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Abstract

We study a model for the evolutionarily stable strategy (ESS) used by biological populations
for choosing the time of life-history events, such as migration and breeding. In our model we
accounted for both intra-species competition (early individuals have a competitive advantage)
and a disturbance which strikes at a random time, killing a fraction 1 − p of the population.
Disturbances include spells of bad weather, such as freezing or heavily raining days. It has
been shown in [23], that when p = 0, then the ESS is a mixed strategy, where individuals
wait for a certain time and afterwards start arriving (or breeding) every day. We remove the
constraint p = 0 and show that if 0 < p < 1 then the ESS still implies a mixed choice of
times, but strong competition may lead to a massive arrival at the earliest time possible of a
fraction of the population, while the rest will arrive throughout the whole period during which
the disturbance may occur. More precisely, given p, there is a threshold for the competition
parameter a, above which massive arrivals occur and below which there is a behaviour as in
[23]. We study the behaviour of the ESS and of the average fitness of the population, depending
on the parameters involved. We also discuss how the population may be affected by climate
change, in two respects: first, how the ESS should change under the new climate and whether
this change implies an increase of the average fitness; second, which is the impact of the new
climate on a population that still follows the old strategy. We show that, at least under some
conditions, extreme weather events imply a temporary decrease of the average fitness (thus an
increasing mortality). If the population adapts to the new climate, the survivors may have a
larger fitness.

∗The first two authors contributed equally to this work.
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1 Introduction

Proper timing of life-history events, like emergence, germination, migration or breeding, is crucial

for survival and successful reproduction of almost all organisms. Timing may be set by endogenous

rhythms or by extrinsic environmental clues (e.g. day length or temperature, [40]), but in almost

all cases timing seems to have evolved according to two contrasting selective pressures. On the

one hand, the first individuals that emerge or arrive at a given site often perform better, because

they can profit from the better habitats and benefit from reduced competitions (at least for some

time). On the other hand, however, early individuals may suffer from higher mortality, as they

expose themselves to the risk of adverse environmental conditions, which usually are more likely

early than late in the season. Autumn migration may seem an exception to this pattern, as the

risk of mortality is probably larger for late than early departing individuals. However, in this case,

migrants may benefit from a longer stay in their breeding grounds (allowing to rise a further brood

or acquire larger fat reserves for migration). At the end, this pattern can be seen as the exact

reverse of the process going on in spring, and can therefore be modelled in the same way.

In a seminal work Iwasa and Levin [23] have provided a first theoretical description of how the

risk of incurring in adverse environmental conditions may shape the timing of life history events of

a population, as a result of evolution over many generations. Under the assumption that adverse

conditions (disturbance according to their definition, which we will follow hereafter) strike at a

random time and are so strong that no individual incurring in the disturbance can survive, the

authors show that (in many cases) the evolutionarily stable strategy (ESS from here on) is an

asynchronous choice of times in the population. This asynchronicity has been observed in various

settings and modelled by several authors (see [9], [11], [36], [37], [39] just to mention a few). In this

paper we extend Iwasa and Levin’s model to the broader scenario where the disturbance is soft,

meaning that it kills each individual with probability 1− p (in many cases some individuals in the

population survive even to dramatic adverse conditions). The model of Iwasa and Levin can be

seen as a particular case of ours when p = 0.

Before going into the details of our model, we have to mention that it focuses on the long time

behaviour of a very large population. Indeed it is implicitly assumed that when the existence of

mutants with better fitness is theoretically possible, then such mutants will appear and spread across

the population. This does not take into account the disappearance (in finite populations) of certain

alleles by mere random factors, a phenomenon which can be studied by means of mathematical

population genetics (see for instance [18]). Long time behaviour of finite populations can also

be studied through spatial models, namely interacting particles systems. Space not only adds
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complexity [17], but may also be interpreted as “type”, that is the location of one or more individuals

can be seen as representing their genotype. For the simplest among this models, the branching

random walk, much has been done: for instance in [4, 5, 7, 32, 45, 47] one finds characterization

of the persistence/disappearance of genotypes (seen as locations for the model), on general space

structures; the same can be found, for some random graphs, in [8, 35]. Stochastic modelling and

interacting particle systems have been successfully applied to biology and ecology (see [1, 2, 3, 12,

13, 24, 25, 26, 28, 19, 48] just to mention a few). Although stochastic modelling is very interesting

and complex, here we will assume that over many generations, our populations have been sufficiently

large to justify the use of a model where stochasticity appears only in the random time at which

the disturbance strikes.

As for terminology, in the present work the life-history events under study are arrival times,

meaning that we focus on migratory birds and the time of arrival to their breeding grounds. This

choice of words should not be considered a reduction in the scope of this paper, since our modelling

approach is very broad, as it applies to the investigation of the timing of any life-history event when

the benefits from being early and the risk of incurring in a soft disturbance are in conflict. Migratory

birds are a well studied biological system where timing is crucial for the fitness of individuals, and

where a long record of adverse conditions killing or impairing the reproduction of individuals exists

(see e.g. [33]). Moreover the interest in the timing of these recurrent biological events is very strong

among biologists after that several studies have consistently observed an advancement in arrival

and reproduction of birds supposedly as a consequence of climate change (see [10], [15], [46]).

Climate change not only implies warming temperatures, but also higher frequency and intensity

of extreme meteorological events (see [21]). This increased weather unpredictability may severely

affect migrant birds, because warmer springs prompt birds towards earlier arrivals, while more

frequent unseasonable weather increases the risk of mass mortality events (see [42] for a stochastic

model for random catastrophes striking a spatially structured population). It is widely accepted

that climate change is endangering migrant populations (see [41]). Ornithologists therefore strongly

need models investigating the contrasting forces affecting the timing of bird migration to improve

their understating of the ongoing ecological processes and to plan better conservation strategies for

declining migrant populations. We point out that even if our primary interest here are evolutionarily

stable strategies which arise in large populations after many generations of stable climate (an

equilibrium situation), our study also allows us to analyze some effects of a sudden climate change

(an off-equilibrium dynamics). Indeed our results not only describe the ESS (Theorem 3.5) but

also the effects of the climate change on the fitness of a population not yet adapted to the change

(Propositions 3.7, 3.8 and 3.9).

Here is a short outline of the results of the paper. In Section 2 we introduce the model and

the notation. We consider an intra-species competition regulated by a parameter a ≥ 0 and we

define the fitness ψµ as a function of the arrival time conditioned on the disturbance time, the
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expected fitness φµ depending only on the arrival time (averaged over all admissible disturbance

times) and, later on, the average fitness λ̄µ (averaged over all disturbance and arrival times). We

describe the meaning of an evolutionarily stable strategy (ESS) and we discuss the easiest cases

where either there is no competition (a = 0) or the probability p of surviving the disturbance is 1,

i.e. the disturbance has no effect whatsoever (Remark 2.1). Section 3 contains our main results.

Theorem 3.5 extends [23, Appendix A] and shows that there is only one possible ESS for the

population in response to a fixed disturbance distribution, which we imagine supported in [tf , tf ].

The behaviour of the ESS depends on the value of (a, p). Indeed there exists a function of p, say

aM = aM (p), such that if a < aM then the population starts arriving after a date xc > tf and

there are arrivals every day until tf ; if a = aM then continuous arrivals starts at tf ; if a > aM

then a fraction γ of the population arrives at time 0 and the rest arrives continuously starting

from tf . The dependence on a and p of the fitness of individuals following the ESS is discussed; in

particular we show (see Remark 3.6) that the theoretical maximum value of the average fitness λ̄µ

is not attained by any ESS. This proves that, even though an ESS is a strategy that each member

of the colony considers fair, it is not the best choice for the colony as a whole. The dependences of

every relevant coefficient on a, p and the disturbance distribution are summarized in a table before

the beginning of Section 3.1. As an example, we describe the case where the disturbance strikes

according to a uniform distribution (see Section 3.1). The effects of climate changes are studied in

Section 3.2. The main questions discussed here are the following. How does the ESS change after a

climate modification? What happens if a population would keep the same strategy after a climate

change? A worse climate, that is a smaller p, may change the shape of the ESS delaying the first

arrivals and increasing the fitness of each individual (provided that the population survives the

transition). If the distribution of the disturbance is linearly rescaled, the same happens to the ESS.

The behaviour of the fitness, before the strategy adapts, is studied in Propositions 3.7, 3.8 and

3.9. A consistent delay of the disturbance reduces the fitness of all individuals following the former

ESS. If the disturbance arrives earlier than in the past, then the average fitness of the population

increases. When the competition is weak then a decrease of p implies a killing of a larger fraction

of the population and hence a lower average fitness. In Section 4 we discuss and summarize the

conclusion of the paper. Section 5 is devoted to the proofs of our results.

2 The model

Iwasa and Levine [23] studied different ways to model the fact that individuals choosing an early

date of arrival, if no disturbance were present, would obtain a larger fitness than those arriving

later. This may be due to the fact that a decrease of reproductive success (better resources at

earlier times, [23, Case 1]) or to competition between individuals, for instance those who arrive

earlier may feast on food, while those arriving later will not ([23, Case 2]). We focus on the second
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case, where Iwasa and Levin proved the emergence of a mixed strategy for the arrival dates (which

is more interesting and realistic than Case 1, where all individuals choose the same date).

Suppose that µ is the probability measure, supported on [0,+∞), according to which individuals

choose the date of arrival to the breeding sites. Its cumulative distribution function Fµ is defined,

as usual, by Fµ(x) := µ((−∞, x]) for all x ∈ R. The population is struck by a single disturbance

(e.g. storm, frost) whose date is randomly distributed on (tf , tf ) with density f . It may be that

tf = 0 (tf is the first possible date of disturbance while tf is the last). Individuals already present

when the disturbance occurs, survive with probability p ∈ [0, 1]. The fitness of an individual

is a decreasing function of the fraction of individuals (in the whole population) who are already

present when it arrives, and of the parameter a ≥ 0 which represents the strength of intra-species

competition. Inspired by [23] we choose the following expression for the fitness ψµ of an individual

arriving at date y, given that the disturbance strikes at time x:

ψµ(y|x) =

{
p exp(−aFµ(y)) if 0 ≤ y ≤ x;

exp(−apFµ(x)− aFµ(y) + aFµ(x)) if y > x.

Thus ψµ(y|x) is the fitness (under the strategy µ) of an individual arrived at time y when the

disturbance strikes at time x. It is worth noting that we are implicitly exploiting the Law of Large

Numbers (LLN), since the exact value of ψµ(y|x), for instance if y ≤ x, is

ψµ(y|x) = p exp(−aN(y)/N),

where N(y) is the random number of individuals arrived before y and N is the population size. If

N is large, the LLN implies that N(y)/N can be approximated by Fµ(y). Similarly one proceeds

with the case y > x.

We consider the expectation of the fitness, with respect to the disturbance date: the expected

fitness of an individual arrived at y is

φµ(y) =

∫ tf

0
ψµ(y|x)f(x)dx.

More explicitly, for y ≥ 0,

φµ(y) = exp(−aFµ(y))
[ ∫ y

0
exp(a(1− p)Fµ(x))f(x)dx+ p

∫ tf

y
f(x)dx

]
= exp(−aFµ(y))

[ ∫ y

0
(exp(a(1− p)Fµ(x))− p)f(x)dx+ p

] (2.1)

We note that, in the last integral of equation (2.1) (as well in every integral of a function of type

k(x)f(x) in the sequel), one could use +∞ instead of tf and the value of the integral would be the

same (as the definition of φµ); moreover if y > tf , by
∫ tf
y we mean −

∫ y
tf

.
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We assume that, the population follows evolutionarily stable strategies, that is, distributions of

arrival times which grant no advantage to any particular choice of arrival date. More precisely, an

evolutionarily stable strategy (ESS ) µ, is such that no mutant can have an advantage, namely for

all y ∈ supp(µ) and for all z ∈ R+, φµ(y) ≥ φµ(z). This implies that φµ(y) = λ for all y ∈ supp(µ),

where λ := sup{φµ(y) : y ∈ R+} ≤ 1. We recall that supp(µ) is the (closed) set of y such that

µ(y − ε, y + ε) > 0 for all ε > 0. We will also need to define the essential support Esupp(f) of

a real function f , which is the support of the associated measure A 7→
∫
A f(x)dx (for instance, if

f is continuous then Esupp(f) = {f 6= 0}). We recall that in [23] the probability distribution of

the disturbance was considered as absolutely continuous with a single peak density f which was

taken, on [0, tf ] as a polynomial vanishing at the extrema of the interval. We only assume that f

is a probability density, supported in [0, tf ]. From now on, without loss of generality, we assume

tf := max Esupp(f) and tf := min Esupp(f).

We are interested in studying µ as a function of a and p (and of f , but here f is thought as

fixed). The extremal cases where either a = 0 or p = 1 are easy to describe.

Remark 2.1. 1. If a = 0 and p = 1, there is no competition and the disturbance has no effect.

Then φµ(y) = 1 for all y > 0; moreover, every µ is an ESS (indeed the disturbance has no

chance to shape an evolutionary response of the species).

2. If a = 0 and p < 1, there is no competition. From equation (2.1) we have, φµ(y) = 1− (1−
p)
∫ tf
y f(z)dz which is non decreasing and continuous and φµ(y) = 1 for all y ≥ tf . We see

here that there is no dependence on µ. A probability measure µ is thus an ESS if and only

if supp(µ) ⊆ [ tf ,∞). This means that all idividuals will arrive after the last possible date of

disturbance.

3. If a > 0 and p = 1, there is competition and the disturbance has no effect. From equation (2.1)

we have φµ(y) = exp(−aFµ(y)) which is right-continuous and nonincreasing. Using the same

arguments as in the proof of Theorem 3.5 it is straightforward to prove that there is a unique

ESS, namely µ = δ0. Everybody arrives at the first possible arrival date (indeed there is no

risk in doing so).

4. If a > 0 and p = 0, the case has been studied in [23, Case 2] and can be retrieved as a

particular case of Theorem 3.5. There exists a critical date xc (depending on a and f) after

which individuals start arriving according to an absolutely continuous measure µ such that

supp(µ) = (xc, tf ). The expected fitness of each individual is λ = 1
1+a .

The interesting case is when a > 0 and p < 1, that is, competition in the population and

effective disturbance. These are the constraints which we assume thereafter.
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3 Main result

We are able to prove (Theorem 3.5) that given p < 1, there exists a critical aM , depending only on

p (not on f) such that:

1. if a < aM then the ESS is as follows: there is a critical date xc > tf (depending on a, p and f)

after which individuals arrive continuously while disturbances are possible (see for instance

Figure 5). This extends the previously known result for p = 0 since aM (0) = +∞ (see [23,

Case 2]);

2. if a = aM then the ESS is as before, with xc = tf (individuals arrive throughout the whole

period of possible disturbance, see for instance Figure 6);

3. if a > aM then the ESS is such that a fraction γ of individuals arrive at 0, and the remaining

arrive continuously during the whole period of possible disturbance (see for instance Figure 7).

Before stating our main result, we define the quantities aM , xc and γ.

Definition 3.1. If p = 0, then aM (p) := +∞; if p ∈ (0, 1), then aM (p) is the solution to the

equation ∫ exp(aM )

1

dz

z1−p − p
=

1

p
. (3.2)

Note that the solution to equation (3.2) exists and is unique since the l.h.s. is a continuous,

strictly increasing function of aM which vanishes at aM = 0 and goes to infinity as aM →∞. The

inverse function of aM will be denoted by pM (a) (by definition pM (+∞) := 0). Clearly a ≤ aM (p)

(resp. a ≥ aM (p)) if and only if p ≤ pM (a) (resp. p ≥ pM (a)).

Definition 3.2. If a > aM (p) let xc = xc(a, p, f) := 0. If a ≤ aM (p) define xc as the maximal

solution to the equation ∫ tf

xc

f(x)dx =
(

1− p+
(∫ exp(a)

1

dz

z1−p − p

)−1)−1
. (3.3)

Note that the solution to equation (3.3) exists and is unique, since the r.h.s. is positive and

strictly smaller than 1, while the l.h.s. is a continuous, nonincreasing function of xc which takes

values 1 and 0 at xc = 0 and xc = tf respectively. By definition if a ≤ aM (p), xc ∈ Esupp(f).

Definition 3.3. If a ≤ aM (p) let γ = γ(a, p) := 0. If a > aM (p) let γ be the unique solution to the

equation

exp(−aγ)

∫ exp(a)

exp(aγ)

dz

z1−p − p
=

1

p
. (3.4)
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The solution exists and is unique since the l.h.s. is a continuous, strictly decreasing function

of γ which takes values in (1/p,+∞) when γ = 0 and is equal to 0 when γ = 1. Observe that

γ(a, 0) = 0 for all a > 0.

Note that, in accordance with [23], if p = 0 then aM = +∞, γ = 0, and
∫ tf
xc
f(x)dx = a/(1 +a).

Let us discuss some general properties of aM , xc and γ. For details on the proofs, see Section 5.

Remark 3.4. 1. The map p 7→ aM (p) is continuous and strictly decreasing; see Figure 1. By

using elementary techniques of implicitly defined functions it is not difficult to prove that

limp→0+ aM (p) = +∞, limp→1− aM (p) = 0.

2. Given a fixed f , we have that p 7→ xc and a 7→ xc are strictly decreasing and left continuous

everywhere. The map p 7→ xc is right continuous at p0 only in the following cases: (a)

a > aM (p0); (b) a < aM (p0) and (xc(a, p0, f) − ε, xc(a, p0, f)] ⊆ Esupp(f) for some ε > 0;

(c) a = aM (p0) and tf = 0. Similarly a 7→ xc is right continuous at a0 only in the cases: (a)

a0 > aM (p); (b) a0 < aM (p) and (xc(a0, p, f) − ε, xc(a0, p, f)] ⊆ Esupp(f) for some ε > 0;

(c) a0 = aM (p) and tf = 0. Again using standard techniques of implicitly defined functions

we have

lim
p→0+

xc(a, p, f) ≤ xc(a, 0, f) < tf = lim
a→0+

xc(a, p, f);

lim
p→pM (a)−

xc(a, p, f) = tf = lim
a→aM (p)−

xc(a, p, f).
(3.5)

3. The function (a, p) 7→ γ(a, p) is continuous on (0,+∞) × [0, 1) and p 7→ γ(a, p) is strictly

increasing (for all fixed a ∈ (0,+∞)). Moreover γ(a, p) < p for all p ∈ (0, 1) and for all a > 0;

a 7→ γ(a, p) is strictly increasing in [aM (p),+∞) for all fixed p ∈ (0, 1) (see Remark 5.3). See

Figures 2 and 3 for some plots of p 7→ γ(a, p) and a 7→ γ(p, a). Moreover, we have

lim
p→0+

γ(a, p) = 0, lim
p→1−

γ(a, p) = 1, lim
a→∞

γ(a, p) = p,

where the last limit holds for all p > 0.
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Figure 1: p 7→ aM (p).

Figure 2: p 7→ γ(p, a); a = 3, 2, 1, 0.5. Figure 3: a 7→ γ(p, a); p = 0.5, 0.3, 0.2, 0.1.

Theorem 3.5. Let aM , xc and γ be as previously defined. Given a > 0, p ∈ [0, 1) and f a

probability density supported in [0, tf ]) (where by definition tf = max Esupp(f)), there exists a

unique ESS µ. In particular, µ = γδ0 + (1 − γ)ν, where ν is an absolutely continuous probability

measure with supp(ν) = [xc, tf ] ∩ Esupp(f). The cumulative distribution function Fν is implicitly

defined, on x ≥ xc, by ∫ exp(a(1−γ)Fν(x)+aγ)

exp(aγ)

dz

z1−p − p
=

1

λ

∫ x

xc

f(y)dy. (3.6)

The value of λ (the supremum of φµ) is

λ = λ(a, p) =


1

1 + (1− p)
∫ exp(a)

1
dz

z1−p−p

if a ≤ aM

p exp(−aγ) if a > aM .

(3.7)
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Finally, aM is a phase transition value for the competition in the sense that

a < aM ⇒ γ = 0, xc > tf ;

a = aM ⇒ γ = 0, xc = tf ;

a > aM ⇒ γ ∈ (0, (1− aM/a) ∧ p), xc = 0.

It is worth noting that, in equation (3.6), we can write Fµ(x) instead of γ + (1− γ)Fν(x).

Several features of the ESS µ can be read from Theorem 3.5. Beside arrivals at 0 (possible only

when competition is sufficiently strong), individuals arrive only at possible disturbance dates. This

means that if it is certain that during [s, t] ( [tf , tf ], no disturbance is possible (i.e. f(x) = 0 for

all x ∈ [s, t]), then the probability of arrivals in such interval is zero. This is due to competition,

which advantages early birds: there is no point in choosing to arrive in between s and t, since there

is no risk in choosing s instead.

In most real cases, one may assume that f > 0 on [0, tf ]. In that case individuals will arrive

either (1) avoiding the first part of the possible time period (weak competition, see Figure 16) or

(2) during the whole interval [0, tf ] without massive arrivals at 0 (critical competition, Figure 15)

or (3) during the whole interval with massive arrivals at 0 (supercritical competition, Figure 14).

The first arrival time xc is strictly decreasing with respect to p and to a (Remark 3.4); this

means that strong competition and/or high probability of surviving the disturbance, push arrivals

to 0. If p is fixed, competition needs to be above the threshold aM (p), in order to have arrivals at

0. On the other hand, if competition is fixed, only weak disturbances lead to early arrivals.

As for γ, the fraction of arrivals at 0, we know that it increases with p. If p > 0, from

equation (3.6), using γ(a, p) ↑ p as a → ∞, it follows that Fν(x) → 1 for all x ∈ (tf , tf ] as

a → ∞. This means that, as the competition increases, given that an individual does not arrive

at time 0 (this probability converges monotonically to 1 − p from above) then the probability of

arriving after x > tf goes to 0, that is, in the limit as a → ∞ the arrival distribution converges

to pδ0 + (1 − p)δtf (that is, δ0 if tf = 0). Note that this does not happen when p = 0: in that

case Fν(x) = 1+a
a

∫ x
xc
f(y)dy which implies that Fν converges to the cumulative distribution of the

disturbance arrival time.

Associated to a given strategy µ, there is the average fitness λ̄µ :=
∫ +∞

0 φµ(y)µ(dy). In partic-

ular when µ is an ESS, then φµ(y) = λ for all y ∈ supp(µ) (where λ = λ(a, p), see (3.7)), hence

λ̄µ = λ(a, p). If a ≤ aM we can relate λ(a, p) to xc: by equations (3.3) and (3.7) we have∫ tf

xc

f(y)dy =
1− λ(a, p)

1− p
= λ(a, p)

∫ exp(a)

1

dz

z1−p − p
. (3.8)
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It is not difficult to prove that (a, p) 7→ λ(a, p) is continuous in (0,+∞)×[0, 1); moreover a 7→ λ(a, p)

and p 7→ λ(a, p) are strictly decreasing functions (see Remark 5.3) such that

lim
a→0+

λ(a, p) = 1, lim
a→+∞

λ(a, p) = 0;

lim
p→0+

λ(a, p) =
1

1 + a
, lim

p→1−
λ(a, p) = exp(−a),

hence λ(a, 0) = (1+a)−1 ≥ λ(a, p) ≥ exp(−a) = λ(a, 1) for all p ∈ [0, 1]; moreover λ(aM (p), p) = p.

Thus, when µ is an ESS the average fitness λ̄µ = λ(a, p) is decreasing with respect to p (when

a > 0), hence, if we think of the fitness as a probability of survival, the average rate of survivors

is decreasing if the chance of surviving the catastrophe p is increasing. From a biological point of

view, this model suggests that, in the presence of competition, if the disturbance is weaker (that

is, p increases) then the ESS pushes the colony towards an early arrival on the site, increasing the

negative effects of the competition on the fitness (which overcome the positive effects of the weaker

disturbance). Hence the stronger the disturbance the higher the average fitness corresponding to

the ESS (in some sense, if we think of the average fitness of the population as its “strength”, a

strong disturbance will select a stronger population).

One may wonder if there are strategies µ which (given the environment (a, p, f)) lead to a larger

λ̄µ, and whether these strategies are Evolutionary Stable Strategies.

Remark 3.6. The supremum of the map µ 7→
∫
φµ(y)µ(dy) = λ̄µ is (1 − exp(−a))/a and is

attained by µ if and only if inf supp(µ) ≥ sup Esupp(f) = tf and Fµ is continuous (and this

supremum holds for any fixed p, see details in Section 5). This means that the best choice for the

population as a whole, is to start arriving after the last possible date of disturbance. In particular no

ESS can attain this maximum value (an ESS is supported in [0, tf )). An ESS is a strategy which is
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well accepted by every individual (since the fitness is constant and maximal), while the maximizing

strategies imply that some individuals“accept” a lower fitness for the benefit of the whole colony

(note that the continuity of Fµ implies that the population cannot choose to arrive simultaneously

at tf , which would guarantee the same fitness for everyone). Moreover, even if the maximal fitness

is attained only arriving after tf , it is possible to prove that we can find a sequence of strategies

(not ESSs) {µn}n≥1, supported in [0, tf ] such that λ̄µn > (1 − exp(−a))/a − 1/n. In Figure 4 the

dashed line represents supµ λ̄µ, whereas the dotted and the solid ones are the average fitness when

the population follows the ESS, λ(a, 1) and λ(a, 0), respectively. The filled region represents all

possible values for λ(a, p) with p ∈ (0, 1). Note that following the ESS a population cannot achieve

the maximal average fitness, nevertheless if a is either small or large, then the dashed and the solid

line are close, hence, if p = 0 or at least p is small, then the average fitness is not so far from its

theoretical supremum.

Figure 4: Maximum average fitness and the admissible region for λ(a, p).

In the following table, we summarize the main properties of the coefficients aM , γ, λ and xc;

by ↗ x and ↘ x we mean that a particular coefficient is increasing or decreasing with respect to

the parameter x.
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Coefficients Dependence Properties

Phase transition competition aM p ↘ p
aM ∈ [0,+∞]

Probability of emigration at time 0, γ a, p ↗ a ↗ p
γ = 0 if a ≤ aM

γ ∈ (0, p) if a > aM
Fitness of individuals for the ESS, λ a, p ↘ a ↘ p

exp(−a) ≤ λ(a, ·) ≤ (1 + a)−1

Maximum average fitness λ̄ for a generic strategy a λ̄(a, p) = (1− exp(−a))/a

Earliest arrival time for an ESS xc a, p, f ↘ a ↘ p
xc ∈ [tf , tf ] if a ≤ aM
xc = 0 if a > aM

Given (a, p, f), Theorem 3.5 gives the unique ESS µ and its average fitness λ. We note that

the map (a, p, f) 7→ (λ, µ) is not injective. Indeed, at least when a ≤ aM (p), it might be that

λ(a, p) = λ(b, q) for some q and b. Even if we fix (a, p), at least in the subcritical case, different

disturbance distributions may lead to the same ESS. Indeed, suppose that a < aM (p) then xc > 0

and γ = 0. Given µ is fixed, from equation (3.6), f is uniquely determined on [xc, tf ]. Nevertheless,

on [0, xc] the only constraint is
∫ xc

0 f(x)dx = (p − λ)/(1 − p), which can be satisfied by infinitely

many distributions. This means that different levels of competition, and/or of climate, can lead to

the same response µ and same fitness λ.

3.1 Uniformly distributed disturbances

In this example we suppose that f(t) = (tf − tf )−11l[ tf ,tf ](t), that is, the law of the disturbance is

uniformly distributed in the interval [tf , tf ] (we also write f ∼ U(tf , tf )). In this case some explicit

computations are possible.

The coefficients aM , λ, γ do not depend of f ; the only coefficient depending on f is the first

time of arrival xc (which is nonzero only if a ≤ aM ). If a ≤ aM , then

xc = tf + α(a, p)(tf − tf )

where α(a, p) := 1−pC(a,p)
1+(1−p)C(a,p) , with C(a, p) =

∫ exp(a)
1

dz
z1−p−p ≤ 1/p. This means that, in the

subcritical case, the ratio R between the length of the arrival times interval and that of the dis-

turbance times interval, depends only on a and p (not on f); indeed R := (tf − xc)/(tf − tf ) =

(1− p+ C(a, p)−1)−1.

The cumulative distribution function Fµ can be computed using equation (3.6). Although

when p 6= 0 no explicit evaluations are possible, one can see that Fµ is a rescaling of the cumulative

distribution function of the ESS obtained when the disturbance is uniformly distributed on the

interval [0,1] (with the same parameters a and p), which we denote by F a,p0 . More precisely, if

13



Fν = F a,pν is the cumulative distribution function of the ESS when f ∼ U(tf , tf ), then

F a,pν (x) = F a,p0

( x− tf ∨ xc
tf − tf ∨ xc

)
(3.9)

(recall that tf ∨ xc = xc if a < aM while tf ∨ xc = tf if a ≥ aM ). Using computer-aided numerical

solutions, in Figures 5–10 we plot the cumulative distribution functions of the ESS (solid line) and

of the disturbance (dashed), with different parameters and disturbance intervals. In the first row,

Figures 5–7, we take f ∼ U(0.5, 0.9) while in the second row, Figures 8–10, we have f ∼ U(0.3, 1).

In the three figures in each row, the parameters (a, p) are, respectively, (0.2, 0.2), (5, 0.2) and

(5, 0.5). This implies that the first figure represents a subcritical case (a = 0.2 > aM (0.2) =

3.30447). Note that in both rows in this case the arrivals start towards the end of the disturbance

intervals and the ratio between the length of the two intervals representing the arrival times and

the disturbance time is the same, R = 0.208552.

The second figure of the row is a supercritical case (a = 5 > aM (0.2)), where a fraction

γ = 0.10142 of the population arrives at time 0. In both rows the fraction γis the same (γ depends

only on a and p).

The third figure is again a supercritical case (a = 5 > aM (0.5) = 0.941046), where strong

competition forces a larger fraction of the population (γ = 0.456433) to arrive early. Along with

the values of a and p, in Figures 5–10 we write the explicit value of the maximum average fitness

λ. Note that λ increases when either p decreases or a increases, the maximum competition aM .

Figure 5: a = 0.2, p = 0.2, λ = 0.833158. Figure 6: a = 5, p = 0.2, λ = 0.120448. Figure 7: a = 5, p = 0.5, λ = 0.0510315.

Figure 8: a = 0.2, p = 0.2, λ = 0.833158. Figure 9: a = 5, p = 0.2, λ = 0.120448. Figure 10: a = 5, p = 0.5, λ = 0.0510315.

As we have seen in Figures 5–10, by (3.9), it is enough to study the case f ∼ U(0, 1). In
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Figures 11-19 we plot the cumulative distribution function F a,p0 (solid line) corresponding to nine

couples (p, a), together with the cumulative distribution function of the disturbance (dashed line).

In each row p takes the same value (p = 0.1, 0.3 and 0.5 in the first, second and third row

respectively), while a is constant along each column (a = aM (0.1), aM (0.3) and aM (0.5) in the

first, second and third column respectively). In this way, figures on the diagonal represent critical

cases, figures on the upper triangle are subcritical cases and figures on the lower triangle are

supercritical cases.

Figure 11: a = aM (0.1) = 6.893, p = 0.1,
λ = 0.0995, γ = 0.

Figure 12: a = aM (0.3) = 2.075, p = 0.1,
λ = 0.3153, γ = 0.

Figure 13: a = aM (0.5) = 0.941, p = 0.1,
λ = 0.5123, γ = 0.

Figure 14: a = aM (0.1), p = 0.3, λ =
0.0478, γ = 0.2663.

Figure 15: a = aM (0.3), p = 0.3, λ =
0.296271, γ = 0.

Figure 16: a =M (0.5), p = 0.3, λ =
0.5066, γ = 0.

Figure 17: a = aM (0.1), p = 0.5, λ =
0.0184, γ = 0.4788.

Figure 18: a = aM (0.3), p = 0.5, λ =
0.2606, γ = 0.3141.

Figure 19: a = aM (0.5), p = 0.5, λ =
0.5011, γ = 0.

3.2 Climate changes

In our model the climate can be represented by the couple (p, f), that is, the distribution and the

strength of the disturbance; more precisely the lower p the stronger the disturbance. One can argue

that also the competition parameter a could be affected by the climate, nevertheless, in this paper,

we prefer to think of it as a characteristic of the population.
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When climate changes (i.e. the couple (p, f) changes), there are two interesting questions.

1. How does the ESS change reflects a climate change? In other words, can we predict in which

respect the new ESS will differ from the previous one?

2. What happens if a colony keeps the same strategy of arrivals after a climate change? Does

the average fitness of the population decrease or increase?

Some answers can be obtained if we imagine that the climate change affects just one of the

parameters p and f .

The answer to question 1, is given by Theorem 3.5. If p decreases, then λ(a, p) increases: after

the population has adapted to the new climate the common fitness will have increased (of course

supposing that the population is sufficiently large to survive the transition period). Moreover, a

decrease of p may lead from an ESS with massive arrival at 0, to an ESS with arrivals after a date

xc > tf . Let us discuss now what happens if f changes, that is if it moves from f1 to f2. The fitness

of every individual, according to an ESS adapted to fi, is λ(a, p) which does not depend on fi, thus

that will not change in case of rapid adaptation (question 1). What will change is the distribution

of the arrival times and possibly its support. In the case of uniformly distributed disturbances, the

answer to question 1 is given by equation (3.9): a change of the interval during which disturbances

occur is simply reflected by a rescaling of the ESS. It is worth noting that an analogous result holds

if we take a generic density f defined on [0, 1] and we rescale it as follows

fi(t) := f
( t− tf
tf − tf

)
; (3.10)

the effect on the ESS in this general case is still the rescaling given by equation (3.9).

The second question is particularly interesting in the case of rapid climate changes, since the

adaptation of the population (moving from the old ESS to the new one) could require several

generations; thus the changes may endanger the survival of the population. A sudden change of

climate may be an advantage for some individuals (i.e. some arrival dates) and a disadvantage for

other individuals. Even in the case of a simple anticipation of the disturbance the situation is

not trivial. Suppose that f1 is supported in [t1, t1] and f2 is supported in [t2, t2], with t2 < t1.

Individuals arriving at y > t2 are sure that the disturbance is over but they might have more

competitors still alive (for instance those arriving at y− ε), thus it is not clear whether the climate

change implies a larger or smaller fitness. The following proposition gives a partial answer: let

us denote by φ
(i)
µ (y) the fitness of an individual, in a population following the strategy µ (not

necessarily an ESS), which chooses the arrival date y and has to face the disturbance which is

regulated by fi. If f2 is a delay of the disturbance, that is, in the second scenario disturbances strike

later in the season, early birds suffer a decrease of their fitness. The second part of the proposition

tells us that, at least for uniform disturbances, if f2 delays the beginning of the disturbance but

also anticipates the end of the disturbance season, then later birds have an advantage.
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Proposition 3.7. Consider a distribution µ and two densities f1 and f2 on the intervals [t1, t1],

[t2, t2].

1. If t1 < t2 then φ
(1)
µ (y) ≥ φ(2)

µ (y) for all y ∈ [t1, t2].

2. If µ is the ESS associated to f1, D2 is a random variable with density f2 and P(t2 < D2 < t1)

is sufficiently small then φ
(1)
µ (y) ≥ φ(2)

µ (y) for all y ∈ [t1, t1].

3. If f1 and f2 are uniform densities and t1 ≤ t2 and t1 ≥ t2 then φ
(2)
µ (y) ≥ φ

(1)
µ (y) for all

y ≥ y1 := (t1t2 − t2t1)/(t1 + t2 − t2 − t1) (where y1 ∈ [t2, t2]).

Proposition 3.7(1) and (3) follow from a more general result (Proposition 5.8) which allows to

compare φ
(1)
µ and φ

(2)
µ in more general settings. Proposition 5.8 is fairly technical and can be found

in Section 5. Proposition 3.7(2) implies for instance that a consistent delay of the disturbance

(think of t2 > t1) reduces the fitness of all individuals following the former ESS. Even if it is not

necessary that t2 > t1, the requirement that P(t2 < D2 < t1) is sufficiently small, implies that

t2 > t1.

It is not trivial to assess whether individuals that profit from the climate change represent a

small or large fraction of the population following what was a former ESS. More precisely, it is

not always clear whether the average fitness λ̄µ increases or not. Nevertheless it is not difficult to

provide some partial answers in the case of delay or anticipation of the disturbance.

Proposition 3.8. Consider two densities f1 and f2 on the intervals [t1, t1], [t2, t2] and let µ be the

ESS associated to f1. Denote by D2 a random variable with density f2.

1. λ̄
(2)
µ < λ̄

(1)
µ provided that P(t2 < D2 < t1) is sufficiently small.

2. λ̄
(2)
µ > λ̄

(1)
µ provided that Fµ(t2) is sufficiently small.

Proposition 3.8(1) implies that a consistent delay of the disturbance reduces the average fitness

of the population; on the other hand, Proposition 3.8(2) implies that the average fitness of the

population increases if the disturbance arrives so early that most of the population has not yet

arrived when the danger is over.

Let us discuss now the consequences of a change of p. In the previous sections we showed that

p 7→ λ(a, p) is decreasing. This means that if p decreases and there is an instantaneous adaptation

of the population to the new conditions (i.e. the arrival distribution µ changes accordingly) then

the fitness of each individual (hence the average fitness) increases, because more individuals will

choose to arrive later in the season. Intuitively, if the population does not adapt to the climate

change, a decrease of p should imply a killing of a larger fraction of the population and hence a

lower average fitness. The following result tells us that this intuition is correct, at least for weak

competition.
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Proposition 3.9. Given a generic arrival strategy µ, recall the definition of the average fitness as

λ̄µ = λ̄µ(a, p, µ, f) =
∫
φµ(y)µ(dy). The function p 7→ λ̄µ = λ̄µ(a, p, µ, f) is continuous in [0, 1].

Moreover for all a ∈ (0, 2 log(2)] we have ∂pλ̄µ(a, p, µ) ≥ 0 for all p ∈ (0, 1) and the inequality is

strict if and only if Fµ(x) > 0 for some x < tf .

This means that, if the competition is low, then when the probability of surviving the distur-

bance decreases then the fitness decreases as well. Roughly speaking, in case of low competition it is

better to arrive later (and to have more competitors) than to take a chance against the disturbance.

4 Discussion

In this paper we developed a model for the timing of life history events when a disturbance can strike

a population of migrators and may kill some of the individuals that incur in it. Our model therefore

considered the biologically realistic scenario of a “soft” disturbance, i.e. an event, like extreme

unseasonable weather, that can kill a fraction of the population, but to which some individuals

survive. We developed our study by considering migratory birds as a model, because they are

biological system where the timing of life history events has been intensively studied. In particular,

we looked for the ESS for individuals that have to choose arrival time to their breeding grounds,

and benefit from early arrival, as is often the case for migratory birds ([16]). On the other hand,

they may incur in a catastrophe, for instance a spell of cold weather, that will kill a fraction of

individuals that have arrived to their breeding grounds before the catastrophe. Clearly, the choice

of focusing on arrival to the breeding grounds is purely exemplificative, and our model applies

more generally to the timing of almost any life-history event. For example, it applies to timing of

arrival to the wintering grounds, crossing of a geographical barrier like a mountain range, or to

timing of reproduction, rather than arrival. From a biological point of view, the most interesting

results we obtained can be summarized as follows. First, in presence of competition, a fraction

of individuals arrive early during the season, in a period when they can incur in a catastrophe

and therefore be killed. Interestingly, the stronger the competition, the earlier birds start arriving

and may even arrive at the earliest time possible. Remarkably, there is a threshold value for the

intensity of the competition above which a fraction of individuals arrive extremely early, i.e. at

a time when they will certainly incur in the catastrophe. Hence, competition is able to force

individuals to risk death if the payoff for an early arrival is sufficiently high. Second, a strong

disturbance increases the fitness of individuals (fitness is equal for all individuals that follow the

ESS) because, under a strong disturbance, the fraction of individuals arriving at a time when they

can incur in the catastrophe decreases. Hence, a strong disturbance determines a later average

arrival of the population. Actual distribution of arrival dates is therefore the balance between the

contrasting pressures of competition and risk of death due to the catastrophe. Third, the ESS is not

the strategy that determines the maximum average fitness of individuals in the population. Indeed,
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a larger average fitness could be obtained if some individuals would accept a reduction in their own

fitness for favouring other individuals. This result is not surprising since individuals are predicted

to behave selfishly and adopt the strategy that maximizes their own fitness. We also tested our

model under a climate change scenario, which is predicted to increase the frequency and strength of

extreme meteorological events ([22]), like spells of unseasonal weather that can kill migratory birds.

We obtained two further interesting results. Fourth, climate change, which is predicted to increase

the strength of the disturbance, should determine an increase in the fitness when individuals are

able to adapt their arrival times to the new ESS (second result above). However, the ESS implies

a later average arrival of individuals (third result above). Differences among species or populations

in the observed shifts in the timing of migration according to climate change may therefore be due

to differences in the susceptibility of species or populations to extreme weather conditions, which in

our model is accounted for by the strength of the disturbance. Since climate change is determining

on the one side a general advancement of the timing of spring events ([29, 44]), but on the other

side it also increases the frequency of cold spells in spring ([20]), differences in the response of bird

species or populations to climate change should be investigated also in respect to their susceptibility

to unseasonable weather. Fifth, if the population is unable to adjust arrival times and continues

following the previous timing, which is no more an ESS, the fitness of individuals declines (in many

scenarios). It has been hypothesized that many migratory bird species, particularly long distance

migrants, may be less able than short distance ones to advance their arrival to the breeding grounds

because they are constrained by the timing of other life-history events ([31]). Consequently, they are

forced to follow an arrival strategy that differs from the current ESS, and should suffer a reduction

in fitness. Our model therefore gives an explanation of the possible mechanisms linking response

to climate change and population trends and explaining why bird populations that did not show

a response to climate change are declining ([30]). There is currently debate among biologists on

whether the observed changes in arrival dates of migratory birds can be attributed more to micro-

evolutionary processes or to phenotypic plasticity ([14]). If the response to climate change is due to

phenotypic plastic response of individuals, then probably adaptation will be fast enough to keep the

pace of climate change. In contrast, if timing of life history events is genetically controlled, a longer

time may be needed for the new ESS to fix in the population, and in the meanwhile individual

fitness will be reduced. In summary, the model we developed may contribute to our understanding

of the processes determining the timing of life history events under the biologically realistic scenario

of a catastrophe killing only a fraction of the individuals that incur in it. Our model explains how

competition can induce a fraction of the population to arrive very early, despite facing a higher risk

of death, as it is documented in several species ([34]). Moreover, our model also investigated the

effect of climate change on the timing of life history events, and demonstrated that fitness should

decline in a scenario of increased probability of catastrophe if the population is not able to adapt

to the new climatic conditions.
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5 Proofs

In this section one can find all the proofs of our results and some details about the remarks of the

previous sections. We start with a lemma and its corollary.

Lemma 5.1. Let {an}n≥0, {bn}n≥0 and {kn}n≥0 be such that an, bn ≥ 0 for all n ≥ 0, bn > 0 for

some n ≥ 0, kn+1 ≥ kn for all n ≥ 0 and an = bnkn for all n ≥ 0. Define n0 := min{n ≥ 0: bn > 0}
and

f(t) :=



∑
n≥0 ant

n∑
n≥0 bnt

n
t > 0

an0

bn0

t = 0.

Then f is a nondecreasing function on [0,+∞). Moreover f is strictly increasing on [0,+∞) if

and only if there exists m,n such that km > kn and bm, bn > 0.

Proof. Note that f is continuous on [0,+∞) and differentiable on (0,+∞). We compute the

derivative on (0,+∞) as

f ′(t) =

∑
n≥1 nant

n−1 ·
∑

n≥0 bnt
n −

∑
n≥0 ant

n ·
∑

n≥1 nbnt
n−1(∑

n≥0 bnt
n
)2

=

∑
n≥0

[∑n
i=0(i+ 1)(ai+1bn−i − aibi+1)

]
tn(∑

n≥0 bnt
n
)2 =

∑
n≥0

[∑n
i=0(i+ 1)bi+1bn−i(ki+1 − kn−i)

]
tn(∑

n≥0 bnt
n
)2

=

∑
n≥0

[
(kn+1 − k0)(n+ 1)bn+1b0 +

∑n−1
i=0 (i+ 1)bi+1bn−i(ki+1 − kn−i)

]
tn(∑

n≥0 bnt
n
)2

Now (kn+1 − k0)(n+ 1)bn+1b0 ≥ 0 and, by using j = n− i− 1,

n−1∑
i=0

(i+ 1)bi+1bn−i(ki+1 − kn−i)

=
1

2

[ n−1∑
i=0

(i+ 1)bi+1bn−i(ki+1 − kn−i) +

n−1∑
j=0

(n− j)bn−jbj−1(kn−j − kj−1)
]

=
1

2

[ n−1∑
i=0

(i+ 1)bi+1bn−i(ki+1 − kn−i)−
n−1∑
j=0

(n− j)bj−1bn−j(kj−1 − kn−j)
]

=
1

2

n−1∑
i=0

bi+1bn−i(ki+1 − kn−i)(i+ 1− (n− i)) =
1

2

n−1∑
i=0

bi+1bn−i(ki+1 − kn−i)(2i+ 1− n).

Since (ki+1 − kn−i)(2i+ 1− n) ≥ 0 for all n, i such that n > i ≥ 0 we have that f ′(t) ≥ 0 for all t,

hence f is non-decreasing.
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Moreover, if km > kn and bm, bn > 0 then m > n and
∑n+m−2

i=0 bi+1bn−i(ki+1−kn−i)(2i+1−n) ≥
bmbn(km−kn)(m−n) > 0 (just take i = m− 1). This implies f ′(t) > 0 for all t ∈ (0,+∞), whence

f is strictly increasing on [0,+∞). On the other hand if kn = km for all n,m such that bmbn > 0,

clearly f(t) = k0 for all t ∈ [0,+∞).

Corollary 5.2. Suppose that ā > a > 0 and p ≤ 1. The the function f(t) := (eāt − p)/(eat − p) is

strictly increasing in [0,+∞).

Proof. Apply Lemma 5.1 using a0 = b0 = 1− p, an = ān/n! for all n ≥ 1, bn = an/n! for all n ≥ 1

and kn = (ā/a)n.

The following is a brief remark which proves some of the properties of the functions γ and λ

(the others are straightforward).

Details on Remark 3.4. Most of the results about the functions aM , γ, λ and xc follow easily by

checking the monotonicity and the the continuity (in each variable separately) of the l.h.s. and

r.h.s. of the defining equations. We highlight just the main details.

1. Since the l.h.s. of equation (3.2) is strictly decreasing, continuous with respect to p and

strictly increasing, continuous with respect to aM and since the r.h.s. is strictly decreasing,

continuous with respect to p we have that p 7→ aM (p) is strictly decreasing and continuous.

As for the limit we note that, for every fixed β ∈ (0,+∞),

p

∫ exp(β)

1

dz

z1−p − p
→

{
0 if p→ 0+

+∞ if p→ 1−

since 1/(z1−p − p) ↓ 1/z pointwise in the first case and the Bounded Convergence Theorem

applies, while 1/(z1−p−p) ↑ +∞ pointwise in the second case and the Monotone Convergence

Theorem applies. The limits follow easily by standard arguments.

2. Since the r.h.s. of equation (3.3) is strictly increasing and continuous with respect to p and

with respect to a and since the l.h.s. is continuous and nonincreasing with respect to xc we

have that the maps a 7→ xc and p 7→ xc are strictly increasing. As for the continuity, note

that, by definition, for every β > xc(a0, p0, f) we have
∫ tf
β f(x)dx <

∫ tf
xc(a0,p0,f) f(x)dx hence

lim
a→a−0

(∫ tf

β
f(x)dx−

(
1− p0 +

(∫ exp(a)

1

dz

z1−p0 − p0

)−1)−1)
< 0

lim
p→p−0

(∫ tf

β
f(x)dx−

(
1− p+

(∫ exp(a0)

1

dz

z1−p − p

)−1)−1)
< 0.

These inequalities imply that, eventually, the maximal solution xc(a, p0, f) ∈ (xc(a0, p0, f), β)

(resp. xc(a0, p, f) ∈ (xc(a0, p0, f), β)). The limits from the right can be treated analogously

by carefully dealing with the intervals where β 7→
∫ tf
β f(x)dx is constant.
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Let us prove the limits in equation (3.5). By using the monotonicity of p 7→ xc, we have that

xc(a, p, f) ≤ xc(a, 0, f). Since the r.h.s. of equation (3.3) equals a/(1 + a) < 1 when p = 0 we

get that xc(a, 0, f) < tf . In order to compute the second limit we observe that the r.h.s. of

equation (3.3) tends to 0 as a→ 0+. As for the second line in equation (3.5), note that for ev-

ery β > tf we have that
∫ tf
β f(x)dx < 1 hence

∫ tf
β f(x)dx−

(
1−p+

( ∫ exp(a)
1

dz
z1−p−p

)−1)−1
→∫ tf

β f(x)dx− 1 < 0 eventually as p→ pM (a)−.

3. The continuity follows from the continuity of the r.h.s. of equation (3.4) with respect to p,

from the continuity of the l.h.s. with respect to p, a and γ and from the monotonicity with

respect to γ.

Let us prove that lima→∞ γ(a, p) = p. We define G(a, p, γ) := exp(−aγ)
∫ exp(a)

exp(aγ)
dv

v1−p−p and

we can assume p ∈ (0, 1). Clearly,
∫ exp(a)

exp(aγ)
dv

v1−p−p ∼
∫ exp(a)

exp(aγ)
dv
v1−p = (exp(ap)− exp(aγp))/p as

a→ +∞. Hence for every fixed γ and p and for every ε > 0 we have

(1 + ε)(exp(a(p− γ))− exp(aγ(p− 1)))/p > G(a, p, γ) > (exp(a(p− γ))− exp(aγ(p− 1)))/p

eventually as a→ +∞. Hence

lim
a→+∞

G(a, p, γ) =

{
+∞ if γ < p

0 if γ > p

thus for every γ̄,γ̃ satisfying γ̄ < p < γ̃, eventually as a → +∞, the solution γ(a, p)

to equation (3.4), that is G(a, p, γ) − 1/p = 0, satisfies γ(a, p) ∈ (γ̄, γ̃). This implies

lima→∞ γ(a, p) = p.

In order to prove that γ(a, p) < p for all a ≥ 0, p ∈ (0, 1), it is enough to show that

G(a, p, p) < 1/p for all a ≥ 0, p ∈ (0, 1). Indeed, in that case, the solution γ(a, p) of

G(a, p, γ) − 1/p = 0 satisfies γ(a, p) ∈ (0, p) (note that γ 7→ G(a, p, γ) is strictly decreasing

for all a > 0). Observe that

G(a, p, γ) =
exp(a(p− γ))− exp(−aγ(1− p))

p
− exp(−aγ)

∫ exp(a)

exp(aγ)

( 1

v1−p − p
− 1

v1−p

)
dv

<
exp(a(p− γ))− exp(−aγ(1− p))

p
− exp(−aγ)

∫ exp(a)

exp(aγ)

p

v2(1−p) dv

=
exp(a(p− γ))− exp(−aγ(1− p))

p
−∆(a, p, γ)

where

∆(a, p, γ) :=

{
e−aγa(1− γ)/2 if p = 1/2

e−aγ p
2p−1

(
ea(2p−1) − eaγ(2p−1)

)
if p 6= 1/2.

When γ = p we have G(a, p, p) = 1/p−
(
e−ap(1−p)/p−∆(a, p, p)

)
, hence it is enough to prove

that e−ap(1−p)/p − ∆(a, p, p) > 0, that is, Fp(a) := peap(1−p)∆(a, p, p) < 1. The first case
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is γ = p = 1/2; thus, Fp(a) = e−a/4a/8 which attains its maximum value (in [0,+∞)) at

a = 4 and Fp(2) = e−1/2 < 1. The second case is γ = p 6= 1/2 where Fp(a) = p2
(
e−a(1−p)2 −

e−ap(1−p)
)
/(2p− 1). Note that Fp(0) = 0, Fp(a) > 0 for all a > 0 and Fp(a)→ 0 as a→ +∞.

Hence Fp admits a global maximum in [0,+∞), which must be a stationary point since Fp is

differentiable. By taking the derivative F ′p(a) = p2
(
p(1−p)e−ap(1−p)−(1−p)2e−a(1−p)2)

/(2p−
1) we have that a stationary point ā must satisfy e−āp(1−p) − (1 − p)e−ā(1−p)2

/p = 0. Hence

Fp(ā) = pe−ā(1−p)2
< 1. This proves that γ(a, p) < p for all p ∈ (0, 1) and a > 0.

Now we prove that a 7→ γ(a, p) is strictly increasing in [aM (p),+∞) for all p ∈ (0, 1). Since

γ 7→ G(a, p, γ) is strictly decreasing for every fixed a > 0, it is enough to prove that a 7→
G(a, p, γ) is strictly increasing (for fixed γ ≤ p < 1) to obtain that a 7→ γ(a, p) is strictly

increasing where it is defined by equation (3.4) (by standard arguments for implicitly defined

functions). By continuity it is enough to prove that G(ā, p, γ) > G(a, p, γ) where ā > a > 0

(the case a = 0 would follow easily).

To this aim, let us replace the variable in the integral defining G in the following way:

z = αv + β where α = (eā − eāγ)/(ea − eaγ) and β = −(eā+aγ − ea+āγ)/(ea − eaγ) (note that

β < 0 since γ < 1). This implies that when v = eaγ then z = eāγ and when v = ea then

z = eā. Whence

G(a, p, γ) = e−āγ
eγ(ā−a)

α

∫ eā

eāγ

dz

( z−βα )1−p − p

= e−āγ
∫ eā

eāγ

1

z1−p − p

( z1−p − p
( z−βα )1−p − p

· e
γ(ā−a)

α

)
dz = (∗).

Observe that (eγ(ā−a))/α = (ea(1−γ) − 1)/(eā(1−γ) − 1). Moreover

z1−p − p
( z−βα )1−p − p

= α1−p ( zα)1−p − p/α1−p

( z+|β|α )1−p − p
= α1−p

(
1−

( z+|β|α )1−p − ( zα)1−p − p(1− 1/α1−p)

( z+|β|α )1−p − p

)
which is strictly increasing with respect to z since z/α < (z+ |β|)/α. Hence ((z+ |β|)/α)1−p−
(z/α)1−p is nonincreasing (since 1−p ≤ 1) and (z+ |β|)/α)1−p−p is strictly increasing. This

implies that, for all z ∈ [eāγ , eā),

z1−p − p
( z−βα )1−p − p

· e
γ(ā−a)

α
<
eā(1−p) − p
ea(1−p) − p

· e
a(1−γ) − 1

eā(1−γ) − 1
≤ eā(1−p) − 1

ea(1−p) − 1
· e

a(1−γ) − 1

eā(1−γ) − 1

≤ eā(1−p) − 1

ea(1−p) − 1
· e

a(1−p) − 1

eā(1−p) − 1
= 1

where in the second inequality we used (x−p)/(y−p) ≤ (x−1)/(y−1) for all x ≥ y > 1 ≥ p,
while in the last inequality we applied Corollary 5.2 (since γ ≤ p). Finally, this yields

(∗) < e−āγ
∫ eā

eāγ

dz

z1−p − p
= G(ā, p, γ).
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Remark 5.3. The continuity of the function λ(a, p) is easy. In the interval [0, aM (p)] the function

a 7→ λ(a, p) is strictly decreasing since the integral in the r.h.s. of equation (3.7) is strictly increasing

for all p ∈ (0, 1). If a ∈ [aM (p),+∞) then, using equation (3.4), we have that λ(a, p) is a solution

to

λ

∫ exp(a)

p/λ

dz

z1−p − p
= 1

and, since the l.h.s. of this equation is strictly increasing with respect to a and λ, standard arguments

imply that a 7→ λ(a, p) is strictly decreasing.

We show now that p 7→ λ(a, p) is strictly decreasing. Let us start with the first expression in

equation (3.7). In the following equation it is easy to show that the derivative with respect to p and

the integral with respect to z commute and

∂p
1

λ
= −

∫ exp(a)

1

dz

z1−p − p
+ (1− p)

∫ exp(a)

1

z1−p ln(z) + 1

(z1−p − p)2
dz

=

∫ exp(a)

1

z1−p ln(z1−p) + 1− p− (z1−p − p)
(z1−p − p)2

=

∫ exp(a)

1

z1−p ln(z1−p) + 1− z1−p

(z1−p − p)2
> 0

for every a > 0 since the integrand is strictly positive for every z > 1; indeed the function x 7→
x ln(x) + 1 − x = x(ln(x) − 1) + 1 is differentiable in (1,+∞) and continuous in [1,+∞) and the

derivative is ln(x) > 0 for all x > 1. This implies that p 7→ λ(a, p) is strictly decreasing for every

fixed a > 0.

Let us consider now the second expression for λ, namely p exp(−aγ), which holds for p > pM (a)

where we recall that pM (a) is the unique solution for
∫ exp(a)

1
dz

z1−p−p = 1
p with respect to p. From

equation (3.4) we have that, for every fixed a > 0, the function p 7→ y(p) := p exp(−aγ(a, p)) is

implicitly defined by the equation Fa(y, p) = 0 where

Fa(y, p) = y

∫ exp(a)

p/y

dv

v1−p − p
− 1.

The solution to the previous equation is uniquely defined in (pM , p) since y 7→ Fa(y, p) is strictly

increasing for every fixed p ∈ (0, 1) and Fa(pM , p) < pM/pM − 1 = 0, Fa(p, p) = p/pM − 1 > 0. We

can compute, using similar arguments as before,

∂pFa(y, p) = − 1

(p/y)1−p − p
+ y

∫ exp(a)

p/y

v1−p ln(v) + 1

(v1−p − p)2
dv

> − 1

(p/y)1−p − p
+

1

1− p
y

∫ exp(a)

p/y

dv

v1−p − p
dv

= − 1

(p/y)1−p − p
+

1

1− p
> 0
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where in the last equality we used the fact that, since Fa(y, p) = 0, then y
∫ exp(a)
p/y

dv
v1−p−pdv = 1. The

last inequality holds since p > y. By standard arguments, ∂pFa(y, p) > 0 implies that p 7→ λ(a, p)

is strictly decreasing for every a > 0.

Before proving Theorem 3.5, we prove that an ESS is of the form µ = γδ0 + (1− γ)ν, where ν

is an absolutely continuous probability measure.

Lemma 5.4. Let µ be an ESS and fix p ∈ [0, 1). Then for some γ ∈ [0, 1], µ = γδ0 + (1 − γ)ν,

where ν is an absolutely continuous probability measure. Moreover [min supp(µ), tf ] ⊇ supp(µ) ⊇
[min supp(µ), tf ]∩Esupp(f) and if min supp(µ) < min supp(ν) then supp(ν) ⊇ Esupp(f). Finally,

φµ is constant on [min supp(µ),+∞) and equals λ.

Proof. We already noted that we can write equivalently

φµ(x) = exp(−aFµ(x))
[ ∫ x

0
exp(a(1− p)Fµ(z))f(z)dz + p

∫ +∞

x
f(z)dz

]
since Esupp(f) ⊆ [0, tf ]. From this equation we can see easily that φ is right-continuous on [0,+∞);

moreover it is left-continuous at x if and only if µ({x}) = 0. If (α, β] is such that µ((α, β]) = 0

then (α, β] ∩ Esupp(f) 6= ∅, if and only if φ(β) > φ(α). Indeed,

φµ(β)− φµ(α) = exp(−aFµ(α))
(

exp(a(1− p)Fµ(α))− p
)∫ β

α
f(z)dz > 0. (5.11)

As a consequence, if µ((α, β)) = 0 then (α, β)∩Esupp(f) 6= ∅ if and only if limt→β− φµ(t) > φµ(α).

Moreover if {xn}n∈N is such that xn ∈ supp(µ), xn 6= x for all n ∈ N and xn ↑ x then x ∈ supp(µ)

and µ({x}) = 0. The first assertion, namely x ∈ supp(µ), comes from the fact that the support of

a measure is a closed set. Suppose, by contradiction, that x is an atom; clearly φ(xn) = λ for all

n, since µ is an ESS, and limt→x− φµ(t) > φµ(x) hence φµ(x) < λ which is a contradiction. This

proves that the only atom, if any, of µ must be 0. Thus µ = γδ0 + (1− γ)ν, where γ = µ(0) and ν

is nonatomic.

We prove now that if α < β, α ∈ supp(µ) and β ∈ Esupp(f), then β ∈ supp(µ); this implies

supp(µ) ⊇ [min supp(µ), tf ] ∩ Esupp(f). By contradiction if β 6∈ supp(µ) there exists ε > 0 such

that (β − ε, β + ε)∩ supp(µ) = ∅. Let β̄ := max(supp(µ)∩ [0, β]) then β̄ < β. Since β ∈ Esupp(f),∫ β+ε
β−ε f(x)dx > 0. Clearly (β̄, β + ε) ∩ supp(µ) = ∅, as a consequence of equation (5.11), 0 <

limt→(β+ε)− φµ(t)− φµ(β̄) = limt→(β+ε)− φµ(t)− λ. Hence there exists t ∈ (β − ε, β + ε) such that

φµ(t) > λ but this contradicts the definition of ESS.

Let us prove that [min supp(µ), tf ] ⊇ supp(µ). Observe that, for every β > tf we have

φµ(β)− φµ(tf ) =
(

exp(−aFµ(β))− exp(−aFµ(tf )
) ∫ tf

0
exp(a(1− p)Fµ(z))f(z)dz ≤ 0.
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On the other hand, if β ∈ supp(µ), there exists ε ≥ 0 such that Fµ(β + ε) > Fµ(tf ) and β +

ε ∈ supp(µ). This implies φµ(β + ε) < φµ(tf ) which contradicts the definition of an ESS. Thus

[min supp(µ), tf ] ⊇ supp(µ).

If min supp(µ) < min supp(ν) then γ > 0 and 0 = min supp(µ) < min supp(ν). On the other

hand, supp(ν) ⊆ supp(µ) ⊆ supp(ν) ∪ {0}, that is, supp(µ) \ {0} = supp(ν) \ {0}. Since when

min supp(µ) = 0 we have supp(µ) ⊇ Esupp(f), then supp(ν) \ {0} ⊇ Esupp(f) \ {0} which implies

supp(ν) = supp(ν) \ {0} ⊇ Esupp(f) \ {0} = Esupp(f).

We are left to prove that ν is absolutely continuous. First of all we note that, from equation (2.1),

φµ(x) = exp(−aFµ(x))Hµ(x) where

Hµ(x) =

∫ x

0
exp(a(1− p)Fµ(z))f(z)dz + p

∫ +∞

x
f(z)dz

is absolutely continuous and nondecreasing on [0, tf ]. Since the only atom of µ, if any, is 0 and φµ is

right-continuous, clearly φµ is continuous on [0, tf ]. It is well-known that any open set in R can be

decomposed into a disjoint, at most countable union of open intervals, hence (0,+∞) = (supp(µ) \
{0}) ∪

⋃
j∈J Ij where {Ij}j∈J is an at most countable disjoint union of open intervals in (0,+∞).

By definition, φµ(x) = λ for all x ∈ supp(µ). Since supp(µ) ⊇ (min supp(µ) ∩ Esupp(f), tf ) then∫
Ij
f(x)dx = 0 for all Ij ⊆ (min supp(µ),+∞). As a consequence of equation (5.11), φµ is constant

on such intervals Ij , but, since the value of φµ at the extremal points of Ij is λ, then φµ(x) = λ for

all x ∈ Ij . This proves that φµ(x) = λ for all x ≥ min supp(µ). Hence λ = exp(−aFµ(x))Hµ(x) for

all x ≥ min supp(µ) which implies

Fµ(x) =


1

a
log
(Hµ(x)

λ

)
if x ≥ min supp(µ)

0 if x < min supp(µ).

(5.12)

By composition, Fµ is clearly absolutely continuous on (min supp(µ), tf ). Hence Fν is absolutely

continuous on (min supp(µ), tf ) (since Fµ(x)− (1−γ)Fν(x) = γ for all x ≥ 0) and this implies that

ν is an absolutely continuous measure (since supp(ν) ⊆ [min supp(µ), tf ]).

Given a measurable subset I ⊆ R, we denote by L1(I) the set of real, measurable functions on

I which are integrable with respect to the Lebesgue measure. When a different measure ρ needs to

be specified, we write L1(I, ρ) instead.

Remark 5.5. A well-known characterization which will be used in the sequel is the following

Lebesgue’s fundamental theorem of calculus (see for instance [38, Theorem 7.18]). A function G is

absolutely continuous on a compact interval I if and only if there exists a function g ∈ L1(I) such

that for some (⇐⇒ for all) α ∈ I and for all β ∈ I, G(β) − G(α) =
∫ β
α g(x)dx; in that case, for

almost every x ∈ I, G is differentiable at x and G′(x) = g(x).
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This implies that an absolutely continuous function G on I is constant if and only if G′(x) = 0

for almost every x ∈ I.

Moreover consider two functions h : I → J , k : J → Y ; if k is absolutely continuous and h

is monotone and absolutely continuous then k ◦ h is absolutely continuous. Similarly, if k is a

Lipschitz function and h is absolutely continuous then k ◦ h is absolutely continuous. If h1 : I → R
is absolutely continuous then h + h1 is absolutely continuous and the same holds for h · h1 if I is

compact.

Finally if k is differentiable everywhere and h is differentiable almost everywhere clearly we have

(k ◦ h)′(x) = k′(h(x)) · h′(x) almost everywhere and, if in addition k ◦ h is absolutely continuous,

k ◦ h(x)− k ◦ h(x0) =

∫ x

x0

(k ◦ h)′(z)dz =

∫ x

x0

k′(h(z)) · h′(z)dz = (∗) (5.13)

for all x0, x ∈ I. If, in addition, h is absolutely continuous then∫ h(x)

h(x0)
k′(y)dy = k ◦ h(x)− k ◦ h(x0) = (∗). (5.14)

A function k is locally Lipschitz on I if and only if for every x0 ∈ I there exists δ > 0 and M > 0

such that |x− x0| < δ, |x̄− x0| < δ implies |h(x)− h(x̄)| ≤M |x− x̄|. By elementary analysis, if h

is a locally Lipschitz function on I and I ′ ⊆ I is compact then there exists M > 0 such that for all

x, x̄ ∈ I ′ we have |h(x)− h(x̄)| ≤M |x− x̄| (that is, h is globally Lipschitz on every compact subset

of I). It is easy to show that a locally Lipschit function on I is absolutely continuous on I (one can

prove it on every compact subset and then use the fact that I is the union of an increasing family

of compact subintervals). Hence the following result holds.

Given an interval I, if k is locally Lipschitz on I, differentiable everywhere and h is absolutely

continuous on I then the equalities (5.13) and (5.14) hold; moreover k ◦ h is constant on I if and

only if (k′ ◦ h)(x) · h′(x) = 0 almost everywhere in I.

Proof of Theorem 3.5. By Lemma 5.4, we know that an ESS can be written as µ = γδ0 + (1− γ)ν,

where ν is an absolutely continuous measure and supp(µ) ⊇ [xµ, tf ] ∩ Esupp(f), where xµ :=

min supp(µ) (we will show later that xµ = xc). Since Fµ(y) − (1 − γ)Fν(y) = γ for all y ≥ 0, we

have that Fµ is absolutely continuous on [0,+∞).

Since φµ is absolutely continuous, we can take the derivative of φµ in (2.1), for almost every

y > 0,

φ′µ(y) = −a(1− γ)g(y)φµ(y) + exp(−aFµ(y))
[

exp(a(1− p)Fµ(y))− p
]
f(y), (5.15)

where g is the derivative of ν. From now on it will be tacitly understood that the derivatives and

equalities involving them, are defined and hold almost everywhere. From Lemma 5.4 we know that

for all y > xµ we have φµ(y) = λ hence φ′µ(y) = 0. Thus

g(y) =
f(y)

a(1− γ)λ
exp(−aFµ(y))

[
exp(a(1− p)Fµ(y))− p

]
.
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Let z := exp(aFµ). Using the last result of Remark 5.5 (by taking I = [0,+∞), k(x) := exp(ax)

and h := Fµ), the previous equation is equivalent to

z′(y) =
f(y)

λ
(z(y)1−p − p),

which, since z(y)1−p > p for all y ≥ 0, is in turn equivalent to

z′(y)

z(y)1−p − p
=
f(y)

λ
,

with the condition z(xµ) = exp(aγ). By Remark 5.5, this is equivalent to∫ exp(a(1−γ)Fν(x)+aγ)

exp(aγ)

dz

z1−p − p
=

1

λ

∫ x

xµ

f(y)dy, (5.16)

which, once we prove that xc = xµ, is equivalent to equation (3.6). This proves that given γ, Fν is

uniquely defined by the previous equation. From the previous equation, for all x ∈ [xµ, tf ],∫ exp(a(1−γ)Fν(x+ε)+aγ)

exp(a(1−γ)Fν(x−ε)+aγ)

dz

z1−p − p
=

1

λ

∫ x+ε

x−ε
f(y)dy,

which implies that supp(ν) = [xµ, tf ] ∩ Esupp(f). Now, since supp(µ) \ {0} = supp(ν) \ {0}, from

Lemma 5.4 we have that either µ = ν (hence supp(µ) = [xµ, tf ] ∩ Esupp(f) and min supp(µ) =

min supp(ν)) or γ > 0 and xµ = 0. In this case supp(ν) = Esupp(f) and supp(µ) = Esupp(f)∪{0}.
In particular, since xµ ∈ supp(µ), when µ = ν (that is, γ = 0) we have that xµ ∈ Esupp(f).

Clearly the measure ν is supported in [0, tf ], but it is a probability measure if and only if Fν(tf ) = 1,

therefore, by using equation (5.16), xµ and γ must satisfy∫ exp(a)

exp(aγ)

dz

z1−p − p
=

1

λ

∫ tf

xµ

f(y)dy. (5.17)

We note that λ = φµ(min supp(µ)) = φµ(xµ). If γ = 0 then µ = ν hence, from equation (5.12),

by continuity of Fµ at x = min supp(µ) ≡ xµ we have λ = Hµ(xµ), that is

λ =

∫ xµ

0
f(y)dy + p

∫ tf

xµ

f(y)dy = 1− (1− p)
∫ tf

xµ

f(y)dy (5.18)

since exp(a(1− p)Fµ(y)) = 1 for all y ∈ [0, xµ).

If γ > 0 then xµ = 0 and, from equation (2.1), λ = φµ(0) = p exp(−aγ) which is the second

line of equation (3.7).

Let a ≤ aM . If γ > 0 then by equation (5.17) and the discussion thereafter,

1

p
=

∫ exp(aM )

1

dz

z1−p − p
≥
∫ exp(a)

1

dz

z1−p − p

>

∫ exp(a)

exp(aγ)

dz

z1−p − p
=

1

λ
>

1

p
,
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which is a contradiction. If γ = 0 then by plugging the explicit value of λ = 1− (1− p)
∫ tf
xµ
f(y)dy

into (5.17), we get (3.3) (with xµ instead of xc) and since we showed that xµ ∈ Esupp(f), thus it

must be the (unique) maximal solution to equation (3.3), that is xµ = xc. This proves that a ≤ aM
implies γ = 0 and xc ≥ tf . Since the r.h.s. of equation (3.3) is strictly less than 1 (resp. equal to

1) when a < aM (resp. a = aM ) then equation (3.3) yields xc > tf (resp. xc = tf ). In order to

obtain the first line of equation (3.7) just consider the expression of
∫ tf
xc
f(y)dy given by the r.h.s. of

equation (3.3) and plug it in equation (5.18) (recalling that xµ = xc).

Let a > aM . If γ = 0 then, by the definition of aM , equation (5.17) and the discussion thereafter,

1

λ

∫ tf

xµ

f(y)dy =

∫ tf
xµ
f(y)dy

1− (1− p)
∫ tf
xµ
f(y)dy

≤ 1

p
=

∫ exp(aM )

1

dz

z1−p − p

<

∫ exp(a)

1

dz

z1−p − p
=

1

λ

∫ tf

xµ

f(y)dy,

which is a contradiction. If γ > 0 then xµ = 0 (which coincides with the definition of xc given

before equation (3.3)) and by plugging the explicit value of λ = p exp(−aγ) in equation (5.17) we

have
1

p
= exp(−aγ)

∫ exp(a)

exp(aγ)

dz

z1−p − p
=

∫ exp(a(1−γ))

1

dz

(z exp(aγ))1−p − p
,

which has a unique solution γ. Note that the r.h.s. of the equation is a decreasing continuous

function of γ, say K(γ); moreover K(0) > 1/p by (3.2) and

K(1− aM/a) =

∫ exp(aM )

1

dz

(z exp(a− aM ))1−p − p
<

∫ exp(aM )

1

dz

z1−p − p
=

1

p
.

This implies that the unique solution γ ∈ (0, 1− aM/a); γ < p was proved in Remark 5.3.

Before giving the details on Remark 3.6 we need a Lemma and another remark.

Lemma 5.6. Let µ and ν be two finite measures on R. Then the following conditions are equivalent:

(1)
∫
h(x)µ(dx) ≥

∫
h(x)ν(dx) for every nondecreasing, measurable h ∈ L1(R, µ) ∩ L1(R, ν);

(2) µ((x,+∞)) ≥ ν((x,+∞)) for every x ∈ R and µ(R) = ν(R);

(3)
∫
h(x)µ(dx) ≤

∫
h(x)ν(dx) for every nonincreasing, measurable h ∈ L1(R, µ) ∩ L1(R, ν);

(4) µ((−∞, x]) ≤ ν((−∞, x]) for every x ∈ R and µ(R) = ν(R).

If one of these conditions holds we write µ � ν.

Moreover the inequality in (1) is strict if and only if there exists y such that µ
(
h−1([y,+∞))

)
<

ν
(
h−1([y,+∞))

)
(that is, if and only if there exists y such that µ

(
h−1((y,+∞))

)
< ν

(
h−1((y,+∞))

)
).

Finally the inequality in (3) is strict if and only if there exists y such that µ
(
h−1([y,+∞))

)
<

ν
(
h−1([y,+∞))

)
(that is, if and only if there exists y such that µ

(
h−1((y,+∞))

)
< ν

(
h−1((y,+∞))

)
).
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Proof. The equivalence between (1) and (2) (or between (3) and (4)) is a classical result of measure

theory: it is a slight modification of the arguments in [43, Section 1.A.1]. Moreover, to prove that

µ(R) = ν(R) just take condition (1) (or condition (3)) and consider first h ≡ 1 and then h ≡ −1.

Under µ(R) = ν(R) the equivalence between conditions (2) and (4) is trivial. In particular the

equivalence between the previous four conditions hold even if we take the set of nonnegative (or

nonpositive) measurable functions instead of L1(R, µ) ∩ L1(R, ν).

Finally note that y 7→ µ([y,+∞)) and y 7→ ν([y,+∞)) are continuous from the left while y 7→
µ((y,+∞)) and y 7→ ν((y,+∞)) are continuous from the right; this implies that there exists y such

that µ
(
h−1([y,+∞))

)
< ν

(
h−1([y,+∞))

)
if and only if there exists y′ such that µ

(
h−1((y′,+∞))

)
<

ν
(
h−1((y′,+∞))

)
.

Remark 5.7. Given a random variable X with law µ, then the composition ξ := Fµ◦X between the

variable and its cumulative distribution function is a random variable with values in Rg(Fµ) ⊆ [0, 1]

such that P(ξ ≤ t) ≤ t for all t ∈ [0, 1]; moreover P(ξ ≤ t) = t if and only if t ∈ Rg(Fµ) :=

Fµ(R). More generally P(ξ ≤ t) = sup{Fµ(r) : Fµ(r) ≤ t}, thus if µ(z) > 0 then P(ξ ≤ t) =

lims→z− Fµ(s) = Fµ(z)− µ(z) for all t ∈ [lims→z− Fµ(s), Fµ(z)) ≡ [Fµ(z)− µ(z), Fµ(z)).

To be precise if we consider {x : µ(x) > 0} =: {xi : i ∈ J}, the at-most-countable set of discon-

tinuity points of Fµ (where J ⊆ N), and define I :=
⋃
i∈J [Fµ(xi)− µ(xi), Fµ(xi)) we have

Fξ(t) =

{
t if t 6∈ I
Fµ(xi)− µ(xi) if t ∈ [Fµ(xi)− µ(xi), Fµ(xi)).

This implies in particular that if Fµ is continuous then the random variable ξ is uniformly distributed

on [0, 1] otherwise, according to Lemma 5.6, ξ � Unif(0, 1) (that is, the law of ξ stochastically

dominates a the uniform distribution on [0, 1]).

Details on Remark 3.6. For a generic f , by performing a time rescaling, we can assume without

loss of generality that tf = 1. Consider the following family of absolutely continuous (with respect

to the Lebesgue measure) measures µn(·) = n| · ∩[1 − 1/n, 1]| with support in [0, 1]. (where | · |
represents the Lebesgue measure on R). If we define cn(f, p) :=

∫ 1−1/n
0 f(z)dz + p

∫ 1
1−1/n f(z)dz

then cn(f, p) ↑ 1 as n→∞ and we have∫
φµn(y)µn(dy) =

∫ 1

1−1/n
e−an(y−1+1/n)

[
cn(f, p) +

∫ y

1−1/n
(ea(1−p)n(z−1+1/n) − p)f(z)dz

]
ndy

≥
∫ 1

1−1/n
e−an(y−1+1/n)cn(f, p)ndy = cn(f, p)

∫ 1

0
e−ay

′
dy′ ↑ 1− exp(−a)

a

as n → ∞ (according to the Monotone Convergence Theorem). This example can be modified in

many ways: for instance, one can take a family of absolutely continuous measures, with strictly

positive densities on [0, 1], which approximate the previous densities n1l[1−1/n,1] in the L1 norm (we

do not give more details on this).
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We are left to prove that
∫
φµ(y)µ(dy) < (1 − exp(−a))/a for all µ. We start by proving that

for every measurable, nonincreasing function h and every z ∈ R we have
∫

(z,+∞) h(Fµ(y))µ(dy) ≤∫
(Fµ(z),1] h(y)dy (and, if h is strictly decreasing on [0, 1], then the inequality is strict if and only if Fµ

is not continuous on (z,+∞)). By stochastic domination (see Remark 5.7), if we denote by Pξ the

law of ξ,
∫
R h(Fµ(y))µ(dy) =

∫
[0,1] h(s)Pξ(ds) ≤

∫
[0,1] h(s)ds and, for a strictly decreasing function,

the inequality is strict if and only if Fµ is not continuous on R (apply Lemma 5.6 to Pξ and to the

uniform distribution on [0, 1] and choose y := h(s) for some s ∈ [limw→z− Fµ(w), Fµ(z)) whenever

this interval is nonempty; note that, for a strictly decreasing function, h−1([h(s),+∞)) = (−∞, s]
for all s). Take z ∈ R; then∫

(Fµ(z),1]
h(s)Pξ(ds) =

∫
F−1
µ ((Fµ(z),1])

h(Fµ(y))µ(dy) =

∫
(z,+∞)

h(Fµ(y))µ(dy) (5.19)

since F−1
µ ((Fµ(z), 1]) ⊇ (z,+∞) and µ

(
F−1
µ ((Fµ(z), 1]) \ (z,+∞)

)
= 0.

By the previous equation we just need to prove that
∫

(Fµ(z),1] h(s)Pξ(ds) ≤
∫

(Fµ(z),1] h(s)ds and

this can be done in two different ways.

The quick way is to note that, according to Remark 5.7, Pξ([0, Fµ(z)]) equals Fµ(z), that is, the

lebesgue measure of the interval [0, , Fµ(z)]; hence the measure Pξ restricted to (Fµ(z), 1] dominates

the Lebesgue measure on the same interval, thus Lemma 5.6 applies.

An alternate proof is as follows; if we define

h̄(y) :=

{
h(s) if s ≥ Fµ(z)

h(Fµ(z)) if s < Fµ(z)

then h̄ is nonincreasing hence, by stochastic domination,
∫
R h̄(Fµ(y))µ(dy) ≤

∫
[0,1] h̄(s)ds. Thus∫

(z,+∞)
h(Fµ(y))µ(dy) =

∫
(z,+∞)

h̄(Fµ(y))µ(dy) =

∫
R
h̄(Fµ(y))µ(dy)−

∫
(−∞,z]

h̄(Fµ(y))µ(dy)

=

∫
R
h̄(Fµ(y))µ(dy)− h̄(Fµ(z))µ((−∞, z])

≤
∫

[0,1]
h̄(s)ds− h̄(Fµ(z))µ((−∞, z]) =

∫
[0,1]

h̄(s)ds− h̄(Fµ(z))Fµ(z)

=

∫
[0,1]

h̄(s)ds−
∫

[0,Fµ(z)]
h̄(s)ds

=

∫
(Fµ(z),1]

h̄(y)dy =

∫
(Fµ(z),1]

h(y)dy

(5.20)

and, if h is strictly decreasing on [0, 1], the inequality is strict if and only if Fµ is not continuous

on (z,+∞) (since h̄ is strictly decreasing on [Fµ(z), 1] we use equation (5.19) and we can apply

again Lemma 5.6 to Pξ and to the uniform distribution on [0, 1] by choosing y := h(s) for some

s ∈ [limw→z̄− Fµ(w), Fµ(z̄)) whenever this interval is nonempty and z̄ ∈ (z +∞)).
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Clearly∫
φµ(y)µ(dy) = E

[
exp(−aξ)

[ ∫ X

0
exp(a(1− p)Fµ(z))f(z)dz + p

∫ tf

X
f(z)dz

]]
.

Hence, using Fubini’s Theorem and the inequality (5.20) with h(s) := e−as, we have∫
φµ(y)µ(dy) =

∫
e−aFµ(y)

[ ∫ y

0
(ea(1−p)Fµ(z) − p)f(z)dz + p

]
µ(dy)

= p

∫
e−aFµ(y)µ(dy) +

∫
(ea(1−p)Fµ(z) − p)f(z)

∫
(z,+∞)

e−aFµ(y)µ(dy)dz

≤ p
∫

[0,1]
e−aydy +

∫
(ea(1−p)Fµ(z) − p)f(z)

∫
(Fµ(z),1]

e−aydydz

= p
1− e−a

a
+

∫
(ea(1−p)Fµ(z) − p)f(z)

e−aFµ(z) − e−a

a
dz

= p
1− e−a

a
+

∫
(e−apFµ(z) − pe−aFµ(z))f(z)

1− e−a(1−Fµ(z))

a
dz = (∗∗)

and the inequality is strict if and only if Fµ is not continuous. Now (1−e−a(1−Fµ(z)))/a ≤ (1−e−a)/a
and e−apFµ(z)−pe−aFµ(z) ≤ 1−p (since s 7→ e−aps− pe−as is decreasing in [0,+∞)); moreover each

of the previous inequalities become a strict inequality if and only if Fµ(z) > 0. Whence

(∗∗) ≤ p1− e−a

a
+ (1− p)1− e−a

a

and there is a strict inequality if and only if inf supp(µ) < sup Esupp(f).

Proof of Proposition 3.7. 1. Applying Proposition 5.8, we have easily that
∫ y
z f1(x)dx ≥

∫ y
z f2(x)dx

for all z ≤ y, y ∈ [t1, t2], hence φ
(1)
µ (y) ≥ φ(2)

µ (y).

2. If t2 ≥ t1 the conclusion follows from Proposition 3.7(1). Let us suppose t2 < t1. Now let us

evaluate φ
(2)
µ (y) for y ∈ [t2, t1]:

φ(2)
µ (y) = exp(−aFµ(y))

∫ y

t2

exp(a(1− p)Fµ(x))f2(x)dx+ p exp(−aFµ(y))P(D2 ∈ [y, t1))

+ p exp(−a)P(D2 ≥ t1) = (∗).

Note that this equality holds even if t1 ≥ t2 since in that case P(D2 ≥ t1) = 0.

(∗) ≤ exp(−apFµ(y))P(D2 ∈ [t2, y]) + p exp(−aFµ(y))P(D2 ∈ [y, t1]) + p exp(−a)P(D2 ≥ t1)

≤ P(D2 ∈ [t2, t1]) + p exp(−a)P(D2 ≥ t1)

which is smaller than exp(−a) if P(D2 ∈ [t2, t1]) is sufficiently small. When µ is an ESS, then

for all y ∈ [t1, t1] we have φ
(1)
µ (y) = λ(a, p) ≥ exp(−a). If t2 ≤ t1 then the proof is complete.

If t2 > t1 then the conclusion follows using Proposition 3.7(1) for y ∈ [t1, t2].
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3. Consider the solution y1 to the equation (y − t1)/(t1 − t1) = (y − t2)/(t2 − t2), namely y1 :=

(t2t1−t1t2)/(t2+t1−t1−t2); clearly for all y ≥ y1 we have (y−t1)/(t1−t1) ≤ (y−t2)/(t2−t2),

thus Proposition 5.8 implies φ
(2)
µ (y) ≥ φ(1)

µ (y).

Proposition 5.8. Consider two probability densities f1 and f2. Let us define φ
(1)
µ and φ

(2)
µ according

to equation (2.1) using f1 and f2 respectively. Fix y > 0 such that
∫ y

0 f1(x)dx > 0 or
∫ y

0 f2(x)dx >

0.

1. Define the set of strong maxima from the left of Fµ as Mµ(y) := {z ∈ [0, y] : Fµ(s) <

Fµ(z) for all s < z}. If ∫ y

z
f1(x)dx ≥

∫ y

z
f2(x)dx, ∀z ∈Mµ(y) (5.21)

then φ
(1)
µ (y) ≥ φ

(2)
µ (y). In this case φ

(1)
µ (y) = φ

(2)
µ (y) if and only if equality holds in equa-

tion (5.21) for all z ∈Mµ(y).

2. If
∫ y

0 f1(x)dx >
∫ y

0 f2(x)dx and a is sufficiently small then φ
(1)
µ (y) > φ

(2)
µ (y).

Proof of Proposition 5.8. According to equation (2.1) we have

φ(i)
µ (y) = exp(−aFµ(y))

[ ∫ y

0
(exp(a(1− p)Fµ(x))− p)fi(x)dx+ p

]
, i = 1, 2.

1. We just need to prove that
∫ y

0 (exp(a(1 − p)Fµ(x)) − p)f1(x)dx ≥
∫ y

0 (exp(a(1 − p)Fµ(x)) −
p)f2(x)dx. This follows easily from the fact that x 7→ exp(a(1−p)Fµ(x))−p is a nondecreasing

function and applying Fubini’s Theorem. Indeed, for every z ≥ 0, the set {x ≥ 0: exp(a(1−
p)Fµ(x))− p ≥ z} is an interval of type [x0(z), y] (for some x0(z) ∈ [0, y]); clearly x0(z) = 0

for all z ∈ [0, 1− p]. Hence∫ y

0
(exp(a(1− p)Fµ(x))− p)fi(x)dx =

∫ y

0

[ ∫ exp(a(1−p)Fµ(x))−p

0
dz
]
fi(x)dx

=

∫ exp(a(1−p)Fµ(y))−p

0

[ ∫
{x∈R : exp(a(1−p)Fµ(x))−p≥z}

fi(x)dx
]
dz

=

∫ exp(a(1−p)Fµ(y))−p

0

[ ∫
[x0(z),y]

fi(x)dx
]
dz

= (1− p)
∫

[0,y]
fi(x)dx+

∫ exp(a(1−p)Fµ(y))−p

1−p

[ ∫
[x0(z),y]

fi(x)dx
]
dz.

(5.22)

The equivalence of the equalities is as follows. The “if” part is trivial. As for the re-

verse implication, note that z 7→ x0(z) is left-continuous and that s = x0(z) for some

z ∈ [0, exp(a(1 − p)Fµ(y)) − p] if and only if s = inf{t ≥ 0: Fµ(t) ≥ α} for some α ≤ Fµ(y),
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that is, if and only if x0(z) ∈ Mµ(y). If
∫ y

0 f1(x)dx >
∫ y

0 f2(x)dx then φ
(1)
µ (y) > φ

(2)
µ (y)

follows from equation (5.22). If
∫ y
x0(z) f1(x)dx >

∫ y
x0(z) f2(x)dx for some x0(z) > 0 then by

the continuity of w 7→
∫ y
w f1(x)dx and the left continuity of z 7→ x0(z) there exists ε > 0 such

that
∫ y
x0(s) f1(x)dx >

∫ y
x0(s) f2(x)dx for all s ∈ (z−ε, z]; again equation (5.22) yields the strict

inequality φ
(1)
µ (y) > φ

(2)
µ (y).

2. It follows from equation (5.22)

φ(1)
µ (y)− φ(2)

µ (y) ≥ (1− p)
∫

[0,y]
(f1(x)− f2(x))dx− (exp(a(1− p)Fµ(y))− 1).

by taking the limit as a goes to 0.

Proof of Proposition 3.8. 1. It follows from the first part of Proposition 3.7.

2. If t1 > t2 then, by Remark 3.6, λ̄
(2)
µ = (1 − exp(−a))/a, which is larger than λ̄

(1)
µ and the

proof is complete. If t1 ≤ t2, write λ̄
(1)
µ = (1 − exp(−a))/a − ε. Note that, if y ≥ t2, then

φ
(2)
µ (y) = exp(−aFµ(y))

∫ t2
t2

exp(a(1− p)Fµ(x))f2(x)dx. Thus, if we integrate with respect to

µ:

λ̄(2)
µ ≥

∫ t1

t2

φ(2)
µ (y)dµ(y)

=
1

a
(exp(−aF (t2)− exp(−a))

(∫ t1

t2

f2(x)dx+

∫ t2

t1

exp(a(1− p)Fµ(x))f2(x)dx
)

≥ 1

a
(exp(−aFµ(t2))− exp(−a)) ≥ 1

a
(1− exp(−a))− ε

where the last inequality holds if Fµ(t2) is sufficiently small.

Proof of Proposition 3.9. By using some basic results of mathematical analysis, it is easy to check

that ∂p
∫
φµ(y)µ(dy) =

∫
∂pφµ(y)µ(dy) where, from equation (2.1),

∂pφµ(y) = exp(−aFµ(y))
[
− a

∫ y

0
exp(a(1− p)Fµ(x))Fµ(x)f(x)dx+

∫ tf

y
f(x)dx

]
.

From equation (5.20) we have∫
(z,+∞)

e−aFµ(y)µ(dy) ≤
∫

(Fµ(z),1]
e−aydy =

e−aFµ(z) − e−a

a
. (5.23)
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According to Fubini-Tonelli’s Theorem

∂pλ̄µ = ∂p

∫
φµ(y)µ(dy) =

∫
∂pφµ(y)µ(dy)

= −a
∫ tf

0
ea(1−p)Fµ(x)Fµ(x)f(x)

(∫
(x,+∞)

e−aFµ(y)µ(dy)
)

dx

+

∫ tf

0
f(x)

(∫
[0,x]

e−aFµ(y)µ(dy)
)

dx

=

∫ tf

0
f(x)

[ ∫
[0,x]

e−aFµ(y)µ(dy)− aea(1−p)Fµ(x)Fµ(x)
(∫

(x,+∞)
e−aFµ(y)µ(dy)

)]
dx

Let us study the expression between brackets by means of the function h̄p defined by the following

equation

hp(x) :=

∫
[0,x]

e−aFµ(y)µ(dy)− aea(1−p)Fµ(x)Fµ(x)
(∫

(x,+∞)
e−aFµ(y)µ(dy)

)
≥
∫

[0,x]
e−aFµ(y)µ(dy)− e−apFµ(x)Fµ(x)

(
1− e−a(1−Fµ(x))

)
=: h̄p(x)

which holds for every x ∈ [0, tf ], p ∈ [0, 1] (the inequality comes from equation (5.23)). Clearly

p 7→ h̄p(x) is nondecreasing hence h̄p(x) ≥ h̄0(x) for all x ∈ [0, tf ]. In particular p 7→ h̄p(x)

is strictly increasing if Fµ(x) > 0; in this case h̄p(x) > h̄0(x). Suppose that a ≤ 2 log(2); thus

e−az + e−a(1−z) ≥ 2e−a/2 ≥ 1. Now, since Fµ(0) = µ(0),

h̄0(0) = µ(0)e−aµ(0) − µ(0)
(
1− e−a(1−µ(0))

)
= µ(0)

(
e−aµ(0) + e−a(1−µ(0)) − 1

)
≥ 0.

Moreover, if z ≥ x ≥ 0 we have

h̄0(z)− h̄0(x) =

∫
(x,z]

e−aFµ(y)µ(dy)− Fµ(z)
(
1− e−a(1−Fµ(z))

)
+ Fµ(x)

(
1− e−a(1−Fµ(x))

)
=

∫
(x,z]

e−aFµ(y)µ(dy)− (Fµ(z)− Fµ(x))
(
1− e−a(1−Fµ(z))

)
+ Fµ(x)

(
e−a(1−Fµ(z)) − e−a(1−Fµ(x))

)
≥ (Fµ(z)− Fµ(x))(e−aFµ(z) + e−a(1−Fµ(z)) − 1)

+ Fµ(x)
(
e−a(1−Fµ(z)) − e−a(1−Fµ(x))

)
≥ 0

where the last inequality is strict if and only if Fµ(z) > Fµ(x) (we also used the fact that∫
(x,z] e

−aFµ(y)µ(dy) ≥ e−aFµ(z)µ((x, z]) = e−aFµ(z)(Fµ(z) − Fµ(x))). This means that, for all

x ∈ [0, tf ], p ∈ [0, 1] we have hp(x) ≥ h̄p(x) ≥ h̄0(x) ≥ h̄0(0) ≥ 0. Observe that ∂pλ̄µ(a, p, µ, f) =∫ tf
0 f(x)hp(x)dx. Whence, for all a ≤ 2 log(2), for all µ and for all f , we have that ∂pλ̄µ(a, p, µ, f) ≥

0 for all p ∈ [0, 1].

Observe that Fµ(x) = 0 for all x < tf if and only if tf > inf supp(µ). Hence, if Fµ(x) = 0 for

all x < tf clearly φµ(y) = 1 for all y ∈ supp(µ) which implies λ̄µ(a, p, µ, f) = 1 for all p ∈ [0, 1].
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On the other hand if Fµ(x) > 0 for some x < tf we have that hp(z) > 0 for every z ∈ [x, tf ],

p ∈ (0, 1]; thus for all a ≤ 2 log(2), for all µ and for all f , we have that ∂pλ̄µ(a, p, µ, f) > 0 for all

p ∈ (0, 1].
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[12] N. Champagnat, R. Ferrire, S. Méléard, From individual stochastic processes to macroscopic

models in adaptive evolution, Stochastic Models 24 (2008), n.1, 2–44.

36



[13] B. Chan, R. Durrett, N. Lanchier, Coexistence for a multitype contact process with seasons,

Ann. Appl. Probab. 19 (2009), 1921–1943.

[14] A. Charmentier, P. Gienapp, 2013. Climate change and timing of avian breeding and migration:

evolutionary versus plastic changes, Evolutionary Applications, 7 (2013), 15–28.

[15] P.A. Cotton, Avian migration phenology and global climate change, Proceedings of the Na-

tional Academy of Science USA, 100 (2003), 12219–12222.

[16] H.Q.P. Crick, D.W. Gibbons, R.D. Magrath, Seasonal changes in clutch size in British birds.

Journal of Animal Ecology, 62 (1993), 263–273.

[17] R. Durrett, S. Levin, The Importance of Being Discrete (and Spatial), Theor. Pop. Biol., 46

(1994), n.3, 363–394.

[18] W.J. Ewens, Mathematical population genetics. I. Theoretical introduction. Second edition.

Interdisciplinary Applied Mathematics, 27. Springer-Verlag, New York, 2004.

[19] O. Garet, R. Marchand, R. B. Schinazi, Bacterial persistence: a winning strategy?, Markov

Process. Related Fields , 18 n. 4 (2012), 639–650.

[20] L. Gu, P.J. Hanson, W.M. Post, D.P. Kaiser, B. Yang, R. Nemani, S.G. Pallardy, T. Meyers,

The 2007 eastern US spring freeze: increased cold damage in a warming world?, BioScience,

58 (2008), 253–262.

[21] IPCC 2012, Managing the Risks of Extreme Events and Disasters to Advance Climate Change

Adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel

on Climate Change [C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi,

M.D. Mastrandrea, K.J. Mach, G.K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley

(eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp.

[22] IPCC 2013, Climate Change 2013. Cambridge University Press, Cambridge.

[23] Y. Iwasa, S. A. Levin, The timing of life history events, J. Theor. Biol., 172 n. 1 (1995), 33–42.

[24] Y. Kang, N. Lanchier, The role of space in the exploitation of resources, Bull. Math. Biol. 74

(2012), 1–44.

[25] N. Lanchier, The role of dispersal in interacting patches subject to an Allee effect,

Adv. Appl. Probab. 45 (2013), 1182–1197.

[26] N. Lanchier, C. Neuhauser, Stochastic spatial models of host-pathogen and host-mutualist

interactions I, Ann. Appl. Probab. 16 (2006), 448–474.

[27] N. Lanchier, Contact process with destruction of cubes and hyperplanes: Forest fires versus

tornadoes, J. Appl. Probab., 48 (2011), n.2 352–365.
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