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ANALYTIC AND GEOMETRIC PROPERTIES OF GENERIC RICCI SOLITONS

G. Catino1, P. Mastrolia2, D. D. Monticelli3 and M. Rigoli4,

Abstract. The aim of this paper is to prove some classification results for generic shrinking Ricci

solitons. In particular, we show that every three dimensional generic shrinking Ricci soliton is given by

quotients of either S3, R× S2 or R3, under some very weak conditions on the vector field X generating

the soliton structure. In doing so we introduce analytical tools that could be useful in other settings; for

instance we prove that the Omori-Yau maximum principle holds for the X-Laplacian on every generic

Ricci soliton, without any assumption on X.

1. Introduction

The fundamental problem of capturing the topological properties of a manifold by its metric structure

opened, in the last decades, extremely fruitful areas of mathematics. From this perspective, there has

been an increasing interest in the study of Riemannian manifolds endowed with metrics satisfying special

structural equations, possibly involving curvatures and vector fields. One of the most important example

is represented by Ricci solitons, that have become the subject of a rapidly increasing investigation since

the appearance of the seminal works of R. Hamilton, [10], and G. Perelman, [17]. We recall that if (M, g)

is a m–dimensional, connected, Riemannian manifold with metric g, a soliton structure (M, g,X) on M

is the choice (if any) of a smooth vector field X on M and a constant λ ∈ R such that

(1.1) Ric +
1

2
LXg = λg,

where Ric denotes the Ricci tensor of the metric g and LXg is the Lie derivative of the metric in the

direction of X: the constant λ is sometimes called the soliton constant. The soliton is expanding, steady

or shrinking if, respectively, λ < 0, λ = 0 or λ > 0. If X is the gradient of a potential f ∈ C∞(M) the

soliton is called a gradient Ricci soliton and (1.1) becomes

(1.2) Ric + Hess(f) = λg.

In this case, using the symmetry of the tensor Hess(f), (1.2) and the second Bianchi identity, one proves

the validity of the fundamental equation

(1.3)
1

2
∇S = Ric(∇f, )],

where S is the scalar curvature and ] : T ∗M → TM is the musical isomorphism. Equation (1.3), together

with Hamilton identity (see e.g. [10])

(1.4) S + |∇f |2 − 2λf = C, C ∈ R,
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2 CGSRS

is responsible for a number of basic properties related to the geometry of gradient solitons. For instance,

from (1.4) one deduces an upper bound on the growth of the weighted volume volf (Br) =
∫
Br
e−f dµ of

geodesic balls in M (see [4]). For generic Ricci solitons (M, g,X), that is, when X is not the gradient of

a potential, neither (1.3) nor Hamilton’s identity (1.4) are available. In case of (1.3) this is technically

due to the fact that, in the generic setting, the symmetry of Hess(f), i.e.

Hess(f)(Y, Z) = Hess(f)(Z, Y )

for every smooth vector fields Y and Z, is replaced by the much more involved “commutation rule”

g(∇YX,Z) = 2λg(Y,Z)− 2 Ric(Y, Z)− g(∇ZX,Y ).

Nevertheless, even in in this more general situation, some important equations valid for gradient solitons

still hold, basically in the same form (see formulas (2.3) and (2.4) in Lemma 2.1 below). These equations

have been recently considered in [13] to infer some upper and lower estimates on infM S and supM |T |,
where T is the traceless Ricci tensor, under a growth condition on |X|. Using Lemma 2.1 below we free

X from this restriction, improving on our Theorems 1.1 and 1.2 of [13]; for instance, Theorem 1.1 just

quoted becomes

Theorem 1.1. Let (M, g,X) be a complete, generic Ricci soliton of dimension m and scalar curvature

S. Set S∗ = infM S.

i) If λ < 0 then mλ ≤ S∗ ≤ 0. Furthermore, if S(x0) = S∗ = mλ for some x0 ∈ M , then (M, g) is

Einstein and X is a Killing field; on the other hand, if S(x0) = S∗ = 0 for some x0 ∈ M , then

(M, g) is Ricci flat and X is a homothetic vector field.

ii) If λ = 0 then S∗ = 0. Furthermore, if S(x0) = S∗ = 0 for some x0 ∈ M , then (M, g) is Ricci

flat and X is a Killing field.

iii) If λ > 0 then 0 ≤ S∗ ≤ mλ. Furthermore, if S(x0) = S∗ = 0 for some x0 ∈ M , then (M, g) is

flat and X is a homethetic vector field, while S∗ < mλ unless M is compact, Einstein and X is

a Killing field.

Note that, in the original statement of [13], in case iii) we concluded that if S(x0) = S∗ = 0 then

(M, g) is Ricci flat; the present stronger conclusion is then obtained by applying Theorem 4.1 of [22]. As

a matter of fact, part iii) of Theorem 1.1 and the differential inequality (2.20) below are key steps in the

proof of the following classification results for generic shrinking solitons. To fix the notation, we let o be

some chosen origin in M and we set r(x) = dist(M,g)(x, o).

Theorem 1.2. Let (M, g,X) be a complete generic shrinking Ricci soliton of dimension three. Further-

more, if M is noncompact, assume that the scalar curvature is bounded and |∇X| = o(|X|) as r → ∞.

Then (M, g) is isometric to a finite quotient of either S3, R× S2 or R3.

In higher dimensions Theorem 1.2 generalizes to

Theorem 1.3. Let (M, g,X) be a complete generic shrinking Ricci soliton of dimension m > 3. Further-

more, if M is noncompact, assume that the scalar curvature is bounded and |∇X| = o(|X|) as r → ∞.

If, for some Λ > 0, |Ric | ≤ ΛS and

(1.5) |W |S ≤
√

2(m− 1)

m− 2

(
|T | − 1√

m(m− 1)
S

)2

,

then (M, g) is isometric to a finite quotient of either Sm, R× Sm−1 or Rm.

Theorems 1.2 and 1.3 extend to the non-gradient case the previous results of Perelman [16], Cao et

al. [3] and the first author [5] and provide results in the non conformally flat case, which was treated by

the first author et al. [6].
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Remark 1.4. Tracing equation (1.1) it follows that the previous theorems in particular hold simply

assuming that |∇X| is bounded and, if m > 3, inequality (1.5).

In proving Theorems 1.1, 1.2 and 1.3 we shall need certain geometric and analytic preliminary results

that are interesting in their own, which we state and prove in Sections 2 and 3. In particular, in

Section 2 (see Proposition 2.3) we show that the Omori-Yau maximum principle, and therefore the weak

maximum principle, holds for the X-Laplacian (defined below in equation (2.1)) on every generic Ricci

soliton, without any assumption on X; this extends the previous result in [9] to the non-gradient setting.

In Section 3 we give a sufficient condition for the parabolicity of a large class of linear second order

operators, including the X-Laplacian. Finally, in Section 5 we give a classification result for complete

generic Ricci solitons with constant scalar curvature (see Theorem 5.4).

2. Geometry of a generic Ricci soliton

On a generic Ricci soliton structure (M, g,X) we introduce (see for instance [13]) the differential

operator ∆X , that we call the X–Laplacian and that acts on a function u ∈ Liploc(M) as

(2.1) ∆Xu = ∆u− g(X,∇u).

Of course, (2.1) has to be understood in the weak sense. Note that in case X = ∇f , that is, in case of a

gradient Ricci soliton with potential f , the operator ∆X coincides with the symmetric diffusion operator

(sometimes called f -Laplacian or drifted Laplacian)

∆fu = ∆u− g(∇f,∇u) = ef div
(
e−f∇u

)
.

We recall that the Omori-Yau maximum principle for ∆X holds on (M, g) if, given any function u ∈
C2(M) with u∗ = supM u < +∞, there exists a sequence {zk}k ⊂M such that

(2.2) (i) u (zk) > u∗ − 1
k , (ii) |∇u (zk)| < 1

k , (iii) ∆Xu (zk) < 1
k ,

for each k ∈ N. We also say that the weak maximum principle hold for ∆X if only (i) and (iii) in (2.2)

are met.

From now on we shall freely use the notation of the method of the moving frame referring to a fixed

local orthonormal coframe for computations. We fix the index convention 1 ≤ i, j, k, s, . . . ≤ m = dimM ,

we let T = Ric− S
mg denote the traceless Ricci tensor and we set Tij , Rijks and Wijks to denote the

components of T , of the Riemann and of the Weyl curvature tensors respectively. Further notation will

be clear from the context. The following equations have been obtained in Lemmas 9 and 10 of [13].

Lemma 2.1. Let (M, g,X) be a generic Ricci soliton. Then

1

2
∆XS = λS − |Ric |2 = λS − S2

m
− |T |2,(2.3)

1

2
∆X |T |2 = |∇T |2 + 2

(
λ− m− 2

m(m− 1)
S

)
|T |2 +

4

m− 2
tr(t3)− 2TkiTsjWksij ,(2.4)

where the endomorphism t : TM → TM is defined by t(Y ) = T (Y, )] and tr(t3) is the trace of the

operator t3 = t ◦ t ◦ t.

Having defined r(x) in the Introduction we now deduce an upper estimate for ∆Xr which depends

only on a lower bound for

(2.5) RicX = Ric +
1

2
LXg.

We denote with cut(o) the cut-locus of the origin o.

Proposition 2.2. Let (M, g) be a complete Riemannian manifold of dimension m ≥ 2 and let X be a

vector field on M . Suppose that, for some F ∈ C0(R+
0 ),

(2.6) RicX ≥ −(m− 1)F (r)g.



4 CGSRS

Then there exist a constant C > 0 and δ > 0 sufficiently small such that

(2.7) ∆Xr(x) ≤ C + (m− 1)

∫ r(x)

δ

F (t) dt

pointwise on M \ ({o} ∪ cut(o)) and weakly on M .

Proof. Fix x ∈ M \ ({o} ∪ cut(o)) and let γ : [0, l] → M , with l = length(γ), be a minimizing geodesic

such that γ(0) = o and γ(l) = x. Note that F (r(γ(t))) = F (t) for every t ∈ [0, l]. From Böchner formula,

see Remark 2.6 below, applied to the distance function r outside {o} ∪ cut(o) we have

0 = |Hess(r)|2 + Ric(∇r,∇r) + 〈∇∆r,∇r〉

so that, using the inequality

|Hess(r)|2 ≥ (∆r)2

m− 1
it follows that the function ψ(t) = (∆r) ◦ γ(t), for t ∈ (0, l] satisfies the Riccati differential inequality

(2.8) ψ′ +
1

m− 1
ψ2 ≤ −Ric(γ̇, γ̇) on (0, l],

where γ̇(t) is the tangent vector of γ at time t. We now define ψX(t) = (∆Xr)◦γ(t) = ψ(t)−〈X,∇r〉◦γ(t)

so that

ψ′X = ψ′ −
(
〈X,∇r〉 ◦ γ

)′
= ψ′ − 1

2
LXg(γ̇, γ̇).

Thus using (2.8) we obtain

ψ′X ≤ −
ψ2

m− 1
− Ric(γ̇, γ̇)− 1

2
LXg(γ̇, γ̇)

and from (2.5)

ψ′X ≤ −RicX(γ̇, γ̇).

From assumption (2.6) it follows that

ψ′X(t) ≤ (m− 1)F (t)

for t ∈ (0, l]. Choosing δ > 0 so small that the geodesic ball Bδ(o) is inside the domain of the normal

coordinates at o and setting C = max∂Bδ ∆Xr, integration for t between δ and r(x) gives

∆Xr(x) ≤ C + (m− 1)

∫ r(x)

δ

F (t) dt

pointwise in M \ ({o} ∪ cut(o)), so that (2.7) follows. To show the validity of this inequality weakly

on all of M we argue in a way similar to that of Lemma 2.5 of [19]; for the sake of completeness we

report the reasoning. By an observation of Cheng and Yau, [8], we can consider an exhaustion {Ωn} of

M \ cut(o) by bounded domains with smooth boundaries starshaped with respect to o. Fix n and let ν

be the outward unit normal to ∂Ωn; denote with ρ(x) = dist (x, ∂Ωn) with the convention that ρ(x) > 0

if x ∈ Ωn and ρ(x) < 0 if x 6∈ Ωn. Thus ρ is the radial coordinate for the Fermi coordinates relative to

∂Ωn. By Gauss lemma |∇ρ| = 1 and ∇ρ = −ν on ∂Ωn. Let

Ωn,ε = {x ∈ Ωn : ρ(x) > ε}

for some ε > 0 sufficiently small and define the Lipschitz function

ψε(x) =


1 if x ∈ Ωn,ε

ρ(x)/ε if x ∈ Ωn \ Ωn,ε

0 if x ∈M \ Ωn.
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Let ϕ ∈ C∞0 (M), ϕ ≥ 0; then ϕψε ∈W 1,2
0 (Ωn) and ϕψε ≥ 0. Because of the validity of (2.7) in Ωn \ {o}

and Gauss lemma, having set G(x) for the right-hand side of (2.7) we have∫
Ωn

G(x)ϕψε ≥
∫

Ωn

−g(∇r,∇(ϕψε))− g(X,∇r)ϕψε

= −
(∫

Ωn

g(∇r,∇ϕ)ψε + g(X,∇r)ϕψε
)
− 1

ε

∫
Ωn\Ωn,ε

g(∇r,∇ρ)ϕ.

Therefore, by the co-area formula,∫
Ωn

G(x)ϕψε ≥ −
(∫

Ωn

g(∇r,∇ϕ)ψε + g(X,∇r)ϕψε
)
− 1

ε

∫ ε

0

dt

∫
∂Ωn,t

g(∇r,∇ρ)ϕ.

Letting ε ↓ 0+ we get∫
Ωn

G(x)ϕ ≥ −
(∫

Ωn

g(∇r,∇ϕ) + g(X,∇r)ϕ
)

+

∫
∂Ωn

g(∇r, ν)ϕ,

and since Ωn is starshaped, ∫
Ωn

G(x)ϕ ≥ −
(∫

Ωn

g(∇r,∇ϕ) + g(X,∇r)ϕ
)
.

By letting n→ +∞, observing that cut(o) has measure 0 and suppϕ is compact, using Fatou’s Lemma

the above yields ∫
M

G(x)ϕ ≥ −
(∫

M

g(∇r,∇ϕ) + g(X,∇r)ϕ
)
,

giving the validity of (2.7) weakly on all of M . �

If we let (M, g,X) be a generic Ricci soliton with M complete, then (2.6) holds in the form

RicX = λg

so that we can choose F (t) = − λ
m−1 . It follows that

∆Xr ≤ C − λ(r − δ)

on M \ ({o} ∪ cut(o)) and weakly on all of M .

Proceeding in a way similar to that in the proof of Theorem 3 in [2] we have the following proposition

that improves on [13].

Proposition 2.3. Let (M, g,X) be a generic Ricci soliton with (M, g) complete. Then the Omori–Yau

and therefore the weak maximum principles hold for the operator ∆X .

We explicitly remark that there are no assumptions on X besides that of satisfying (1.1) for some

λ ∈ R.

With the same reasoning as in the proof of Theorem 1.1 in [13], as a consequence of Lemma 2.1 and

Proposition 2.3 we immediately deduce the validity of Theorem 1.1. As for Theorem 1.2 of [13], we state

here the new improved version; again, its proof follows the same lines of [13] with the replacement of

Lemma 3.3 there with the improved version in Proposition 2.3.

Theorem 2.4. Let (M, g,X) be a complete, generic Ricci soliton of dimension m ≥ 3, scalar curvature

S, traceless Ricci tensor T and Weyl tensor W . Suppose that

i)S∗ = sup
M

S(x) < +∞; ii) |W |∗ = sup
M
|W | < +∞.

Then, either (M, g) is Einstein or |T |∗ = supM |T | satisfies

|T |∗ ≥ 1

2

(√
m(m− 1)λ− S∗ m− 2√

m(m− 1)
−
√
m(m− 2)

2
|W |∗

)
.
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In particular, if (M, g) is conformally flat, then either (M, g) has constant sectional curvature, or

|T |∗ ≥ 1

2

(√
m(m− 1)λ− S∗ m− 2√

m(m− 1)

)
.

We now develop some further auxiliary results. First we recall the following formula due to Böchner,

[23], and rediscovered many times in recent years.

Lemma 2.5. Let Y be a vector field on the Riemannian manifold (M, g). Then

(2.9) div (LY g)(Y ) =
1

2
∆|Y |2 − |∇Y |2 + Ric(Y, Y ) +∇Y (div Y ).

Remark 2.6. Formula (2.9) is a generalization of the usual Böchner formula. To see this let u ∈ C3(M)

and let Y = ∇u. Then, since 1
2L∇ug = Hess(u), equation (2.9) becomes

2 div(Hess(u))(∇u) =
1

2
∆|∇u|2 − |Hess(u)|2 + Ric(∇u,∇u) + g(∇∆u,∇u).

Since

div(Hess(u))(∇u) = Ric(∇u,∇u) + g(∇∆u,∇u),

from the above we immediately deduce that (2.9) is, in this case, equivalent to

1

2
∆|∇u|2 = |Hess(u)|2 + Ric(∇u,∇u) + g(∇∆u,∇u),

that is, the usual Böchner formula.

As a consequence of Lemma 2.5 we obtain the following (see also [18])

Proposition 2.7. Let (M, g,X) be a generic Ricci soliton. Then

(2.10)
1

2
∆|X|2 = |∇X|2 − Ric(X,X),

or equivalently

(2.11)
1

2
∆X |X|2 = |∇X|2 − λ|X|2.

Proof. We trace the soliton equation (1.1) to obtain

S + divX = mλ

and from this we deduce

(2.12) ∇S = −∇ divX.

On the other hand, contracting twice the second Bianchi’s identities we have the well–known formula

(2.13) ∇S = 2 div Ric .

Thus, comparing (2.12) and (2.13), we obtain

(2.14) ∇ divX = −2 div Ric .

Now taking the divergence of (1.1) and using the fact that div(λg) = 0 we find

div(LXg) = −2 div Ric,

and from (2.14) we deduce

∇divX = div(LXg).

In particular

(2.15) ∇X divX = div(LXg)(X).
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Substituting into (2.9) we immediately obtain (2.10). As for (2.11), using (2.10) and the definition of

∆X given in (2.1), we have

1

2
∆X |X|2 = |∇X|2 − λ|X|2 +

1

2

(
LXg(X,X)− g

(
X,∇|X|2

))
,

from which (2.11) follows since

LXg(X,X) = g
(
X,∇|X|2

)
.

�

The following formulas can be verified by a simple direct computation. For any vector fields Y, Z and

functions u, v ∈ C2(M), with v 6= 0 on M ,

(2.16) ∆Y

(u
v

)
=

1

v
∆Y u−

u

v2
∆Y v − 2g

(
∇
(u
v

)
,
∇v
v

)
,

(2.17) ∆Y+Zu = ∆Y u− g(Z,∇u).

The next computational result uses Proposition 2.7.

Lemma 2.8. Let (M, g,X) be a generic Ricci soliton and α ∈ (0, 1]. Suppose S > 0 on M . Then

(2.18) ∆X−2∇ logS

(
|X|2

Sα

)
≤ 2

Sα

{(
2− α
α

)
|∇X|2 −

[
(α+ 1)λ− α |Ric |2

S

]
|X|2

}
.

Proof. Using equations (2.3) and (2.11), with the aid of (2.16) and (2.17), we compute

∆X−2∇ logS

(
|X|2

Sα

)
=

2

Sα

{
|∇X|2 −

[
(α+ 1)λ− α |Ric |2

S

]
|X|2

}
(2.19)

+
2(1− α)

Sα+1
g
(
∇|X|2,∇S

)
+
α(α− 1)

Sα+2
|X|2|∇S|2.

Next we use the inequality

|∇|X|2| ≤ 2|X||∇X|

and Cauchy and Young’s inequalities with ε > 0 to get

1

Sα+1
g
(
∇S,∇|X|2

)
≤ 2|X||∇X||∇S|

Sα+1
≤ 1

ε

|∇X|2

Sα
+

ε

Sα+2
|X|2|∇S|2.

Hence, for any α ∈ (0, 1], inserting the previous inequalities into (2.19) and rearranging terms we obtain

∆X−2∇ logS

(
|X|2

Sα

)
≤ 2

Sα

{[
1 +

1− α
ε

]
|∇X|2 −

[
(α+ 1)λ− α |Ric |2

S

]
|X|2

}
+

1− α
Sα+2

(2ε− α)|X|2|∇S|2.

Choosing ε = α
2 we finally have

∆X−2∇ logS

(
|X|2

Sα

)
≤ 2

Sα

{(
2− α
α

)
|∇X|2 −

[
(α+ 1)λ− α |Ric |2

S

]
|X|2

}
.

that is, (2.18). �

Corollary 2.9. Let (M, g,X) be a generic, shrinking, complete Ricci soliton and assume that S > 0,

S∗ = supM S < +∞, |Ric| ≤ ΛS for some constant Λ > 0 and

|∇X| = o(|X|) as r(x)→ +∞.

Then there exists α ∈ (0, 1] and a compact K = Kα ⊂M such that

∆X−2∇ logS

(
|X|2

Sα

)
< 0 on M \K.

Proof. An immediate consequence of the assumptions and of (2.18). �
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Our last ingredient for the proof of the main results comes from Lemma 2.1.

Lemma 2.10. Let (M, g,X) be a generic Ricci soliton of dimension m with scalar curvature S > 0 on

M . Then

(2.20)

1

2
∆X−2∇ logS

(
|T |2

S2

)
≥ 2

|T |2

S3

(
|T | − 1√

m(m− 1)
S

)2

+
1

S3

(
|T |√
S
|∇S| −

√
S|∇T |

)2

−
√

2(m− 2)

m− 1

1

S2
|W ||T |2.

Proof. We use equations (2.16), (2.3) and (2.4) and

|Ric |2 = |T |2 +
S2

m

to compute

(2.21) ∆X−2∇ logS

(
|T |2

S2

)
= A+B + C,

where

A =
2

S3

(
S|∇T |2 +

1

S
|T |2|∇S|2 − 〈∇|T |2,∇S〉

)
,

B =
8

m− 2

1

S2
tr(t3) +

4

m(m− 1)

|T |2

S
+ 4
|T |4

S3
,

C = − 4

S2
TikTsjWksij .

Next we use Cauchy inequality and

|∇|T |2| ≤ 2|∇T ||T |

to obtain

(2.22) A ≥ 2

S3

(
|T |√
S
|∇S| −

√
S|∇T |

)2

.

Since T is trace free, by Okumura’s lemma, [15],

tr(t3) ≥ − m− 2√
m(m− 1)

|T |3

with equality holding if and only if either |T | = 0 or |T | = 1√
m(m−1)

S. Therefore

(2.23) B ≥ 4
|T |2

S3

(
|T | − 1√

m(m− 1)
S

)2

.

Finally, by Huisken’s inequality, [11, Lemma 2.4],

(2.24) C ≥ −2
√

2

S2

√
m− 2

m− 1
|W ||T |2.

Inequality (2.20) now follows immediately by putting together (2.21), (2.22), (2.23) and (2.24). �

3. Some analytic results

Let (M, g) be an m–dimensional Riemannian manifold, X a vector field and T a semipositive definite,

symmetric (0, 2)-tensor on M . We define the operator L = LT,X on M acting on u ∈ Liploc(M) by

(3.1) Lu = LT,Xu = div
(
T (∇u, )]

)
− g(X,∇u),

where of course the above has to be understood in the weak sense. We introduce the following
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Definition 3.1. i) We say that M is L–parabolic if each bounded above, L–subharmonic function is

constant, that is, each u ∈ Liploc(M) with u∗ = sup
M

u < +∞ and satisfying

Lu ≥ 0 on M

is constant.

ii) We say that M is strongly L–parabolic if for each non–constant u ∈ Liploc(M) with u∗ <∞ and

for each η > 0

(3.2) inf
Ωη
Lu < 0,

where

Ωη = {x ∈M : u(x) > u∗ − η}.

Of course, again, (3.2) has to be interpreted in the weak sense, that is, for some ε > 0 there exists

ϕ ∈ Lip0(Ωη), ϕ ≥ 0, ϕ 6≡ 0, such that

−

(∫
Ωη

T (∇u,∇ϕ) + g(X,∇u)ϕ

)
≤ −

∫
Ωη

εϕ.

It is clear that strong parabolicity implies parabolicity, and the converse can be shown to be true

whenever the function obtained as the maximum between a constant and a L–subharmonic function is

still L–subharmonic. This is the case for the operators in (3.1), as we are going to prove by adapting an

idea of Agmon, [1].

Proposition 3.2. Let L be the operator defined in(3.1); let u ∈ Liploc(M) satisfy

(3.3) Lu ≥ 0 on M

and let α ∈ R be any constant. Then the function defined by

w(x) = max{u(x), α}

satisfies (3.3).

Proof. Since u+ β is still a solution of (3.3) for every β ∈ R, without loss of generality we can suppose

that α = 0. In this case w = u+, so that it remains to show that u+ is a solution of (3.3). Towards this

end we recall that (3.3) means ∫
M

T (∇u,∇ϕ) + g(X,∇u)ϕ ≤ 0

for every ϕ ∈ Lip0(M) such that ϕ ≥ 0. We fix such a ϕ and a constant ε > 0. We set

uε =
√
u2 + ε2, ϕε =

1

2

(
1 +

u

uε

)
ϕ

and note that ϕε is still an admissible test function for (3.3). Furthermore, uε > |u| and

(3.4) uε → |u|, ∇uε → ∇|u|, ϕε →
(

1 + sgn(u)

2

)
ϕ as ε→ 0+.

A simple computation shows that

T (∇uε,∇ϕ) = T

(
∇u,∇

(
u

uε
ϕ

))
− ϕ

u3
ε

(u2
ε − u2)T (∇u,∇u)

so that, since T is, a fortiori, semipositive definite, we obtain

T (∇uε,∇ϕ) ≤ T
(
∇u,∇

(
u

uε
ϕ

))
.

From this inequality it immediately follows

(3.5) T

(
∇
(
u+ uε

2

)
,∇ϕ

)
≤ T (∇u,∇ϕε).



10 CGSRS

Now by the definition of subsolution∫
M

T (∇u,∇ϕε) + g(X,∇u)ϕε ≤ 0

and therefore, using (3.5), ∫
M

T

(
∇
(
u+ uε

2

)
,∇ϕ

)
+ g(X,∇u)ϕε ≤ 0.

Letting ε ↓ 0+ we deduce by (3.4) and by Fatou’s lemma that∫
M

T (∇u+,∇ϕ) + g
(
X,∇u+

)
ϕ ≤ 0,

that is, u+ is a subsolution of (3.3). �

The following is a sufficient condition for the validity of strong L-parabolicity.

Theorem 3.3. Let (M, g) be a connected Riemannian manifold and L be as in (3.1). Let γ ∈ Liploc(M)

satisfy

γ(x)→ +∞ as x→∞(3.6)

Lγ < 0 outside a compact set.(3.7)

Then M is L–parabolic.

Proof. We reason by contradiction and we assume the existence of a non–constant u ∈ Liploc(M), with

u∗ < +∞ and of η > 0 such that

(3.8) Lu ≥ 0 on Ωη.

First we observe that u∗ cannot be attained at any point x0 ∈ M , for otherwise x0 ∈ Ωη and by the

strong maximum principle for the operator L given in Theorem 5.6 of [20] we have that u is constantly

equal to u∗ on the connected component of Ωη containing x0. From this and connectedness it follows

easily that u is constant on M , a contradiction.

Next for t ∈ R we let

Λt = {x ∈M : γ(x) > t}

and we define

u∗t = sup
x∈Λct

u(x).

Using (3.6) it is not hard to see that Λct is compact, and therefore u∗t is attained at some point of Λct .

Since u∗ is not attained in M and {Λct} is a nested family of compact sets exhausting M , there exists a

diverging sequence {tj}j∈N ⊂ R+ such that

(3.9) u∗tj ↗ u∗ as j → +∞,

and we can choose T1 > 0 sufficiently large so that

u∗T1
> u∗ − η

2
.

Without loss of generality we can also suppose to have chosen T1 large enough so that also (3.7) holds

on ΛT1 . Now fix α satisfying u∗T1
< α < u∗. Because of (3.9) we can find j ∈ N sufficiently large so that

T2 = tj > T1 and u∗T2
> α.

We select η̄ > 0 small enough to satisfy

(3.10) α+ η̄ < u∗T2
.

For σ > 0 we define

γσ(x) = α+ σ
(
γ(x)− T1

)
.
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Then

(3.11) Lγσ = σLγ < 0 on ΛT1
.

Next we observe that

α ≤ γσ(x) ≤ α+ σ(T2 − T1) on ΛT1
\ ΛT2

and therefore we can choose σ > 0 sufficiently small to guarantee

(3.12) σ(T2 − T1) < η̄

and then

α ≤ γσ(x) < α+ η̄ on ΛT1
\ ΛT2

.

On ∂ΛT1 we have

γσ(x) = α > u∗T1
≥ u(x)

so that

u(x)− γσ(x) < 0 and ∂ΛT1
.

Furthermore, if x̄ ∈ ΛT1 \ ΛT2 is such that

u(x̄) = u∗T2
> α+ η̄

then

u(x̄)− γσ(x̄) ≥ u∗T2
− α− σ(T2 − T1) > u∗T2

− α− η̄ > 0

because of (3.10) and (3.12). Finally (3.6) and the fact that u∗ < +∞ imply

(3.13) (u− γσ)(x) < 0 on ΛT3

for T3 > T2 sufficiently large. Hence

µ = sup
x∈Λ̄T1

(u− γσ)(x) > 0

and it is in fact a positive maximum attained at some point z0 in the compact set Λ̄T1
\ ΛT3

. Thus

Σ = {x ∈ ΛT1 : (u− γσ)(x) = µ} 6= ∅.

Furthermore, for y ∈ Σ,

u(y) = γσ(y) + µ > γσ(y) = α+ σ(γ(y)− T1) > α > u∗T1
> u∗ − η

2
,

so that

Σ ⊂ Ωη,

and by (3.13) Σ ⊂ Λ̄T1 \ ΛT3 , therefore Σ is compact. Hence there exists an open neighbourhood of Σ,

ΣU ⊂ Ωη. Fix y ∈ Σ and β ∈ (0, µ) and call Σβ,y the connected component of the set

{x ∈ ΛT1
: (u− γσ)(x) > β}

containing y. We can choose β sufficiently close to µ so that Σβ,y ⊂ Ωη ∩ ΛT1 . Note that, since β > 0,

Σβ,y is compact. Because of (3.11) and (3.8)

Lu ≥ 0 ≥ σLγ = Lγσ on Σβ,y

in the weak sense. Furthermore, u(x) = γσ(x) + β on ∂Σβ,y. By Theorem 5.3 of [20], u(x) ≤ γσ(x) + β

on Σβ,y. However y ∈ Σβ,y and we have

u(y) = γσ(y) + µ > γσ(y) + β

by our choice of β. Contradiction. �



12 CGSRS

We remark that for (3.13) to hold it is enough to require

(3.14) u(x) = o
(
γ(x)

)
as x→∞.

Hence a careful reading of the above proof yields the validity of the following Liouville–type result.

Theorem 3.4. Let (M, g) be a connected Riemannian manifold and L as in (3.1). Let γ ∈ Liploc(M)

satisfy (3.6) and (3.7). If u ∈ Liploc(M) satisfies (3.14) and Lu ≥ 0 on M then u is constant.

4. Proof of Theorems 1.2 and 1.3

In this short section we prove Theorem 1.2 and Theorem 1.3. First of all, from Theorem 1.1 we

know that the soliton is either flat or it has positive scalar curvature S > 0. Moreover, from the growth

estimates on the vector field X proved in [14, Remark 2.2], we know that |X| → ∞ as r → ∞ (we

notice that, under the assumptions of theorems 1.2 and 1.3, one has that the metric has bounded Ricci

curvature).

In dimension three, every complete shrinking soliton has nonnegative sectional curvature [7]. Moreover,

by Hamilton’s strong maximum principle, either g has strictly positive sectional curvature or it splits a

line. In this latter case, either the soliton is flat or it is isometric to a quotient of the round cylinder

R×S2. So from now on, in dimension three, we can assume that the metric has strictly positive sectional

curvature. In particular it holds |Ric |2 < 1
2S

2. Moreover, the pinching condition (1.5) is automatically

satisfied, since the W.eyl tensor vanishes in three dimension. Thus, it is sufficient to prove Theorem

1.3, with m ≥ 3, to conclude. Now, the proof follows the arguments in [5]. Under the assumptions of

Theorem 1.3, Corollary 2.9 applies. Hence, from Lemma 2.10 and Theorem 3.3, we have that |T |
2

S2 must

be constant on M . Moreover, from the proof of Lemma 2.10, we get that (M, g) is either Einstein or

satisfies the identity |T | = 1√
m(m−1)

S. Now, if m = 3, this violates the fact that the metric has positive

sectional curvature. So (M, g) is Einstein, hence it has constant positive sectional curvature and is a

finite quotient of S3. On the other hand, if m ≥ 4, the pinching assumption (1.5) on the Weyl curvature

implies that (M, g) is either Einstein or has zero Weyl tensor. In the first case, since the metric has

positive scalar curvature, we have that M is compact. Moreover, from the pinching condition (1.5), we

get that

|W |2 ≤ 2

m2(m− 1)(m− 2)
S2 ≤ 4

m(m− 1)(m− 2)(m+ 1)
S2 .

Thus, the pinching condition in Huisken [11, Corallary 2.5] is satisfied which implies that (M, g) has

positive curvature. Hence, from a classical theorem of Tachibana [21], we conclude that (M, g) has

constant positive sectional curvature and is a finite quotient of Sm. On the other hand, if the Weyl

tensor vanishes, from the classification of locally conformally flat shrinking Ricci solitons given in [6] we

obtain that if (M, g) is non-flat and noncompact, then it must be a finite quotient of R× Sm−1.

This concludes the proof of Theorem 1.2 and Theorem 1.3.

5. Further remarks

In this final section we collect some further observations on generic Ricci solitons. We begin with the

following

Lemma 5.1. Let Y be a vector field on (M, g), S the scalar curvature, T = Ric− S
mg the traceless

Ricci tensor with corresponding endomorphism t : TM → TM and lY g : TM → TM the endomorphism

corresponding to LY g, that is, for every vector field Z

(lY g)(Z) = (LY g(Z))].
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We set WY = T (Y, )] = t(Y ). Then

(5.1) divWY =
1

2
tr(lY g ◦ t) +

m− 2

2m
Y (S).

Proof. We give the short proof for completeness. In the moving frame notation WY is the vector field of

components

Wj = (WY )j = YiTij .

Thus

divWY = YikTik + YiTik,k.

Using the fact that T is symmetric and Schur’s identity

2Rik,i = Sk

we have

divWY =
1

2
(Yik + Yki)Tik + Yi(Rik,k −

Si
m

) =
1

2
tr(lY g ◦ t) +

m− 2

2m
SiYi,

that is, (5.1). �

As a consequence we obtain

Proposition 5.2. Let (M, g,X) be a generic Ricci soliton with scalar curvature S and traceless Ricci

tensor T . Then

(5.2) div(T (X, )]) =
m− 2

2m
X(S)− |T |2.

Proof. Use the soliton equation (1.1), the definition of T and |T |2 = |Ric |2 − S2

m into (5.1) to obtain

(5.2). �

Remark 5.3. Note that (5.2) could be interpreted as a kind of infinitesimal “Kazdan–Warner” condition

for generic Ricci solitons.

The following result is an immediate consequence of Proposition 5.2.

Theorem 5.4. Let (M, g,X) be a complete, generic Ricci soliton with constant scalar curvature and

dimension m ≥ 3. Let T be the trace free Ricci tensor and assume that for p, q conjugate exponents

(5.3) |X| ∈ Lp(M), |T | ∈ Lq(M).

Then (M, g) is Einstein, X is either Killing or homothetic (but not Killing). In this latter case (M, g,X)

is not steady and (M, g) is locally Euclidean.

Proof. Since S is constant, (5.2) becomes

div(T (X, )]) = −|T |2 ≤ 0.

Furthermore, because of (5.3) the vector field T (X, )] ∈ L1(M). We apply Karp’s version of the di-

vergence theorem [12] to deduce
∫
M
|T |2 = 0, that is, (M, g) is Einstein. From the soliton equation

(1.1)
1

2
LXg =

(
λ− S

m

)
g.

If X is not Killing λ− S
m 6= 0, and by Theorem 4.1 in [22], (M, g) is locally Euclidean so that S ≡ 0 and

λ 6= 0. �
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in Mathematics. Birkhäuser Verlag, Basel, 2008. A generalization of the Bochner technique.

[20] P. Pucci, M. Rigoli, and J. Serrin. Qualitative properties for solutions of singular elliptic inequalities on complete

manifolds. J. Differential Equations, 234(2):507–543, 2007.

[21] S. Tachibana. A theorem of Riemannian manifolds of positive curvature operator. Proc. Japan Acad., 50:301–302,

1974.

[22] Y. Tashiro. Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc., 117:251–275, 1965.

[23] K. Yano and S. Bochner. Curvature and Betti numbers. Annals of Mathematics Studies, No. 32. Princeton University

Press, Princeton, N. J., 1953.


	qdd206-copertina
	dip-20154131226

