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Abstract. We provide a fully quantum description of a mechanical oscillator in
the presence of thermal environmental noise by means of a quantum Langevin
formulation based on quantum stochastic calculus. The system dynamics is
determined by symmetry requirements and equipartition at equilibrium, while
the environment is described by quantum Bose fields in a suitable non-Fock
representation which allows for the introduction of temperature. A generic
spectral density of the environment can be described by introducing its state
trough a suitable P -representation. Including interaction of the mechanical
oscillator with a cavity mode via radiation pressure we obtain a description of
a simple optomechanical system in which, besides the Langevin equations for
the system, one has the exact input-output relations for the quantum noises.
The whole theory is valid at arbitrarily low temperature. This allows the exact
calculation of the stationary value of the mean energy of the mechanical oscillator,
as well as both homodyne and heterodyne spectra. The present analysis allows in
particular to study possible cooling scenarios and to obtain the exact connection
between observed spectra and fluctuation spectra of the position of the mechanical
oscillator.

PACS numbers: 42.50.Lc; 03.65.Ta; 42.50.-p
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1. Introduction

Optomechanical systems in the quantum regime are very important for quantum
information processing and for testing fundamental issues of quantum mechanics
[1–10]. Their theoretical analysis therefore calls for a first principle description. In
particular since the focus is on quantum effects, the theoretical models must be fully
consistent with quantum mechanics. Actually the correct quantum description of a
mesoscopic mechanical oscillator and of the thermal noise affecting it is not a trivial
task, and there is not a unique accepted model for them [11–19].

The first aim of this paper is therefore to obtain an accurate quantum mechanical
description of a mechanical oscillator taken to be part of an opto-mechanical
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device. The oscillator cannot be considered as a Brownian particle, but rather as a
mesoscopic mechanical system, say a movable mirror mounted on a vibrating structure.
Dissipative effects are essentially due to the interaction with phonons. Our strategy
will be to introduce reasonable physical requirements leading to a master equation in
Lindblad form, valid for any temperature of the thermal bath. We then translate these
results into quantum Langevin equations and we show how to obtain a suitable non-
Markovian generalization at this level of description. Relying on these results we can
consider the description of the simplest optomechanical system, that is a moving mirror
interacting with an electromagnetic mode in a cavity via radiation pressure [1,5–7,20].
Again a suitable analysis of the composite system and of the monitoring of the emitted
light calls for a consistent quantum description. We shall obtain this result by the
use of quantum Langevin equations, directly deducing them from a unitary dynamics,
and exploiting the theory of measurements in continuous time.

The paper is organized as follows. In Section 2 we determine the dynamics
of the mechanical oscillator only. The basic assumption in performing this step is
the use of a Markovian master equation with a quadratic generator and having a
unique equilibrium state. Its structure is further determined by suitable symmetry
requirements and by physical constraints on the behaviour of the mean values of
position and momentum. In Section 3 we introduce the quantum Langevin equations
for the mechanical oscillator alone, starting from the Markovian case and extending
it to include memory effects in Section 3.2. The whole presentation is based on the
notions of quantum noise [21, 22] and of input-output fields [23–25], as well as on
the use of quantum stochastic calculus [26, 27]. As a result the possibility of a non-
flat noise spectrum is accounted for within a consistent description of the quantum
oscillator. The non-Markovian effects are introduced by modifying the state of the
fields describing the noise in the overall unitary dynamics constructed by quantum
stochastic calculus. This in contrast with standard approaches in which the quantum
noises and their correlation properties are introduced in a phenomenological way. The
difference is of relevance especially at zero temperature.

A quantum optomechanical system is studied in Section 4 by using the quantum
Langevin approach. Again a fully consistent quantum mechanical description is given,
valid for any temperature. In such a new framework the typical effect of laser cooling
is discussed. Then, the continuous monitoring of the emitted light is introduced in
Sections 4.3.1 (homodyne detection) and 4.3.2 (heterodyne detection). The treatment
is well based in the theory of measurements in continuous time. Detection of the
emitted light is usually assumed to give a direct measurement of the fluctuations of
the position of the mechanical component. We show that this is true, but only for not
too low temperatures; at very small temperatures, interference terms are important
and the direct connection with such fluctuations is lost. We finally summarize and
discuss our results in Section 5.

2. Damped mechanical oscillator: the master equation approach

As a first step towards the construction of models of optomechanical systems valid
in the quantum regime at low temperatures, we consider the reduced dynamics of
an open mechanical oscillator. A fully consistent quantum description of a massive
nanomechanical component, kept at the simplest possible level, will be our basic
building block in order to consider more complex dynamics. We therefore formulate
in the first instance a Markovian description for the mechanical oscillator, which we
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build up relying on general physical constraints and symmetry requirements. Our
strategy will be to consider non-Markovian effects at the level of the quantum Langevin
equations in Section 3.2, once a well defined stochastic framework for the quantum
description of an open mechanical oscillator has been settled, fully consistent at any
temperature.

2.1. Physical constraint and symmetry requirements

We formulate now our assumptions, starting from the existence of a well defined
positive Markovian dynamics, describing damping and translationally invariant up to
the harmonic potential. A weak equipartition condition and the existence of a unique
stationary state in Gibbs form, as we shall see, will essentially fix the structure of the
reduced dynamics.

Assumption 1 (Positive Markovian dynamics with quadratic generator). The
evolution of the statistical operator of the oscillator is governed by a Markovian master
equation preserving the positivity of the states. The generator of the dynamics is at
most quadratic in the position and momentum operators of the mechanical oscillator.

As a first assumption we consider a time-homogeneous and linear time evolution. Such
a dynamics can be expressed in the form

d

dt
ρ(t) = L[ρ(t)], (1)

with L a suitable generator or Liouville operator, at most quadratic in the position
and momentum operators of the mechanical oscillator q and p, so as to have at most
a quadratic potential term and a friction effect proportional to the momentum of the
mechanical oscillator. In the case of linear systems it is known that positivity and
complete positivity of the dynamics are actually equivalent [11], therefore according
to [28, 29] the generator L must have the standard Lindblad structure. The most
general quadratic Liouville operator is obtained in terms of two Lindblad operators [11]

Rj =
1√
~

(ujq + vjp) , u, v ∈ C2, (2)

and a generic selfadjoint quadratic Hamiltonian for the mechanical system

Hm =
hq
2
q2 +

κ0

4
{q, p}+

hp
2
p2 + fqq + fpp,

where all the constants are taken to be real, so that L takes the form

L[ρ] = − i

~
[Hm, ρ] +

2∑
j=1

(
RjρR

†
j −

1

2

{
R †j Rj , ρ

})
. (3)

Assumption 2 (Damping). The “kinetic energy” term is non negative and the mean
values of position and momentum decay to zero with an oscillating behaviour.

Apart from the trivial requirement of a positive kinetic energy term, we further look
for a dynamics describing the oscillating decay of the mean values of q and p to zero.
This condition complies with the Markovian and quadratic approximations, which are
expected to be good only for small damping. Denoting by 〈X〉t the mean value of
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a quantum operator with the state ρ(t) solution of the master equation we have for
position and momentum

d〈q〉t
dt

= hp〈p〉t +
(κ0

2
− Im 〈u|v〉

)
〈q〉t + fp,

d〈p〉t
dt

= −hq〈q〉t −
(κ0

2
+ Im 〈u|v〉

)
〈p〉t − fq.

The eigenvalues of the associated dynamical matrix are − Im 〈u|v〉 ±
√
κ2

0/4− hphq,
so that in order to have an oscillating decaying dynamics rather than an overdamped
one we need Im 〈u|v〉 > 0 and κ2

0/4 < hphq. In particular hp and hq have the same
sign and are non-vanishing. By asking the kinetic energy to be positive we get hp > 0,
which also gives hq > 0. Then, we can write hp = 1/m and hq = mΩ 2

m. Finally,
the vanishing of the equilibrium means imply fq = 0, fp = 0. The Hamiltonian term
therefore becomes

Hm = H0 +
κ0

4
{q, p} , H0 =

p2

2m
+

1

2
mΩ 2

mq
2, (4)

where, besides a contribution in the form of the free Hamiltonian of a harmonic
oscillator with a strictly positive frequency Ωm satisfying Ω 2

m > κ2
0/4, one has an

additional term in the form of an anticommutator. Introducing the positive coefficients

γm = 2 Im 〈u|v〉, Dqp = Re 〈u|v〉, Dqq = ‖v‖2 , Dpp = ‖u‖2 ,
the generator can be written in the form

~L[ρ] = − i

2m
[p, {p, ρ}]− imΩ 2

m

2
[q, {q, ρ}]− Dpp

2
[q, [q, ρ]]− Dqq

2
[p, [p, ρ]]

−Dqp [p, [q, ρ]]− i (κ0 + γm)

4
[q, {p, ρ}]− i (κ0 − γm)

4
[p, {q, ρ}] , (5)

where in particular the constraints

Dqq ≥ 0, Dpp ≥ 0, DqqDpp −D 2
qp −

(γm

2

)2

≥ 0 (6)

hold, which provide the necessary and sufficient conditions for the dynamics described
by (5) to be in Lindblad form and therefore completely positive [11, 28]. Let us note
that an alternative way to get the same positivity condition is to ask the generalized
Heisenberg uncertainty relation 〈q2〉t〈p2〉t− (〈{p, q}〉t/2)2 ≥ ~2/4 to hold for any time
and any initial state [30].

Assumption 3 (Translational invariance). The reduced dynamics is translation
invariant up to the harmonic potential. This requirement is equivalent to the validity
of the classical equations of motion for the mean values of position and momentum.

A further natural requirement is translational invariance up to the harmonic potential.
It can be expressed as the invariance of the generator under the generic translation
q 7→ q + x, p 7→ p, corresponding to homogeneity of space, so that the dissipative
effects due to the interaction with the environment do not depend on the position of
the oscillator. In view of the evolution equations for the mean values

d〈q〉t
dt

=
〈p〉t
m

+
κ0 − γm

2
〈q〉t,

d〈p〉t
dt

= −mΩ 2
m〈q〉t −

κ0 + γm

2
〈p〉t,

(7)
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d〈q2〉t
dt

=
〈{p, q}〉t

m
+ (κ0 − γm) 〈q2〉t + ~Dqq,

d〈p2〉t
dt

= −mΩ 2
m〈{p, q}〉t − (κ0 + γm) 〈p2〉t + ~Dpp,

d〈{q, p}〉t
dt

=
2〈p2〉t
m

− 2mΩ 2
m〈q2〉t − κ0〈{q, p}〉t − 2~Dqp,

(8)

translational invariance is equivalently formulated asking the mean values of q and
p to obey the classical equations, in which the momentum is proportional to the
derivative of the position. The condition is verified provided κ0 = γm. The dynamical
matrix giving the evolution of the mean values (7) has therefore eigenvalues −γm/2
and −γm/2± i

√
Ω 2

m − γ 2
m/4, which naturally leads to introduce the damped frequency

ωm of the mechanical oscillator in terms of its bare frequency Ωm

ωm =

√
Ω 2

m −
γ 2

m

4
. (9)

Thus in particular the dynamical matrix giving the evolution of the mean values of
the quadratic quantities (8) has eigenvalues −γm and −γm ± 2iωm. Let us note that
according to Ω 2

m > γ 2
m/4 > 0 we have ruled out the case Ωm = 0, which corresponds

to a quantum Brownian particle, that is a massive particle not bounded by a potential
in a translation invariant environment [18,31,32,34–36] (see [37] for a recent review).

Assumption 4 (Equipartition). At equilibrium the mean kinetic energy and the mean
potential energy have to be equal.

At this stage we further have to determine the diffusion coefficients Dqp, Dqq and Dpp

appearing in (5). At variance with previous approaches aiming to determine such terms
by referring to effective environmental models of bosonic oscillators [13, 14], we will
rely on the study of features of the equilibrium state. Indeed previous work [16,17] has
shown that, while using careful approximations a positive dynamics can be obtained
in this framework, the final results are valid only from medium to high temperatures
of the thermal bath. A requirement often considered in the literature is that the
equilibrium state should be the canonical thermal state determined by the standard
Hamiltonian of a harmonic oscillator. However, it is known that this requirement is
incompatible with positivity and translational invariance [11,33]. This incompatibility
induced some authors to renounce to translational invariance [15], or to accept non-
positive dynamical equations and to give more relevance to obtaining time evolutions
very close to the classical ones [13,14,38]. A non positive dynamics can be satisfactory
when the system is near the classical regime, but this approach becomes questionable
when quantum effects are searched for [39, 40]. Rather than giving up positivity or
translational invariance, we will weaken the request on the equilibrium state. Since
the eigenvalues of the dynamical matrix associated to (8) have a positive real part,
existence of a unique attractive equilibrium state is granted, and thanks to the linearity
of the equations the equilibrium state is actually Gaussian and determined by the
mean values at equilibrium. We are thus lead to ask the equipartition condition

〈p2〉eq

2m
=

1

2
mΩ 2

m〈q2〉eq, (10)

which gives equal weight to the mean kinetic and potential energy at equilibrium.
By setting in (8) the time derivatives equal to zero, and κ0 = γm as follows from
translational invariance, we come to

Dqp =
mγm

2
Dqq. (11)
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In particular the equilibrium means turn out to be

〈q2〉eq =
~

2γm

(
Dqq +

Dpp

m2Ω 2
m

)
, 〈{q, p}〉eq = −~mDqq,

〈p2〉eq =
~

2γm

(
Dpp +m2Ω 2

mDqq

)
.

(12)

Assumption 5 (Gibbs state and temperature dependence). The diffusion coefficients
determine an equilibrium state in Gibbs form. The transformation from the position
and momentum operators to the mode annihilation and creation operators are
temperature independent.

We now want to exploit the residual freedom we have in the choice of the diffusion
coefficients to get a Gibbs state as equilibrium state. However, as we already noticed,
it cannot be the Gibbs state generated by H0. Thanks to the Gaussianity of the
equilibrium state we can write ρeq ∝ exp

{
−ca†mam

}
for a suitable chosen mode

operator

am = rq + `p, (13)

with r > 0, ` ∈ C and r Im ` = 1/(2~). The positive constant c can always be written
as βωm, with ωm the damped frequency of the system (9). We can therefore write

ρeq =
(
1− e−β~ωm

)
e−β~ωma

†
mam , (14)

with β a positive constant which can be interpreted as the inverse temperature of the
equilibrium state of the mechanical oscillator. The case of a vanishing temperature is
given by

ρeq = |ψ0〉〈ψ0|, (15)

where ψ0 is the vacuum state annihilated by am. Now, we require the transformation
(13) from the position and momentum operators q, p to the mode operators am, a†m to
be temperature independent, so that such is the effective Hamiltonian ωma

†
mam. The

temperature dependence of the coefficients Dqq and Dpp is then determined by asking
the equilibrium state to be given by (14), or (15) respectively for the case of zero
effective temperature. To simplify the notation we introduce the positive quantity

N = 〈a†mam〉eq =
1

eβ~ωm − 1
, (16)

which gives the mean number of excitations. As shown in Appendix A, also exploiting
(11), one obtains

Dqq =
γm (2N + 1)

2mωm
, Dpp =

γmmΩ 2
m

2ωm
(2N + 1) , Dqp =

γ 2
m

4ωm
(2N + 1) , (17)

together with

r =
mΩm√
2m~ωm

, ` =
i√

2m~ωm

τ, τ =
ωm

Ωm
− i

2

γm

Ωm
, (18)

in which the adimensional quantity τ has modulus equal to one. Note that thanks
to these definitions the positivity conditions (6) hold for all possible values of the
parameters.
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2.2. Master equation for the mechanical oscillator

The explicit relationships between the mode operators am, a†m, satisfying the standard
canonical commutation relations, and the position and momentum operators are

am =
1√

2m~ωm

(mΩm q + iτ p) ,

q =

√
~

2mωm

(
τ am + τa†m

)
, p = i

√
m~Ω 2

m

2ωm

(
a†m − am

)
.

(19)

In terms of the mode operators the Hamiltonian part of the generator can be written
as

Hm ≡ H0 +
γm

4
{q, p} = ~ωm

(
a†mam +

1

2

)
, (20)

with H0 given by (4), and the equilibrium state becomes

ρeq =
e−βHm

Tr {e−βHm}
. (21)

Let us note that this form of the equilibrium state does not come from a direct
requirement, but rather it follows from all the considered assumptions. In particular
we stress the fact that the operatorHm is not the Hamiltonian of the isolated oscillator,
but includes a term containing γm which comes from the interaction with the bath.
Combining (12) and (17) we have in particular

〈p2〉eq

2m
=
mΩ 2

m

2
〈q2〉eq =

~Ω 2
m

4ωm
(2N + 1) ,

γm

4
〈{q, p}〉eq = −~γ 2

m

8ωm
(2N + 1) , (22)

indeed satisfying (6), so that the term related to damping gives a negative contribution
to the equilibrium mean value 〈Hm〉eq arising from energy exchange with the bath.

The Lindblad operators Rj appearing in (2) now read R1 =
√
γm (N + 1) am,

R2 =
√
γmN a†m so that the Liouville operator can be finally written as

L[ρ] = − i

~
[Hm, ρ] + γm(N + 1)

(
amρa

†
m −

1

2

{
a†mam, ρ

})
+ γmN

(
a†mρam −

1

2

{
ama

†
m, ρ

})
. (23)

Let us stress that despite the fact that the expression (23) has the form of the generator
for an optical oscillator [21], the relations (19) connecting am, a

†
m with q, p account

for the description of a mechanical oscillator. Let us note that a master equation for
a mechanical oscillator with the Liouville operator (23) and the relation (19) between
mode and position/momentum operators was already proposed in [12, Sects. 6, 7].
However, at odds with the present approach, the starting point of that proposal was
a scheme of canonical quantization of dissipative classical systems.

3. Langevin equations for the mechanical oscillator

So far we have obtained a quantum master equation in Lindblad form for the
mechanical oscillator, only relying on general physical constraints and symmetry
requirement. As for any Lindblad master equation, such a result allows us to introduce
in a rigorous way a unitary dynamics involving the system of interest and suitable
quantum Bose fields, which at the level of the reduced dynamics of the system exactly
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reproduces the master equation. That is, these quantum Bose fields effectively describe
the thermal environment affecting the mechanical oscillator. A key step in constructing
a unitary dilation for the system of interest is the introduction of a thermal field which
does not admit a vacuum and therefore a Fock representation. A more familiar picture
can be obtained by representing the thermal field as a suitable linear combination
of Bose fields having a standard Fock representation with a common vacuum [41].
The standard choice for the state of the field acting as environment reproduces the
Markovian dynamics for the mechanical oscillator described by the master equation.
However exploiting the freedom in the choice of the state of the quantum field more
general non-Markovian situations can be considered.

Let us start introducing the Hudson-Parthasarathy equation or quantum
stochastic Schrödinger equation [26], which gives the evolution equation for the
unitary dynamics involving the system of interest and a quantum Bose field. The
proper mathematical formulation of this equation relies on the formalism of quantum
stochastic calculus [27]. Within this formalism the Heisenberg equations for the system
operators provide the quantum Langevin equations, while, as shown in [24], the
Heisenberg equations for the Bose fields give the input-output relation of Gardiner
and Collet [21, 23]. We thus obtain in a unified framework all relevant physical
information [25].

For the Liouville operator (23) the associated Hudson-Parthasarathy equation
reads (see e.g. [24, 41,42] or [21, Sections 11.2.2, 11.2.7])

dU(t) =

{
− i

~
Hmdt+

(√
γm amdB†th(t)− h.c.

)
− γm

2

(
(2N + 1) a†mam +N

)
dt

}
U(t), (24)

with U(0) = 1, Hm given by (20), and Bth(t) a Bose thermal field satisfying the
canonical commutation relations

[Bth(t), B†th(s)] = min{t, s}, [Bth(t), Bth(s)] = 0, (25)

and the quantum Itô table

dBth(t) dB†th(t) = (N + 1) dt, dB†th(t) dBth(t) = N dt,

dBth(t) dBth(t) = 0, dBth(t)dt = dB†th(t)dt = 0,
(26)

with N the positive quantity introduced in (16). The commutation rules are better
understood by introducing the formal field densities: dBth(t) = bth(t) dt. Then, these
densities satisfy the standard canonical commutation relations

[bth(t), b†th(s)] = δ(t− s), [bth(t), bth(s)] = 0. (27)

The thermal field can be represented by means of two commuting Bose fields A1

and A2 in the Fock representation [24, 42]. This means that such fields satisfy the

canonical commutations rules [Ai(t), A
†
j(s)] = δijmin{t, s}, [Ai(t), Aj(s)] = 0 and that

there exists a common Fock vacuum, i.e. a normalized vector e(0) annihilated by all
these operators: Ak(t)e(0) = 0 for k = 1, 2. The field define by

Bth(t) =
√
N + 1A1(t)−

√
N A†2(t), (28)

satisfies the canonical commutation relations (25) and the Itô table (26).
Equation (24) is a quantum stochastic differential equation in Itô sense and the

second line of (24) corresponds to the Itô correction. The solution U(t) of (24)
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is a family of unitary operators on the overall Hilbert space which represent the
dynamics of the closed system corresponding to “mechanical oscillator plus field”,
in the interaction picture with respect to the free dynamics of the field. An heuristic,
but more familiar, picture can be obtained by using the field densities introduced
above. The formal expression of the unitary evolution is indeed [43]

U(t) =
←−
T exp

{
− i

~

∫ t

0

[
Hm + i~

√
γm

(
amb

†
th(s)− a†mbth(s)

)]
ds
}
,(29)

where
←−
T denotes the time ordered product. The thermal field Bth therefore provides

the mathematical representation of the phonon field interacting with the mechanical
oscillator.

Let us now consider as state of the field the A-field vacuum. In such a case
taking the partial trace over the Fock space of the fields, which corresponds to take
the trace over the environmental degrees of freedom in open quantum system theory,
the reduced system state is given by ρ(t) = Trenv

{
U(t) ρ(0)⊗ |e(0)〉〈e(0)|U(t)†

}
, with

ρ(0) the initial state of the oscillator. Thanks to (24) the reduced dynamics of the
mechanical oscillator can then be shown to obey exactly the master equation (23) [25].
Further, we have the important relations

〈e(0)|Bth(t)B†th(s)e(0)〉 = (N + 1) min{t, s},

〈e(0)|B†th(t)Bth(s)e(0)〉 = Nmin{t, s},
〈e(0)|Bth(t)Bth(s)e(0)〉 = 0.

(30)

It is worth noticing that the thermal parameter N does not appear in the commutation
rules of the field Bth, but rather in the quantum correlations (30). This expresses the
fact that N depends on the “state” of the field or, more precisely, N determines a non-
Fock representation of the canonical commutation relations. Indeed, representations
with different N are unitarily inequivalent. Note furthermore that the vacuum e(0) is
not annihilated by the fields Bth(t), but it plays the role of a thermal state [42, Sect.
6]; no vacuum state exists for a non-Fock Bose field.

3.1. Quantum Langevin equations and input-output relations

Relying on the previously introduced formalism we are now in the position to obtain
the so-called quantum Langevin equations, providing the stochastic evolution for
the system observables in Heisenberg picture. For a generic system operator X we
denote as usual the Heisenberg picture as X(t) = U(t)†XU(t), with U(t) the unitary
operator describing the closed dynamics of system and environment. Differentiating
this expression by the rules of quantum stochastic calculus, essentially summarized
by the Itô table (26), one obtains the quantum Langevin equations for the relevant
system operators, namely for the mode operator

dam(t) = −
(

iωm +
γm

2

)
am(t)dt−√γm dBth(t). (31)

By (19) we get also the equivalent equations for position and momentum

dq(t) =
p(t)

m
dt+ dCq(t), (32)

dp(t) = −
(
mΩ 2

mq(t) + γmp(t)
)

dt+ dCp(t), (33)
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in which we have introduced the Hermitian quantum noises

Cq(t) = −
√

~γm

2mωm

(
τ Bth(t) + τB†th(t)

)
,

Cp(t) = iΩm

√
m~γm

2ωm

(
Bth(t)−B†th(t)

)
,

(34)

where τ is the pase factor defined in (18). By (25) the new noises obey the
commutation rules

[Cq(t), Cp(s)] = i~γm min{t, s}, [Cq(t), Cq(s)] = [Cp(t), Cp(s)] = 0. (35)

A fundamental advantage of the considered formalism is that, thanks to the
unitarity of U(t), the transformation X 7→ U(t)†XU(t) preserves all the commutation
rules among system observables, in particular the Heisenberg relations between
position and momentum, as can be checked also directly relying on (35). Warranting
preservation of these fundamental commutation relations is indeed a basic step in
providing a true quantum description of a dissipative dynamics [21, Chapts. 1, 3].

We now consider the Heisenberg picture for the thermal fields and we define

Bout
th (t) = U(t)†Bth(t)U(t). (36)

While Bth(t) represents the field before the interaction with the oscillator, the so-
called input field, Bout

th (t) is the field after the interaction, the so-called output field.
We stress in particular that an important consequence of the Hudson-Parthasarathy
equation is the identity Bout

th (t) = U(T )†Bth(t)U(T ), ∀T ≥ t, which warrants the fact
that the output fields obey the same commutation relations as the input fields, namely
(25). Once again one has to differentiate the three contributions in U(t)†Bth(t)U(t)
according to the Itô table, thus coming to the input-output relation

dBout
th (t) = dBth(t) +

√
γm am(t) dt. (37)

The linearity of the Heisenberg equations of motion allows for an explicit solution

am(t) = e−(iωm+ γm
2 )tam −

√
γm

∫ t

0

e−(iωm+ γm
2 )(t−s)dBth(s), (38)

Bout
th (t) = −

γm
2 − iωm
γm
2 + iωm

Bth(t) +
γm

γm
2 + iωm

∫ t

0

e−(iωm+ γm
2 )(t−s)dBth(s)

+

√
γm

γm
2 + iωm

(
1− e−(iωm+ γm

2 )t
)
am, (39)

leading for the position and momentum Heisenberg operators to

q(t) = e−γmt/2
(
q cosωmt+

mγmq + 2p

2mωm
sinωmt

)
−
√

~γm

2mωm

{
τ

∫ t

0

e−(iωm+ γm
2 )(t−s)dBth(s) + h.c.

}
, (40)

p(t) = e−γmt/2
(
p cosωmt−

2mΩ 2
mq + γmp

2ωm
sinωmt

)
+ Ωm

√
m~γm

2ωm

{
i

∫ t

0

e−(iωm+ γm
2 )(t−s)dBth(s) + h.c.

}
. (41)

Let us stress that both the bare frequency Ωm and the damped one ωm appear in the
expressions of q and p, while only ωm is involved in the expression of am.
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3.2. Field state and non-Markovian dynamics

In the Markovian approximation considered so far, the temperature enters the theory
only through the parameter N defined in (16). This approximation can be safely
described stating that the system actually sees a flat noise spectrum, or more precisely
the system is only affected by the value of the bath spectrum at the frequency ωm.
A more general and physically more realistic situation is to allow for a structured
noise spectrum and this can be achieved without any modification of the unitary
dynamics (24) and of the related Langevin equations and input-output relations. To
this aim it is enough to change the state of the field by taking mixtures of coherent
states [25, 44]. Let us note that considering such a mixture of coherent states for the
description of the state of the field is actually analogous to consider a state with a
regular P -representation in the case of discrete modes (see e.g. [21]), as explained in
Appendix B. As we shall see, this modification implies that the reduced dynamics
of the oscillator is no more Markovian, in the sense that a closed master equation in
Lindblad form for the statistical operator cannot be obtained.

3.2.1. The field state. In order to consider a more general field state let us first
introduce the Weyl operators [25,27] for the Fock A-fields, defined as

WA(g) = exp

{ 2∑
k=1

∫ +∞

0

gk(s) dA†k(s)− h.c.

}
,

with gk square integrable functions. The operator WA(g) is unitary and the property

Ak(t)WA(g)e(0) =
∫ t

0
dsgk(s)WA(g)e(0) holds, so that the action of a Weyl operator

on the Fock vacuum gives a coherent state. Therefore WA(g) is nothing but a
displacement operator for the Bose fields [43]. Relying on (28), we can introduce
a Weyl operator also for the B-field

WT (f) = exp

{∫ T

0

f(s) dB†th(s)− h.c.

}
, (42)

where f is a locally square integrable function and T denotes a suitable large time,
which we will let tend to infinity in the final formulae describing the quantities of
direct physical interest. The relevant expectation values of the thermal Bose field in
a coherent state generated by the Weyl operator WT (f) turn out to be given by

〈WT (f)e(0)|Bth(t)WT (f)e(0)〉 =

∫ t

0

f(r) dr,

〈WT (f)e(0)|Bth(t)Bth(s)WT (f)e(0)〉 =

∫ t

0

f(u) du

∫ s

0

f(r) dr,

〈WT (f)e(0)|B†th(s)Bth(t)WT (f)e(0)〉 = Nmin{t, s}+

∫ t

0

f(u) du

∫ s

0

f(r) dr,

〈WT (f)e(0)|Bth(t)B†th(s)WT (f)e(0)〉 = (N + 1) min{t, s}+

∫ t

0

f(u) du

∫ s

0

f(r) dr.

(43)

A crucial step is now to consider f to be a random process so that we can construct
field states with a regular P -representation and a general thermal spectrum, in analogy
to the treatment detailed in Appendix B for the case of discrete modes. To this aim
let in particular f be a Gaussian stationary stochastic process with vanishing mean,
E[f(t)] = 0, and correlation functions

E[f(t) f(s)] = 0, E[f(t) f(s)] =: G(t− s). (44)
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Thanks to stationarity, the function G(t) is positive definite, so that according to
Bochner’s theorem [45] its Fourier transform

Ĝ(ν) =

∫ +∞

−∞
e−iνtG(t) dt (45)

is a positive function, which we assume to be absolutely integrable, thus implying a
finite power spectral density for the process.

In this notation we take the state of the field (the environment) to be

σenv = E
[
WT (f)|e(0)〉〈e(0)|WT (f)†

]
. (46)

Again in the final formulae we will take the limit T → +∞. Since the field state
σenv is Gaussian, we can characterize it through the means and the correlations of the
thermal field Bth, which are immediately obtained from (43) and the properties of the
process f . The only non zero contributions are given by

〈B†th(s)Bth(t)〉env = Nmin{t, s}+

∫ t

0

du

∫ s

0

dr G(r − u),

〈Bth(t)B†th(s)〉env = (N + 1) min{t, s}+

∫ t

0

du

∫ s

0

dr G(r − u).

(47)

To better grasp the physical content of the new state and of the formulae (47) let
us introduce a set of field modes as in [43]. Using a complete orthonormal set {hn}
in L2(R), we can expand the field in terms of discrete independent modes by defining
them as

chn =

∫ +∞

−∞
hn(t) dBth(t).

We then obtain 〈chn〉env = 0, 〈c 2
hn
〉env = 0, together with

lim
T→+∞

〈c†hnchn〉env = N + E
[
|〈hn|f〉L2 |2

]
=

∫ +∞

−∞

∣∣∣ĥn(ν)
∣∣∣2N(ν) dν,

where we have defined the positive quantity

N(ν) = N + Ĝ(ν) (48)

and ĥn(ν) is the Fourier transform of hn(t); by normalization
∫ +∞
−∞ |ĥn(ν)|2dν = 1.

So, the reduced state of the single mode chn is exactly the thermal state described
in Appendix B. If we take h1 and h2 having non overlapping Fourier transforms we
also get limT→+∞〈c†h1

ch2
〉env = 0, which means that these two modes are independent.

Then, N(ν) is naturally interpreted as the mean number of phonons in a given field
mode ch well peaked around the value ν of the frequency and field modes with different
frequencies are independent. A value of N(ν) different from zero in a neighbourhood
of ν implies that the mechanical oscillator can absorb from the bath phonons with
energy around ~ν. On the contrary, the approximations are such that the oscillator
can emit phonons of any frequency, even when N(ν) = 0. Note the important fact
that the physically relevant quantity is now the combination of the two non negative
contributions N and Ĝ(ν), rather than the values of the individual quantities.
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3.2.2. The equilibrium state of the mechanical oscillator. According to the definition
of reduced dynamics, the time evolved state of the mechanical oscillator is still
obtained by taking the partial trace with respect to the field degrees of freedom
ρ(t) = limT→+∞ Trenv

{
U(t) (ρ(0)⊗ σenv)U(t)†

}
. However, at variance with the case

in which the state of the field was taken to be the A-field vacuum, by taking the
time derivative of this expression no closed evolution equation is obtained unless N(ν)
is constant. Not to have a closed equation for the reduced dynamics is indeed a
signature of the non-Markov features of such a dynamics. However, it is at least
possible to construct a master equation with a random Liouville operator, explicitly
containing the stochastic process f , in such a way that the mean of the solution of
such a master equation gives back the reduced state ρ(t) (see [25, pp. 226–227]).

Note that the Markovian reduced dynamics of Section 2 can be obtained either by
considering the non-Fock representation for the thermal field, thus assuming a strictly
positive N > 0 in (28) and taking Ĝ(ν) ≡ 0, or equivalently considering a standard
Fock representation and formally taking the limit of constant spectrum Ĝ(ν).

Equipartition. In spite of the difficulty of not having a closed master equation, the
study of the reduced equilibrium state, namely ρeq = limt→+∞ ρ(t), can still be
afforded and its expression enlightens the physical role of the various parameters.
Indeed, thanks to the requirement E[f(t) f(s)] = 0, one has that equipartition in
the sense of (10) still holds. Starting from the explicit solutions (40) and (41) of
the quantum Langevin equations one can check that the equilibrium mean values of
position and momentum still remain equal to zero, while the variances are given by

〈p2〉eq

2m
=

1

2
mΩ 2

m 〈q2〉eq =
~Ω 2

m

4ωm
(2Neff + 1),

γm

4
〈{q, p}〉eq = −~γ 2

m

8ωm
(2Neff + 1),

(49)

where we have introduced an effective mean number of excitations through the
expression

Neff =
γm

2π

∫ +∞

−∞

N(ν)
γ 2
m

4 + (ν − ωm)
2

dν. (50)

Notice that if the quantity N(ν) introduced in (48) is taken to be the constant N ,
corresponding to the Markovian case, then Neff = N . This result suggests that the
final Markov approximation should be valid when Ĝ(ν) is approximately constant
in a neighbourhood of ωm. In fact the expression (50) represents a smearing of N(ν)
around the frequency of the mechanical oscillator ωm, the more peaked the smaller the
damping constant γm. Non-Markovian effects can only be relevant if Ĝ(ν) appreciably
varies in a neighbourhood of width γm around ωm, being suppressed with decreasing
γm.

Equilibrium state. Since the equilibrium state is necessarily Gaussian, by comparing
(50) with (21) we get that the new equilibrium state is again a Gibbs state with respect
to the same Hamiltonian Hm, but with an effective inverse temperature βeff defined
by setting Neff ≡ (eβeff~ωm − 1)−1.
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3.3. Properties of the quantum noises and quantum stochastic Newton equation

Let us now come back to the quantum Langevin equations for the position and
momentum operators, so as to better understand their physical meaning and the
role of the noises. In order to study the properties of the noises we transform the
Langevin equations (32), (33) in the form of a stochastic Newton equation.

To this aim we first have to consider the quantum noises (34) appearing in
these quantum Langevin equations. The commutation relations (35) for these noises,
which are state independent, guarantee the preservation of the canonical Heisenberg
commutation relations. Their quantum correlations do instead reflect the physical
properties of the field state σenv and can be obtained starting from the B-correlations
(47). Note that Langevin equations for a mechanical oscillator of the same form
and with two noises obeying the same commutations rules (35) were used also in [39];
however, at variance with the present approach, the two point correlations were simply
postulated in [39], while in the present treatment they are deduced from the state of
the environment.

We stress the fact that in the present formulation the momentum operator is
not related to the time derivative of the position operator according to the classical
relation, but rather through (32) where the quantum noise Cq(t) explicitly appears.
However, the connection to the classical formulation is not completely lost. In fact
from (32) we can derive the relation

q(t2)− q(t1)

t2 − t1
− 1

t2 − t1

∫ t2

t1

p(t)

m
dt =

Cq(t2)− Cq(t1)

t2 − t1
.

By (34) and (47), the mean value of the r.h.s. of the equation above vanishes, while
its variance is given by

〈(Cq(t2)− Cq(t1))
2〉env

(t2 − t1)
2 =

~γm

mωm (t2 − t1)

(
1

2
+

∫ +∞

−∞

2
(

sin ν(t2−t1)
2

)2

πν2 (t2 − t1)
N(ν) dν

)
,

so that in particular also the variance goes to zero for growing t2 − t1. Then the
quantity v(t) = p(t)/m can actually be interpreted as the “coarse grained” velocity of
the mechanical oscillator.

If we use the formal field densities bth(t), b†th(t), with commutation rules (27),
take as starting point the quantum Langevin equations (32) and (33) and eliminate
the momentum, we can rewrite the quantum Langevin equations in the Newton form:

mq̈(t) +mγmq̇(t) +mΩ 2
mq(t) = ξ(t), (51)

where we have introduced the formally Hermitian quantum noise ξ(t)

ξ(t) = Ċp(t) +mγmĊq(t) +mC̈q(t). (52)

Most importantly the commutation relations for this noise take the singular expression

[ξ(t), ξ(s)] = 2im~γm
∂

∂t
δ(t− s). (53)

While the expectation value of this noise with respect to the field state σenv is zero,
its symmetrized correlation functions can be computed from the relations

m

~γm

∂2

∂t∂s
〈Cq(t)Cq(s)〉env =

1

m~γmΩ 2
m

∂2

∂t∂s
〈Cp(t)Cp(s)〉env = (54)

=
1

ωm

{(
N +

1

2

)
δ(t− s) + ReG(t− s)

}
,
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1

~γ 2
m

∂2

∂t∂s
〈{Cq(t), Cp(s)}〉env = (55)

= − 1

ωm

{(
N +

1

2

)
δ(t− s) + ReG(t− s)− 2ωm

γm
ImG(t− s)

}
and have the expression

1

2
〈{ξ(t), ξ(s)}〉env =

m~γm

ωm

(
Ω 2

m +
∂2

∂t∂s

)[(
N +

1

2

)
δ(t− s) + ReG(t− s)

]
+ 2m~γm

∂

∂t
ImG(t− s). (56)

Note that (51) and (53) were already introduced in [21, Sect. 3.1.2] and [40], where
the commutation rules (53) were actually enforced by the requirement of preservation
of the commutation rules between position and momentum. However, at variance
with previous approaches, here we have provided an explicit construction of the
quantum noise ξ(t) in terms of a quantum Bose field, based on a rigorous mathematical
construction.

We stress the fact that the stochastic Newton equation (51) is mathematically
purely formal due to the presence in (52) of C̈q(t), which contains the formal derivative

ḃth(t) and its adjoint. Moreover, if one were to take (51), (53) and (56) as starting point
for the construction of the quantum Langevin equations for position and momentum,
then one should complete (51), which is an equation for q(t) only, with a suitable
definition of p(t). The standard choice in this respect, considered for instance in
[1, 20, 40], is to take p(t) = mq̇(t). This works out fine as far as the commutation
relations of position and momentum are concerned. However, in this case the equation
of motion (51) and the structure of the noise ξ(t) obeying (52) imply that q̇(t) contains
singular quantum fluctuations, so that it is not a well defined operator. Also p is then
not a well defined operator and its variance is actually infinite. Then, one has to
regularize the momentum, by subtracting the noise responsible of this divergence; this
is what our construction does. The identification of the momentum is given implicitly
through the first canonical equation (32), which corresponds to the coarse grained
velocity, as discussed above. No divergency appears because the whole construction
is based on the well defined unitary evolution (24).

3.3.1. Consistency of the quantum noises. It is important to stress that if a set of
quantum Langevin equations is considered as starting point for the description of a
stochastic quantum dynamics, commutations rules and symmetrized correlations of
the noises cannot be given arbitrarily. In particular, independently of the considered
system, if {ξi(t)} is a set of operator valued noises, the quantum correlation function
〈ξi(t)†ξj(t′)〉env has to be positive definite [45], in the sense that∑

ij

∫ +∞

0

dt

∫ +∞

0

dt′ hi(t)〈ξi(t)†ξj(t′)〉envhj(t
′) ≥ 0, (57)

for every choice of the “smooth” test functions {hi}. Since we can always write

ξi(t)
†ξj(t

′) =
1

2

{
ξi(t)

†, ξj(t
′)
}

+
1

2

[
ξi(t)

†, ξj(t
′)
]
, (58)

the necessary positivity condition introduced above becomes a consistency condition
between commutation rules and symmetrized correlations.
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Relying on (55), (56), as well as the commutation relations (35) for the noises
Cq and Cp, one can immediately check this fact for the model at hand. Also for the
singular noise ξ constrained by (52) one can show that the expression 〈ξ(t)ξ(s)〉env

is positive definite. These results are due to the fact that the noise fields have here
been explicitly constructed in terms of the quantum Bose fields, so that commutation
rules and correlations are not postulated, but rather follow from the mathematical
expression of the model.

3.3.2. The noise correlations. For the model at hand we denote the Fourier transform
of the correlation of the noise ξ by

R̂(ν) =
1

2

∫ +∞

−∞
dt e−iνt〈{ξ(t+ s), ξ(s)}〉env, (59)

so that according to (48) and (56) it reads

R̂(ν) =
m~γm

2ωm

(
γ 2

m

4
+ (ωm + ν)

2

)(
N(ν) +

1

2

)
+ (ν → −ν), (60)

where (ν → −ν) means to add the same contribution with ν replaced by −ν. Note in
particular that R̂(ν) is an even function of the frequency.

A reference expression often considered in the literature for the quantity R̂ is given
for positive frequencies by m~k(ν)ν coth β~ν

2 [21, (3.3.9)], [40]. An expression of this
form is derived by coupling the system of interest with other harmonic oscillators and
taking a suitable continuum limit. These kinds of models are definitely different from
the present approach. Indeed in our treatment the interaction with the environment
is described in terms of exchange of quanta with the bosonic field representing the
phonons, see (29). The quantity k(ν) contains information on both coupling constant
and density of modes of the bath in a neighbourhood of the frequency ν. It is typically
taken to be a constant, say γm, in both Markovian and non-Markovian treatments [21,
(3.1.1)], [1,2,20,40]. Note that the positivity requirement (57) still has to hold, leading
to the requirement m~γmν coth(β~ν/2) − m~γmν ≥ 0, satisfied at any temperature
thanks to γm ≥ 0, where the constraint actually comes from the low temperature
behaviour. The expression to be compared with (60) can therefore be written

R̂GZ(ν) = m~γmν
(
2nβ(ν) + 1

)
, (61)

with nβ(ν) = (eβ~ν − 1)−1 the mean number of quanta of the field at temperature 1/β
and frequency ν, extended by parity to the whole real axis. Also in the case of this
choice, it is possible to show that the equilibrium mean of q̇(t)2 diverges and therefore
the identification of the momentum with mq̇(t) is not possible, but some regularization
is needed.

At very low temperature, corresponding in the present model to N(ν) = 0,
one has R̂(ν) = m~γm

(
Ω 2

m + ν2
)
/ (2ωm) versus R̂GZ(ν) = m~γmν. Despite this

difference, it is important to recall that the relevant frequency interval is around
the mechanical oscillator frequency ωm and consistency of these models requires a
damping rate γm small compared to ωm. Note that indeed at zero temperature we
have R̂GZ(ωm) = m~γmωm and R̂(ωm) =

(
1 + γ 2

m/(2ω
2
m)
)
R̂GZ(ωm), so that their

ratio differs from 1 just by the small quantity γ 2
m/(2ω

2
m).

To extend the comparison to positive temperatures, we have to take some explicit
expression for N(ν). A simple choice suggested by the low temperature behavior is to
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take an even expression for N(ν), with the following expression on the positive real
line:

N(ν) =
2ωmν

Ω 2
m + ν2

nβ(ν). (62)

In this case we obtain, for positive frequencies,

R̂(ν) = R̂GZ(ν) +
m~γm

2ωm

(
γ 2

m

4
+ (ωm − ν)

2

)
,

so that the difference is actually temperature independent and takes the minimal value
at the frequency ωm.

The freedom in the choice of N(ν) allows to model quite different environments,
with a structured occupation spectrum. In some situations, experimental tests [47]
seem to indicate a non-Ohmic spectral density around ωm, and this can be incorporated
in our setting by a simple change of the expression of N(ν). All these choices become
distinguishable and relevant when γm is not too small.

4. Cooling and emission spectra of an optomechanical system

As an application of the quantum description of a mechanical oscillator developed
so far we consider the simplest optomechanical system [1, 2, 5, 6, 20, 40], namely the
mechanical oscillator is a mirror mounted on a cantilever and coupled to the light in
an optical cavity by radiation pressure. The cavity is of high quality, without thermal
dissipation other than the one due to the coupling between cantilever and phonons
and tuned in such a way that only one electromagnetic mode is relevant. Strong laser
light is injected and some light is allowed to leave the cavity so that its spectrum can
be analysed.

4.1. The optomechanical model

The micro-mechanical oscillator (the mirror) is described by the operators q, p as in
(19) and by the Hamiltonian Hm (20). The cavity mode is described by the operators
ac, a†c and by the free Hamiltonian ~ωca

†
cac. The free electromagnetic field is in a

coherent state describing a perfectly monochromatic laser of frequency ω0; however
we use the equivalent description of inserting a source term for the cavity mode in the
Hamiltonian and of taking the external field in the vacuum. The final Hamiltonian
takes the form

Hom(t) = Hm + ~ωca
†
cac − ~g0qa

†
cac + i~E

(
a†ce−iω0t − aceiω0t

)
. (63)

Note the trilinear term giving the interaction between the position of the mirror and
the number operator of the photons in the cavity, which represents the radiation
pressure interaction; the coupling constant is usually expressed as g0 = ωc/L, where
L is the length of the cavity. The laser power is P = ~ω0E

2/γc, where γc is the cavity
decay rate and E the laser amplitude taken to be real.

In order to include the cavity mode interacting through radiation pressure with
the mechanical oscillator, as well as the emission and absorption of the light from
the free electromagnetic field, the Hudson-Parthasarathy equation (24) is modified as
follows:

dU(t) =

{
− i

~
Hom(t)dt+

(√
γm am dB †th(t) +

√
γc ac dB †em(t)− h.c.

)
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− γm

2

(
(2N + 1) a†mam +N

)
dt− γc

2
a†cacdt

}
U(t). (64)

Here Bth is the thermal field with representation (28), while Bem is an independent
Bose field in the Fock representation, describing the electromagnetic field outside the
cavity. The relevant Itô rule is dBem(t)dB †em(t) = dt, while all the other possible
products vanish. Now U(t) is the unitary operator describing the dynamics of the
two interacting oscillators and the fields. The latter are in a factorized state given
by the tensor product of the thermal environment state (46) and the electromagnetic
vacuum:

σ̃env = σenv ⊗ |eem(0)〉〈eem(0)|. (65)

It is convenient to eliminate the laser frequency working in the rotating frame

and introducing the unitary operator V (t) = eiω0a
†
cactU(t), which upon differentiation

obeys an equation of the form (64) albeit with Hom(t) substituted by

Hm + ~∆0a
†
cac − ~g0qa

†
cac + i~E

(
a†c − ac

)
, (66)

with ∆0 = ωc − ω0 the nominal detuning. For a generic system operator X we define
X(t) = V (t)†XV (t), so that by differentiating according to the rules of quantum
stochastic calculus, as done in Section 3.1, we get the following quantum Langevin
equations

dac(t) =

(
−
(

i∆0 +
γc

2

)
ac(t) + ig0q(t)ac(t)− iE

)
dt−√γc eiω0tdBem(t), (67)

as well as

dq(t) =
p(t)

m
dt+ dCq(t),

dp(t) =
(
−mΩ 2

mq(t)− γmp(t) + ~g0a
†
c(t)ac(t)

)
dt+ dCp(t),

(68)

where Cq and Cp are given by (34). Defining the output fields as in (36) of Section 3.1
we have besides (37) the input-output relation for the electromagnetic field

dBout
em (t) = dBem(t) +

√
γc e−iω0tac(t)dt. (69)

4.1.1. Linear approximation. In the case of a very intense laser, that is E2 large,
the dynamics can be linearized in a neighbourhood of the equilibrium mean values,
determined by autoconsistency from the means of the linearized form of the quantum
Langevin equations. The equilibrium mean value of the momentum is zero, while
setting ζ = 〈ac(t)〉eq, we find

ζ = − iE
γc
2 + i∆

, 〈q〉eq =
~g0 |ζ|2

mΩ 2
m

, (70)

where we have introduced the effective detuning ∆,

∆ = ∆0 − g0〈q〉eq. (71)

By inserting the equations (70) into (71) we obtain the autoconsistency condition

mΩ 2
m (∆−∆0)

(
γ 2

c

4
+ ∆2

)
+ ~g 2

0 E
2 = 0; (72)

this cubic equation determines ∆ as a function of the laser parameters ∆0 and E.
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In writing and solving the linearized quantum Langevin equations it is useful to
have adimensional and selfadjoint system operators. It is therefore convenient to set

q̂(t) =

√
mΩm

~
(
q(t)− 〈q〉eq

)
, p̂(t) =

p(t)√
m~Ωm

, (73)

X(t) =
ζa†c(t) + ζ ac(t)√

2 |ζ|
−
√

2 |ζ| , Y (t) =
i
(
ζa†c(t)− ζ ac(t)

)
√

2 |ζ|
. (74)

Then, the linearized quantum Langevin equations turn out to be

d~w(t) = A~w(t)dt− d ~Q(t), ~w(t) =


q̂(t)
p̂(t)
X(t)
Y (t)

 , (75)

where the dynamical matrix is given by

A =

(
Am Amc

Amc Ac

)
, Amc =

(
0 0

G
√
ωm/Ωm 0

)
, (76)

Am =

(
0 Ωm

−Ωm −γm

)
, Ac =

(
−γc/2 ∆
−∆ −γc/2

)
. (77)

The quantity G, having the dimension of a frequency, will play the role of effective
coupling constant and is given by

G = g0 |ζ|
√

2~
mωm

, (78)

so that in particular it depends on the effective detuning ∆ through ζ given in (70).
The vector of noises is given by the following field combinations:

Q1(t) = τ

√
Ωm

ωm

γm

2
B †th(t) + h.c., Q2(t) = i

√
Ωm

ωm

γm

2
B †th(t) + h.c., (79)

Q3(t) = ei arg ζ

√
γc

2

∫ t

0

e−iω0sdB †em(s) + h.c.,

Q4(t) = iei arg ζ

√
γc

2

∫ t

0

e−iω0sdB †em(s) + h.c.,

(80)

where τ is the phase factor defined in (18) and the quadratures Q1(t) and Q2(t), apart
from a multiplicative factor due to the change of dimensions, coincide with the noises
introduced in (34).

Note the different structure of the two dynamical sub-matrices in (77). Indeed the
former describes a mechanical oscillator and the latter an optical mode, corresponding
to different interactions as discussed in Section 2. The same choice is taken, for
instance, in [1, 2, 7, 20,39,40], not in [5, 9, 10].

The linearization around the equilibrium state is meaningful provided one can
ensure the existence of such a state. Its stability conditions can be obtained by
applying the Routh-Hurwitz criterion to the equations for the mean values, which
correspond to the system (75) with the noise term d ~Q(t) suppressed. The detailed
results for the conditions warranting stability are given in Appendix C.
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4.2. Energy fluctuations and laser cooling

In order to determine the equilibrium properties and the spectra of the emitted light
it is convenient to consider the Fourier transform of the equations (75). We use a
formulation tailored for (classical or quantum) processes starting at time zero and we
define the gated Fourier transforms [9]

B̂Ti (ν) =
1√
T

∫ T

0

eiνtdBi(t), i = th, em, (81)

for the Bose fields as well as for the relevant system operators

Fi(T ; ν) =
1√
T

∫ T

0

eiνtwi(t)dt, i = 1, 2, 3, 4. (82)

Here T is a large time which we will let go to infinity in the final formulae to recover a
stationary situation. From the correlations (47) and the fact that Bem is a Fock field
in the vacuum state we get

〈B̂Tem(ν)B̂Tem(ν)†〉env = 1, 〈B̂Tth(ν)†B̂Tth(ν)〉env = N(ν),

〈B̂Tem(ν)†B̂Tem(ν)〉env = 0, 〈B̂Tth(ν)B̂Tth(ν)†〉env = N(ν) + 1,
(83)

while the cross-correlations involving both Bth and Bem vanish. The Fourier
transformed equations of motion corresponding to (75) are solved in Appendix D.1
leading to the expressions (D.1)-(D.3) for the quantities in (82).

4.2.1. The spectra of fluctuations. The spectra of the fluctuations of position and
momentum of the mechanical oscillator are defined, in analogy with the classical
case [48], by the quantum expectations

Sq(ν) = lim
T→+∞

1

2
〈{F1(T ; ν), F1(T ;−ν)}〉,

Sp(ν) = lim
T→+∞

1

2
〈{F2(T ; ν), F2(T ;−ν)}〉,

(84)

Sqp(ν) = lim
T→+∞

1

4
〈{F1(T ; ν), F2(T ;−ν)}+ {F1(T ;−ν), F2(T ; ν)}〉. (85)

Let us stress that, while useful, these definitions do not correspond to some continuous
monitoring of position and momentum, even though Sq(ν) is directly related to the
observed optical spectra as we shall see in Section 4.3. Due to the fact that the cross-
correlations between the thermal and the electromagnetic field vanish, these spectra
decompose in a thermal and a radiation pressure contribution according to

Sq(ν) = Srp
q (ν) + Sth

q (ν), Sqp(ν) = Sth
qp(ν),

Sp(ν) =
ν2

Ω 2
m

Srp
q (ν) + Sth

p (ν).
(86)

As shown at the end of Appendix D.1, the final expression for the radiation pressure
contribution reads

Srp
q (ν) =

ΩmωmG
2γc

2 |d(ν)|2

(
∆2 +

γ 2
c

4
+ ν2

)
, (87)
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while the thermal ones are given by

Sth
q (ν) =

ΩmR̂(ν)

~m |d(ν)|2

(
γ 2

c

4
+ (ν −∆)

2

)(
γ 2

c

4
+ (ν + ∆)

2

)
, (88)

Sth
p (ν) = Sth

q (ν) +
ωmγmG

2∆

Ωm |d(ν)|2

{(
N(ν) +

1

2

)[
1

2
G2∆ + ν2 γmγc

2ωm

+

(
Ω 2

m

ωm
+ ν

)(
ν2 −∆2 − γ 2

c

4

)]
+ (ν → −ν)

}
, (89)

Sth
qp(ν) = − γm

2Ωm
Sth
q (ν) +

γmG
2∆

2 |d(ν)|2

{(
N(ν) +

1

2

)
×
[
γm

2

(
∆2 +

γ 2
c

4
− ν2

)
− νγc(ωm + ν)

]
+ (ν → −ν)

}
,(90)

where (ν → −ν) means to add the same contribution with ν replaced by −ν and
the quantity R̂(ν) is the Fourier transform of the quantum correlations of the noise
given in (60). Note that the quantities introduced in (87)-(89) are non-negative as
they should be in order to have a sensible decomposition of the spectra; this property
follows from their very expression and (D.7).

The quantity d(ν) appearing in the denominators is related to the characteristic
polynomial of the dynamical matrix A introduced in (76) and takes the form

d(ν) = det (A+ iν1) =

((
ν + i

γc

2

)2

−∆ 2

)((
ν + i

γm

2

)2

− ω 2
m

)
−G2ωm∆. (91)

The quantity Ωm

(
∆2 − (ν + iγc/2)

2
)/

d(ν) is sometimes interpreted as the effective

mechanical susceptibility [20, Eq. (17)]. Most importantly note that the zeros of d(ν)
determine the positions of the peaks of the fluctuation spectra.

4.2.2. The mean values at equilibrium. By integrating in their frequency dependence
the fluctuation spectra one obtains the second moments of position and momentum
in the equilibrium state:

〈q2〉eq − 〈q〉2eq =
~

2πmΩm

∫
R
Sq(ν)dν, 〈p2〉eq =

m~Ωm

2π

∫
R
Sp(ν)dν, (92)

1

2
〈{q, p}〉eq =

~
2π

∫
R
Sqp(ν)dν. (93)

Note that all these quantities are finite due to the fact that all the integrands behave as
ν−2 for |ν| → +∞. We have also that the reduced equilibrium state of the mechanical

oscillator is a Gaussian state characterized by (92), (93) and 〈q〉eq = ~g0 |ζ|2 /(mΩ 2
m),

〈p〉eq = 0.
On the contrary the integral of ν2Sq(ν), which would give the fluctuations at

equilibrium of
√
mΩm/~ q̇, does not exist. This fact is related to the features of

the noise in the thermal part and, as already noticed right before Section 3.3.1,
this noticeably implies that the standard identification of mq̇ with momentum is not
possible. The expression of Sq(ν) coincides with the one given in [1, 20], albeit with

R̂(ν) instead of R̂GZ(ν). While in the latter case Sq(ν) � ν−3, still q̇2 does not have
a finite mean and also in this case the identification of momentum and velocity is not
possible. Notice that the expressions for Sp(ν) and Sqp(ν) have not been obtained
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before. In particular the nonvanishing value of Sqp(ν) implies that the fluctuations of
position and momentum are actually correlated.

The mean energy of the harmonic oscillator at equilibrium can be expressed in
the form

〈Hm〉eq =
1

2
mΩ 2

m〈q〉2eq + 〈H〉fl, (94)

where the contribution due to fluctuations is given by

〈H〉fl =
~

4π

∫
R

dν
[
Ωm

(
Sq(ν) + Sp(ν)

)
+ γmSqp(ν)

]
. (95)

It is convenient and natural to split this contribution into three distinct terms,
distinguishing a radiation pressure term from the rest and further dividing the thermal
contributions into two, putting into evidence a contribution which is not proportional
to position fluctuations and does not have a definite sign. We thus introduce the
adimensional quantities

Nrp =
1

2π

∫
R

Ω 2
m + ν2

2ωmΩm
Srp
q (ν) dν, Nth =

1

2π

∫
R

ωm

Ωm
Sth
q (ν) dν, (96)

as well as

Mth(∆) =
1

2π

∫
R

dν
G2γm∆

2 |d(ν)|2

{[
1

2
G2∆− ν γcγm

2
+ (ωm + ν)

×
(
ν2 −∆2 − γ 2

c

4

)](
N(ν) +

1

2

)
+ (ν → −ν)

}
, (97)

so that the fluctuation contribution can be written as

〈H〉fl = ~ωm

(
Nrp +Nth +Mth(∆)

)
; (98)

by construction we have Nrp + Nth + Mth(∆) ≥ 1/2. As it appears, the mean
energy density cannot be obtained from the knowledge of Sq alone, but extra terms
are present. Moreover, the contribution proportional to Mth(∆) can be negative.
Depending on the parameter values, the extra terms can be actually quite small. It
is important to stress that the given expression for the mean energy of the resonator
holds for any temperature of the phonon bath, including the case of zero temperature.

We further stress that there is not strict energy equipartition. This can be
expected since the mechanical oscillator is coupled to the cavity through its position
and also the counter-rotating terms contribute to the final result. In the thermal part
the lack of equipartition is due to the terms proportional to ∆, which are present in
Sth
p (ν) and not in Sth

q (ν). In the radiation pressure part the term with Ω 2
m comes

from the position and the one with ν2 comes from the momentum and give different
contributions to the mean energy.

4.2.3. Vanishing effective detuning. In the case of vanishing effective detuning
∆ = 0 all the computations can be performed analytically. The second thermal
contribution Mth(∆) vanishes and the coupling constant assumes the value G2 =
8~g 2

0 E
2/
(
mωmγ

2
c

)
. For the spectra of the fluctuations the explicit expressions reduce

to

Srp
q (ν) =

ΩmωmG
2γc

2
(
ν2 +

γ 2
c

4

) [
(ν − ωm)

2
+

γ 2
m

4

] [
(ν + ωm)

2
+

γ 2
m

4

] ,
Sth
q (ν) =

Ωmγm

2ωm

[
N(ν) + 1

2

(ν − ωm)
2

+
γ 2
m

4

+ (ν → −ν)

]
,

(99)
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leading upon integration to

1

2
mΩ 2

m

(
〈q2〉eq − 〈q〉 2

eq

)
=

~Ω 2
m

4ωm
(2Neff + 1) +

~ωmG
2 (2γm + γc)

8γm

(
(γm+γc)2

4 + ω 2
m

) ,
1

2m
〈p2〉eq =

~Ω 2
m

4ωm
(2Neff + 1) +

~ωmG
2γc

8γm

(
(γm+γc)2

4 + ω 2
m

) ,
γm

4
〈{q, p}〉eq = −~γ 2

m

8ωm
(2Neff + 1) ,

with Neff as in (50). These expressions show that equipartition of the mean energy
is not valid just due to the radiation pressure contributions. However equipartition
approximately holds for γc � 2γm, which is the case typically considered in many
theoretical studies and experiments. We further have for the fluctuation contributions
to the energy

Nrp =
G2 (γm + γc)

4γm

(
(γm+γc)2

4 + ω 2
m

) , Nth = Neff +
1

2
, Mth(∆) = 0.

The mean equilibrium energy of the mechanical oscillator is thus increased due to
the interaction with the cavity as a consequence of the presence of the strong laser in
resonance. For the values considered in Figure 1 we haveNrp ' 1.6×104 corresponding
to a temperature of about 7.9 K.

4.2.4. Laser cooling. As discussed in many papers [1, 3, 5, 6, 46], an important
effect which can be described by this kind of models is the laser cooling of the
mechanical resonator. Since, as already discussed, we cannot expect equipartition
of the mean mechanical energy, we cannot speak of temperature in a strict sense.
A natural way to speak about laser cooling is the comparison of the mean energy
of the fluctuations of the mechanical oscillator in the presence or the absence of the
stimulating laser (corresponding to ζ = 0). So, we have to study the value of the
fluctuation contribution (98) and to compare it to its value for ζ = 0, which is given
by 〈H〉fl

∣∣
ζ=0

= 〈Hm〉eq

∣∣
ζ=0

= ~ωm

(
Neff + 1

2

)
.

To obtain explicit analytical formulae for the mean energy we consider the case
of a constant noise spectrum, that is N(ν) = const = Neff . To actually perform the
calculations we need to evaluate, at least approximately, the zeros of the denominator
d(ν) given by (91). To this aim we introduce the Ansatz

d(ν) =

((
ν + i

Γc

2

)2

−∆ 2
eff

)((
ν + i

Γm

2

)2

− ωm 2
eff

)
. (100)

As discussed in Appendix D.2, d(ν) can be written in this way only under the
compatibility conditions (D.12).

By lengthy computations the integrals over ν can be exactly performed, leading
to involved formulae explicitly given in Appendix D.3. In order to describe cooling
effects the relevant contributions can be written in the form

Nth =
γm

Γm
Q
(
Neff +

1

2

)
, Mth(∆) =

γm

Γm
K
(
Neff +

1

2

)
, (101)

where the quantitiesQ and K are given in equations (D.27) and (D.28). The expression
for Nrp is given in (D.26). Note that, while Q is always positive, depending on the
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values of the parameters the quantity K can be also negative. For a large choice of
the parameters Q turns out to be close to 1.

In the following figures we describe the effective cooling of the mechanical
oscillator, by considering as a figure of merit the quantity

C =
γm

Γm
(Q+K) . (102)

We study two cases, corresponding to the parameter regions for which an exact or
approximate analytic evaluation of the different contributions to the mean energy has
been provided. In both cases mass and bare frequency of the mechanic oscillator are

Figure 1. Plot of the cooling factor C for the case in which the cavity damping is
much bigger than the mechanical oscillator frequency. We explore the dependence
of the cooling factor on both the effective detuning ∆ and the cavity damping rate
γc, both expressed in Hz. It appears that the best cooling factor is of the order
10−3 and corresponds to ∆ . γc.

taken to be m = 2.5×10−10 kg and Ωm = 2π×107 Hz, while the mechanical damping
factor is γm = 2π× 102 Hz. We consider a cavity of length 5× 10−4 m and resonance
frequency ωc = 2πc/(1064× 10−9) Hz, driven by a laser with a power of 5× 10−2 W.
For the sake of comparison the values of the fixed parameters are taken from [20]. In
Figure 1 we consider the case γc � ωm, that is a cavity damping much bigger than
the mechanical oscillator frequency. In the exact formulae for the integrals we use
the approximate expressions for Γm and Γc given in (D.15), relying on the conditions
(D.13). The stationary value of the energy of the mechanical system has a marked
dependence on the effective detuning ∆ and the optimal cooling region, corresponding
to C of the order of 10−3, is obtained for ∆ . γc. In this parameter region Nrp can be
neglected with respect to CNeff , unless the phonon bath is below 1 K, so that indeed
the quantity C given in (102) properly describes the cooling effect. When the detuning
∆ goes to zero the cooling factor rapidly increases in agreement with the discussion
in Section 4.2.3 showing the presence of heating at ∆ = 0; for these values of the
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parameters, the cooling effect disappears also for growing ∆. In Figure 2 we take

4.0 ´ 107 4.1 ´ 107 4.2 ´ 107 4.3 ´ 107
Γc

0.000025

0.00003

0.000035

0.00004
C

Figure 2. Plot of the cooling factor C for ∆ = ωm as a function of the cavity
decay rate γc in Hz. The plots correspond to the distinct analytic expressions in
the complementary regions γc < γ̄c and γc > γ̄c merged in a single graphic. The
origin of the γc-axis is taken exactly at γ̄c.

∆ = ωm, thus fixing the detuning to be equal to the effective mechanical frequency. In
this case the location of the poles can be evaluated exactly, provided one distinguishes
two regions according to the value of the ratio (γc − γm)2/4G2. No approximation
is taken in the expression of the integrals giving the mean energy. If this ratio is
above one, verified for a cavity damping γc > γ̄c, corresponding for the considered
parameters to γ̄c ' 4.1 × 107, the effective damping Γm (D.17) and Γc (D.18) are
actually distinct, while the effective frequencies ∆eff and ωm

eff do coincide and are
given by the expression (D.19). The cooling factor is a monotonic increasing function
of the cavity damping rate γc, and around the starting point γ̄c the cooling factor takes
the value 2.9× 10−5. In the complementary region, corresponding to (γc − γm)2/4G2

below one, the cooling factor is a decreasing function of the cavity damping rate,
so that the optimal cooling is obtained for γc = γ̄c. In this region, corresponding
to γc < γ̄c, the two effective dampings Γm and Γc both coincide with the average
of optical and mechanical damping rates (D.21), while the effective frequencies ∆eff

and ωm
eff are given by the expressions (D.22). To assess the relevance of the various

contributions in (102) we report the values for γc = γ̄c: we have γm/Γm ' 3.05×10−5,
Q ' .997 and K ' −4.18 × 10−2. The radiation pressure contribution Nrp can still
be neglected, unless the phonon bath temperature and therefore Neff is very small.
For γc = γ̄c we have in particular Nrp ' 0.73, so that its contribution to the mean
equilibrium energy is only relevant for temperatures below 10 K.

4.3. Optical spectra

We consider now the monitoring of the emitted light by balanced homodyne and
heterodyne detection [50, Sect. 7.2]. The aim is to see which kind of information on
the mechanical oscillator can be obtained by detection of the emitted light.
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4.3.1. Homodyne spectrum. The case of a perfect coherent monochromatic local
oscillator of frequency ω0 with detection of the whole emitted light [43,49] corresponds
to the continuous measurement of a field quadrature of the type

Q(t;ϑ) = ie−iϑei arg ζ

∫ t

0

e−iω0rdB †em(r) + h.c.; (103)

ϑ is a free parameter which depends on the optical path and determines the observed
quadrature. For instance the field quadratures for ϑ = π/2 and ϑ = 0 are
proportional to the noises defined in Eqs. (80). As a consequence of the definition
we have that [Q(t;ϑ), Q(s;ϑ)] = 0. Thanks to the properties of the solution of the
Hudson-Parthasarathy equation the relation U(T )†Q(t;ϑ)U(T ) = U(t)†Q(t;ϑ)U(t) =:
Qout(t;ϑ) holds for all T > t, which in turn implies

[Qout(t;ϑ), Qout(s;ϑ)] = 0. (104)

This is the key property expressing the fact that Qout(t;ϑ) can be measured with
continuity in time. Similarly to (81) we introduce the gated Fourier transforms

QT (ν;ϑ) =
1√
T

∫ T

0

eiνtdQ(t;ϑ), Qout
T (ν;ϑ) =

1√
T

∫ T

0

eiνtdQout(t;ϑ). (105)

The homodyne spectrum is then given by the expression

S(ν;ϑ) = lim
T→+∞

Tr
{
Qout
T (−ν;ϑ)Qout

T (ν;ϑ)ρ0 ⊗ σ̃env

}
, (106)

where the environmental state is given by (65) and ρ0 is any initial state for the
mechanical oscillator and the cavity mode. Note that this expression is nothing but
the spectrum of the classical stochastic process representing the output, and not an
ad-hoc quantum definition [43, Sect. 4]. From the above relations we obtain the second
key relation which guarantees the presence of the commuting observables and therefore
the consistency of the theory:

[Qout
T (ν;ϑ), Qout

T (ν′;ϑ)] = 0; (107)

this implies also that the homodyne spectrum S(ν;ϑ) is an even function of ν.
As shown in Appendix D.4, the homodyne spectrum has both an elastic and an

inelastic component

S(ν;ϑ) = Sel(ν;ϑ) + Sinel(ν;ϑ), (108)

which turn out to have the expressions

Sel(ν;ϑ) = 8πγc |ζ|2 (sinϑ)
2
δ(ν),

Sinel(ν;ϑ) = Sth(ν;ϑ) + Srp(ν;ϑ),
(109)

with

Sth(ν;ϑ) =
2γcωmG

2
[(
γc
2 cosϑ+ ∆ sinϑ

)2
+ (ν cosϑ)

2
]

Ωm

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
) Sth

q (ν), (110)

Srp(ν;ϑ) = 1 +
2γcωmG

2
[(
γc
2 cosϑ+ ∆ sinϑ

)2
+ (ν cosϑ)

2
]

Ωm

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
) Srp

q (ν)
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+ γcωmG
2 Re

[(γ 2
c

4 + ν2 −∆2
)

sin 2ϑ−∆ (γc cos 2ϑ− 2iν)

d(ν)
(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
)

×
(
γ 2

c

4
− ν2 + ∆2 − iγcν

)]
. (111)

Note that all the contributions are indeed positive as shown in Appendix D.4. It
is important to stress that the connection between Sq(ν) and Sinel(ν;ϑ) is far from
simple. In particular the last contribution in (111) comes from the interference of the
electromagnetic part of the signal with the shot noise, as detailed in Appendix D.4.

Let us further stress that different quadratures are incompatible and actually one
can prove the general inequalities [43,49]

1

2
[Sinel(ν;ϑ) + Sinel(ν;ϑ± π/2)] ≥ 1,

Sinel(ν;ϑ)Sinel(ν;ϑ± π/2) ≥ 1;
(112)

where the second inequality is just a form of the Heisenberg-Robertson uncertainty
relations coming from the canonical commutation relations of the involved Bose fields.
As a result quite different physical information can be extracted from the different
quadratures.

The quadrature with ϑ = π/2. In this case the field quadrature subject to continuous

measurement is Q(t;π/2) =
√

2
γc
Q3(t), the elastic term is given by Sel(ν;π/2) =

8πγc |ζ|2 δ(ν) and the inelastic contribution reads

Sinel(ν;π/2) = 1 +
2γcωmG

2∆2

Ωm

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
) Sq(ν)

+ Re
2γcωmG

2∆
(
γc
2 + iν

) (γ 2
c

4 − ν
2 + ∆2 − iγcν

)
d(ν)

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
) . (113)

If we have also ∆ = 0, we get Sinel(ν;π/2) = 1, which means that only the shot noise
contributes to the inelastic spectrum.

The quadrature with ϑ = 0. For a continuous measurement of Q(t; 0) =
√

2
γc
Q4(t)

the elastic term vanishes and one has

Sinel(ν; 0) = 1 +
2γcωmG

2
(
γ 2
c

4 + ν2
)

Ωm

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
) Sq(ν)

− Re

2γcωmG
2∆
(
γc
2 − iν

) (γ 2
c

4 − ν
2 + ∆2 − iγcν

)
d(ν)

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
)

 . (114)

Note that only for the special case of a vanishing effective detuning ∆ = 0 the
interference term vanishes and we have a direct connection of the homodyne spectrum
with the fluctuation spectrum of the position of the mirror according to

Sinel(ν; 0) = 1 +
2γcωmG

2

Ωm

(
γ 2
c

4 + ν2
) Sq(ν), (115)
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where Sq(ν) is now explicitly given by (99). This result has been found also in [40],

but with the substitution R̂(ν)→ R̂GZ(ν) in the expression (88) for Sth
q (ν)

∣∣
∆=0

. As a
result, at least in principle, when ∆ = 0 the homodyne observation of the quadrature
with ϑ = π/2 can give direct information on the correct expression for R̂(ν).

The temperature dependence of Sinel(ν; 0) is entirely contained in the thermal
contribution to Sq(ν) through N(ν). As a result, at high temperatures the interference
term in (114) is negligible (also for ∆ 6= 0) at least in the region where N(ν)� 1; in
this case we get

Sinel(ν; 0) ' 1 +
2γcωmG

2
(
γ 2
c

4 + ν2
)

Ωm

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
) Sq(ν), (116)

which is the result given in [1, Sect. 3]. Therefore, at high temperatures the inelastic
homodyne spectrum allows to reconstruct the fluctuation spectrum of position, while
no direct information on the fluctuation of the momentum and on the cross-correlation
is obtained. Moreover, at high temperatures we have also Sq(ν) ' Sth

q (ν); by using

this further approximation in (116) and by using the explicit expressions of Sth
q (ν)

(88) and R̂(ν) (60) we get

Sinel(ν; 0) ' γcγmG
2

(
γ 2
c

4 + ν2
)(

γ 2
m

4 + (ωm + ν)
2
)

|d(ν)|2

(
N(ν) +

1

2

)
+ (ν → −ν).

This expression highlights the dependence of the homodyne spectrum on the thermal
spectrum N(ν) and the characteristic polynomial d(ν) (91) of the dynamical matrix
(76) of the full optomechanical system.

Squeezing. An important information about the non classical nature of the light
generated by optomechanical systems can be obtained considering the quadrature with
ϑ = −π/4. Considering the simple case of vanishing detuning ∆ = 0 and vanishing
temperature N(ν) ≡ 0 we obtain for the inelastic contribution in ν = 0

Sinel(0;−π/4) = 1 +
2ωmG

2

γcΩ 2
m

[
4ωmG

2

γcΩ 2
m

+
γm

ωm
− 2

]
.

If the parameters are such that 4ω 2
mG

2+γmγcΩ 2
m < 2γcΩ 2

mωm, we get Sinel(0;−π/4) <
1. This means that in a neighbourhood of ν = 0 we have Sinel(ν;−π/4) < 1 and the
emitted light is squeezed.

This result shows that such a kind of optomechanical systems can generate non
classical light [3, 7]. Note that, if light squeezing is present for certain values of the
parameters, then any one of the inequalities (112) implies that the complementary
quadrature is anti-squeezed. Of course, experimentally it could be difficult to tune
the values of the various free parameters in order to have squeezing; moreover, the
elastic peak in the spectrum tends to hide the squeezing around ν = 0 in the inelastic
spectrum.

4.3.2. Heterodyne spectrum. In the case of heterodyne detection the local oscillator
and the stimulating light are produced by different laser sources; now, the stimulating
laser frequency ω0 and the local oscillator frequency, say µ, are in general different.
Moreover, the phase difference cannot be maintained stable and this erases some
interference terms. It can be shown [44], [25, Sect. 3.5] that the balanced
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heterodyne detection scheme corresponds to the measurement in continuous time of
the observables

I(µ; t) =

∫ t

0

√
κ e−κ(t−s)/2 eiµs+iα̃ dBem(s) + h.c., (117)

where α̃ is a phase depending on the optical paths and
√
κ e−κt/2, κ > 0, represents

the detector response function. As we shall see, the heterodyne spectrum does not
depend on α̃. In the Heisenberg description the observables become the “output
current”

Iout(µ; t) = U(t)†I(µ; t)U(t)

=
√
κ
∫ t

0

e−
κ
2 (t−s)+iα̃

(
eiµsdBem(s) +

√
γc ei(µ−ω0)sac(s)ds

)
+ h.c.

By the definition of I(µ; t) and the properties of U(t) we get [Iout(µ; t), Iout(µ; s)] = 0,
which says that the output current at time t and the current at time s are compatible
observables.

While in the homodyne scheme the spectrum of the output is analysed, in the
heterodyne scheme it is usual to register only the output power as a function of the
frequency µ of the local oscillator. The mean output power of the detection apparatus
at large times is proportional to

P (µ) = lim
T→+∞

1

T

∫ T

0

dt Tr
{
Iout(µ; t)2ρ0 ⊗ σ̃env

}
; (118)

the limit is in the sense of the distributions in µ. As a function of µ, P (µ) is known
as power spectrum. Note that to change µ means to change local oscillator, that is to
change the measuring apparatus. In general Iout(µ; t) and Iout(µ

′; s) do not commute,
even for t = s. Then, there is no reason for the power spectrum to have some symmetry
in µ. The heterodyne power spectrum can be decomposed in an elastic and an inelastic
part

P (µ) = Σel(µ) + Σinel(µ), (119)

with

Σel(µ) = lim
T→+∞

κγc

T

∫ T

0

dt

[
2 Re

(
ζeiα̃

∫ t

0

e−
κ
2 (t−s)+i(µ−ω0)sds

)]2

=
κγc |ζ|2

κ2

4 + (µ− ω0)
2

κ↓0−→ 4πγc |ζ|2 δ(µ− ω0), (120)

Σinel(µ) = lim
T→+∞

1

T

∫ T

0

dt Tr
{
Iinel(µ; t)2ρ0 ⊗ σ̃env

}
, (121)

Iinel(µ; t) =
√
κ
∫ t

0

e−
κ
2 (t−s)

(
eiµs+iα̃dBem(s)

+

√
γc

2
ei(µ−ω0)s+iϑ

(
Y (s)− iX(s)

)
ds
)

+ h.c.

The inelastic part of the spectrum is computed in Appendix D.5. Again it is
possible to identify a radiation pressure contribution and a thermal part

Σinel(µ) = Σrp(µ) + Σth(µ). (122)
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For simplicity we give only the expressions for κ ↓ 0:

Σrp(µ) = 1 +
γcωmG

2Srp
q (µ− ω0)

Ωm

(
γ 2
c

4 + (µ− ω0 −∆)
2
) − Im

γcωmG
2

d(µ− ω0)

γc
2 − i (µ− ω0 + ∆)
γc
2 + i (µ− ω0 −∆)

, (123)

Σth(µ) =
γcωmG

2Sth
q (µ− ω0)

Ωm

(
γ 2
c

4 + (µ− ω0 −∆)
2
) . (124)

Both contributions are positive as it follows from the expressions (124) and (D.36).
Note the presence of the interference term in (123).

By simple computations one can check that

Σinel(ν + ω0) + Σinel(ω0 − ν) = Sinel(ν;ϑ) + Sinel(ν;ϑ+ π/2); (125)

this is a fundamental relation [50, Eq. (9.61)] connecting heterodyne and homodyne
spectra. Moreover, by inserting the definitions of the relevant quantities given in (60),
(87), (88), an explicit expression for Σinel can be obtained from which it is apparent
that Σinel(µ) > 1: in the heterodyne detection the phase dependencies are lost and it
is impossible to detect squeezing in the emitted light.

Figure 3. Plot of the inelastic heterodyne spectrum Σinel as a function of ν for a
range of values of the cavity damping γc around the critical value γ̄c discussed in
Section 4.2.4. It appears how the two distinct peaks of the spectrum coalesce at
critical value. The spectrum is plotted for ∆ = ωm, while the other parameters
are as in Section 4.2.4.

As in the homodyne case, the interference term in (123) is negligible when N � 1
and we get

Σinel(µ) ' 1 +
γcωmG

2

Ωm

(
γ 2
c

4 + (µ− ω0 −∆)
2
) Sq(µ− ω0). (126)
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When this approximation holds, the inelastic heterodyne spectrum too allows to
reconstruct the asymptotic dynamics of the mirror through the position fluctuations.

To explore the behaviour of the spectrum we take N(ν) as given by (62). Then,
by using the explicit expressions of Srp

q and Sth
q and by setting ν = µ− ω0, we get

Σinel(ν + ω0) = 1 +
γcG

2

2 |d(ν)|2

{
γcω

2
mG

2

+ γm

(
γ 2

c

4
+ (ν + ∆)

2

)[
γ 2

m

4
+ (ν − ωm)

2
+ 4ωm |ν|nβ(|ν|)

]}
. (127)

From this expression we see that the main features of the spectrum will be determined
by the zeros of the denominator |d(ν)|2; for instance, as discussed in Appendix D.2,
for ∆ = ωm we can have one or two resonance frequencies depending on the value
of the cavity decay rate γc. In Figure 3 we show this phenomenon: the two distinct
peaks coalesce as γc increases. For these values of the parameters one can check that
the main contribution to the inelastic heterodyne spectrum comes from the thermal
part Σth. In this parameter region the behaviour of the inelastic homodyne spectrum
Sinel(ν; 0) given by (114) is very close to the heterodyne one as depicted in Figure 3.
Let us notice that the behaviour shown in Figure 3 does not uncover the whole rich
structure of the spectrum which appears by exploring other parameter regions.

5. Summary and outlook

In this article we have shown how to give a fully quantum description of a dissipative
mechanical oscillator. The combined use of master equations and quantum Langevin
equations allows for the construction of a dissipative dynamics respecting symmetries
and physical constraints, such as the energy equipartition at equilibrium, and subject
to dissipation with an arbitrary noise spectrum. A crucial feature allowing for these
results is that for a mechanical oscillator the definition of the creation and annihilation
operators am and a †m in terms of position and momentum is not the usual one, but as
discussed in Section 2.2, rather depends on the damping constant γm: the standard
result is only recovered for a vanishing damping constant as can be seen from Eqs.
(18) and (19). Moreover, the quantum Langevin equations for the system, and the
input-output relations for the noises, for both the mechanical oscillator and for the
optomechanical system, given in Section 3.1 and Section 4.1 respectively, need not
be postulated: they are nothing but the Heisenberg equations of motion determined
by the Hudson-Parthasarathy unitary evolutions (24) and (64). In this framework it
appears that, in order to preserve the Heisenberg uncertainty relations, the momentum
operator can be interpreted as the time derivative of the position operator only in
a “coarse grained” picture. An help in comparing our approach to others and in
discussing the structure of the noises comes from the quantum Langevin equations in
Newton form (Section 3.3), which, despite the fact that they need the introduction of
singular noises, do not contain the momentum operator. Indeed in the quantum case
important constraints on the correlation functions of the operator noises come from
the fact that they need to be positive definite and compatible with the commutation
rules of such noises. In this formalism, we are further able to introduce a field analog
of the P -representation for the state of the environment and this opens the possibility
of treating an arbitrary noise spectrum as done in Section 3.2.

Our description of the mechanical oscillator is not very different from other
proposals at medium and high temperatures of the phonon bath. Differences become
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relevant for very small temperatures. Indeed the dynamics we have constructed is fully
“quantum” at all temperatures and this opens the possibility of constructing models
of optomechanical systems which are reliable also in a deep quantum regime. As an
example we have studied a prototypical system: a mechanical resonator interacting
via radiation pressure with a single optical mode in a cavity. For this case we have
given explicit general formulae for the fluctuation spectra of position and momentum
of the mechanical resonator and for the mean mechanical energy at equilibrium. By
using detection theory in continuous time, we have obtained the full expressions of the
homodyne and heterodyne spectra of the emitted light. For not too low temperatures,
usual results are recovered, such as laser cooling and connection between the light
spectra and the fluctuations of position of the mechanical component. However, our
description is valid also at very low temperatures, when semi-classical reasoning is
not valid and the observation of the spectra of the emitted light is not giving a direct
measurement of the mechanical fluctuations.

Many generalizations are possible [51–54], which could benefit of a systematic
and consistent treatment. The simplest generalization is to include imperfections in
the detection scheme and noise in the stimulating laser light. But also direct detection
can be included [25] or the entanglement between resonator and optical mode can be
studied. Moreover, the whole theory has in some sense “modular” properties and can
be applied to more complicated systems, say when more mechanical resonators and
more optical modes are involved.
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Appendix A. Derivation of the diffusion coefficients

We denote by D0
• the diffusion coefficients for zero temperature and we set D =

D0
pp

mΩ 2
m

+mD0
qq. By (11), (13), (15) we get

〈q2〉0eq =
~D

2mγm
, 〈p2〉0eq =

~mΩ 2
mD

2γm
, 〈{q, p}〉0eq = −~mD0

qq,

0 = ‖amψ0‖2 = r2〈q2〉0eq + |`|2 〈p2〉0eq + 〈{q, p}〉0eqrRe `.

The last equation becomes

~D
mγm

+
~Ω 2

mmD

γm

[(
Re `

r

)2

+

(
1

2~r2

)2
]
− 2~mD0

qq

Re `

r
− 1

r2
= 0;

then, it can be rewritten as

~Ω 2
mmD

γm

(
Re `

r
−
γmD

0
qq

Ω 2
mD

)2

+
Ω 2

mmD

4~γm

(
1

r2
− 2~γm

mΩ 2
mD

)2

+
~

mγmD

(
D0
pp

mΩ 2
m

−mD0
qq

)2

+
4~

mγmDΩ 2
m

[
D0
ppD

0
qq −

γ 2
m

4

(
1 +D0

qq
2
)]

= 0. (A.1)
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By (6) the four terms in left hand side of equation (A.1) are all positive; so, all the
four terms must vanish and we get the expressions (18) for the coefficients r and Re `
and

D0
qq =

γm

2mωm
, D0

pp = m2Ω 2
mD

0
qq =

γmmΩ 2
m

2ωm
.

Let us consider now a generic temperature. By inserting (12), (13), (18) into
〈a 2

m〉eq = 0, one gets Dpp = m2Ω 2
mDqq. Finally, by the definition of N (16) and the

previous results, we get equations (17).

Appendix B. The P -representation

In Section 3.2.1 we have introduced the state describing the environment by means of
a suitable average over random coherent vectors for the quantum fields. Here we show
that such a construction of a field state is a natural generalization of the standard
P -representation for the thermal state of a harmonic oscillator.

Let us consider a harmonic oscillator of frequency ω, lowering operator a and
Hamiltonian ~ωa†a; the coherent states are denoted by |α〉. The Glauber-Sudarshan
P -representation of a state ρ [21, Section 4.4.3] is defined by the formula

ρ =

∫
d2αP (α, α∗)|α〉〈α|. (B.1)

If the pseudo-density P is allowed to become negative and singular, then any state
can be represented in this form; for instance the P -representation of a number
state contains also derivatives of the Dirac delta [21, pp. 113-114]. When P is a
true probability density (eventually with δ-contributions in order to include discrete
distributions), one speaks of a regular P -representation and the formula (B.1)
describes mixtures of coherent states, including in particular thermal states [21, p.
113], which are of special interest for the present treatment.

In a probabilistic language, which is more suitable for generalizations to stochastic
processes and fields, the fact that a state ρ has a regular P -representation can be
rephrased by saying that it can be written as an expectation value

ρ = E[|α〉〈α|], (B.2)

with α a complex random variable. In order to construct a thermal state we consider
the case in which the couple ( Reα, Imα) provides a bivariate random vector with
Gaussian distribution characterized by vanishing means E[ Reα] = E[ Imα] = 0 and
second moments Var [ Reα] = Var [ Imα] = σ2/2, Cov [ Reα, Imα] = 0; in terms of
the complex Gaussian random variable α, this means

E[α] = 0, E[α2] = 0, E[|α|2] = σ2.

Such a distribution describes according to (B.2) a thermal state, namely a Gaussian
state obeying [21, Section 4.4.5]

Tr{aρ} = 0, Tr{a2ρ} = 0, Tr{a†aρ} = σ2,

so that it can be written in the form ρ =
(
1− e−β~ω

)
e−β~ωa

†a upon identifying
σ2 = 1/(eβ~ω − 1).
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Appendix C. Stability conditions

By applying the Routh-Hurwitz stability criterion to the equations d
dt 〈~w(t)〉 = A〈~w(t)〉

for the mean values of ~w(t) we get the stability conditions

− γcγm

γc + γm

γcΩ 2
m + γm

(
γ 2

c

4
+ ∆2

)
+

(
Ω 2

m −
γ 2
c

4 −∆2
)2

γm + γc


< G2ωm∆ < Ω 2

m

(
γ 2

c

4
+ ∆2

)
. (C.1)

Note that the first inequality gives a restriction only for ∆ < 0, while the second one
only for ∆ > 0; there is no restriction for ∆ = 0. The same stability conditions have
been found in [20], as their equations for the mean values agree with ours.

Many formulae become simpler when the effective detuning vanishes, and indeed
this is the case studied in [40]. When ∆0 = 4~g 2

0 E
2/(mγ 2

c Ω 2
m), the cubic equation

(72) has at least the stable solution ∆ = 0. When also ∆0 > γc holds, the cubic

equation has two more real solutions ∆ = ∆±, where ∆± = 1
2

(
∆0 ±

√
∆ 2

0 − γ 2
c

)
;

note that we have 0 < ∆− < ∆0/2 < ∆+ < ∆0. It is possible to check that the
solution ∆+ is stable and the solution ∆− unstable.

Appendix D. Computations of the spectra

To compute the fluctuation spectra (84), (85), the homodyne spectrum (106) and the
heterodyne spectrum (118) we need to express the various quantities in terms of the
Fourier transforms of the input fields (81). To this end we introduce the quantities
(82) and

Qk(T ; ν) =
1√
T

∫ T

0

eiνtdQk(t), k = 1, . . . , 4;

then, we get

Q1(T ; ν) =

√
γmΩm

2ωm

(
τB̂Tth(−ν)† + τ B̂Tth(ν)

)
,

Q2(T ; ν) =

√
γmΩm

2ωm

(
iB̂Tth(−ν)† − iB̂Tth(ν)

)
,

Q3(T ; ν) =

√
γc

2

(
ζ

|ζ|
B̂Tem(ω0 − ν)† +

ζ

|ζ|
B̂Tem(ν + ω0)

)
,

Q4(T ; ν) =

√
γc

2

(
iζ

|ζ|
B̂Tem(ω0 − ν)† − i ζ

|ζ|
B̂Tem(ν + ω0)

)
.

Appendix D.1. Solution of the equations of motion by Fourier transform

From the quantum Langevin equations we can obtain a system of algebraic equations
for the quantities (82). Firstly, we have d

(
eiνt ~w(t)

)
= iνeiνt ~w(t)dt + eiνtd~w(t). By

taking d~w(t) from equation (75), we get by integration

eiνT ~w(t)− ~w(0) = (iν1 +A)

∫ T

0

eiνt ~w(t)dt−
∫ T

0

eiνtd ~Q(t);
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then, by dividing by
√
T , for large T we obtain the algebraic system

(A+ iν1) ~F (T ; ν) ' ~Q(T ; ν).

By setting d(ν) = det(A+ iν1) (91) and by computing the inverse of A+ iν1 we
obtain

d(ν)F1(T ; ν) =

[(
iν − γc

2

)2

+ ∆2

]
[(iν − γm)Q1(T ; ν)− ΩmQ2(T ; ν)]

+G
√
ωmΩm

[(
iν − γc

2

)
Q3(T ; ν)−∆Q4(T ; ν)

]
,

d(ν)F2(T ; ν) =

{
Ωm

[(
iν − γc

2

)2

+ ∆2

]
− G2ωm∆

Ωm

}
Q1(T ; ν)

+ iν

[(
iν − γc

2

)2

+ ∆2

]
Q2(T ; ν)

− iνG

√
ωm

Ωm

[(
iν − γc

2

)
Q3(T ; ν)−∆Q4(T ; ν)

]
,

d(ν)F3(T ; ν) = G∆

√
ωm

Ωm
[(iν − γm)Q1(T ; ν)− ΩmQ2(T ; ν)]

+
[
iν (iν − γm) + Ω 2

m

] [(
iν − γc

2

)
Q3(T ; ν)−∆Q4(T ; ν)

]
, (D.1)

d(ν)F4(T ; ν) = −G
√
ωm

Ωm

(
iν − γc

2

)
[(iν − γm)Q1(T ; ν)− ΩmQ2(T ; ν)]

+
[
iν (iν − γm) + Ω 2

m

] [
∆Q3(T ; ν) +

(
iν − γc

2

)
Q4(T ; ν)

]
−G2ωmQ3(T ; ν). (D.2)

By inserting the expressions of the Qi(T ; ν) in terms of the fields we obtain

F1(T ; ν) = F th
q (T ; ν) + F rp

q (T ; ν),

F2(T ; ν) ' F th
p (T ; ν)− i

ν

Ωm
F rp
q (T ; ν),

(D.3)

F rp
q (T ; ν) =

G
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√
ωmΩmγc

2

[(
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2

) ζ
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, (D.4)

F th
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i (ν + ωm)− γm

2
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. (D.6)
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By inserting the decompositions (D.3) into the definitions (84), (85) and by using
(83) we get, by some computations, the expressions for the spectra of the fluctuations
(86)–(88) and

Sth
p (ν) =

γm

2ωmΩm |d(ν)|2

{∣∣∣∣(Ω 2
m + ν

(
ωm − i

γm

2

))(
∆2 +

(γc

2
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)2
)

−G2ωm∆

∣∣∣∣2(N(ν) +
1

2

)
+ (ν → −ν)

}
, (D.7)

Sqp(ν) = Sth
qp(ν) =
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2ωm |d(ν)|2
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)
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}
; (D.8)

(ν → −ν) means to take the same terms as the previous ones with ν substituted by
−ν. Finally, by adding and subtracting the quantities Sth

q (ν) and − γm
2Ωm

Sth
q (ν), we get

the expressions (89) and (90).

Appendix D.2. The peaks in the spectra

Let us assume that d(ν) has two zeros of the form νm = ω m
eff − iΓm/2 and νm =

∆eff − iΓc/2 with ω m
eff 6= 0 and ∆eff 6= 0; by the property d(ν) = d(−ν), the other two

zeros are −νm and −νc. Therefore, we can write d(ν) in the form (100) or

d(ν) = (ν − νm) (ν + νm) (ν − νc) (ν + νc) . (D.9)

By equating this expression to (91) we get the algebraic system

Γm + Γc = γc + γm,

Γc |νm|2 + Γm |νc|2 = γcΩ 2
m + γm

(
∆2 +

γ 2
c

4

)
,

|νm|2 + |νc|2 + ΓmΓc = Ω 2
m + ∆2 +

γ 2
c

4
+ γcγm,

|νm|2 |νc|2 = Ω 2
m

(
∆2 +

γ 2
c

4

)
−G2ωm∆.

(D.10)

By assuming Γc 6= Γm, from this system we get in particular

∆ 2
eff =

Γc − γm

Γc − Γm
∆2 − γc − Γc

Γc − Γm
ω 2

m − (γc − Γc)
Γc − γm

4
,

ωm 2
eff =

Γc − γm

Γc − Γm
ω 2

m −
γc − Γc

Γc − Γm
∆2 − (γc − Γc)

Γc − γm

4
.

(D.11)

The stability conditions of Appendix C guarantee Γm > 0 and Γc > 0. We need also
the positivity of ∆ 2

eff and ωm 2
eff , so we have the further conditions

(Γc − γm) ∆2

(Γc − Γm)ω 2
m

≥ γc − Γc

Γc − Γm
+

(γc − Γc) (Γc − γm)

4ω 2
m

,

(γc − Γc) ∆2

(Γc − Γm)ω 2
m

≤ Γc − γm

Γc − Γm
− (γc − Γc) (Γc − γm)

4ω 2
m

.

(D.12)
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When one of these conditions does not hold, at least two zeros of d(ν) are purely
imaginary. We do not study this case.

To compute approximately Γm we follow a suggestion given in [5, 20] and
based on an approximation of the mechanical susceptibility. In the expression of
d(νm) taken from (91) we make the approximation

(
νm + ∆ + iγc2

) (
νm −∆ + iγc2

)
'(

ωm + ∆ + iγc−γm2

) (
ωm −∆ + iγc−γm2

)
and we solve d(νm) = 0 for Γm under the

conditions

γm

γc
� 1, |χ(∆)| � 1, |χ(∆)|

∣∣∣∣1− ∆2

ω 2
m

− γ 2
c

4ω 2
m

∣∣∣∣� 1, (D.13)

where

χ(∆) =
G2ωm∆(

(γc−γm)2

4 + (∆− ωm)
2
)(

(γc−γm)2

4 + (∆ + ωm)
2
) . (D.14)

By using also the first equation of the system (D.10) we get

Γm ' γm + χ(∆) (γc − γm) , Γc ' γc − χ(∆) (γc − γm) . (D.15)

In the approximations (D.13)–(D.15), the positivity conditions (D.12) become

∆2

ω 2
m

&
χ(∆)

1− χ(∆)
+ χ(∆)

(
1− 2χ(∆)

) (γc − γm)
2

4ω 2
m

,

χ(∆)

[
∆2

ω 2
m

+
(
1− χ(∆)

)(
1− 2χ(∆)

) (γc − γm)
2

4ω 2
m

]
. 1− χ(∆);

(D.16)

because χ(∆) has the same sign as ∆, these conditions are true restrictions only for
∆ > 0.

Once we have Γm and Γc, we can compute ωm 2
eff and ∆ 2

eff from the equations
(D.11), which do not contain approximations. When ∆ > 0 (red detuning), we have
an increasing of the mechanical damping constant, Γm > γm, and a decreasing of
the spring rigidity, ωm < ωm

eff . The ratio (Γm − γm)/γm is called co-operativity.
In the considered approximation, the compatibility conditions become (D.16), from
which we see that such conditions do not hold for ∆ positive and small. In this
situation the cavity is overdamped and the decomposition of d(ν) takes the form
d(ν) =

(
ν − ωm

eff + i Γm

2

) (
ν + ωm

eff + i Γm

2

) (
ν + i Γ1

2

) (
ν + i Γ2

2

)
; we do not study this

case.

The case ∆ = ωm. An exact expression for Γm and Γc can be found when ∆ = ωm.
We study only the case of d(ν) of the form (D.9) with four distinct zeros.

In the case Γc 6= Γm we set x = Γc−Γm and insert (D.11) and Γc + Γm = γc +γm

into the last equation of the system (D.10); in such a way we get

x4 + 4

[
4ω 2

m −
(γc − γm)2

4

]
x2 + 64G2ω 2

m − 16ω 2
m(γc − γm)2 = 0.

Let us set

u2 =

√(
ω 2

m +
(γc − γm)2

16

)2

−G2ω 2
m, ε =

{
+1 if γc > γm

−1 if γc < γm

.

Then, by using the solution of the equation for x2 and Eqs. (D.11), we find

Γc =
γc + γm

2
+ ε

√
2u2 − 2ω 2

m +
(γc − γm)2

8
, (D.17)
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Γm =
γc + γm

2
− ε
√

2u2 − 2ω 2
m +

(γc − γm)2

8
, (D.18)

∆ 2
eff = ωm 2

eff =
ω 2

m + u2

2
− (γc − γm)2

32
. (D.19)

By imposing Γc, Γm, ∆ 2
eff to be real and strictly positive and Γc 6= Γm, we get the

necessary and sufficient condition

4G2 < (γc − γm)2. (D.20)

By the choice Γc = Γm, from the system (D.10) we get instead

Γc = Γm =
γc + γm

2
, (D.21)

∆eff =
√
x±, ωm

eff =
√
x∓, (D.22)

x± = ω 2
m −

(γc − γm)2

16
± ωm

√
G2 − (γc − γm)2

4
, (D.23)

under the conditions

ω 2
m(γc − γm)2

4
< G2ω 2

m <

(
ω 2

m +
(γc − γm)2

16

)2

, ω 2
m >

(γc − γm)2

16
. (D.24)

The two alternatives in (D.22) are completely equivalent; there is no reason to associate
the frequency

√
x+ to the cavity and

√
x− to the mechanical oscillator, or viceversa.

Appendix D.3. Computation of the mean mechanical energy

By the residue method the integrals over ν can be performed. First we set

D2 =

(
∆ 2

eff + ωm 2
eff +

(γc + γm)
2

4

)2

− 4ωm 2
eff ∆ 2

eff ,

L± =
γ 2

c ∓ Γ 2
c

4
−∆2 ±∆ 2

eff , Ωm 2
eff = ωm 2

eff + Γ 2
m/4.

(D.25)

With this notation we have

Nrp =
G2γc

4ΓmΓcD2

{
G2ωm∆

2 |νc|2 |νm|2

[
γmΩ 2

m + γc

(
∆2 +

γ 2
c

4

)
+ γmγc (γm + γc)

]
+

(
∆2 + ω 2

m +
(γc + γm)

2

4

)
(γc + γm)

}
, (D.26)

where |νc|2 |νm|2 is given by the last of (D.10). The thermal contributions Nth and
Mth(∆) are given in (101) in terms of the expressions

Q =
Ω 2

m + Ωm 2
eff

2Ωm 2
eff

+
L+

2ΓcD2

{
(γc + γm)

L− + 2Ω 2
m

16
+ 2L

[
γcΩ 2

m + γm

(
∆2 +

γ 2
c

4

)]
+

Ω 2
mL−

|νc|2 |νm|2

[
γc

(
∆2 +

γ 2
c

4

)
+ γmΩ 2

m + γcγm (γc + γm)

]}
, (D.27)

K =
G2∆

2ΓcD2

{(∆2 +
γ 2
c

4

)(
γ 2
m

4 − ω
2
m

)
2ωm |νc|2 |νm|2

[
γmΩ 2

m + γc

(
∆2 +

γ 2
c

4

)
+ γcγm (γc + γm)

]

+ ωm

(γm

2
+ γc

)
−
γc

(
∆2 +

γ 2
c

4

)
+ γm

(
γm
2 + γc

)2
2ωm

}
. (D.28)

Note that, while Q is always positive, K can also take on negative values.
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Appendix D.4. Computation of the homodyne spectrum

The homodyne spectrum (106) involves the quantity Qout
T (ν;ϑ) (105); by the rules of

quantum stochastic calculus we can compute dQout
T (ν;ϑ) and by integration we obtain

Qout
T (ν;ϑ) = 4

√
γc |ζ| sinϑ eiνT/2 sin νT/2

ν
√
T
− iei(ϑ−arg ζ)B̂Tem(ν + ω0)

+ ie−i(ϑ−arg ζ)B̂Tem(ω0 − ν)† +
√

2γc [sinϑ F3(T ; ν) + cosϑ F4(T ; ν)] . (D.29)

By inserting (D.1), (D.2) into (D.29) we get

Qout
T (ν;ϑ) ' 4

√
γc |ζ| sinϑ eiνT/2 sin νT/2

ν
√
T

+Qth
T (ν;ϑ) +Qem

T (ν;ϑ), (D.30)

Qth
T (ν;ϑ) = Eth(ν;ϑ)τ B̂Tth(ν) + Eth(−ν;ϑ)τB̂Tth(−ν)†,

Qem
T (ν;ϑ) = −Eem(ν;ϑ) iei(ϑ−arg ζ)B̂Tem(ν + ω0)

+ Eem(−ν;ϑ)ie−i(ϑ−arg ζ)B̂Tem(ω0 − ν)†,

Eth(ν;ϑ) = −G√γmγc

(γm

2
+ i (ν + ωm)

)
L(ν;ϑ), (D.31)

Eem(ν;ϑ) = −
γc
2 − i (ν −∆)
γc
2 + i (ν −∆)

+
iωmγcG

2eiϑL(ν;ϑ)
γc
2 + i (ν −∆)

, (D.32)

L(ν;ϑ) =
∆ sinϑ+

(
γc
2 + iν

)
cosϑ

d(−ν)
. (D.33)

Note that L(−ν;ϑ) = L(ν;ϑ). The key relation (107) together with [B̂Ti (ν), B̂Ti (ν)†] =
1 implies

[Qth
T (ν;ϑ) +Qem

T (ν;ϑ), Qth
T (−ν;ϑ) +Qem

T (−ν;ϑ)] = 0,

which is equivalent to

|Eth(ν;ϑ)|2 − |Eth(−ν;ϑ)|2 + |Eem(ν;ϑ)|2 − |Eem(−ν;ϑ)|2 = 0. (D.34)

By long computations this relation can be verified also explicitly by using the
expressions of Eth(ν;ϑ) and Eem(ν;ϑ).

By using (D.30), (D.34) and (83), from (106) we get the decomposition of the
homodyne spectrum expressed by Eqs. (108), (109) with

Sth(ν;ϑ) = |Eth(ν;ϑ)|2
(
N(ν) +

1

2

)
+ |Eth(−ν;ϑ)|2

(
N(−ν) +

1

2

)
,

Srp(ν;ϑ) =
1

2

(
|Eem(ν;ϑ)|2 + |Eem(−ν;ϑ)|2

)
. (D.35)

Note that Sth(ν;ϑ) ≥ 0 and Srp(ν;ϑ) ≥ 0. To compute the thermal part we note that

|Eth(ν;ϑ)|2 can be written by using R̂(ν) (60). In this way we obtain

Sth(ν;ϑ) =
2ωmγcG

2
[(
γc
2 cosϑ+ ∆ sinϑ

)2
+ (ν cosϑ)

2
]

~m |d(ν)|2
R̂(ν).

By using the expression (88) for Sth
q (ν) we get Eq. (110).

To compute the radiation pressure component of the spectrum, we need the square
modulus of Eem (D.32), which is the sum of two terms. So, we have the square modulus
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of the first term (the shot noise), the square modulus of the second term (the signal)
and the double product (the interference term):

|Eem(ν)|2 = 1 +
ω 2

mγ
2
c G

2 |L(ν;ϑ)|2
γ 2
c

4 + (ν −∆)
2

+ ωmγcG
2 Re

ie−2iϑ
(
γc
2 − i (ν −∆)

)
+ i
(
γc
2 − i (ν + ∆)

)
d(ν)

(
γc
2 + i (ν −∆)

) .

By inserting this expression into (D.35) we get

Srp(ν;ϑ) = 1 +
ω 2

mγ
2
c G

4
(
γ 2
c

4 + ∆2 + ν2
)

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
) ∣∣∣∣∣∆ sinϑ+

(
γc
2 + iν

)
cosϑ

d(ν)

∣∣∣∣∣
2

+

[
ωmγcG

2

2
(
γ 2
c

4 + (∆− ν)
2
) Re

ie−2iϑ
(
γc
2 − i (ν −∆)

)2
+ i
((

γc
2 − iν

)2
+ ∆2

)
d(ν)

+ (ν → −ν)

]
.

Finally, by elaborating the argument of the real part and by using the expression (87)
for Srp

q (ν) we get Eq. (111).

Appendix D.5. Computation of the heterodyne spectrum

By a procedure similar to the one used in Appendix D.1, in the limit of κ ↓ 0,
κt→ +∞, we get

Iinel(ν; t) ' eiα̃
√
κ
∫ t

0

e−
κ
2 (t−s)+iµs

{[
−
γc
2 + i (µ− ω0 −∆)
γc
2 − i (µ− ω0 −∆)

− i~g 2
0 γc |ζ|2

md(µ− ω0)

×
γc
2 − i (µ− ω0 + ∆)
γc
2 − i (µ− ω0 −∆)

+
i~g 2

0 γcζ
2

md(ω0 − µ)
e−2i(µ−ω0)s−2iα̃

]
dBem(s)

+ ie−iω0sg0τ

√
~γmγc

2mωm

[
ζ

d(ω0 − µ)

(γc

2
+ i (µ− ω0 + ∆)

)
×
(γm

2
+ i (µ− ω0 − ωm)

)
e−2i(µ−ω0)s−2iα̃ − ζ

d(µ− ω0)

×
(γc

2
− i (µ− ω0 + ∆)

)(γm

2
− i (µ− ω0 + ωm)

)]
dBth(s)

}
+ h.c..

By using Eqs. (47) and the fact that Bem is a Fock field in the vacuum state, we get

〈dBem(s) dB†em(r)〉env = δ(r − s) dr ds,

〈dBth(s) dB†th(r)〉env = [(N + 1) δ(r − s) +G(r − s)] dr ds,

〈dB†th(s) dBth(r)〉env = [Nδ(r − s) +G(s− r)] dr ds;

all the other products have vanishing expectations. So, the thermal contribution and
the electromagnetic one decouple in the expression of the heterodyne spectrum. By
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some long computations and by recalling that the limit in (121) is in the sense of
distributions, we get Eq. (122) with the thermal part given by (124) and

Σrp(µ) =

∣∣∣∣1 +
iωmγcG

2

2d(µ− ω0)

γc
2 − i (µ− ω0 + ∆)
γc
2 + i (µ− ω0 −∆)

∣∣∣∣2 +
ω 2

mγ
2
c G

4

4 |d(µ− ω0)|2
, (D.36)

which becomes (123) by expanding the absolute value and using (99).
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[5] Safavi-Naeini A H, Chan J, Hill J T, Gröblacher S, Miao H, Chen Y, Aspelmeyer M and Painter O
2013 Laser noise in cavity-optomechanical cooling and thermometry New J. Phys. 15 035007.

[6] Chen Y 2013 Macroscopic quantum mechanics: theory and experimental concepts of
optomechanics J. Phys. B: At. Mol. Opt. Phys. 46 104001.

[7] Pontin A, Biancofiore C, Serra E, Borrielli A, Cataliotti F S, Marino F, Prodi G A, Bonaldi
M, Marin F and Vitali D 2014 Frequency noise cancellation in optomechanical systems for
ponderomotive squeezing Phys. Rev. A 89 033819.

[8] Bahrami M, Paternostro M, Bassi A and Ulbricht H 2014 Proposal for a noninterferometric test
of collapse models in optomechanical systems Phys. Rev. Lett. 112 210404

[9] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Cavity optomechanics Rev. Mod. Phys.
86 1391–1452.

[10] Jacobs K, Nurdin H I, Strauch F W and James M 2014 When does resolved-sideband cooling
beat measurement-based feedback cooling? Analytical results in the regime of ground-state
cooling, arXiv:1407.4883.

[11] Lindblad G 1976 Brownian motion of a quantum harmonic oscillator Rep. Math Phys. 10 393–
407.

[12] Dekker H 1981 Classical and quantum mechanics of the damped harmonic oscillator Phys. Rep.
80 1–112.

[13] Caldeira A O and Leggett A J 1981 Influence of Dissipation on Quantum Tunneling in
Macroscopic Systems Phys. Rev. Lett. 46 211–214.

[14] Caldeira A O and Leggett A J 1983 Quantum Tunnelling in a Dissipative System Ann. Phys.
149 374–456.

[15] Sandulescu A and Scutaru H 1987 Open quantum systems and the damping of collective modes
in deep inelastic collisions Ann. Phys. 173, 277–317.
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D, Aspelmayer M and Zeilinger A 2006 Self-cooling of a micromirror by radiation pressure
Nature 444 67–70.
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