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Abstract

We consider a nonvariational degenerate elliptic operator of the kind

Lu �
qX

i;j=1

aij(x)XiXju

where X1; :::; Xq are a system of left invariant, 1-homogeneous, Hörman-
der�s vector �elds on a Carnot group in Rn, the matrix faijg is symmetric,
uniformly positive on a bounded domain 
 � Rn and the coe¢ cients sat-
isfy

aij 2 VMOloc (
) \ L1 (
) :
We give a new proof of the interior W 2;p

X estimates

kXiXjukLp(
0) + kXiukLp(
0) � c
n
kLukLp(
) + kukLp(
)

o
for i; j = 1; 2; :::; q, u 2 W 2;p

X (
) ; 
0 b 
 and p 2 (1;1), �rst proved by
Bramanti-Brandolini in [3], extending to this context Krylov�technique,
introduced in [15], consisting in estimating the sharp maximal function of
XiXju:

1 Introduction

Let us consider a linear second order elliptic operator in nondivergence form:

Lu �
nX

i;j=1

aij (x)uxixj

�Key words: Hörmander�s vector �elds, Carnot groups, nonvariational operators, Lp es-
timates, local sharp maximal function; MSC: Primary: 35H10; Secondary: 35B45, 35R05,
42B25.
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with faijg symmetric matrix of bounded measurable functions de�ned on some
domain 
 � Rn and satisfying the uniform ellipticity condition

� j�j2 �
nX

i;j=1

aij (x) �i�j �
1

�
j�j2

for some � > 0, every � 2 Rn, a.e. x 2 
. While the classical W 2;p-theory of el-
liptic equations, dating back to Agmon-Douglis-Nirenberg [1] and essentially ex-
ploiting the Lp theory of singular integrals due to Calderón-Zygmund [8] requires
the uniform continuity of the coe¢ cients aij (x), in 1993 Chiarenza-Frasca-
Longo [9] proved W 2;p estimates under the mere assumption aij 2 L1 \VMO,
which allows for some kind of discontinuities in the coe¢ cients. Their technique
is based on representation formulas of uxixj by means of singular integrals with
variable kernels, and commutators of these singular integrals with BMO func-
tions. Thanks to a deep real analysis theorem by Coifman-Rochberg-Weiss [10],
these commutators have small operator norm on small balls, hence the old idea
of seeing a variable coe¢ cient operator as a small perturbation of the model
operator with constant coe¢ cients is ingeniously generalized to an operator
with possibly discontinuous coe¢ cients. This technique, by now classic, has
been extended to several contexts, for instance parabolic operators (see [5]) and
nonvariational operators structured on Hörmander�s vector �elds (see [3], [4]).
In 2007 Krylov [15] introduced a di¤ererent technique to prove similar and

more general results for elliptic and parabolic operators, based on the pointwise
estimate of the sharp maximal function of uxixj , that is

�
uxixj

�#
. The idea is

then again that of approximating the operator with variable coe¢ cients with
a model operator with constant coe¢ cients; these constants in this case are
not simply the original coe¢ cients frozen at some point, but suitable integral
averages of these functions. The theory of singular integrals is not explicitly
used, but it is replaced by Fe¤erman-Stein maximal theorem, which allows to
control the Lp norm of uxixj by that of

�
uxixj

�#
. On the other hand, throughout

the computation which is carried out on the model operator, many classical
results are employed, implicitly involving also the classical Calderón-Zygmund
theory.
The research started with this paper aims to investigate whether Krylov�

technique can be extended also to the context of linear degenerate equations
structured on Hörmander�s vector �elds, and if it can be used to get new results
not easily obtainable with the techniques previously used. We give a partial
positive answer to this question for the class of operators

Lu �
qX

i;j=1

aij(x)XiXju

where X1; :::; Xq are a system of left invariant and 1-homogeneous Hörmander�s
vector �elds on a Carnot group in Rn, the matrix faijg is symmetric, uniformly
positive on a bounded domain 
 � Rn with aij bounded measurable and (lo-
cally in 
) VMO, with respect to the balls induced by the vector �elds. The
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assumption of existence of an underlying Carnot group structure such that L
is translation invariant and 2-homogeneous is quite natural in consideration of
the important role of dilations in Krylov�approach. In this context we prove a
pointwise bound on the local sharp maximal function of XiXju: This, combined
with an extension of Fe¤erman-Stein�s theorem to the context of locally homo-
geneous spaces, recently obtained, (see [6]) allows to get the local estimates �rst
proved by Bramanti-Brandolini in [3] with an approach that parallels that of
Chiarenza-Frasca-Longo.
The result, therefore, is not original; the novelty lies in the approach, which

allows some simpli�cation with respect to that of [3]. We hope to extend in the
future the present approach to di¤erent classes of degenerate operators, getting
some kind of new Lp estimate.

Acknowledgement. This research was carried out while Marisa Toschi was
visiting the Department of Mathematics of Politecnico di Milano, which we want
to thank for hospitality. This author was partially supported by Universidad
Nacional del Litoral through grants CAI+D 50020110100009.

2 Preliminaries and known results

2.1 Carnot groups

We start recalling some standard terminology and known facts about Carnot
groups. For more details and for the proofs of known results the reader is
referred to [2, Chaps. 1, 2], [12], [18, Chap.XIII, §5].
We call homogeneous group the space Rn equipped with a Lie group struc-

ture, together with a family of dilations that are group automorphisms. Explic-
itly, assume that we are given a pair of mappings:

[(x; y) 7! x � y] : Rn � Rn ! Rn and
�
x 7! x�1

�
: Rn ! Rn

that are smooth and such that Rn, together with these mappings, forms a
group, for which the identity is the origin. We will think to the operation � as
a translation. Next, suppose that we are given an n-tuple of strictly positive
integers �1 � �2 � ::: � �n, such that the dilations

D(�) : (x1; :::; xn)! (��1x1; :::; �
�nxn) (1)

are group automorphisms, for all � > 0. We will denote by G the space Rn with
this structure of homogeneous group, and we will say that a constant depend
on G if it depends on the numbers n, �1; :::; �n and the group law �.
We say that a di¤erential operator Y on G is homogeneous of degree � > 0

if
Y (f (D(�)x)) = ��(Y f)(D(�)(x))

for every test function f; � > 0, x 2 Rn. Also, we say that a function f is
homogeneous of degree � 2 R if

f (D(�)x) = ��f(x) for every � > 0; x 2 Rn n f0g :

3



Clearly, if Y is a di¤erential operator homogeneous of degree � and f is a
homogeneous function of degree �, then Y f is homogeneous of degree �� �.
We say that a di¤erential operator Y on G is left invariant if for every

smooth function f : G! R;

Y (f (Ly (x))) = (Y f) (y � x) for every x; y 2 G;
where Ly (x) = y � x:

Let us now consider the Lie algebra ` associated to the group G, that is, the
Lie algebra of left invariant vector �elds on G, endowed with the Lie bracket
given by the commutator of vector �elds: [X;Y ] = XY � Y X. We can �x a
basis X1; :::; XN in ` choosing Xi as the (unique) left invariant vector �eld which
agrees with @

@xi
at the origin. It turns out that Xi is homogeneous of degree �i.

Then, we can extend the dilations D(�) to ` setting

D(�)Xi = �
�iXi:

D (�) becomes a Lie algebra automorphism, i.e.,

D(�)[X;Y ] = [D(�)X;D(�)Y ]:

In this sense, ` is said to be a homogeneous Lie algebra; as a consequence, ` is
nilpotent.
We will assume that the �rst q vector �elds X1; :::; Xq are 1-homogeneous

and generate ` as a Lie algebra. In other words, X1; :::; Xq are a system of
Hörmander�s vector �elds in Rn: there exists a positive integer s, called the step
of the Lie algebra, such thatX1; :::; Xq; together with their iterated commutators
of length � s span Rn at every point. Under these assumptions we say that `
is a strati�ed homogeneous Lie algebra and that G is a strati�ed homogeneous
group, or brie�y a Carnot group.
As any system of Hörmander�s vector �elds, X1; :::; Xq induce in Rn a dis-

tance d called the control distance. The explicit de�nition of d will never be
used, hence we do not recall it (see [17]). Since G is a Carnot group, d turns
out to be left invariant and 1-homogeneous, that is

d (x; y) = d (z � x; z � y)
d (D (�)x;D (�) y) = �d (x; y)

for any x; y; z 2 G and � > 0: Then, if we set

kxk = d (x; 0) ,

it turns out that k�k is a homogeneous norm, satisfying the following properties:

(i) kD(�)xk = �kxk for every x 2 Rn; � > 0;

(ii) the function x 7! kxk is continuous;
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(iii) for every x; y 2 Rn

kx � yk � kxk+ kyk and


x�1

 = kxk;

(iv) there exists a constant c � 1 such that

1

c
jyj � kyk � c jyj1=s if kyk � 1;

where s is the step of the Lie algebra.

Note that from (iii) we have that

ky�1 � xk � kyk � kxk: (2)

We also de�ne the balls with respect to d as

B(x; r) � Br(x) � fy 2 Rn : d(x; y) < rg;

and denote Br = B(0; r).
Note that B(0; r) = D(r)B(0; 1). It can be proved that the Lebesgue mea-

sure in Rn is the Haar measure of G and

jB(x; r)j = jB(0; 1)j rQ; (3)

for every x 2 Rn and r > 0, where

Q = �1 + :::+ �n

with �i as in (1). We will call Q the homogeneous dimension of G.

2.2 Real analysis tools

We start noting that (3) in particular implies that the Lebesgue measure dx
is a doubling measure with respect to d, and therefore (Rn; d; dx) is a space of
homogenous type in the sense of Coifman-Weiss (see [11]).
In this context, for a given locally integrable function f , the Hardy-Littlewood

maximal operator is given by

Mf(x) = sup
B3x

1

jBj

Z
B

jf(y)jdy; (4)

where the supremum is taken over all the d-balls (containing the point x). By
the general theory of spaces of homogeneous type, it is known that for every
p 2 (1;1) there exists a constant c > 0 such that

kMfkLp(Rn) � ckfkLp(Rn): (5)

Since we will study a di¤erential operator de�ned on a bounded domain

 � Rn and we will prove interior estimates in 
, a natural framework for the
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real analysis tools we need is that of locally homogeneous spaces, as developed
in [7] and [6]. We are going to introduce the minimum amount of de�nitions
in order to apply this abstract theory in our concrete context. So, for a �xed
bounded domain 
 � Rn, �x a strictly increasing sequence f
mg1m=1 of bounded
domains such that

1[
m=1


m = 


and such that for any m there exists "m > 0 such that

fx 2 
 : d(x; y) < 2"m for some y 2 
mg � 
m+1

where d is, as above, the distance induced in Rn by the vector �elds Xi. Then
(
; f
mg1m=1; d; dx) (where dx stands for the Lebesgue measure) is a locally
homogeneous space in the sense of [7].
With respect to this structure, we can de�ne the local sharp maximal oper-

ator : for any function f 2 L1loc (
m+1) and x 2 
m, let

f#
m;
m+1
(x) = sup

B(x;r)3x
x2
m;r�"m

1

jB (x; r)j

Z
B(x;r)

��f (y)� fB(x;r)�� dy: (6)

Note that the supremum is taken over all the d-balls containing the point
x 2 
m and having radius small enough so that the ball itself is contained in
the larger set 
m+1 where the function f is de�ned. Thus, we focus on the
behavior of f on a bounded domain but on the other hand avoid the necessity
of integrating over restricted balls B (x; r)\
m+1. The continuity of the sharp
maximal operator is contained in the next result:

Theorem 1 (Local Fe¤erman-Stein inequality, see [6, Corollary 3.9])
There exists � 2 (0; 1) such that for any m and for every integer k large enough,
the set 
m can be covered by a �nite union of balls BR of radii comparable to �k,
such that for any such ball BR and every f supported in BR, with f 2 L1 (BR),R
BR
f = 0, and f#
m+2;
m+3

2 Lploc (
m+1) for some p 2 [1;1) one has

kfkLp(BR)
� c




f#
m+2;
m+3





Lp(B
R)

with 
 > 1 absolute constant and c only depending on p, the sets 
k and the
constants "k for a �nite number of indices k.

Let us also de�ne the local VMO spaces.
For a �xed 
m, f 2 L1loc (
m+1) and 0 < r � "m, let

�m;f (r) = sup
x2
m;��r

1

jB (x; �)j

Z
B(x;�)

��f (y)� fB(x;�)�� dy:
We say that f 2 VMOloc (
m;
m+1) if �m;f (r)! 0 for r ! 0+.
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We say that a function f 2 L1loc (
) belongs to VMOloc (
) if

�f (r) � sup
x2
;��r;B(x;�)b


1

jB (x; �)j

Z
B(x;�)

��f (y)� fB(x;�)�� dy ! 0 for r ! 0+:

Note that the requirement B (x; �) b 
 is meaningful because the distance
d is de�ne in the whole Rn, not only in 
. Observe that

VMOloc (
) �
1\
m=1

VMOloc (
m;
m+1) : (7)

2.3 Sobolev spaces and fundamental solutions

Let us introduce some useful notation. For X1; :::; Xq the vector �elds as above
and any multiindex I = (i1; :::; ik) with ij 2 f1; 2; :::; qg we set

XIu = Xi1Xi2 :::Xiku; jIj = k:

We then de�ne, for any positive integer k,

Dku �
X
jIj=k

jXIuj :

(We will writeDu instead ofD1u). Here theXi-derivatives are meant in classical
or weak sense. For 
 a domain in Rn and p 2 [1;1] the space W k;p

X (
) will
consist of all Lp(
) functions such that

kukWk;p
X (
) =

kX
h=0

kDhukLp(
)

is �nite (with kD0ukLp(
) = kukLp(
)). We shall also denote by W k;p
X;0(
) the

closure of C10 (
) in W
k;p
X (
). Note that the �elds Xi, and therefore the de�ni-

tion of the above norms and spaces, are completely determined by the structure
of G.
A couple of standard facts about these Sobolev spaces on Carnot groups are

the following:

Theorem 2 (Poincaré�s inequality on strati�ed groups, see [13]) Let G
be a Carnot group with generators X1; :::; Xq. For every p 2 [1;1) there exist
constants c > 0;� > 1 such that for any ball B = B (x0; r) and any u 2 C1

�
�B
�

(with �B = B (x0;�r)) we have:�
1

jBj

Z
B

ju (x)� uB jp dx
�1=p

� cr
�

1

j�Bj

Z
�B

jDu (x)jp dx
�1=p

:

Note that the constants c;� in the previous Poincaré�s inequality are inde-
pendent of r and x0.
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Proposition 3 (Interpolation inequality, see [3, Prop. 4.1]) Let X be a
left invariant vector �eld homogeneous of degree 1. Then for every " > 0 and
u 2W 2;p

X;0(Rn) with p 2 [1;1),

kXukLp � "kX2ukLp +
2

"
kukLp :

Let us now consider the class of model operators

Lu(x) =

qX
i;j=1

aijXiXju(x) (8)

where the matrix faijg is constant, symmetric and satis�es the ellipticity con-
dition: there exists � > 0 such that

�j�j2 � aij�i�j �
1

�
j�j2 (9)

for every � 2 Rq.
The operator L is a left invariant di¤erential operator homogeneous of degree

two on G; it is easy to see that L can be rewritten in the form L =
Pq

i=1 Y
2
i

where Y1; :::; Yq are a di¤erent system of Hörmander�vector �elds (for details, see
[3, §2.4]); hence L is hypoelliptic, by Hörmander�s theorem (see [16]). By general
properties of Carnot groups, the formal transposed of Xi is X�

i = �Xi; hence
the transposed of L is still L; in particular, both L and L

�
are hypoelliptic. We

can therefore apply the theory developed by Folland [12] about the fundamental
solution of L. The following theorem collects the properties we will need:

Theorem 4 (Homogeneous fundamental solution of L) The operator L
has a unique global fundamental solution �a � 0 with pole at the origin wich is
homogeneous of degree 2�Q and such that:

(a) �a 2 C1(Rn n f0g);

(b) for every u 2 C10 (Rn) and every x 2 Rn,

u(x) = Lu � �a(x) =
Z
Rn
�a(y

�1 � x)Lu(y)dy;

(c) for every f 2 L2 (Rn) ; f compactly supported, the function

u(x) = f � �a(x) =
Z
Rn
�a(y

�1 � x)f(y)dy

belongs to W 2;2
X (Rn) and solves the equation Lu = f in Rn.

We also need some uniform bound for �a, with respect to the constant matrix
faijg in a �xed ellipticity class. The next result is contained in [3, Thm. 12]:
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Proposition 5 (Uniform estimate on �a) There exists a positive constant,
depending on faijg only through the number �, such that

j�a(x)j �
c

kxkQ�2
for every x 2 Rn n f0g .

Another key tool that we need from the general theory of Hörmander�s op-
erators is represented by the so-called subelliptic estimates. To formulate these,
we need to recall the standard de�nition of (Euclidean, isotropic) fractional
Sobolev spaces: for any s 2 R the space Hs is de�ned as the set of functions
(or tempered distributions) such that

kuk2Hs =

Z
Rn

�
1 + j�j2

�s
jbu (�)j2 d�

is �nite, where bu (�) denotes the Fourier transform of u. Then:

Theorem 6 (Subelliptic estimates, see [14]) There exists " > 0, depend-
ing on the Xi and, for every �; �1 2 C10 (Rn) with �1 = 1 on sprt � and any
�; � > 0, there exists a constant c depending on �; �; �; �1; Xi such that

k�ukH�+" � c
�

�1Lu

H� + k�1ukH��

�
where L is like in (8). Moreover, the constant c depends on the coe¢ cients aij
only through the number �.

Classical subelliptic estimates are proved for a �xed operator of Hörmander�s
type; however, the last statement about the dependence of c on the aij can be
directly checked following the proof.
For the operator L we can give a standard de�nition of weak solution to a

Dirichlet problem:

De�nition 7 Let 
 a bounded domain. Given two functions f 2 W 1;2
X (
); g 2

L2 (
), we say that u 2W 1;2
X (
) is a weak solution to the Dirichlet problem�

Lu = g in 

u = f on @


(10)

if u� f 2W 1;2
X;0(
) and

�
Z



qX
i;j=1

aijXjuXi' =

Z



g' 8' 2 C10 (
):

The validity of Poincaré�s inequality allows to prove in the standard way, by
Lax-Milgram�s Lemma, the unique solvability of (10). We stress the fact that,
although the operator L is hypoelliptic, so that any distributional solution to
Lu = g is smooth in any open subset where g is smooth, the solvability of a

9



Dirichlet problem in classical sense is not a trivial result for L, but requires care-
ful assumptions on the domain. Also, W 2;p

X (
) estimates up to the boundary
are not known, so far, so that the Dirichlet problem is not even solvable in the
sense of strong solutions. This is a major di¤erence between the present con-
text and that of elliptic and parabolic equations, in the application of Krylov�
technique.
A maximum principle for weak solutions can be easily proved in the standard

way. This requires some preliminary (standard) de�nition:

De�nition 8 For u 2W 1;2
X (
), we say that

Lu � 0 in 


in weak sense ifZ



qX
i;j=1

aijXjuXi' � 0 8' 2 C10 (
); ' � 0 in 
:

We say that
u � 0 on @


in weak sense if
max (u; 0) 2W 1;2

X;0 (
) :

The following can be easily proved exactly like in the elliptic case:

Proposition 9 (Maximum Principle) Let 
 an open set of Rn. For any
u 2 W 1;2

X (
), if Lu � 0 in 
 and u � 0 on @
 (in weak sense), then u � 0 in

 a.e.

2.4 Main result

Let us now consider an operator

Lu �
qX

i;j=1

aij(x)XiXju

where X1; :::; Xq, as above, are a system of left invariant and 1-homogeneous
Hörmander�s vector �elds on a Carnot group in Rn, the matrix faijg is sym-
metric, the coe¢ cients satisfy

aij 2 VMOloc (
) \ L1 (
) (11)

on a bounded domain 
 � Rn, and the uniform positivity condition holds: there
exists � > 0 such that

�j�j2 � aij(x)�i�j �
1

�
j�j2 (12)

10



for every � 2 Rq and a.e. x 2 
.
By the assumption (11) and the inclusion (7), if we set

a]m;r =

qX
i;j=1

�m;aij (r) ; (13)

we have
sup
r�"m

a]m;r <1 and lim
r!0+

a]m;r = 0:

The main result that can be proved is then the following:

Theorem 10 Under the previous assumptions, for any 
m b 
 and p 2 (1;1)
there exists a constant c depending on 
;
m; p; �;G and the function a]m;r such
that

kXiXjukLp(
m) + kXiukLp(
m) � c
n
kLukLp(
) + kukLp(
)

o
for i; j = 1; 2; :::; q and any u 2W 2;p

X (
).

What we will actually prove here is the basic step towards the above theorem,
namely:

Theorem 11 Under the previous assumptions, for any 
m b 
 and p 2 (1;1)
the set 
m can be covered with a �nite number of balls BR (xi) such that for
every u 2 C10 (BR)

qX
i;j=1

kXiXjukLp(BR)
� c kLukLp(BR)

where the constant c depends on 
;
m; p; �;G and the function a]m;r:

The proof of Theorem 11 is where the di¤erent real analysis approach of
this paper with respect to [3] plays its role. Proving Theorem 10 starting with
Theorem 11 is mainly a matter of cuto¤ functions and interpolation inequalities
for Sobolev norms, which can be performed exactly like in [3] and therefore will
not be repeated here.

3 Local estimates for the model operator

We start with several a priori estimates for the operator L, de�ned as in (8) with
constant faijg. The constants in our estimates will depend on this matrix only
through the number �. Recall that the operator L, which in our context is the
analog of the constant coe¢ cient operator in the elliptic case, is hypoelliptic,
2-homogeneous and translation invariant on G.
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Lemma 12 For any u 2 C1(Rn) and R > 0, let h 2 W 1;2
X (BR) be the weak

solution to �
Lh = 0 in BR
h = u on @BR:

(14)

(Here BR stands for BR (0)). Then h 2 C1(BR) and if R � 4�2, where from
now on � is the constant appearing in Poincaré�s inequality (Thm. 2), the
following holds:

sup
B1

jXiXjXkhj � c
qX

i;j=1

kXiXjukL1(BR) (15)

for all i; j; k = 1; :::; q. The constant c only depends on G; �, in particular it is
independent of u.

Proof. Let w 2W 1;2
X (BR) be the unique weak solution to the Dirichlet problem�

Lw = �Lu in BR
w = 0 on @BR

and let h = u + w: Then h solves (14) and, since L is hypoelliptic in Rn and
�Lu 2 C1(BR), h 2 C1(BR).
To prove (15), let us now assume R � 4�2 (in particular, R > 4) and let us

apply the subelliptic estimates (Thm. 6) with cuto¤ functions �; �1 2 C10 (B2),
�1 = 1 in sprt �:

k�hkH�+� � c
�
k�1LhkH� + k�1hkH��

	
:

Then since Lh = 0 in BR, taking � = 0 and � large enough we have

sup
B1

jXiXjXkhj � ck�hkH�+� � ckhkL2(B2);

where the �rst inequality follows by the classical Sobolev embedding theorems.
Then, it is enough to prove that

khkL2(B2) � c
qX

i;j=1

kXiXjukL1(BR): (16)

Let ' 2 C1(Rn) such that '(x) = 1 if kxk � 3:5 and '(x) = 0 if kxk � 3
and de�ne

v = h� 'u:
Then v 2 C1(BR) and

Lv = L(�'u) = �'Lu� uL'� 2
qX

i;j=1

aijXi'Xju =: �g:

Also, since h� u 2W 1;2
X;0(BR) and ' = 1 near @BR, we have v 2W

1;2
X;0(BR).

12



On the other hand, for

f =

0@��'Lu��+ ��uL'��+ 2
������

qX
i;j=1

aijXi'Xju

������
1A�BR

de�ned in Rn, and �a the global homogeneous fundamental solution of L, let

w(x) = �
Z
Rn
�a(y

�1 � x)f(y)dy:

Then �Lw = f in strong sense (that is, w 2 W 2;2
X (BR) and �Lw (x) = f (x)

for a.e. x 2 BR) and then also in the weak sense, and w � 0 in Rn (since both
��a and f are nonnegative). Hence the functions v; w satisfy, in weak sense,�

L(v � w) = f � g � 0 in BR
v � w � 0 on @BR�
L(�v � w) = g + f � 0 in BR
�v � w � 0 on @BR

and since jgj � f , by the maximum principle (Proposition 9) we conclude jvj � w
in BR.
Now for x 2 B2, since '(x) = 0 if kxk � 3 and f (x) 6= 0 only for 3 � kxk �

R,

jh(x)j = j(v + 'u) (x)j = jv(x)j � w(x) = �
Z
Rn
�a(y

�1 � x)f(y)dy

= �
Z
BRnB3

�a(y
�1 � x)f(y)dy:

On the other hand, for x 2 B2 and y 2 BR n B3 the function �a(y�1 � x) is
bounded. Actually, by Proposition 5 and (2)

0 � ��a(y�1 � x) �
c

ky�1 � xkQ�2
� c

(kyk � kxk)Q�2
� c:

Hence

jh(x)j � ckfk1 � c

8<:kLukL1(BR) + kukL1(B3:5) +

qX
j=1

kXjukL1(B3:5)

9=;
which in particular gives

khkL1(B2) � c

8<:
qX

i;j=1

kXiXjukL1(BR) + kukL1(B4) +

qX
j=1

kXjukL1(B4)

9=; : (17)

13



In order to prove (16) we should remove from the right-hand side of (17) the
terms in u and Xju. To this aim, let

eu (x) = u (x) + c0 + qX
i=1

cixi

for some constants ci, i = 0; 1; 2; :::; q that we can choose so thatZ
B4

eu (x) dx = 0Z
B4�

Xieu (x) dx = 0 for i = 1; 2; :::; q:
Namely, since for i = 1; 2; :::; q the vector �elds Xi have the structure

Xi = @xi +
nX

j=q+1

bij (x) @xj ;

so that Xjeu = Xju+ cj , we can choose
ci = �

1

jB4�j

Z
B4�

Xiu (x) dx for i = 1; 2; :::; q

c0 = �
1

jB4j

 Z
B4

u (x) dx+

qX
i=1

ci

Z
B4

xidx

!
:

For this choice of ci, i = 0; 1; 2; :::; q and eu, we can now repeat the above proof
de�ning eh as the solution to(

Leh = 0 in BReh = eu on @BR

(with R � 4�2 as before). Clearly, one simply has

eh (x) = h (x) + c0 + qX
i=1

cixi

and

sup
B1

���XiXjXkeh��� � ckehkL2(B2)

� c

8<:
qX

i;j=1

kXiXjeukL1(BR) + keukL1(B4) +

qX
j=1

kXjeukL1(B4)

9=; :

14



Next, note that XiXjeu = Xi (Xju+ cj) = XiXju and by Poincaré�s inequality
(Thm. 2)

keukL1(B4) +

qX
j=1

kXjeukL1(B4)

=

Z
B4

jeu (x)� euB4
j dx+

qX
j=1

kXjeukL1(B4)

� c
qX
i=1

Z
B4�

jXieu (x)j dx+ qX
j=1

kXjeukL1(B4�)

= c

qX
i=1

Z
B4�

jXieu (x)�XieuB4� j dx

� c
qX

i;j=1

Z
B4�2

jXjXieu (x)j dx
= c

qX
i;j=1

Z
B4�2

jXjXiu (x)j dx:

Also, XiXjXkeh = XiXjXkh hence
sup
B1

jXiXjXkhj � c
qX

i;j=1

kXiXjukL1(B4�2)
� c

qX
i;j=1

kXiXjukL1(BR)

and we are done.

Lemma 13 For any k � 4�3, r > 0 , u 2 C1(Rn) and h the weak solution to�
Lh = 0 in Bkr
h = u on @Bkr

we have that for i; j = 1; 2; :::; q

1

jBrj

Z
Br

jXiXjh (x)� (XiXjh)Br
jdx � c

k

qX
i;j=1

1

jBkrj

Z
Bkr

jXiXju (x) jdx; (18)

where the constant c depends on G and �, but is independent from k and r.

Proof. It is enough to prove the result for r = 1. Namely, if we de�ne eh (x) =
h(D(r)(x)) and eu (x) = u(D(r)(x)), using the 1-homogenety of Xi, by dilations
we have

1

jBrj

Z
Br

jXiXjh(x)jdx =
1

rQjB1j

Z
B1

j (XiXjh) (Dr(y))jrQdy

=
1

jB1j
r�2

Z
B1

jXiXjeh(y)jdy
15



Analogously, we obtain

1

jBrj

Z
Br

jXiXjh(x)� (XiXjh)Br jdx =
1

jB1j
r�2

Z
B1

jXiXjeh(y)� (XiXjeh)B1 jdy

and

1

jBkrj

Z
Bkr

jXiXju(x)jdx =
1

jBkj
r�2

Z
Bk

jXiXjeu(y)jdy
hence if the result holds for r = 1 it holds for every r > 0.
Now, for k � 4�3, let h 2W 1;2

X (Bk) satisfy�
Lh = 0 in Bk
h = u on @Bk:

(19)

Let us assume that for every s; i; j = 1; :::; q and x 2 B� ,

jXsXiXjh (x)j �
c

k

qX
i;j

1

jBkj

Z
Bk

jXiXju(x)jdx (20)

(with c independent of k) and let us prove (18) for r = 1.
By Theorem 2,

1

jB1j

Z
B1

jXiXjh(x)� (XiXjh)B1
jdx � c

jB�j

qX
s=1

Z
B�

jXsXiXjh(x)jdx

� c
qX
s=1

sup
B�

jXsXiXjhj

� c

k

qX
i;j

1

jBkj

Z
Bk

jXiXju(x)jdx;

which is the assertion for r = 1.
It remains to prove (20). To do that, for x 2 B4�2 we de�ne eh(x) =

h(D(k=4�2)(x)) and eu(x) = u(D(k=4�2)(x)). Then Leh = 0 in B4�2 with
boundary condition eu and we can apply Lemma 12, which jointly with dilations
and homogenety gives for x 2 B1�

k

4�2

�3 ��(XsXiXjh) (D(k=4�2)(x))�� = ���XsXiXjeh(x)���
� c

qX
i;j=1

Z
B4�2

jXiXjeu(x)j dx

16



= c jB4�2 j
qX

i;j=1

1

jB4�2 j

Z
B4�2

jXiXj(u(D(k=4�2)(x))jdx

= c

�
k

4�2

�2 qX
i;j=1

1

jB4�2 j

Z
B4�2

j (XiXju) (D(k=4�2)(x))jdx

= c

�
k

4�2

�2 qX
i;j=1

1

jBkj

Z
Bk

jXiXju(y)jdy:

Hence, for x 2 B1;��(XsXiXjh) (D(k=4�2)(x))�� � c

k

qX
i;j=1

1

jBkj

Z
Bk

jXiXju(x)jdx:

But, since x ranges in B1, the point y = D(k=4�2)(x) ranges in Bk=4�2 � B�
(because k=4�2 � �) and the Lemma is proved.
The next Lemma can be of independent interest:

Lemma 14 Let p 2 (1;1). There exists a constant c depending on p;G; � such
that for any r > 0; k � 2; v 2W 1;2

X;0 (Bkr) the following holds:

D2v



Lp(Br)

� ck2


Lv



Lp(Bkr)
:

Before proving this result, let us explain why it is not trivial. From the local
estimates proved by Folland [12] it is known that for any v 2W 1;2

X (Bkr)

D2v



Lp(Br)

� c
�

Lv



Lp(Bkr)
+ kDvkLp(Bkr)

+ kvkLp(Bkr)

�
:

Also, for v 2 C10 (Br) one can prove

D2v



Lp(Br)

� c


Lv



Lp(Br)
:

The nontrivial fact, in the subelliptic context (where Lp estimates up to the
boundary are unknown), is removing the Lp norm of v from the right hand side
under the weak vanishing condition v 2W 1;2

0 (Bkr) :

Proof. For any � 2 ( 12 ; 1), we can construct (see [3] for details) a cuto¤ function
'� 2 C10 (Rn) satisfying: '� = 1 on B�r, sprt's � B�0r, where �0 =

(1+�)
2 ,

jXj'�j �
c

(1� �)r
jXiXj'�j �

c

(1� �)2r2 :

Let us de�ne two cuto¤ functions '1; '2 corresponding to �1 2 ( 12 ; 1); �2 = �
0
1;

and let �3 = �02: We can apply Folland�s local estimates for the model operator
(see [12, Theorem 4.9]) to v'1; so that

kXiXj(v'1)kLp(B�2r
) � ckL(v'1)kLp(B�2r

):

17



Then, expanding the operator L(v'1), using the estimate for the derivatives of
'1 and multiplying by (1� �1)2r2 in both sides, we have

(1� �1)2r2kXiXjvkLp(B�1r
) � cr2kLvkLp(Br)

+ c(1� �1)rkXivkLp(B�2r)

+ ckvkLp(Br): (21)

In order to estimate (1 � �1)rkXivkLp(B�2r)
, let us apply Proposition 3 to

v'2. We have

kXivkLp(B�2r)
� "

�
kX2

i vkLp(B�3r
) +

1

(1� �2)r
kXivkLp(B�3r)

+
1

(1� �2)2r2
kvkLp(B�3r

)

�
+
2

"
kvkLp(B�3r

):

Now, taking " = (1 � �2)r� for some � and using the fact that 1��
1��0 =

1
2 we

obtain

(1� �2)rkXivkLp(B�2r)
� c�(1� �3)2r2kX2

i vkLp(B�3r)

+ c�(1� �3)rkXivkLp(B�3r)

+ c�kvkLp(B�3r)
+
2

�
kvkLp(B�3r

);

which, letting
�k = sup

�2( 12 ;1)
(1� �)krkkDkvkLp(B�r)

implies that
�1 � c�(�2 + �1 + kvkLp(Br)) +

c

�
kvkLp(Br);

and taking � small enough we have

�1 � c��2 + CkvkLp(Br):

Finally, inserting this in (21) and taking the supremum on �1 we have

�2 � cr2kLvkLp(Br) + ckvkLp(Br);

which can be read as

r2kXiXjvkLp(Br) � cr2kLvkLp(Bkr) + ckvkLp(Bkr) (22)

for r > 0, k > 2 and for some c depending on p;G; �.
On the other hand, the function

w (x) = �
Z
Bkr

�a
�
x�1 � y

�
jf (y)j dy

18



solves �
Lw = � jf j in Bkr
w � 0 on @Bkr

and taking f = Lv ��Bkr
, by the same reasoning of the proof of Lemma 12, the

maximum principle implies jvj � w in Bkr. Then, by Proposition 5

jv(x)j � w (x) � c
Z
Bkr

1

kx�1 � ykQ�2 jf(y)jdy

� c
1X
s=0

Z
2kr

2s+1
�kx�1�yk� 2kr

2s

1

kx�1 � ykQ�2 jf(y)jdy

� c
1X
s=0

�
2s+1

2kr

�Q�2 Z
kx�1�yk� 2kr

2s

jf(y)jdy

� c(kr)2
1X
s=0

1

22s
Mf(x);

and by (5)
kvkLp(Bkr) � (kr)2kLvkLp(Bkr)

which inserted in (22) gives us the result.

Lemma 15 Let p 2 (1;1). Then there exists a constant c depending on p;G; �
such that for k � 4�3, r > 0 and u 2 C1(Rn)

1

jBrj

Z
Br

jXiXju (x)� (XiXju)Br
jdx

� c

k

qX
i;j=1

1

jBkrj

Z
Bkr

jXiXju (x) jdx+ ck2+Q=p
�

1

jBkrj

Z
Bkr

jLu (x) jpdx
�1=p

:

Proof. For u and k as in the statement, let h be the solution to�
Lh = 0 in Bkr
h = u on @Bkr;

then

1

jBrj

Z
Br

jXiXju(x)� (XiXju)Br
jdx � 1

jBrj

Z
Br

jXiXju(x)�XiXjh(x)jdx

+
1

jBrj

Z
Br

jXiXjh(x)� (XiXjh)Br jdx

+
1

jBrj

Z
Br

j(XiXjh)Br � (XiXju)Br jdx

� A+B + C:

19



By Lemma 13 we have

B � c

k

qX
i;j=1

1

jBkrj

Z
Bkr

jXiXju (x) jdx:

As to C, since (XiXjh)Br � (XiXju)Br = (XiXjh�XiXju)Br it is enough
to estimate the term A.
Applying Lemma 14 to the weak solution v of the problem�

Lv = Lu in Bkr
v = 0 on @Bkr

we have
kXiXjvkLp(Br) � ck2kLvkLp(Bkr):

Then, by Hölder inequality we obtain

1

jBrj

Z
Br

jXiXjv(x)jdx �
�
1

jBrj

Z
Br

jXiXjv(x)jpdx
�1=p

� ck2jBrj�1=p
�Z

Bkr

jLv(x)jpdx
�1=p

= ck2jBrj�1=p
�Z

Bkr

jLu(x)jpdx
�1=p

= ck2+Q=p
�

1

jBkrj

Z
Bkr

jLu (x) jpdx
�1=p

and we are done.

4 Local estimates for operators with variable co-
e¢ cients

Let us now come to study the operator L with variable VMOloc (
) coe¢ cients.
The next theorem contains the key local estimate involving L.
For a �xed domain 
m b 
m+1, let us cover 
m with a �nite number of

balls BR with R small enough (R to be chosen later). In the following theorem
BR is one of these balls. The maximal operator and the local sharp maximal
operator which appear in the statement are de�ned in (4) and (6) respectively.
The function a]m;R (VMO modulus of the coe¢ cients aij) is de�ned in (13).

Theorem 16 Let p; �; � 2 (1;1) with ��1 + ��1 = 1 and R 2 (0;1). Then
there exists a constant c depending on p; �;G; � such that for any u 2 C10 (BR)
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and k � 4�3 we have

(XiXju)
#

m+2;
m+3

(x) � c

k

qX
i;j=1

M(XiXju) (x) + ck
2+Q=p (M(jLujp) (x))1=p

+ ck2+Q=p
�
a]m+2;R

�1=�p
(M(jXiXjujp�) (x))1=�p

for every x 2 BR, R < "m+2:

The choice of bounding the local sharp maximal function relative to the
domains 
m+2;
m+3 is just for consistence with Theorem 1. As will be apparent
from the proof, we could bound (XiXju)

#

k;
k+1

for any desired value of the
integer k.

Proof. Fix k � 4�3, r 2 (0; "m+2) and x 2 BR. Let Br be a ball containing
x. Let L be a constant coe¢ cients operator corresponding to a constant matrix
faijg which will be chosen later, depending on the values of r and k, in the class
of matrices satisfying (9). By Lemma 15 we have that

1

jBrj

Z
Br

jXiXju (x)� (XiXju)Br
jdx

� c

k

qX
i;j=1

1

jBkrj

Z
Bkr

jXiXju (x) jdx+ ck2+Q=p
�

1

jBkrj

Z
Bkr

jLu(x)jpdx
�1=p

� A+B: (23)

To handle the term B, let us write�Z
Bkr

jLu(x)jpdx
�1=p

�
�Z

Bkr

jLu(x)� Lu(x)jpdx
�1=p

+

�Z
Bkr

jLu(x)jpdx
�1=p
(24)

withZ
Bkr

jLu(x)� Lu(x)jpdx � c
qX

i;j=1

Z
Bkr\BR

jaij � aij(x)jpjXiXju(x)jpdx

� c
qX

i;j=1

�Z
Bkr\BR

jaij � aij(x)jp�dx
�1=� �Z

Bkr\BR

jXiXju(x)jp�dx
�1=�

� c
qX

i;j=1

J
1=�
2 J

1=�
1 : (25)

We have

J1 �
Z
Bkr

jXiXju(x)jp�dx = c(kr)Q
1

jBkrj

Z
Bkr

jXiXju (x) jp�dx (26)
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and since the coe�cients aij ; aij are bounded by 1=� we also have

J2 � ���p+1
Z
Bkr\BR

jaij (x)� aij j dx:

We now choose a particular constant matrix faijg, depending on the values of
r; k, as follows

aij =

�
(aij)BR

if kr � R
(aij)Bkr

if kr � R:
Then, if kr � R

J2 � c
Z
BR

jaij(x)� (aij)BR
jdx � cjBRja]R � cR

Qa]R � c(kr)
Qa]R (27)

while if kr � R

J2 � c
Z
Bkr

jaij(x)� (aij)Bkr
jdx � cjBkrja]kr � c(kr)

Qa]R (28)

where, here and in the rest of the proof, we write a]R for a
]
m+2;R.

In any case, by (25), (26), (27) and (28) we obtainZ
Bkr

jLu(x)� Lu(x)jpdx � c
qX

i;j=1

�
(kr)Qa]R

�1=� �
(kr)Q(jXiXjujp�)Bkr

�1=�
= c(kr)Q(a]R)

1=�

qX
i;j=1

((jXiXjujp�)Bkr
)
1=�

which inserted in (24) gives�
1

jBkrj

Z
Bkr

jLu(x)jpdx
�1=p

�
�

1

jBkrj

Z
Bkr

jLu(x)jpdx
�1=p

+ c(a]R)
1=�p

qX
i;j=1

�
1

jBkrj

Z
Bkr

jXiXju(x)jp�dx
�1=�p

:
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In turn, inserting this estimate in (23) we get

1

jBrj

Z
Br

jXiXju (x)� (XiXju)Br
jdx

� c

k

qX
i;j=1

1

jBkrj

Z
Bkr

jXiXju(x)jdx+ ck2+Q=p
�

1

jBkrj

Z
Bkr

jLu(x)jpdx
�1=p

+ ck2+Q=p
�
a]R

�1=�p qX
i;j=1

�
1

jBkrj

Z
Bkr

jXiXju(x)jp�dx
�1=�p

� c

k

qX
i;j=1

M(XiXju) (x) + ck
2+Q=p(M(jLujp)(x))1=p

+ ck2+Q=p(a#R)
1=�p

qX
i;j=1

(M(jXiXjujp�)(x))1=�p :

Note that in this estimate the constant matrix does not appear any longer.
The constants c are independent of k; r and the estimate holds for any k � 4�3
and r > 0: We can then take the supremum with respect to r 2 (0; "m+2),
getting

(XiXju)
#

m+2;
m+3

(x) � N

k

qX
i;j=1

M(XiXju) (x)

+Nk2+Q=p
�
(M(jLujp) (x))1=p +

�
a]m+2;R

�1=�p
(M(jXiXjujp�) (x))1=�p

�
:

We are now in position to give the:

Proof of Theorem 11. Assume that BR and B
R are as in the statement of
Theorem 1. Fix p 2 (1;1) and choose �; �; p1 2 (1;1) such that �p1 < p and
��1+ ��1 = 1: Apply Theorem 16 to these �; �; p1 and the ball B
R (but with
u 2 C10 (BR)) writing, for x 2 B
R:

(XiXju)
#

m+2;
m+3

(x) � c

k

qX
i;j=1

M(XiXju) (x) + ck
2+Q=p1 (M(jLujp1) (x))1=p1

+ ck2+Q=p1
�
a]m+2;
R

�1=�p1 qX
i;j=1

(M(jXiXjujp1�) (x))1=�p1 :
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Then, taking Lp (B
R) norms of both sides we get


(XiXju)#
m+2;
m+3





Lp(B
R)

� c

k

qX
i;j=1

kM(XiXju)kLp(B
R)

+ ck2+Q=p1

 Z
B
R

(M(jLujp1) (x))p=p1 dx
!1=p

+ ck2+Q=p1
�
a]m+2;
R

�1=�p1 qX
i;j=1

 Z
B
R

(M(jXiXjujp1�) (x))p=�p1 dx
!1=p

:

(29)

Note that, since u 2 C10 (BR);Z
BR

XiXju (x) dx = 0:

This follows from the structure of the vector �elds Xi in Carnot groups, since

Xif =
nX
j=1

bij (x) @xjf =
nX
j=1

@xj (bij (x) f) :

Hence we can apply Theorem 1 writing
qX

i;j=1

kXiXjukLp(BR)
� c

qX
i;j=1




(XiXju)#
m+1;
m+2





Lp(B
R)

applying the p, p=p1 and p=�p1-maximal inequality (5) on the right hand side
of (29) (recall that u is compactly supported in BR):

� c

k

qX
i;j=1

kXiXjukLp(BR)

+ ck2+Q=p1

8<:kLukLp(BR)
+
�
a]m+2;
R

�1=�p1 qX
i;j=1

kXiXjukLp(BR)

9=; :
Since this inequality holds for any k � 4�3; we can now choose k so that
c=k < 1=2; getting
qX

i;j=1

kXiXjukLp(BR)
� c kLukLp(BR)

+ c
�
a]m+2;
R

�1=�p1 qX
i;j=1

kXiXjukLp(BR)
:

Finally, exploiting the VMOloc assumption on the coe¢ cients aij we can choose

R small enough to have c
�
a]m+2;
R

�1=�p1
< 1=2; so that

qX
i;j=1

kXiXjukLp(BR)
� c kLukLp(BR)
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and we are done.
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