Lipschitz bounded domain Ω ⊂ RN , the situation is more variegated and
different, non-equivalent operators have been proposed, in dependence of how the boundary
conditions are interpreted. This complexity of the model is particularly evident when dealing
with Neumann, i.e. no flux boundary conditions, see [2, 14]. In this paper we consider the
boundary as a “reflecting barrier”, namely a barrier that, in the discrete time counterpart, acts
on the long jump by means of an elastic reflection; this corresponds to the so-called “mirror
reflection” case considered in [2]. Reasoning in terms of random walk and imposing the presence
of a reflecting barrier on ∂Ω, one is lead, at least heuristically, to consider the Neumann spectral
fractional Laplacian, i.e.

(2) (−∆N)su =

∞∑
k=1

µsk

(∫
Ω

uφk dx

)
φk,

where 0 = µ0 < µ1 ≤ µ2 ≤ . . . denote the Neumann eigenvalues of −∆ in H1(Ω), and (φk)k
the corresponding normalized eigenfunctions. This operator has been considered in different
models and applications, see for instance [8, 35, 15]. The relation between the Neumann spectral
fractional Laplacian and random walks with long jumps and reflections has been discussed in
[29], in dimension N = 1, and those arguments can be easily extended to higher dimensions in
case Ω is a rectangle: in fact, the correspondence holds true as far as the reflecting barrier can
be treated by the method of images, by introducing reflected domains in which the motion can
be continued, and then by quotienting by the symmetries. Several other interpretations of the
boundary as a reflecting barrier are available in the literature: for instance, in [1] the barrier
acts on the long jump by just stopping the particle at the boundary, without any rebound; in
[14], also the action of the boundary is not deterministic.

Incidentally, another established point of view is that of dealing with a periodically fragmented
environment in RN [3, 4, 32, 6]. Actually, for our purposes, the treatment of the periodic model
is very similar to that with mirror reflections, so that our results can be rewritten also in this
context, see below.

Another controversial feature of the model we are describing regards the form of the generalized
diffusion coefficient: a number of contributions deals with the difficulty of properly defining (and
measuring) the motility coefficient K [39, 37, 20]. Motivated by dimensional arguments and
modeling ones, in this context K is supposed to be dependent on s, and a commonly accepted
expression for it has been introduced in [28, Section 3.5] as

K(s) =
σ2s

τ

(see also [17, 18]), where the scales σ and τ are respectively characteristic length and time
associated with the diffusion process. Here, for simplicity, we assume τ = 1 and write d = σ2 > 0.
Summing up, we consider the equation

(3) ∂tu+ ds(−∆N)su = m(x)u− u2, x ∈ Ω,
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for 0 < s ≤ 1, where s = 1 corresponds to the case of standard (local) diffusion.
A main question related to (3) concerns survival of the population, that is, the identification of

conditions (on Ω, s, d,m) which imply that solutions to (3) do not vanish asymptotically for t→
+∞. When s = 1, it is well known that such conditions are related to the existence of a positive
steady state, which attracts every non-negative non-trivial solution. In turn, the existence of
such steady state can be expressed in terms of the principal eigenvalue of the associated linearized
problem [21, 11, 3]. These results can be extended also to the fractional setting [4, 23, 29].

Taking m ∈ L∞(Ω), two different situations may occur in dependence on its average: if m has
non-negative average (and it is non-trivial) then there is always survival. On the other hand, in
the case

(4) m ∈M :=

{
m ∈ L∞(Ω) :

∫
Ω

m < 0, m+ 6≡ 0

}
,

the survival is related to the weighted eigenvalue problem

(5) ds(−∆N)su = λmu, x ∈ Ω.

More precisely, in Section 2 we show that, under condition (4), there exists a unique positive
principal eigenvalue

λ1 = λ1(m, d, s) > 0,

with a positive eigenfunction. Moreover, reasoning as in [4, Theorem 1.2], one has that solutions
to (3) survive (i.e. they tend to the unique positive steady state, as t → +∞) if and only if
λ1(m, d, s) < 1. Then, natural questions concern the dependence of λ1 on the parameters of the
problem, and in particular its optimization. Note that, through a change of variables, rescaling
the size of the domain is equivalent to rescaling the diffusion coefficient d while keeping Ω fixed.
Here we choose this second point of view, and this is the reason why we do not consider explicitly
the dependence of the eigenvalue on the domain.

In the case s = 1 of standard diffusion, the dependence of λ1 on d can be easily scaled out and
the eigenvalue actually depends only on m. Accordingly, the problem of minimizing λ1 has been
mainly considered, when m varies within a suitable admissible class, see [9, 10, 11, 19, 27, 33, 24,
13] and references therein. The typical result obtained is that the minimizer m exists and it is
of bang-bang type (i.e. it coincides with its maximum value m > 0 on some D ⊂ Ω, and with its
minimum −m < 0 on Ω \D). Furthermore, the best environment has a few number of relatively
large favorable regions. As observed in [9], this has significant implications for the design of
wildlife refugees. Part of these results can be extended also to the case s < 1, as discussed in
Section 5 below, but our main interest in the present paper is to analyze the properties of the
map

(m, d, s) 7→ λ1(m, d, s),

aiming at optimizing λ1, mainly with respect to 0 < s ≤ 1. From a modelistic viewpoint, this
amounts to wonder whether, for given population and habitat, the Brownian hunting strategy
is more effective than the long jumps one, in order to survive. The good starting point in our
analysis is that the map s 7→ λ1(m, d, s) is smooth in (0, 1] (see Section 2). Up to our knowledge,
there are very few contributions concerning the optimization of the order s in fractional diffusion
equations; in particular, a related but different problem has been considered in [34].

It is worth noticing that part of the cited above literature does not treat exactly problem (5)
(with s = 1), but rather the related version

(6) −d∆u−mu = λ̃u, x ∈ Ω.

It is easy to show that λ1 < 1 if and only if λ̃1 < 0, therefore both these eigenvalues play
an analogous role for survival. One main advantage of the latter problem is that a principal
eigenvalue λ̃1 always exists, regardless of the average of m; on the other hand, we prefer to deal
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with (5) because, among other properties, the dependence of λ1 on d can be treated in a simpler
way. Indeed, it is easy to see that

λ1(m, d, s) = dsλ1(m, 1, s),

and this property allows us to prove that, if d is very large or very small, with respect to the
size of Ω, then s 7→ λ1(m, d, s) becomes monotone, and therefore it is minimized either for s = 1
or for s small. More precisely, recalling that µ1 > µ0 = 0 denotes the first positive Neumann
eigenvalue of −∆ in H1(Ω), we have the following.

Proposition 1.1. Let Ω and m be fixed and satisfying (4). Then:

• if d ≥ 1

µ1
then the map s 7→ λ1(m, d, s) is monotone increasing in (0, 1];

• for any 0 < a < 1 there exists d > 0, depending only on a, Ω and m, such that if d ≤ d
then the map s 7→ λ1(m, d, s) is monotone decreasing in [a, 1].

Recall that d is related to a characteristic length associated with the diffusion process. As we
already noticed, a small d corresponds to the case of a domain which is large, with respect to the
diffusion characteristic length, and vice versa. As a consequence, the biological interpretation of
Proposition 1.1 is that in very large environments the local diffusion is more successful, while in
very small ones a nonlocal strategy would be preferable. Similar effects in related models were
already noticed in [6], Theorem 1.5 (and the subsequent discussion).

From Proposition 1.1 it is clear that, when d increases from d to 1/µ1, then the map s 7→
λ1(m, d, s) has a transition from decreasing to increasing, and therefore it develops internal
critical points. The main result we obtain in this paper is that, if the habitat is not too hostile
in average, in such transition only internal maxima appear.

Theorem 1.2. Let M,ρ, δ ∈ R+ and set

(7) M̃ :=
{
m ∈M : ‖m‖L∞ ≤M, ∃Bρ(x0) ⊂ Ω with m|Bρ(x0) ≥ δ

}
.

There exists A = A(M,ρ, δ) > 0 such that, if m ∈ M̃ and

(8) −A ≤
∫

Ω

m < 0,

then, depending on d > 0, either the map s 7→ λ1(m, d, s) is monotone, or it has exactly one
maximum in (0, 1). In particular, the limit λ1(m, d, 0+) is well defined for every d, and

inf
0<s≤1

λ1(m, d, s) =

{
λ1(m, d, 1) when 0 < d ≤ d∗

λ1(m, d, 0+) when d ≥ d∗,

where d∗ = λ1(m, 1, 0+)/λ1(m, 1, 1).

Therefore, if m ∈ M̃ and (8) holds, two main consequences follow: the first is that, in the
second case treated by Proposition 1.1, we can remove the assumption s ≥ a, covering the full
interval 0 < s ≤ 1; the second is that the best choice of s is always either the smallest one, or the
biggest one. Let us observe that non-degeneracy conditions as the one present in (7) have been
already considered in the literature to avoid an excessive fragmentation of the favorable region,
see for instance Theorem 3.1 in [9].

One may wonder whether assumption (8) is merely technical, and Theorem 1.2 may hold for
more general m. At the end of Section 4 we provide some simple numerical simulations which
suggest that this is not the case and that, when the environment is strongly hostile in average,
the map s 7→ λ1(m, d, s) may present interior minima, as well as multiple local extrema (see
Figure 2).
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As we mentioned, one can also deal with the fractional Laplacian on the whole RN , instead
of the Neumann spectral one, by assuming that the environment is periodic. More precisely,
following [4], let us introduce the hyperrectangle Cl = (0, l1) × · · · × (0, lN ) ⊂ RN , and let us
assume that

m : RN → R is Cl-periodic.

In case m|Cl satisfies (4) (with Ω replaced by Cl), we have the existence of a positive principal
eigenvalue λper = λper(m, d, s), with positive periodic eigenfunction, for the problem

(9) ds(−∆RN )su = λmu, x ∈ TN := RN/Cl.
Moreover, the solutions to the problem

∂tu+ ds(−∆RN )su = m(x)u− u2, x ∈ RN ,
where no periodicity condition is assumed on u, survive if and only if λper < 1. Actually,

these results are proved in [4] in terms of the eigenvalue λ̃per corresponding to (6), but the two
conditions can be easily proved to be equivalent.

Now, it is easy to be convinced that in some particular cases the Neumann spectral eigenvalue
problem (5) and the periodic one (9) are equivalent. For instance, if m is defined in a hyper-
rectangle Ω, then one can extend it to 2Ω by even reflection, and then to RN by periodicity;
hence, using the uniqueness properties of the principal eigenfunctions, one can reduce the Neu-
mann problem in Ω to the periodic one; also the opposite reduction can be done, in case m is
Cl-periodic, and even with respect to the directions of its sides (up to translations). In any case,
also for general Ω and m, the two problems have the same structure. Indeed, let Cl be fixed and
let (νk)k, (ϕk)k denote the periodic eigenvalues and eigenfunctions of −∆ in Cl (which can be
explicitly computed). Then we can introduce the periodic spectral fractional Laplacian as

(10) (−∆per)
su =

∞∑
k=1

νsk

(∫
Cl
uϕk dx

)
ϕk.

The following result allows us to connect spectral operators with periodic ones.

Proposition 1.3. If u is continuous and Cl-periodic then

(−∆RN )su = (−∆per)
su, x ∈ Cl.

Once we have interpreted the periodic operator as a spectral one, we can extend the analysis
of the Neumann problem also to the periodic case. The key observation, with this respect, is
that the spectrum of the Neumann problem and that of the periodic one share the same main
properties, namely, they both consist in a diverging sequence of eigenvalues, with first, simple
element µ0 = ν0 = 0, and they both are associated with a basis of eigenfunctions which are
orthogonal in H1 and orthonormal in L2. Then all the results for the Neumann case hold true
also in the periodic one. In particular, we have the following counterpart of Theorem 1.2 in the
periodic setting.

Theorem 1.4. Let m be Cl-periodic. There exists A = A(M,ρ, δ) > 0 such that, if m|Cl ∈ M̃
and

−A ≤
∫

Ω

m < 0,

then, for every d > 0, the map s 7→ λper(m, d, s) is either monotone or it has exactly one internal
maximum in (0, 1), and

inf
0<s≤1

λper(m, d, s) =

{
λper(m, d, 1) when 0 < d ≤ d∗

λper(m, d, 0
+) when d ≥ d∗,

where d∗ = λper(m, 1, 0
+)/λper(m, 1, 1).
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Let us point out that with our techniques we can also deal with other fractional spectral
operators. For instance, the Dirichlet case can be treated in an even easier way, since in such
case zero is not an eigenvalue of −∆.

The paper is structured as follows. In Section 2 we show the existence and regularity properties
of eigenvalues and eigenfunctions associated with (5). In Section 3 we collect a number of results
about the dependence of λ1(m, d, s) on d and s. We exploit such results in Section 4 to conclude
the proof of Theorem 1.2. In Section 5 we briefly discuss the optimization of λ1 with respect to
m. Finally, Section 6 is devoted to the treatment of the periodic case.

Acknowledgments. We would like to thank Alessandro Zilio for his precious help with the
numerical simulations, and Marco Fuhrman and Sandro Salsa for the fruitful discussions.

Notation. We write (·, ·) for the scalar product in L2(Ω). We will denote with φk the eigen-
functions of the classical Laplace operator in Ω with Neumann homogeneous boundary condi-
tions, normalized in L2(Ω). Their associated eigenvalues will be denoted by µk. For a function
u ∈ L2(Ω), we write

(11) u = u0 +

∞∑
k=1

ukφk, where u0 =
1

|Ω|

∫
Ω

u, uk = (u, φk), k ≥ 1.

Often we will write u = u0 + ũ. Finally, C denotes every (positive) constant we do not need to
specify, whose value may change also within the same formula.

2. Preliminary Results

In all the paper we will assume, up to further restrictions, d > 0, 0 < s ≤ 1, and m ∈ M,
defined in (4). Taking into account the L2-spectral decomposition (see (11)), we consider the
functional space

(12) Hs(Ω) =

{
u = u0 +

∞∑
k=1

ukφk ∈ L2(Ω) :

∞∑
k=1

µsku
2
k < +∞

}
.

Note that, as shown in [8, Lemma 7.1], this definition of Hs(Ω) is equivalent to the usual one
given in terms of the Gagliardo semi-norm

[u]22,s =

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

In Hs(Ω) it is well-defined the fractional differential operator

(−∆N)su =

∞∑
k=1

µskukφk,

and, taking into account (11), the norm in Hs(Ω) can be written as

‖u‖2Hs = u2
0 +

∞∑
k=1

µsku
2
k =

(
1

|Ω|

∫
Ω

u

)2

+ ((−∆N)su, u).

In the following, we will prove the existence of a double sequence of eigenvalues for problem (5),
and some qualitative properties of the eigenfunctions.

Proposition 2.1. Problem (5) admits two unbounded sequences of eigenvalues:

· · · ≤ λ−2 ≤ λ−1 < λ0 = 0 < λ1 < λ2 ≤ λ3 ≤ . . .
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Furthermore, both the eigenvalues and the (normalized) eigenfunctions depend continuously on
m.

In particular,

(13) λ1(m, d, s) = ds min
Hs(Ω)

{
((−∆N)su, u) :

∫
Ω

mu2 = 1

}
.

Proof. The results for s = 1 are standard, so we restrict to the case 0 < s < 1. First of all,
the simple eigenvalue λ0 = 0, with constant eigenfunction, can be computed directly. The other
eigenvalues can be obtained by restricting to the space

V := {u ∈ Hs(Ω) : (u, 1) = 0} .

Indeed, in this space we can use the equivalent scalar product

(u, v)V =

∞∑
k=1

µskukvk

and we have that the linear operator T : V → V defined by

(Tu, v)V =

∫
Ω

muv

is symmetric and compact, thanks to the compact embedding of Hs(Ω) in L2(Ω) (recall the
definition of Hs(Ω) in (12)). As a consequence, we can apply standard results in spectral theory
of self-adjoint compact operators to obtain the existence and the variational characterization of
the eigenvalues (see e.g. [12, Propositions 1.3, 1.10]), as well as the continuity property of the
spectrum (see the book by Kato [25]). �

Remark 2.2. Alternatively, following [5, 8], the above result can be obtained by means of an
extension problem in C := Ω× (0,∞). Indeed, let 1− 2s =: a ∈ (−1, 1) and

H1;a(C) :=

{
v = v0 + ṽ : v0 ∈ R,

∫
C
ya
(
|∇ṽ|2 + ṽ2

)
dxdy < +∞

}
.

It is known (see [31]) that, for ∂Ω sufficiently smooth, the elements of Hs(Ω) coincide with the
traces of functions in H1;a(C). As a consequence, any u ∈ Hs(Ω) admits a unique extension
v ∈ H1;a(C) which achieves

(14) min

{∫
C
ya|∇v|2 dxdy : v(x, 0) = u(x)

}
.

Then (5) is equivalent to
div(ya∇v) = 0 in C
∂νv = 0 on ∂Ω× (0,∞)

D(s)ds∂aνv(x, 0) = λm(x)v(x, 0) in Ω,

where the structural constant D(s) is known to be

D(s) = 22s−1 Γ(s)

Γ(1− s)
,

so that one has the following characterization:

λ1(m, d, s) = dsD(s) min
H1;a(C)

{∫
C
ya|∇v|2dxdy :

∫
Ω

mv2(x, 0)dx = 1

}
.

Note that the last formulation can be rewritten in terms of a suitable Rayleigh quotient.
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Remark 2.3. In the next sections we will also deal with

(15) −λ−1(m, d, s) = ds min
Hs(Ω)

{
((−∆N)su, u) :

∫
Ω

mu2 = −1,

∫
Ω

mu = 0

}
.

Notice that λ−1 is actually a second eigenvalue and it may not be simple. Indeed, since m has
negative mean, the constant eigenfunction ψ0 associated with λ0 = 0 satisfies∫

Ω

mψ2
0 < 0.

As a consequence, without imposing that ∫
Ω

mu = 0

the minimization problem (15) has the solution λ0 = 0.

Proposition 2.4. Let ψ be any eigenfunction of problem (5). Then

ψ ∈ H2s(Ω).

Furthermore, ψ ∈ C0,α(Ω) for every α < 2s, whenever s ≤ 1/2, and ψ ∈ C1,α(Ω) for every
α < 2s− 1, in case s > 1/2.

Proof. Since m ∈ L∞(Ω), equation (5) implies that (−∆N)su ∈ L2(Ω), that is, recalling (11)∑
k

(µskuk)2 < +∞;

the Sobolev regularity follows by the definition of H2s(Ω) given in (12). On the other hand, the
Hölder regularity of the eigenfunctions is a consequence of the regularity theory developed by
Caffarelli and Stinga [8, Theorem 1.5], and of a standard bootstrap argument. �

Thanks to Proposition 2.1 we have that there exists a solution to the linear problem

(16) ds(−∆N)sψ = λ1(m, d, s)mψ x ∈ Ω,

and now we turn to the study of the properties of the first eigenvalue λ1 and the associated
eigenfunction ψ. First of all, in order to show that λ1 is simple, we will exploit the following
lemma, which concerns a convexity property of the Hs(Ω) semi-norm.

Lemma 2.5. Let u ∈ Hs(Ω), 0 < s < 1. Then u± ∈ Hs(Ω) and

(17) ((−∆N)su, u) ≥
(
(−∆N)su+, u+

)
+
(
(−∆N)su−, u−

)
,

and the strict inequality holds whenever u± are both nontrivial.

Remark 2.6. The lemma enlightens a substantial difference between the nonlocal and the local
case. Indeed, when s = 1, the equality sign in (17) always holds for any u. A similar result in
the periodic case has been shown in [4, Proposition 3.1].

Proof of Lemma 2.5. Let v ∈ H1;a(C) be the extension of u given in (14). Then v± ∈ H1;a(C)
and, taking into account Remark 2.2, their traces u± belong to Hs(Ω). Therefore

((−∆N)su, u) =

∫
C
ya|∇v|2 dxdy =

∫
C
ya|∇v+|2 dxdy +

∫
C
ya|∇v−|2 dxdy

≥
∫
C
ya|∇w+|2 dxdy +

∫
C
ya|∇w−|2 dxdy

=
(
(−∆N)su+, u+

)
+
(
(−∆N)su−, u−

)
,

where w± solve the minimization problem (14) with traces u±.
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Finally, if v± are both nontrivial, the strong maximum principle [5, Remark 4.2.] implies that
they cannot solve (14), thus the strict inequality holds. �

Proposition 2.7. The eigenvalue λ1(m, d, s) is simple, and the associated eigenfunction does
not change sign. Moreover the map

M× R+ × (0, 1] 3 (m, d, s) 7→ λ1

is analytic.

Proof. The fact that λ1 is simple, with one-signed eigenfunction, can be deduced arguing as in
[12, Theorem 1.13], taking into account Lemma 2.5.

To prove the second part of the statement, let (m∗, d∗, s∗) ∈ M × R+ × (0, 1] be fixed and
λ1, ψ1 denote the first eigenvalue and the non-negative, normalized first eigenfunction for the
corresponding problem (16) with weightm∗, coefficient d∗ and exponent s∗. If σ > 0 is sufficiently
small we have that, by Propositions 2.1 and 2.4, the map

F : M× R+ × (s∗ − σ, s∗ + σ)×H2(s∗−σ)(Ω)× R+ → L2(Ω)× R,

F(m, d, s, u, λ) =

(
ds(−∆N)su− λmu,

∫
Ω

mu2 − 1

)
,

is well defined, and

F(m∗, d∗, s∗, ψ1, λ1) = (0, 0).

In order to reach the conclusion, we are going to apply the Implicit Function Theorem to F ,
expressing the pair (u, λ) as function of (m, d, s). To this aim, computing the derivative one
obtains

∂(u,λ)F(m∗, d∗, s∗, ψ1, λ1)[v, l] =

 (d∗)s
∗
(−∆N)s

∗
v − λ1m

∗v − lm∗ψ1

2

∫
Ω

m∗ψ1v

 .

By Fredholm’s Alternative, it suffices to show that the linear operator above is injective and this
is a straightforward consequence of (13) and of the fact that λ1 is simple. �

As a direct consequence of Proposition 2.7 we have the following result.

Corollary 2.8. Let us denote with ψ1 the non-negative, normalized eigenfunction corresponding
to λ1. For every 0 < s1 < s2 ≤ 1, the map

F : M× R+ × (s1, s2]→ R+ ×H2s1(Ω), F (m, d, s) = (λ1, ψ1)

is smooth.

Remark 2.9. It is natural to wonder whether the eigenfunction corresponding to λ1 can be
chosen to be strictly positive on Ω. To obtain this result, one may invoke the strong maximum
principle [5, Remark 4.2, Proposition 4.11]. This requires more regularity, and the proof can be
completed in case m ∈ C0,α(Ω) (and ∂Ω is smooth) by using [8, Theorem 1.4]. For a general
m ∈ L∞(Ω), we can only deduce that the eigenfunction can not vanish on a set with non-empty
interior, but we can not exclude vanishing points, in particular when s is small.

To end this section, we provide some estimates on λ1(m, d, s).

Proposition 2.10. It holds

λ1(m, d, s) ≤ (dµ1)s−1λ1(m, d, 1).
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Proof. Let ψ1 denote the first normalized eigenfunction associated with λ1(m, d, 1). Then

λ1(m, d, s) ≤ (ds(−∆N)sψ1, ψ1) =
∑
k

(dµk)s(ψ1)2
k =

∑
k

(dµk)s−1dµk(ψ1)2
k

≤ (dµ1)s−1
∑
k

dµk(ψ1)2
k = (dµ1)s−1λ1(m, d, 1) �

Proposition 2.11. It holds

(18) λ1(m, d, s) ≥
dsµs1

∣∣∣∣∫
Ω

m

∣∣∣∣
sup

Ω
m

∣∣∣∣∫
Ω

m

∣∣∣∣+ ‖m‖2L2

.

Proof. To start with, notice that, using (11), the following Poincaré inequality holds:

(19) u ∈ Hs(Ω), u0 = 0 =⇒
∫

Ω

u2 ≤ 1

µs1
((−∆N)su, u).

Indeed, ∫
Ω

u2 =
∑
k≥1

u2
k ≤

1

µs1

∑
k≥1

µsku
2
k =

1

µs1
((−∆N)su, u).

Using the decomposition ψ1 = h+ ψ̃1, with h ∈ R and ψ̃1 with zero average, we can exploit the
fact that (−∆N)sψ1 has zero average to get

0 = λ1(m, d, s)

∫
Ω

m(h+ ψ̃1) =⇒ h = −
∫

Ω
mψ̃1∫

Ω
m

.

Then

ds((−∆N)sψ1, ψ1) = λ1(m, d, s)

∫
Ω

m(h+ ψ̃1)2

= λ1(m, d, s)

{∫
Ω

mψ̃2
1 −

1∫
Ω
m

[∫
Ω

mψ̃1

]2
}

≤ λ1(m, d, s)

{
sup

Ω
m+

1∣∣∫
Ω
m
∣∣‖m‖2L2

}∫
Ω

ψ̃2
1

≤ λ1(m, d, s)

µs1

{
sup

Ω
m+

1∣∣∫
Ω
m
∣∣‖m‖2L2

}
((−∆N)sψ1, ψ1),

where we used (19) in the last line. Then (18) holds. �

3. Dependence on d and s

Throughout this section m ∈M is fixed, therefore, for easier notation, we omit the dependence
on m and write λ1 = λ1(d, s).

We first observe that, according to the characterization (13), the parameter d only affects the
first eigenvalue λ1 and not the corresponding eigenfunction.

Lemma 3.1. For any d1, d2 ∈ R+ we have that

λ1(d2, s) =
ds2
ds1
λ1(d1, s),

and both eigenvalues share the same eigenfunction.
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Proof. The lemma is an immediate consequence Propositions 2.1 and 2.7. Indeed, let ψ1 be the
first positive normalized eigenfunction associated with λ1(d1, s). Then

ds2(−∆N)sψ1 =
ds2
ds1

(ds1(−∆N)sψ1) =
ds2
ds1
λ1(d1, s)mψ1.

Therefore, ψ1 is also a positive eigenfunction associated with the eigenvalue ν = ds2λ1(d1, s)/d
s
1.

Taking into account that λ1(d2, s) is simple we obtain that λ1(d2, s) = ds2λ1(d1, s)/d
s
1, with same

eigenfunction as λ1(d1, s). �

In particular, we obtain that, for any d > 0,

(20) λ1(d, s) = dsλ1(1, s).

Proposition 3.2. For any fixed s ∈ (0, 1], the map

d 7→ λ1(d, s)

is monotone increasing. On the other hand, for any fixed d ≥ 1

µ1
, the map

s 7→ λ1(d, s)

is monotone increasing.

Proof. The first statement is an easy consequence of equation (20), which implies that λ1(d, s)
is monotone increasing with respect to d as λ1(1, s) is positive.

On the other hand, let dµ1 ≥ 1 and s1 < s2. For any fixed u, we have

λ1(d, s1) ≤ ds1((−∆N)s1u, u) =
∑
k

(dµk)s1u2
k ≤

∑
k

(dµk)s2u2
k = ds2((−∆N)s2u, u).

Recalling (13), we obtain that λ1 is non-decreasing in s. To conclude, let us assume by contradic-
tion that λ1(d, s1) = λ1(d, s2), and let u denote the first eigenfunction associated with λ1(d, s2).
As
∫

Ω
mu2 = 1, by the above inequality we deduce that u achieves also λ1(d, s1); thus dµ1 = 1

and uk = 0 whenever k ≥ ν1 + 1, where ν1 is the multiplicity of µ1 as a Neumann eigenvalue of
−∆. As a consequence,

λ1(d, s1)mu = ds1(−∆N)s1u =

ν1∑
k=1

(dµ1)s1ukφk =

ν1∑
k=1

ukφk = u,

yielding a contradiction since m is not constant. �

Proposition 3.3. For any 0 < a < 1, let

d = min
s∈[a,1]

exp
− ∂
∂sλ1(1, s)

λ1(1, s)
.

Then
∂

∂s
λ1(d, s) < 0 for every s ∈ [a, 1] and d < d.

Proof. Differentiating (20) with respect to s we have

∂

∂s
λ1(d, s) = ds

[
(log d)λ1(1, s) +

∂

∂s
λ1(1, s)

]
.

By Propositions 2.7 and 2.1, for any a ∈ (0, 1) the map s 7→ λ1(1, s) is C1([a, 1]), and λ1(1, s) > 0
for s ∈ [a, 1]. Then, the conclusion easily follows. �
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Remark 3.4. Analogously, one can show that, for any 0 < a < 1,

∂

∂s
λ1(d, s) > 0 for every s ∈ [a, 1]

whenever

d > d = max
s∈[a,1]

exp
− ∂
∂sλ1(1, s)

λ1(1, s)
.

Note that Proposition 3.2 implies that d ≤ 1/µ1, for every a ∈ (0, 1), implying

∂

∂s
λ1(1, s) ≥ ln(µ1)λ1(1, s), s ∈ (0, 1].

This provides a uniform condition on d in order to have λ1(d, s) increasing for s ∈ (0, 1). On
the other hand, we are not able to give an analogous uniform assumption implying the opposite
monotonicity.

Proof of Proposition 1.1. Proposition 1.1 is an immediate consequence of Propositions 3.2
and 3.3. �

Next we turn to the study of the intermediate values of d, when the map s 7→ λ1(d, s) has a
transition in its monotonicity properties. In the following, we will denote the normalized first
eigenfunction associated with λ1(d, s), which does not depend on d, as ψs:

(21) ds(−∆N)sψs = λ1(d, s)mψs,

∫
Ω

mψ2
s = 1.

Lemma 3.5. Let s̄ ∈ (0, 1), 0 < ε < s̄, and w ∈ H s̄+ε(Ω) be such that

(22)

∫
Ω

mψs̄w = 0.

Then there exists a C2 curve u : (s̄− ε, s̄+ ε) 7→ H s̄+ε(Ω) such that

(23) u(s̄) = ψs̄, u̇(s̄) = w,

∫
Ω

mu2(t) = 1 for every t.

Furthermore

(24)
(
ds̄(−∆N)s̄ψs̄, ü(s̄)

)
= −λ1(d, s̄)

∫
Ω

mw2.

Proof. Let us define γ(t) := ψs̄ + (t− s̄)w, then

u(t) :=
γ(t)√∫

Ω
mγ2(t)

satisfies all the requested properties.
Indeed, u ∈ H s̄+ε(Ω) by Proposition 2.4, and (21) yields the first equality in (23), while the

third one holds by the definition of u. Moreover, (22) implies

u̇(s̄) =
γ̇(s̄)√∫

Ω
mγ2(s̄)

− γ(s̄)[∫
Ω
mγ2(s̄)

]3/2 ∫
Ω

mγ(s̄)γ̇(s̄) = w − ψs̄
∫

Ω

mψs̄w = w.

In addition, deriving twice the last equality in (23) we have∫
Ω

mu̇(t)2 +

∫
Ω

mu(t)ü(t) = 0 ∀t ∈ (s̄− ε, s̄+ ε),

so that ∫
Ω

mψs̄ü(s̄) = −
∫

Ω

mw2.
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This equality implies (24) when taking as test function ü(s̄) in (21). �

Taking into account the spectral decomposition of any w ∈ Hs+ε(Ω),

w =

∞∑
k=0

wkφk,

and recalling (2), we can define the following operators, derivatives of ds(−∆N)s with respect to
s:

Ls(w) := ∂s [ds(−∆N)s] (w) =

∞∑
k=1

(dµk)s ln(dµk)wkφk,

Ts(w) := ∂2
ss [ds(−∆N)s] (w) =

∞∑
k=1

(dµk)s ln2(dµk)wkφk.

(25)

Lemma 3.6. For ψs as in (21) there exists a unique v ∈ Hs(Ω), solution of the problem

(26) ds(−∆N)sv = Lsψs,

∫
Ω

mv = 0.

Furthermore v ∈ Hs′(Ω) for every s′ < 2s, and∫
Ω

mv2 = max
c∈R

∫
Ω

m(c+ v)2.

Proof. Exploiting (2), the equation in (26) rewrites as
∞∑
k=1

(dµk)svkφk =

∞∑
k=1

(dµk)s ln(dµk)akφk,

where vk and ak are the Fourier coefficients of v and ψs respectively. Such problem is solved in
L2(Ω) by

(27) vk = ln(dµk)ak, k ≥ 1,

and any v0 ∈ R. Moreover, Proposition 2.4 yields
∞∑
k=1

(dµk)s
′
v2
k =

∞∑
k=1

(dµk)s
′
ln2(dµk)a2

k ≤ C +

∞∑
k=1

(dµk)2sa2
k < +∞ ,

so that v ∈ Hs′(Ω), for every v0 ∈ R. Finally, recalling (11) and hypothesis (4), we have that

max
v0∈R

∫
Ω

m(v0 + ṽ)2

is uniquely achieved by

v0 = − 1

m0|Ω|

∫
Ω

mṽ,

which also satisfies the second condition in (26). �

The construction of the function v will be crucial in proving the following result.

Theorem 3.7. Let d > 0 be fixed and s̄ ∈ (0, 1) be such that

(28)
∂

∂s
λ1(d, s̄) = 0.

If
−λ−1(1, s̄) > λ1(1, s̄),

then s̄ is a point of local maximum of the map s 7→ λ1(d, s).



OPTIMIZATION OF THE POSITIVE PRINCIPAL EIGENVALUE 14

Proof. Let us first note that, using (21) and (28), we have

(29) 0 =
∂

∂s
(ds(−∆N)sψs, ψs)|s=s̄ = 2

(
ds̄(−∆N)s̄ψs̄, ψ̇s̄

)
+ (Ls̄ψs̄, ψs̄),

where ψ̇s = (d/ds)ψs and Ls is defined in (25). We infer that

(Ls̄ψs̄, ψs̄) = −2
(
ds̄(−∆N)s̄ψs̄, ψ̇s̄

)
= −2λ1(d, s̄)

∫
Ω

mψs̄ψ̇s̄

= −λ1(d, s̄)
d

ds

∫
Ω

mψ2
s

∣∣∣
s=s̄

= 0.

For v as in Lemma 3.6, with s = s̄, and α ∈ R, let w = αv. We deduce that w ∈ H s̄+ε(Ω) for
ε > 0 small, and that

λ1(d, s̄)

∫
Ω

mψs̄w = α
(
ds̄(−∆N)s̄v, ψs̄

)
= α(Ls̄ψs̄, ψs̄) = 0,

that is w satisfies (22). Thus Lemma 3.5 applies, and we denote with u(s) the corresponding
curve. Let us consider the map

f(s) := (ds(−∆N)su(s), u(s)),

that, thanks to (23), satisfies

f(s) ≥ λ1(d, s) and f(s̄) = λ1(d, s̄).

Then it will be enough to show that s̄ is a maximum point of f . By direct computation we
obtain

f ′(s) =(Lsu(s), u(s)) + 2(ds(−∆N)su̇(s), u(s)),

f ′′(s) =(Tsu(s), u(s)) + 4(Lsu̇(s), u(s)) + 2(ds(−∆N)su̇(s), u̇(s))

+ 2(ds(−∆N)sü(s), u(s))

where Ts is defined in (25). Notice that (29) implies that f ′(s̄) = 0. Recalling (27), we have

(Ts̄ψs̄, ψs̄) =
∑
k

(dµk)s̄ ln2(dµk)a2
k = (Ls̄v, ψs̄) =

(
ds̄(−∆N)s̄v, v

)
.

On the other hand, (24) yields

(ds(−∆N)sü(s), u(s))|s=s̄ =
(
ds̄(−∆N)s̄ψs̄, ü(s̄)

)
= −λ1(d, s̄)

∫
Ω

mw2.

Recalling that w = αv and using (23), we obtain

(30) f ′′(s̄) =
(
ds̄(−∆N)s̄v, v

) [
1 + 4α+ 2α2

]
− 2α2λ1(d, s̄)

∫
Ω

mv2.

Now, in case the last integral in (30) is nonnegative, then choosing α = −1 we obtain f ′′(s̄) < 0,

namely s̄ is a maximum point for f and the result follows. While, in case

∫
Ω

mv2 < 0, we take

into account (26) and we exploit the definition of λ−1(1, s) in (15) to obtain∫
Ω

mv2 ≥ 1

λ−1(1, s̄)

(
(−∆N)s̄v, v

)
.

Then, recalling Lemma 3.1, equation (30) becomes

f ′′(s̄) ≤
(
ds̄(−∆N)s̄v, v

) [
1 + 4α+ 2α2

(
1− λ1(1, s̄)

λ−1(1, s̄)

)]
< 0
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when choosing

α = −
[
1− λ1(1, s̄)

λ−1(1, s̄)

]−1

. �

4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we intend to apply Theorem 3.7, and to this aim we need to
investigate the validity of the condition

(31) −λ−1(m, 1, s) > λ1(m, 1, s)

in dependence on m. To do that, we restrict our attention to m ∈ M̃, defined in (7) and we first
prove the following result.

Lemma 4.1. Let M,ρ, δ be positive and fixed. For every σ > 0 there exists A = A(M,ρ, δ, σ) > 0
such that if

m ∈ M̃, and −A ≤
∫

Ω

m < 0,

then
λ1(m, 1, 1) < σ.

Proof. Let m ∈ M̃, so that there exists x0 ∈ Ω and r > 0 such that m|Bρ(x0) ≥ δ, and let

λDir
1 (Bρ) (with Bρ = Bρ(x0)) denote the first Dirichlet eigenvalue of−∆ in Bρ, with eigenfunction
ω ∈ H1

0 (Bρ) ⊂ H1(Ω). Taking into account the equivalent expression of λ(m, 1, 1) in term of the
Rayleigh quotient and using (7), we infer

λ1(m, 1, 1) ≤

∫
Ω

|∇ω|2∫
Ω

mω2
≤

∫
Bρ(x0)

|∇ω|2

δ

∫
Bρ(x0)

ω2
=
λDir

1 (Bρ)

δ
.

Now we argue by contradiction and suppose that (mn)n is such that

(32) (mn)n ⊂ M̃,

∫
Ω

mn → 0−, λ1(mn, 1, 1) =: λn → σ > 0.

Since ‖mn‖L∞ ≤ M , we deduce that there exists m ∈ Lp(Ω), for every 1 ≤ p < +∞, with
zero average and such that mn ⇀ m∞ in Lp(Ω) (up to subsequences). Furthermore, letting
mn|Bρ(xn) ≥ δ, with dist(xn, ∂Ω) ≥ ρ, we can assume that, up to a subsequence, xn → x∞ ∈ Ω
so that

δ|Bρ| ≤
∫
Bρ(xn)

mn →
∫
Bρ(x∞)

m∞,

and we infer that m∞ 6≡ 0. For easier notation we denote the eigenfunction corresponding to λn
by ψn = ψ0,n+ ψ̃n, with ψ0,n ∈ R and ψ̃n with zero average. Since ‖∇ψ̃n‖2L2 → σ we obtain that

ψ̃n is bounded in H1(Ω). Without loss of generality we have two possibilities: either ψ0,n → +∞,
or it is bounded. In the first case, we have that

vn =
ψn
ψ0,n

= 1 +
ψ̃n
ψ0,n

→ 1 strongly in H1(Ω).

Passing to the limit in the equation satisfied by vn we obtain 0 ≡ σm∞, a contradiction. On
the other hand, when ψ0,n is bounded, we have that, up to subsequences, ψn → ψ∞, weakly in
H1(Ω) and strongly in L2(Ω). As a consequence

(33) −∆ψ∞ = σm∞ψ∞,

∫
Ω

m∞ψ
2
∞ = 1.
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From the second equality and recalling that m∞ 6≡ 0 we deduce that ψ∞ 6≡ 0. Since, by almost
everywhere convergence, ψ∞ is non-negative, the maximum principle and Hopf lemma imply
that ψ∞ > 0 in Ω. From (32) we deduce

0 = σ

∫
Ω

m∞ =

∫
Ω

∇ψ∞ · ∇
1

ψ∞
= −

∫
Ω

|∇ψ∞|2

ψ2
∞

,

hence ψ∞ is constant, and finally, (33) yields σ = 0, a contradiction. �

Proof of Theorem 1.2. Let m ∈ M̃ and let ψ−1,s be an eigenfunction associated with λ−1(m, 1, s)

as in (15). Writing ψ−1,s = h+ ψ̃−1,s, with h ∈ R and ψ̃−1,s with zero average, we have that, as
usual, ∫

Ω

mψ−1,s = 0 =⇒ h = −

∫
Ω

mψ̃−1,s∫
Ω

m

.

Then

−1 =

∫
Ω

mψ2
−1,s = −

(∫
Ω

mψ̃−1,s

)2

∫
Ω

m

+

∫
Ω

mψ̃2
−1,s ≥

∫
Ω

mψ̃2
−1,s.

Recalling (7) and the Poincaré inequality (19) we have

1 ≤ ‖m‖L∞
∥∥∥ψ̃2
−1,s

∥∥∥2

L2

≤ M

µs1
((−∆N)sψ−1,s, ψ−1,s) = −λ−1(m, 1, s) · M

µs1
.

As a consequence, we can choose σ = µ1/M and we apply Proposition 2.10 and Lemma 4.1, to
deduce

λ1(m, 1, s) ≤ µs−1
1 λ1(m, 1, 1) < µs−1

1 σ ≤ −λ−1(m, d, s),

for every m ∈ M̃ with m0 ≥ −A. Then Theorem 3.7 implies that, for any d > 0, the map
s 7→ λ1(m, d, s) has at most one critical point in (0, 1), hence it is well defined

λ1(m, d, 0+) = lim
s→0+

λ1(m, d, s).

Furthermore, since any interior critical point is of maximum type, it follows that

inf
0<s≤1

λ1(m, d, s) = min
{
λ1(m, d, 0+), λ1(m, d, 1)

}
.

Moreover, (20) implies

λ1(m, d, 0+) = λ1(m, 1, 0+), λ1(m, d, 1) = dλ1(m, 1, 1),

yielding the conclusion of the proof. �

We conclude this section by showing some numerical simulations that suggest that the map
s 7→ λ1(m, d, s) may not admit only interior maxima, in case condition (31) does not hold. In
the square Ω = (0, π)× (0, π) ⊂ R2 we consider the two environments

(34) m1(x1, x2) :=

{
8 x2

1 + x2
2 < 1

−1 x2
1 + x2

2 > 1,
m2(x1, x2) :=

{
1 x2

1 + x2
2 < 1

−1 x2
1 + x2

2 > 1.

These particular choices of m are motivated by the discussion in Section 5 ahead, in particular by

Remark 5.4. Notice that, with both choices, m ∈ M̃. For the two possibilities, the eigenvalues
λ1(m, 1, s), λ−1(m, 1, s) are numerically evaluated, by truncating the Fourier series, for s ∈
{i/100 : i = 1, . . . , 100}. As shown in Figure 1, condition (31) is satisfied for m = m1, whereas
it does not hold when m = m2. However, notice also that in this case µ1 = µ2 = 1 (achieved by
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0 0.2 0.4 0.6 0.8 1

10−1

100

s

−λ−1(s)

λ1(s)

0 0.2 0.4 0.6 0.8 1

100

101

s

−λ−1(s)

λ1(s)

Figure 1. Testing condition (31) for the model environment (34) with m = m1

(on the left) and m = m2 (on the right).

0 0.2 0.4 0.6 0.8 1

2

4

6

·10−2

s

λ
1
(m
,d
,s

)

d = 0.2 d = 0.4
d = 0.6 d = 0.8

0 0.2 0.4 0.6 0.8 1

7

8

9

10

s

d = 0.16 d = 0.18
d = 0.20 d = 0.22
d = 0.24

Figure 2. The map s 7→ λ1(m, d, s), for several values of d, with m = m1 (on
the left) and m = m2 (on the right) both given in (34).

φ1(x) = cosx1, φ2(x) = cosx2), so that we are in the situation described by the first conclusion
of Proposition 1.1, namely, all the graphs are increasing in s. Then in this case the minimum of
λ1(m, 1, s) is achieved in λ1(m, 1, 0+), no matter whether or not condition (31) is verified.

In Figure 2, λ1(m, 1, s) = dsλ1(m, 1, s) is plotted for different choices of the motility coefficient
d < 1. When m = m1 (so that condition (31) is satisfied) it is possible to observe the transition
of the behaviour of λ1(m, 1, s) from decreasing to increasing (while d increases) developing in
the meanwhile a critical point of maximum type. But, when m = m2, in which case condition
(31) is violated, λ1(m, 1, s) develops also critical points of minimum type, while moving from
decreasing to increasing.
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5. Optimization on m

In this section we will briefly analyse the optimization of λ1(m, d, s) with respect to m. In
this analysis it is convenient to fix m, m ∈ R+, m0 ∈ (−∞, 0) and take m in the following class.

(35) m ∈M :=

{
−m ≤ m(x) ≤ m,

∫
Ω

m = m0|Ω|, m+ 6≡ 0

}
.

Remark 5.1. When m satisfies (35), condition (18) can be rewritten as

λ1(m, d, s) ≥ dsµs1|m0|
m|m0|+ [max(m,m)]2

.

The following result is proved in [26, 13, 27].

Lemma 5.2. Let f ∈ L1(Ω). Then the maximization problem sup
m∈M

∫
Ω

fm is solved by

m = mχD −mχDc

for some subsets D ⊂ Ω, Dc = Ω \D, such that

(36) |D| = |Ω|m+m0

m+m
.

Theorem 5.3. For every d > 0 and s fixed, there exists λ1(d, s) solution of the minimization
problem

λ1(d, s) = inf
M
λ1(m, d, s)

Moreover, λ1(d, s) is achieved by m = mχD −mχDc , for some D ⊂ Ω, independent of d, which
satisfies (36).

Proof. Notice that, for every m ∈M, Lemma 5.2 implies

λ1(m, d, s) = ds
((−∆)sψ1, ψ1)∫

Ω
mψ2

1

≥ ds ((−∆)sψ1, ψ1)∫
Ω

(mχD −mχDc)ψ2
1

≥ λ1(mχD −mχDc , d, s),

for D satisfying (36). Since mχD −mχDc ∈M the conclusion follows. �

Remark 5.4. Once Theorem 5.3 is proved, it is natural to deepen the knowledge of the favorable
regionD, in particular, to wonder whether or notD is connected, as this is related to the detection
of possible fragmentation of the optimal environment. The connectedness of D has been obtained
in the local diffusion case, for N = 1, in [11, 27, 13]. This line of research has been pursued in
higher dimension in [33], where a sharp analysis of the optimal environment is performed in the
standard diffusion case s = 1. In particular, when Ω is a bi-dimensional rectangle, by combining
monotone Steiner rearrangements and numerical simulations it appears that D and Ω \ D can
be of two main types: ball-shaped or stripe-shaped. In addition, when the ratio |D|/|Ω \D| is
sufficiently small, it appears that D should be a quarter of circle, centered in one of the corners
of Ω. By using symmetrization arguments on the extension problem (Remark 2.2), we expect
that part of such analysis may be carried also to the case s < 1, even though this falls beyond
the scope of the present paper.
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6. The periodic problem

Let the spectral periodic fractional Laplacian (−∆per)
s be defined as in (10). The aim of this

section is to put in evidence that our problem and the periodic one enjoy the same underlying
structure. To start with we prove that, on periodic functions, it coincides with the fractional
Laplacian on the full space (−∆RN )s (see (1)). For easier notation, let us fix l1 = · · · = lN = 2π,
i.e. Cl = (0, 2π)N . Using complex notation, we have that the periodic eigenfunctions of −∆
in (0, 2π)N are the functions ϕk(x) = e−ik·x, indexed by k ∈ ZN and corresponding to the
eigenvalues νk = |k|2. Let u be (0, 2π)N -periodic; up to normalization factors we obtain

(37) u(x) =
∑
k∈ZN

uke
−ik·x, where uk =

∫
Cl
u(x)e−ik·x dx,

and consequently

(−∆per)
su(x) =

∑
k∈ZN

|k|2suke−ik·x.

Proof of Proposition 1.3. Let f : R → R be continuous and 2π-periodic; then f belongs to the
space S ′(R) of tempered distributions, and it is well known (see e.g. [16, Ch. II]) that its Fourier
transform is, up to normalization factors,

f̂(ξ) =
∑
k∈Z

fkδ1(ξ − k), ξ ∈ R, where fk =

∫ 2π

0

f(x)e−ikx dx,

and δn denotes the Dirac delta in Rn, n ≥ 1. Indeed, it suffices to transform both sides of the
identity

f(x) =
∑
k∈Z

fke
−ikx,

which holds true in S ′(R). Recalling that

δN (x1, . . . , xN ) = δ1(x1)⊗ · · · ⊗ δ1(xN ),

it is not difficult to generalize the above formula to the N -dimensional setting, obtaining that,
if u is (0, 2π)N -periodic, then

û(ξ) =
∑
k∈ZN

ukδN (ξ − k), ξ ∈ RN ,

and uk are given in (37). Exploiting (1), (10) and recalling that νk = |k|2, we obtain:

̂(−∆RN )su(ξ) = |ξ|2sû(ξ) =
∑
k∈ZN

|ξ|2sukδN (ξ − k) =
∑
k∈ZN

|k|2sukδN (ξ − k) = ̂(−∆per)su(ξ),

and the desired result follows. �

Once the equivalence between (−∆per)
s and (−∆RN )s is established, one can easily repeat the

arguments introduced for the Neumann case, because (−∆per)
s is a spectral operator as pointed

out in (10): since ν0 = 0 and νk → +∞ as |k| → ∞, these arguments are exactly the same,
except for two minor points, namely:

(1) the use of the regularity results from [8] we did in Section 2: following the arguments
in [8], these results can be proved also for (−∆per)

s, even though in this case it is much
easier to use the regularity theory for (−∆RN )s, which is well established in [5];

(2) the results in Section 5 about the optimization with respect to m: also in this case
only minor changes are needed; we refer the interested reader to [33], where the relation
between the Neumann case and the periodic one has been deeply analyzed, for s = 1.
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On the contrary, Sections 3 and 4 can be rewritten in the periodic case without any change but
replacing (µk, φk)k∈Z with (νk, ϕk)k∈ZN . In particular, the proof of Theorem 1.4 follows as well.
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Lévy matters. V, volume 2149 of Lecture Notes in Math., pages 67–182. Springer, Cham, 2015.

[2] G. Barles, E. Chasseigne, C. Georgelin, and E. R. Jakobsen. On Neumann type problems for nonlocal

equations set in a half space. Trans. Amer. Math. Soc., 366(9):4873–4917, 2014.
[3] H. Berestycki, F. Hamel, and L. Roques. Analysis of the periodically fragmented environment model. I.

Species persistence. J. Math. Biol., 51(1):75–113, 2005.

[4] H. Berestycki, J.-M. Roquejoffre, and L. Rossi. The periodic patch model for population dynamics with
fractional diffusion. Discrete Contin. Dyn. Syst. Ser. S, 4(1):1–13, 2011.
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biology, 300:134–142, 2012.

[18] E. Hanert, E. Schumacher, and E. Deleersnijder. Front dyanmics in fractional-order epidemic models. Journal
of theoretical biology, 279:9–16, 2011.
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