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In this paper we prove that any complete conformal gradient soliton with nonnegative
Ricci tensor is either isometric to a direct product R × Nn−1, or globally conformally
equivalent to the Euclidean space Rn or to the round sphere Sn. In particular, we show
that any complete, noncompact, gradient Yamabe-type soliton with positive Ricci tensor
is rotationally symmetric, whenever the potential function is nonconstant.
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1. Introduction

A connected, complete Riemannian manifold (Mn, g) is called a conformal gradi-
ent soliton if there exists a nonconstant smooth function f , called potential of the
soliton, such that

∇2f = ϕg,

for some function ϕ : Mn → R. Tracing this equation with the metric g, we see
immediately that the function ϕ must coincide with ∆f/n. Hence, an equivalent
characterization of conformal gradient solitons is given by the equation

∇2f =
∆f

n
g. (1.1)
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In this note we are going to fully detail a remark of Petersen and Wylie [9,
Remark A.3] about the classification of these solitons; moreover, we revisit a result
of Tashiro [10], who first studied their global structure.

Complete Riemannian manifolds admitting a vector field ∇f satisfying Eq. (1.1)
were studied by many authors in the late 1960s. Solutions to Eq. (1.1) have also
been considered in a work by Cheeger and Colding [4], where the authors give
a characterization of warped product manifolds. In particular, they observe that,
in the complement of the critical points of f , any conformal gradient soliton is
isometric to a warped product on some open interval. Taking advantage of this, we
will be able to drastically simplify the proof of the classification result for conformal
gradient solitons given by Tashiro. Moreover, we further characterize conformal
gradient solitons with nonnegative Ricci tensor, in the spirit of some recent works
about the classification of Einstein-like structures, such as gradient Ricci solitons
and quasi-Einstein manifolds.

Our main result reads as follows.

Theorem 1.1. Let (Mn, g) be a complete conformal gradient soliton and let f be
a potential function for it. Then, any regular level set Σ of f admits a maximal
open neighborhood U ⊂ Mn on which f only depends on the signed distance r to
the hypersurface Σ. In addition, the potential function f can be chosen in such a
way that the metric g takes the form

g = dr2 + (f ′(r))2gΣ on U,

where gΣ is the metric induced by g on Σ. As a consequence, f has at most two
critical points on Mn and we have the following cases:

(1) If f has no critical points, then (Mn, g) is globally conformally equivalent to
a direct product I × Nn−1 of some interval I = (t∗, t∗) ⊆ R with an (n − 1)-
dimensional complete Riemannian manifold (Nn−1, gN ). More precisely, the
metric takes the form

g = u2(t)(dt2 + gN),

where u : (t∗, t∗) → R is some positive smooth function. In this case, if (Mn, g)
is also locally conformally flat, it is well known that (Nn−1, gN ) must have
constant curvature.

(1′) If, in addition, the Ricci tensor of (Mn, g) is nonnegative, then (Mn, g) is
isometric to a direct product R × Nn−1, where (Nn−1, gN) has nonnegative
Ricci tensor. In this case, if (Mn, g) is also locally conformally flat, then either
(Mn, g) is flat or it is a direct product of R with a quotient of the round sphere
Sn−1.

(2) If f has only one critical point O ∈ Mn, then (Mn, g) is globally conformally
equivalent to the interior of an Euclidean ball of radius t∗ ∈ (0, +∞]. More
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precisely, on Mn\{O}, the metric takes the form

g = v2(t)(dt2 + t2gSn−1
),

where v : (0, t∗) → R is some positive smooth function. In particular (Mn, g) is
complete, noncompact and rotationally symmetric.

(2′) If, in addition, the Ricci tensor of (Mn, g) is nonnegative, then (Mn, g) is
globally conformally equivalent to Rn.

(3) If the function f has two critical points N, S ∈ Mn, then (Mn, g) is globally
conformally equivalent to Sn. More precisely, on Mn\{N, S}, the metric takes
the form

g = w2(t)(dt2 + sin2(t)gSn−1
),

where w : (0,π) → R is some smooth positive function. In particular (Mn, g)
is compact and rotationally symmetric.

In Sec. 2 we will prove Theorem 1.1, whereas in Sec. 3 we will focus our attention
on the classification of gradient Yamabe solitons. These are conformal gradient
solitons satisfying the equation

∇2f = (R − λ)g,

for some constant λ. We will show that any complete, noncompact, gradient Yam-
abe soliton with nonnegative Ricci tensor either has constant scalar curvature, or
it splits isometrically as a direct product R × Nn−1, or it is rotationally symmet-
ric and globally conformally equivalent to Rn (see Theorems 3.2 and 3.6 for the
generalization to the case of gradient k-Yamabe solitons).

2. Proof of Theorem 1.1

Let Σ be a regular level set of the function f : Mn → R, i.e. |∇f | )= 0 on Σ, which
exists by Sard’s Theorem and the fact that f is nonconstant in our definition. We
have that |∇f | has to be constant on Σ. Indeed, for all X ∈ TpΣ

∇X |∇f |2 = 2∇2f(∇f, X) =
2 ∆f

n
g(∇f, X) = 0.

From this we deduce that, in a neighborhood U of Σ not containing any criti-
cal point of f , such potential function only depends on the signed distance r to
the hypersurface Σ. In particular df = f ′dr. Moreover, if θ = (θ1, . . . , θn−1) are
coordinates adapted to the hypersurface Σ, we get

∇2f = ∇df = f ′′dr ⊗ dr + f ′∇2r = f ′′dr ⊗ dr +
f ′

2
∂rgijdθ

i ⊗ dθj ,

as

Γr
rr = Γk

rr = Γr
ir = 0, Γr

ij = −1
2
∂rgij , Γk

ir =
1
2
gks∂rgis.
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On the other hand, using Eq. (1.1), we have

∇2f =
∆f

n
g =

∆f

n
(dr ⊗ dr + gijdθ

i ⊗ dθj),

thus, ∆f = nf ′′ and gij∆f = n
2 f ′∂rgij . These equations imply the family of ODE’s

f ′′(r)gij(r, θ) =
f ′(r)

2
∂rgij (r, θ).

Since f ′(0) )= 0 (otherwise Σ is not a regular level set of f) we can integrate these
equations obtaining

gij (r, θ) = (f ′(r)/f ′(0))2gij (0, θ).

Therefore, in U the metric takes the form

g = dr ⊗ dr + (f ′(r)/f ′(0))2σij (θ)dθi ⊗ dθj ,

where gΣ
ij (θ) = gij (0, θ) is the metric induced by g on Σ. We notice that, since f =

f(r), then the width of the neighborhood U is uniform with respect to the points
of Σ, namely we can assume U = {r∗ < r < r∗}, for some maximal r∗ ∈ [−∞, 0)
and r∗ ∈ (0,∞]. Moreover, by the scalar invariance of Eq. (1.1), we can assume
that f ′(0) = 1, possibly changing the function f . Hence, in U , the metric can be
written as

g = dr ⊗ dr + (f ′)2gΣ, (2.1)

where gΣ denotes the induced metric on the level set Σ. Moreover, the Ricci tensor
and the scalar curvature of the metric g take the form (see [1, Proposition 9.106]):

Ricg = −(n − 1)
f ′′′

f ′ dr ⊗ dr + RicΣ − ((n − 2)(f ′′)2 + f ′f ′′′)gΣ, (2.2)

Rg = −2(n − 1)
f ′′′

f ′ +
RΣ − (n − 1)(n − 2)(f ′′)2

(f ′)2
. (2.3)

Case 1: f has no critical points. Since (Mn, g) is complete, the width of the max-
imal neighborhood U is unbounded in both the negative and the positive direction
of the signed distance r (i.e. r∗ = −∞ and r∗ = +∞). To complete the proof, it is
sufficient to set

t(r) =
∫ r

0

1
f ′(z)

dz.

For r ∈ (−∞, +∞), we have t ∈ (t∗, t∗), where t∗ = limr→r∗ t(r) ∈ [−∞, 0) and
t∗ = limr→r∗ t(r) ∈ (0, +∞]. Moreover, t′(r) )= 0 and r can be viewed as a function
of t by inverting the expression above. From (2.1), the metric takes the form

g = u(t)2(dt2 + gΣ),

where u(t) = f ′(r(t)).
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Case 1′: f has no critical points and Ric ≥ 0. From formula (2.2) and the fact that
g has nonnegative Ricci tensor, one has

0 ≤ Ricg(∂r , ∂r) = −(n − 1)
f ′′′

f ′ .

Hence, f ′ is a concave function defined on the whole real line that can never be
zero. Thus, it must be constant, that is f ′ ≡ 1, according to our choice of f ′(0).
This implies that (Mn, g) is isometric to the direct product R × Nn−1 of the real
line with an (n − 1)-dimensional complete Riemannian manifold with nonnegative
Ricci tensor.

Remark 2.1. We notice that, in this case, the Ricci tensor has a zero eigenvalue
at every point. Hence, there are no examples of such manifolds for which the Ricci
tensor is positive definite at some point.

Case 2: f has only one critical point O ∈ Mn. In this case, since (Mn, g) is
complete, we can assume that the width of the neighborhood U is unbounded in
the positive direction of the signed distance (i.e. r∗ > −∞ and r∗ = +∞) and
f ′ → 0, as r → r∗. By formula (2.2) and the smoothness of the metric g, we have
that f ′′′/f ′ is bounded, as r → r∗. Hence, from (2.3), we deduce that

RΣ − (n − 1)(n − 2)(f ′′)2 → 0, as r → r∗.

In particular RΣ is nonnegative and constant along Σ. Moreover, it is easy to see
that

lim
r→r∗

f ′(r)
r − r∗

= lim
r→r∗

f ′′(r) = (RΣ/(n − 1)(n − 2))1/2. (2.4)

To conclude the proof of Case 2 of Theorem 1.1, it remains to show that the
induced metric gΣ on the level set Σ is proportional to the round metric gSn−1

of the
(n − 1)-dimensional sphere. This follows from the elementary fact that, infinitesi-
mally, the metric g is approximately Euclidean near O. Indeed, the standard expan-
sion of the metric g around O, written in normal coordinates (x1, . . . , xn), gives

g = (δij + ηij (x))dxi ⊗ dxj

= gRn

+ ηijdxi ⊗ dxj ,

where ηij = O(|x|2). Passing to Riemannian polar coordinates, we write xi =
sφi(ϑ1, . . . ,ϑn−1), with s = r − r∗ ∈ (0, +∞) and (ϑ1, . . . ,ϑn−1) being local coor-
dinates on Sn−1. Notice that |φ1|2 + · · · + |φn|2 = 1 and |x| = s. Thus, one has

g = ds ⊗ ds +
(

s2gSn−1

αβ + s2ηij
∂φi

∂ϑα

∂φj

∂ϑβ

)
dϑα ⊗ dϑβ ,

with ηij = O(s2). Comparing with expression (2.1), we see that, for s ∈ (0, +∞),
we have

f ′(s + r∗)2gΣ = s2gSn−1 + s2ηij
∂φi

∂ϑα

∂φj

∂ϑβ
dϑα ⊗ dϑβ .
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Now, combining the fact that ηij = O(s2) with formula (2.4), if we take the limit
as s → 0 (which means r → r∗) we obtain RΣ > 0 and

gΣ = c2 gSn−1 ,

with c2 = (n − 1)(n − 2)/RΣ. Therefore, on Mn\{O}, we have

g = ds2 + (cf ′(s + r∗))2gSn−1 .

This proves that g is rotationally symmetric. To complete the proof, we set

t(s) = exp
(

1
c

∫ s

−r∗

1
f ′(z + r∗)

dz

)
. (2.5)

For s ∈ (0, +∞), we have t ∈ (0, t∗), where t∗ = lims→+∞ t(s) ∈ (0, +∞]. Notice
that t′(s) )= 0, hence, the coordinate s can be viewed as a function of t by inverting
the expression above. Moreover,

dt

t
=

ds

c f ′(s + r∗)

and the metric g can be expressed as in the statement, namely

g = v(t)2(dt2 + t2gSn−1
),

where v(t) = c f ′(s(t) + r∗)/t.

Case 2′: f has one critical point O ∈ Mn and Ric ≥ 0. Like in the Case 1′ above,
as Ric ≥ 0, we have that z .→ f ′(z + r∗) is a concave function. In particular, it
is definitely bounded above by some linear function, as z → +∞. Then, by the
very definition of t∗ in Eq. (2.5), it follows that t∗ = +∞. This clearly implies that
(Mn, g) is globally conformally equivalent to Rn and rotationally symmetric.

Case 3: f has two critical points N, S ∈ Mn. We assume that the width of the
neighborhood U is bounded in both the negative and the positive directions of the
signed distance (i.e. r∗ > −∞ and r∗ < +∞). In particular (Mn, g) is compact (it
“closes” at the points N and S) and there cannot be other critical points around.
The same argument used in the proof of Case 2 implies at once the rotational
symmetry of g. Namely, on Mn\{N, S}, we have

g = ds2 + (cf ′(s + r∗))2gSn−1 ,

where c2 = (n − 1)(n − 2)/RΣ. To complete the proof of Case 3, we set

t(s) = 2 arctanexp
(

1
c

∫ s

−r∗

1
f ′(z + r∗)

dz

)
.

For s ∈ (0, r∗ − r∗), we have t ∈ (0,π) and t′(s) )= 0, hence, s can be viewed as a
function of t by inverting the expression above. Moreover,

dt

sin(t)
=

ds

cf ′(s + r∗)
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and the metric g can be expressed as in the statement, namely

g = w(t)2(dt2 + sin2(t)gSn−1
),

where w(t) = cf ′(s(t) + r∗)/sin(t).
This completes the proof of Theorem 1.1.

3. Classification of Yamabe-Type Solitons with Nonnegative
Ricci Tensor

Let (Mn, g), n ≥ 3, be a complete Riemannian manifold verifying

∇2f = ϕg, (3.1)

for some smooth functions f and ϕ on Mn. When the potential function f is
nonconstant, then, according to our definition, (Mn, g) is a conformal gradient
soliton and Theorem 1.1 applies.

We first notice that, by taking the divergence of this equation, we have

∇iϕ = ∆∇if = ∇j∇i∇jf = ∇i∆f + Rij∇jf,

where we interchanged the covariant derivatives. Now, using the fact that ∆f = nϕ,
we obtain the following identity:

(n − 1)∇iϕ = −Rij∇jf. (3.2)

We will discuss now some geometric applications of Theorem 1.1 to gradient
Yamabe solitons and gradient k-Yamabe solitons.

3.1. Gradient Yamabe solitons

A Riemannian manifold (Mn, g) is called a gradient Yamabe soliton if it satisfies
Eq. (3.1) with ϕ = R − λ for some constant λ ∈ R, i.e. there exists a smooth
function f (notice that here we are not excluding the case of a constant f) such
that

∇2f = (R − λ)g. (3.3)

If λ = 0, λ > 0 or λ < 0, then the soliton is called steady, shrinking or expanding,
respectively. We recall that gradient Yamabe solitons are self-similar solutions to
the Yamabe flow

∂

∂t
g = −Rg.

This flow was first introduced by Hamilton and we refer the reader to [6] and the
references therein for further details on this subject.

Notice that any Riemannian manifold with constant scalar curvature moves by
the Yamabe flow only by dilations. Hence, it is trivially a self-similar solution and
a gradient Yamabe soliton with R = λ and f constant. Thus, according to our
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definitions, only gradient Yamabe solitons with nonconstant potential function f
can be viewed as conformal gradient solitons.

On the other hand, it is well known (see, for instance, [5, Proposition B.16])
that any compact gradient Yamabe soliton has constant scalar curvature R = λ.
For the sake of completeness, we report here the proof.

Theorem 3.1. Any compact gradient Yamabe soliton has constant scalar curvature
R = λ. Moreover, the potential function f is constant.

Proof. Contracting Eq. (3.3) with the Ricci tensor and integrating over Mn, we
obtain

∫

Mn

(R − λ)RdVg =
∫

Mn

Rij∇ijfdVg = −
∫

Mn

∇iRij∇jfdVg

= −1
2

∫

Mn

〈∇R,∇f〉dVg ,

where in the last equality we have used Schur’s lemma 2 div(Ric) = dR. More-
over, from Eq. (3.3), one has that ∆f = n(R − λ). Hence, it follows that
λ = 1

Vol(Mn)

∫
Mn RdVg and, from the previous computation, we get

∫

Mn

(R − λ)2dVg = −1
2

∫

Mn

〈∇R,∇f〉dVg =
n

2

∫

Mn

(R − λ)2dVg .

Since n ≥ 3, this implies that R coincides with the constant λ. As an immediate
consequence, by the relation (3.3), we have that ∆f is zero. Since Mn is compact,
the function f is constant as well.

When the function f is constant, obviously the scalar curvature of the gradient
Yamabe soliton is constant as well. In such a case, Theorem 1.1 does not apply. In
the sequel we will always assume that relation (3.3) is satisfied by some nonconstant
function f , so we will deal only with noncompact gradient Yamabe solitons. In this
case, as an immediate application of Theorem 1.1, we can prove the following global
result.

Theorem 3.2. Let (Mn, g) be a complete, noncompact, gradient Yamabe soliton
with nonnegative Ricci tensor and nonconstant potential function f . Then, we have
the following two cases:

(1) either (Mn, g) is a direct product R × Nn−1 where (Nn−1, gN ) is an (n − 1)-
dimensional complete Riemannian manifold with nonnegative Ricci tensor. If in
addition (Mn, g) is locally conformally flat, then either it is flat or the manifold
(Nn−1, gN) is a quotient of the round sphere Sn−1;

(2) or (Mn, g) is rotationally symmetric and globally conformally equivalent to Rn.
More precisely, there exists a point O ∈ Mn such that on Mn\{O}, the metric
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has the form

g = v2(t)(dt2 + t2gSn−1
),

where v : R+ → R is some positive smooth function.

From Remark 2.1, it is now easy to deduce the following corollary.

Corollary 3.3. Let (Mn, g) be a complete, noncompact, gradient Yamabe soliton
with nonnegative Ricci tensor and nonconstant potential function f . If the Ricci
tensor is positive definite at some point, then (Mn, g) is rotationally symmetric
and globally conformally equivalent to Rn, in particular, it is locally conformally
flat.

It was proved by Daskalopoulos and Sesum in [6] that any complete, noncom-
pact, locally conformally flat, gradient Yamabe soliton with positive sectional cur-
vature has to be globally conformally equivalent to Rn. Corollary 3.3 shows that
one can remove the assumption of local conformal flatness and relax the hypothesis
on the sectional curvature. In [6] the authors also provide a complete classification
of all rotationally symmetric gradient Yamabe solitons in the steady, shrinking and
expanding cases.

3.2. Gradient k-Yamabe solitons

A Riemannian manifold (Mn, g) is called a gradient k-Yamabe soliton if it satisfies
Eq. (3.1) with ϕ = 2(n− 1)(σk −λ) for some constant λ ∈ R, where σk denotes the
σk-curvature of g. We recall that, if we denote by µ1, . . . , µn the eigenvalues of the
symmetric endomorphism g−1A, where A is the Schouten tensor defined by

A =
1

n − 2

(
Ric − 1

2(n − 1)
Rg

)
,

then the σk-curvature of g is defined as the kth symmetric elementary function of
µ1, . . . , µn, namely

σk = σk(g−1A) =
∑

i1<···<ik

µii · . . . · µik for 1 ≤ k ≤ n.

Notice that σ1 = 1
2(n−1)R, so gradient 1-Yamabe solitons simply correspond to

gradient Yamabe solitons. The structure equation takes the form

∇2f = 2(n − 1)(σk − λ)g, (3.4)

for some constant λ ∈ R. As usual, if λ = 0, λ > 0 or λ < 0, then g is called steady,
shrinking or expanding, respectively.

Again, we observe that only gradient k-Yamabe solitons with nonconstant poten-
tial function f can be viewed as conformal gradient solitons.

1250045-9
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We have seen that, for k = 1, compact, gradient Yamabe solitons have constant
scalar curvature. By means of a generalized Kazdan–Warner identity, for any k ≥ 2,
we can prove the following analogue of Theorem 3.1.

Theorem 3.4. Any compact, gradient k-Yamabe soliton with nonnegative Ricci
tensor has constant σk-curvature σk = λ. Moreover, the potential function f is
constant.

Proof. Let us suppose, by contradiction, that σk is nonconstant. Then f cannot
be constant, since ∆f = 2n(n − 1)(σk − λ). Hence, we can apply Theorem 1.1,
obtaining that (Mn, g) is globally conformally equivalent to Sn, in particular, g is
locally conformally flat. It was proved in the proof in [8] that, on a compact, locally
conformally flat, Riemannian manifold, one has

∫

Mn

〈X,∇σk〉dVg = 0,

for every conformal Killing vector field X on (Mn, g). For k = 1, this obstruction
corresponds to the well-known Kazdan–Warner identity, which holds on any com-
pact Riemannian manifold (i.e. without assuming the locally conformally flatness,
see [2]). From the structure equation (3.4), we know that ∇f is a conformal Killing
vector field, hence, it follows that

∫

Mn

〈∇f,∇σk〉dVg = 0.

Now, contracting the identity (3.2) with ∇f , and integrating over Mn, we obtain

0 =
∫

Mn

〈∇f,∇σk〉dVg = − 1
2(n − 1)2

∫

Mn

Ric(∇f,∇f)dVg .

From the fact that g has nonnegative Ricci tensor, we obtain that Ric(∇f,∇f) = 0
everywhere. Then, by Eq. (3.2), we get 〈∇f,∇σk〉 = 0. Since g is rotationally
symmetric, we have that σk is constant on the regular level sets of f . Hence, the
condition 〈∇f,∇σk〉 = 0 is sufficient to conclude that σk is constant. This implies
that ∆f is constant. Since Mn is compact, the only possibility is that f is constant
and σk = λ.

Remark 3.5. The same result holds if one considers a generalized k-Yamabe soli-
ton structure (3.1) with ϕ = ψ(σk), for every k ≥ 1 and every strictly monotone
function ψ : R → R. For instance, in [7] the authors consider a fully nonlinear con-
formal flow with velocity ϕ = log(σk) − λ, with σk > 0.

Again, when the function f is constant, obviously the σk-curvature of the gra-
dient k-Yamabe soliton is also constant. Hence, in such a case Theorem 1.1 does
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not apply. In the complete, noncompact case, as an immediate application of The-
orem 1.1, we can prove the following global result.

Theorem 3.6. Let (Mn, g) be a complete, noncompact, gradient k-Yamabe soliton
with nonnegative Ricci tensor and nonconstant potential function f . Then, we have
the following two cases:

(1) either (Mn, g) is a direct product R × Nn−1 where (Nn−1, gN ) is an (n − 1)-
dimensional complete Riemannian manifold with nonnegative Ricci tensor. If in
addition (Mn, g) is locally conformally flat, then either it is flat or the manifold
(Nn−1, gN) is a quotient of the round sphere Sn−1;

(2) or (Mn, g) is rotationally symmetric and globally conformally equivalent to Rn.
More precisely, there exists a point O ∈ Mn such that on Mn\{O} the metric
has the form

g = v2(t)(dt2 + t2gSn−1
),

where v : R+ → R is some positive smooth function.

From Remark 2.1, it is now easy to deduce the following corollary.

Corollary 3.7. Let (Mn, g) be a complete, noncompact, gradient k-Yamabe soliton
with nonnegative Ricci tensor and nonconstant potential function f . If the Ricci
tensor is positive at some point, then (Mn, g) is rotationally symmetric and globally
conformally equivalent to Rn.
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Note added in proof

During the editing of this work, H.-D. Cao, X. Sun and Y. Zhang posted on the
ArXiv Preprint Server the manuscript [3], where a classification result for gradient
Yamabe solitons similar to the one discussed in Sec. 3 (in particular, Theorem 3.2)
is obtained.
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