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On a semilinear elliptic boundary value problem arising in cardiac

electrophysiology

Elena Beretta∗ M.Cristina Cerutti† Andrea Manzoni‡ Dario Pierotti§

Abstract

In this paper we provide a representation formula for boundary voltage perturbations caused
by internal conductivity inhomogeneities of low volume fraction in a simplified monodomain model
describing the electric activity of the heart. We derive such a result in the case of a nonlinear
problem. Our long-term goal is the solution of the inverse problem related to the detection of regions
affected by heart ischemic disease, whose position and size are unknown. We model the presence
of ischemic regions in the form of small inhomogeneities. This leads to the study of a boundary
value problem for a semilinear elliptic equation. We first analyze the well-posedness of the problem
establishing some key energy estimates. These allow us to derive rigorously an asymptotic formula
of the boundary potential perturbation due to the presence of the inhomogeneities, following an
approach similar to the one introduced by Capdeboscq and Vogelius in [7] in the case of the linear
conductivity equation. Finally, we propose some ideas of the reconstruction procedure that might
be used to detect the inhomogeneities.

1 Introduction

Ischemic heart disease results from a restriction in blood supply to the heart and represents the
most widespread heart disease. As a consequence, myocardial infarction (or heart attack) caused
by the lack of oxygen might lead to even more severe heart muscle damages, ventricular arythmia
and fibrillation, ultimately causing death. Detecting ischemic heart diseases – that is, recovering
the unknown shape (and/or position) of ischemic areas – at early stages of their development from
noninvasive (or minimally invasive) measurements is thus of primary importance.
This is usually performed by recording the electrical activity of the heart, by means of either body
surface or intracardiac measurements. In the former case, the electrocardiogram (ECG) records elec-
trical impulses across the thorax, by means of a set of electrodes attached to the surface of the skin.
In the latter case, intracardiac electrograms, that is, measurements of intracavitary potentials, are
obtained by means of non-contact electrodes carried by a catheter inside a heart cavity. Although
much more invasive than ECG, this latter technique has become a standard of care in patients with
symptoms of heart failure, and allows to get a map of the endocardial potential.
In this context, mathematical models could be used to shed light on the potentialities of electrical
measurements in detecting ischemia. More specifically, the goal would be to combine measurements of
(body-surface or intracavitary) potentials and a mathematical description of the electrical activity of
the heart in order to identify the position, the shape and the size of heart ischemias and/or infarctions.
It is well known (see e.g. [18, 9]), that a mathematical description of the electrical activity of the
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heart is provided by the so-called bidomain model, yielding to an initial boundary value problem for a
coupled nonlinear evolution system. A simplified, one-field version of this problem is provided by the
monodomain model, resulting in a nonlinear diffusion-reaction equation. Moreover, the myocardium
is surrounded by a volume conductor, the torso, which is commonly modelled as a passive conductor
through a linear elliptic equation; heart and torso are coupled by imposing the continuity of the
electrical potential and the currents across the interface.
The challenge of how to combine ECG recordings or intracavitary potential measurements with math-
ematics and computations to identify ischemic heart disease has by far not been investigated enough.
Although some analysis of the direct problem has been carried out, – see, e.g. [5] – and such a model
(coupled with the torso) has been exploited for the ultimate generation of synthetic ECG data [4], to
our knowledge there is no theoretical investigation of inverse problems related with ischemia detection
involving the monodomain and/or the bidomain model, not even in the case of an isolated heart. In
the past decade some numerical investigations dealing with ischemia identification from measurements
of surface potentials have been performed by casting the problem in an optimization framework. A
stationary model taking into account the heart-torso coupling has been employed in [15], whereas a
nonstationary monodomain model for an isolated heart has been considered in [14]. More recently,
the case of ischemias identification from intracardiac electrograms has been treated in [1].
The question of finding the ischemic region can be formulated as the inverse problem of detecting
inhomogeneities, whose position and size are unknown, in a nonlinear parabolic diffusion-reaction
PDE, modeling (for the time being, a much simplified version of) the cardiac electrical activity from
boundary measurements1 In the present paper we assume to be able to perform measurements on the
heart (by one of the devices described above) and use an insulated monodomain model in the steady
state. This leads to the study of a Neumann boundary value problem for a semilinear elliptic equation.
We assume that the ischemic region is a small inclusion ωǫ with a significantly different conductivity
from the healthy tissue.
Taking advantage of the smallness of the inclusion, we establish a rigorous asymptotic expansion of
the boundary potential perturbation due to the presence of the inclusion following the approach in-
troduced by Capdeboscq and Vogelius in [7] in the case of the linear conductivity equation. It turns
out that this approach has been successfully used for the reconstruction of location and geometrical
features of the unknown inclusions from boundary measurements [2, 3] in the framework of Electrical
Impedance Tomography (EIT) imaging techniques. Despite of the fact that we have to deal with a
nonlinear equation, we derive a rigorous expansion for the perturbed electrical potential and give also
some idea of the reconstruction procedure that might be used to detect the inclusion.

The paper is organized as follows: in Section 2 we illustrate the monodomain model for the cardiac
electric activity. In Section 3 we state our main result. In Section 4 we analyze the wellposedness of the
direct problem establishing some key energy estimates. In Section 5 we derive the asymptotic formula
for the electrical boundary potential. In Section 6, taking advantage of the asymptotic formula, we
highlight some ideas for the reconstruction algorithm in a simplified two-dimensional geometry.

2 The direct problem: a nonlinear diffusion-reaction equation

The bidomain equations are nowadays the most widely accepted mathematical model of the macro-
scopic electrical activity of the heart [18, 9]. This model describes the evolution of the transmembrane

1We point out that this is completely different from what is commonly referred to as the inverse problem of elec-

trocardiography which deals with recovering the electrical potential at the epicardial surface by using recordings of the
electrical potential along the body surface, [17], [8], [19] and which involves the pure (linear) diffusion model for the torso
as direct problem.
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potential (or action potential), that is, the potential jump u across the cellular membrane surface.
Such a model is based on the assumption that, at the cellular scale, cardiac tissue is considered as
partitioned in two conducting media, the intracellular (made of cardiac cells) and the extracellular
(representing the space between cells) medium, separated by the cell membrane. After a homogeniza-
tion process, the two media are supposed to occupy the whole heart volume.
The bidomain model consists of a coupled system of time-dependent, nonlinear reaction-diffusion
PDEs, whose efficient numerical solution is a very difficult task. Since our main goal is to provide a
theoretical analysis of the inverse problem related with the detection of small conductivity inhomo-
geneities for a nonlinear diffusion-reaction equation, we rather start from the simpler monodomain
model. The monodomain model is derived from the bidomain equations by assuming that the extra-
cellular and the intracellular conductivities are proportional quantities. The monodomain model for
the electrical activity in the heart reads as follows:

∂u

∂t
− div(kǫ∇u) + χΩ\ωǫ

Iion(u) = f in QT = Ω× (0, T ]

∂u
∂n = 0 on ∂Ω× (0, T ]

u(x, 0) = u0(x) in Ω.

(2.1)

where Ω is the domain occupied by the heart, u is the (transmembrane) electrical potential, Iion is
the ionic membrane current of the heart tissue (up to a capacity constant), kǫ is its conductivity, f is
an applied current (up to the same capacity constant as Iion) and χΩ\ωǫ

is the characteristic function
of the healthy area. Here ωǫ ⊂ Ω is the infarcted area. According to experimental observations, in an
ischemic or infarcted region cells are not excitable, so that the conductivity kǫ = kǫ(x) is substantially
different with respect to healthy tissues. For this reason, we define

kǫ =

{

khealthy in Ω \ ωǫ
kinfarcted in ωǫ

(2.2)

being kinfarcted = δkhealthy, and δ ∈ (0, 1). Moreover the ion transport circumvent ischemic areas, so
that also the ionic membrane current Iion is multiplied by χΩ\ωǫ

in order to describe a blocking ion
transport. Typically, the ionic current Iion across the cell membrane is assumed to be a nonlinear
function of the potential and a significant choice is to assume Iion to be a cubic polynomial in u such
as

Iion(u) = A2(u− urest)(u− uth)(u− upeak). (2.3)

Here A > 0 is a parameter determining the rate of change of u in the depolarization phase, and
upeak > uth > urest are given constant values representing the resting, threshold and maximum
potentials, which affect the action potential dynamics. The definition of Iion depends on the considered
cell membrane ionic model (see e.g. [18, 9, 14] and references therein), and ultimately on intra- and
extracellular ionic concentration. A very large amount of ionic models have been proposed; here we
adopt the simplest phenomenological model, which does not involve any further ionic variable.
Finally, f represents a given current stimulus applied to the tissue – usually in a confined region and
for a short time interval – expressing the initial electrical stimulus, related to the so-called pacemaker
potential. By solving problem (2.1) we can describe the propagation of the stimulus f in an insulated
heart muscle, affected by ischemia in the region ωǫ. Changing the size and the location of ωǫ thus
results in a different propagation of the applied current.
Starting from model (2.1)–(2.3), we consider some simplifications in the direct problem and hence also
in the corresponding inverse problem. In fact, we believe that the key aspect to be tackled is related
with the presence of a nonlinear term in the equation. First, we neglect anisotropic description of the
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electrical conductivity over the domain, we replace the term Iion = Iion(u) by the cubic nonlinearity
Ĩion(u) = u3 and finally we consider the steady version of the problem. The analysis of the more
general problem will be addressed in the future.

3 Statement of the problem and main result

As discussed in the previous section, the problem of determining a small ‘inhomogeneity’ ωǫ inside
a smooth domain Ω, meaning a subset in which the conductivity is smaller then in the surrounding
tissue leads to solving the following problem for the potential that here will be called uǫ

{ −div(kǫ(x)∇uǫ) + χΩ\ωǫ
u3ǫ = f, in Ω

∂uǫ
∂n

= 0, on ∂Ω,
(3.1)

where Ω ⊂ R
N , N = 2, 3 and ωǫ ⊂ Ω is the set of inhomogeneity that we assume to be measurable

and separated from the boundary of Ω, meaning that there exist a compact set K0 with ωǫ ⊂ K0 ⊂ Ω
and d0 > 0 such that

dist(ωǫ,Ω \K0) ≥ d0 > 0 (3.2)

Moreover |ωǫ| > 0 ∀ǫ and |ωǫ| → 0 as ǫ → 0. By denoting with 1ωǫ the indicator function of the set
ωǫ, it is known that there exist a regular Borel measure µ and a sequence ωǫn , with |ωǫn | → 0, such
that

|ωǫn |−11ωǫn
dx→ dµ (3.3)

in the weak∗ topology of the dual of C′(Ω̄) (see, e.g. [6]). Moreover, µ is a probability measure and
by (3.2) its support lies inside the compact set K0.
The function kǫ(x) represents the conductivity in the two portions of Ω and is defined as

kǫ =

{

1, in Ω \ ωǫ
k, in ωǫ,

(3.4)

where we assume 0 < k < 1.
The potential U for the unperturbed problem satisfies

{ −∆U + U3 = f, in Ω
∂U

∂n
= 0, on ∂Ω,

(3.5)

For any given U ∈ C1(Ω) we introduce the Green function NU (x, y) for the operator −∆+ 3U2 with
homogeneous Neumann condition:

−∆xNU (x, y) + 3U2(x)NU (x, y) = δ(x− y) for x ∈ Ω,
∂NU

∂nx

∣

∣

∣

∂Ω
= 0 (3.6)

We are now ready to state our main result

Theorem 3.1. Let f ∈ Lp(Ω) for some p > N and assume that f(x) ≥ m > 0 a.e.in Ω. Let uǫ, U
denote the solutions to (3.1) and (3.5). Then there exists a sequence ωǫn with |ωǫn | → 0 and satisfying
(3.2), (3.3), such that, if wǫn = uǫn − U ,

wǫn(y) = |ωǫn |
∫

Ω

(

(1− k)Mi j
∂U

∂xi

∂NU

∂xj
+ U3NU

)

dµ(x) + o(|ωǫn |) y ∈ ∂Ω , (3.7)
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where NU (x, y) is the solution of (3.6) and Mi j ∈ L2(Ω, dµ). Moreover, the values Mi j(x) satisfy

Mi j(x) = Mj i(x) and |ξ|2 ≤ Mi j(x)ξiξj ≤ 1
k |ξ|2 , (3.8)

ξ ∈ R
N , µ almost everywhere in Ω.

4 The direct problem

Theorem 4.1. Assume that f ∈ H−1(Ω), the dual space of H1(Ω). Then problem (3.1) and (3.5)
have a unique solution uǫ ∈ H1(Ω), U ∈ H1(Ω) respectively.

Proof. By multiplying the equation in (3.1) by a test function φ, integrating by parts and using the
boundary Neumann condition, we obtain the weak formulation

∫

Ω
kǫ∇u∇φ+

∫

Ω\ωǫ

u3φ =

∫

Ω
fφ , ∀φ ∈ H1(Ω). (4.1)

Now let T : H1(Ω) −→ H−1(Ω) be the operator defined by

〈Tu, φ〉 =
∫

Ω
kǫ∇u∇φ+

∫

Ω\ωǫ

u3φ, ∀φ ∈ H1(Ω)

It is readily verified that T is a potential operator, that is Tu− f is the derivative of the functional

E(u) =
1

2

∫

Ω
kǫ|∇u|2 +

1

4

∫

Ω\ωǫ

u4 −
∫

Ω
fu (4.2)

Then, the theorem will follow by showing that T is bounded, strictly monotone and coercive; in fact,
by these properties of T the functional E is coercive and weakly lower semicontinuous on H1(Ω) (see
e.g. [10], theorem 26.11). Thus, E is bounded from below and attains its infimum at some uǫ ∈ H1(Ω)
satisfying Tuǫ = f . The uniqueness of uǫ is a consequence of the strict monotonicity of T ; for, if
Tu = Tv = f , equation (4.3) below implies u = v.

i. T is bounded.

By Hölder’s inequality

|〈Tu, φ〉| ≤ ‖∇u‖L2(Ω)‖∇φ‖L2(Ω) + ‖u‖3L6(Ω)‖φ‖L2(Ω)

and by Sobolev embedding theorem ‖u‖L6(Ω) ≤ CS‖u‖H1(Ω), so that

|〈Tu, φ〉| ≤ ‖∇u‖L2(Ω)‖∇φ‖L2(Ω) + C3
S‖u‖3H1(Ω)‖φ‖L2(Ω) ≤ max

[

‖u‖H1(Ω), C
3
S‖u‖3H1(Ω)

]

‖φ‖H1(Ω).

Therefore, if u belongs to a bounded subset of H1(Ω),

‖Tu‖H−1(Ω) = sup
φ

|〈Tu, φ〉|
‖φ‖H1(Ω)

≤ max
[

‖u‖H1(Ω), C
3
S‖u‖3H1(Ω)

]

= C2.

ii. T is (strictly) monotone.
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〈Tu− Tv, u− v〉 =
∫

Ω
kǫ|∇(u− v)|2 +

∫

Ω\ωǫ

(u− v)2(u2 + uv + v2) ≥ 0.

Furthermore

〈Tu− Tv, u− v〉 = 0 ⇔ u = v. (4.3)

iii. T is coercive, that is

lim
‖u‖

H1(Ω)→+∞

〈Tu, u〉
‖u‖H1(Ω)

= +∞ (4.4)

By using again Hölder’s inequality,

〈Tu, u〉 ≥ k

∫

Ω
|∇u|2+

∫

Ω\ωǫ

u4 ≥ k‖∇u‖2L2(Ω)+
1

|Ω \ ωǫ|

(

∫

Ω\ωǫ

u2

)2

≥ k‖∇u‖2L2(Ω)+
1

|Ω|‖u‖
4
L2(Ω\ωǫ)

=

= k
(

‖∇u‖2L2(Ω) + ‖u‖2L2(Ω\ωǫ)

)

+
1

|Ω| ‖u‖
4
L2(Ω\ωǫ)

− k‖u‖2L2(Ω\ωǫ)
.

Finally, by the Poincaré inequality (see Appendix) and by |Ω|−1x4 − kx2 ≥ −k2|Ω|/4, we get

〈Tu, u〉 ≥ kC‖u‖2H1(Ω) −
k2

4
|Ω| (4.5)

for some positive constant C; hence, (4.4) follows. 2

Remark 4.2. If f is positive
(

i.e. 〈f, φ〉 ≥ 0 for φ ≥ 0
)

it follows from (4.2) that E(|u|) ≤ E(u) for
every u ∈ H1(Ω); on the other hand, we proved in the previous theorem that uǫ is the unique minimum
of E in H1(Ω). Then, we conclude that uǫ ≥ 0.

Remark 4.3. An alternative proof of theorem 4.1 can be obtained from the Minty-Browder theorem
(see [6] theorem 5.16)) by showing that the (monotone, coercive) non linear operator T is continuous.
In fact, for N ≤ 3 we have by Hölder inequality

|〈Tu− Tu0, φ〉| =
∣

∣

∣

∫

Ω
kǫ∇(u− u0)∇φ+

∫

Ω\ωǫ

(u− u0)(u
2
0 + u0u+ u2)φ

∣

∣

∣

≤ ‖∇(u− u0)‖L2(Ω)‖∇φ‖L2(Ω) + ‖u− u0‖L6(Ω)‖u20 + u0u+ u2‖L3(Ω)‖φ‖L2(Ω)

for every u0, u, φ in H1(Ω). Hence, by the Sobolev imbedding H1(Ω) →֒ L6(Ω) we find that for every
u, u0 in a bounded subset of H1(Ω) there exist a positive constant K such that

|〈Tu− Tu0, φ〉| ≤ K‖u− u0‖H1(Ω)‖φ‖H1(Ω), ∀φ ∈ H1(Ω)

It follows that T is locally Lipschitz continuous.
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4.1 Main estimates

In this section we will prove estimates on the solutions to 3.1 which will be useful in the subsequent
discussion. To begin with, we have the following bound:

Proposition 4.4. Let uǫ ∈ H1(Ω) be a solution of 3.1. Then

‖uǫ‖H1(Ω) ≤ C(‖f‖H−1 + ‖f‖3H−1) (4.6)

where the constant C = C(Ω, k).

Proof. By putting φ = u = uǫ in equation (4.1) and by definition (3.4), we readily get

k‖∇uǫ‖2L2(Ω) +

∫

Ω\ωǫ

u4 ≤ ‖f‖H−1‖uǫ‖H1(Ω) (4.7)

By the above inequality we first obtain

‖∇uǫ‖2L2(Ω) ≤
‖f‖H−1

k
‖uǫ‖H1(Ω)

Furthermore, by the inequality

‖uǫ‖4L2(Ω\ωǫ)
≤ |Ω \ ωǫ|

∫

Ω\ωǫ

u4 ≤ |Ω|
∫

Ω\ωǫ

u4

and again by (4.7) we get

‖uǫ‖2L2(Ω\ωǫ)
≤
(

|Ω| ‖f‖H−1‖uǫ‖H1(Ω)

)1/2

Then, by using again the Poincaré inequality

‖uǫ‖2H1(Ω) ≤
1

C

(

‖∇uǫ‖2L2(Ω) + ‖uǫ‖2L2(Ω\ωǫ)

)

≤ 1

kC
‖f‖H−1‖uǫ‖H1(Ω) +

1

C

(

|Ω| ‖f‖H−1

)1/2‖uǫ‖1/2H1(Ω)

(4.8)
We can write the above estimate in the form

‖uǫ‖1/2H1

(

‖uǫ‖H1 − 1

kC
‖f‖H−1

)

≤ 1

C
|Ω|1/2‖f‖1/2

H−1

Now, either

‖uǫ‖H1(Ω) ≤
1

kC
‖f‖H−1

or
(

‖uǫ‖H1 − 1

kC
‖f‖H−1

)3/2
≤ 1

C
|Ω|1/2‖f‖1/2

H−1

In both cases, we have that (4.6) holds. 2

Remark 4.5. We stress that for |ωǫ| → 0 the constant C appearing in inequalities (4.8) can be chosen
independent of ǫ (see the discussion following equation (7.4) in the Appendix); hence, also the constant
in the estimate (4.6) is independent of ǫ.

Remark 4.6. By the above estimate and by the previously mentioned Sobolev imbeddings, we obtain
a priori bounds of the solutions in Lp(Ω), with p ≤ 2N

N−2 if N ≥ 3 and for every p ≥ 1 if N = 2.

One easily verifies that the bound (4.6) holds for the potential U of the unperturbed problem (3.5)
with k = C = 1. We now prove additional properties of U which will be useful in the sequel.
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Proposition 4.7. Let Ω be a bounded domain in R
N with ∂Ω ∈ C1,1 and let f ∈ Lp(Ω) for any p > 2

if N = 2 and for p > 3 if N = 3; then the (unique) weak solution U of

{ −∆U + U3 = f in Ω
∂U

∂n
= 0, on ∂Ω,

(4.9)

satisfies
‖U‖L∞(Ω), ‖∇U‖L∞(Ω) ≤ C(‖f‖Lp(Ω) + ‖f‖3Lp(Ω)) (4.10)

Proof. By the previous remark, U3 ∈ Lp(Ω) for every p ≥ 1 if N = 2 and for 1 ≤ p ≤ 2 if N = 3;
by the equation in (4.9) the same holds (in the weak sense) for ∆U . Hence, we can apply known
regularity results for the Neumann problem (see e.g., Theorem 2.4.2.7 in [12]) to conclude that U
belongs to W 2, p(Ω) for every p > 1 if N = 2 and for 1 < p ≤ 2 if N = 3, with

‖U‖W 2, p(Ω) ≤ C(‖f‖Lp(Ω) + ‖f‖3Lp(Ω))

Now, it is known that W 2, p(Ω) ⊂ Ck(Ω) for k =
[

2 − N/p
]

(see [6], section 9.3); hence, in the case
N = 2 it follows that U ∈ C1(Ω) whenever the datum f in (4.9) satisfies f ∈ Lp(Ω) with p > 2 and

‖U‖L∞(Ω), ‖∇U‖L∞(Ω) ≤ C(‖f‖Lp(Ω) + ‖f‖3Lp(Ω))

In the case N = 3, one obtains that U is Hölder continuous on Ω; nevertheless, the same C1 regularity
can be readily achieved by repeated application of the previous arguments since U3, f ∈ Lp(Ω) with
p > 3 and hence U ∈W 2,p(Ω) for p > 3. 2

Let us now recall that for f ≥ 0 we have U ≥ 0 (see remark 4.2); furthermore, we have a comparison
principle:

Proposition 4.8. Let f2 ≥ f1 satisfy the assumptions of Proposition 4.7 and let U1, U2 be the solutions
to (4.9) with f = f1 and f = f2 respectively. Then, U2 ≥ U1 in Ω.

Proof. The function W = U2 − U1 solves the problem

{ −∆W = −QW + f2 − f1 in Ω
∂W

∂n
= 0, on ∂Ω,

(4.11)

where Q = U2
1 + U1U2 + U2

2 ≥ 0. Let Ω− = {x ∈ Ω |W (x) < 0}; since W is continuous in Ω, the set
Ω− is open. Moreover, by the above equation, W is superharmonic in Ω− and therefore it assumes
the minimum value at some point on the boundary ∂Ω−. On the other hand, such point must belong
to ∂Ω−\∂Ω due to the homogeneus Neumann condition and to the Hopf principle. But W = 0 on this
set, so that Ω− = ∅ and W ≥ 0 in Ω. 2

Corollary 4.9. Assume that essinfx∈Ωf(x) = m. Then, the solution U to problem (4.9) satisfies

U(x) ≥ m1/3, x ∈ Ω (4.12)

Proof. Apply Proposition 4.11 by choosing f1 = m and f2 = f . Since U1 = m1/3, the above bound
follows. 2

Let us now discuss the regularity of the solution uǫ we first note that, by remark 4.6, the term

χΩ\ωǫ
u3ǫ
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is bounded in Lp(Ω) for 1 < p ≤ 2 if N = 3 and in Lp(Ω) for any p ≥ 1 if N = 2. On the other hand,
uǫ satisfies

−div(kǫ(x)∇uǫ) = f − χΩ\ωǫ
u3ǫ , x ∈ Ω

with kǫ defined by (3.4). Since f ∈ Lp(Ω) with p > 1 if N = 2 and p > 3 if N = 3 we can apply the
interior estimate in [11] (Theorem 8.24) which yields, for any Ω′ ⊂⊂ Ω

‖uǫ‖C0,α(Ω
′
)
≤ C

(

‖uǫ‖L2(Ω) + ‖uǫ‖3L6(Ω) + ‖f‖Lp(Ω)

)

≤ C
(

‖uǫ‖3H1(Ω) + ‖f‖Lp(Ω)

)

(4.13)

where 0 < α < 1, C > 0 only depend on N , k, p and Ω′.
Finally, using (4.6), we obtain

‖uǫ‖C0,α(Ω
′
)
≤ C (4.14)

where C depends only on Ω′, k,N and on ‖f‖Lp(Ω). Now, by taking Ω′ ⊃ ωǫ and by observing that

kǫ = 1 in Ω\Ω′, it is not difficult to show that uǫ is uniformly Hölder continuous in Ω and that

‖uǫ‖C0,α(Ω) ≤ C (4.15)

where C depends only on Ω, k,N and on ‖f‖Lp(Ω).

4.2 Estimate on the H
1 norm of uǫ − U

Theorem 4.10. Let f ∈ Lp(Ω) for some p > N (N = 2, 3); assume further that f ≥ m > 0 a.e. in
Ω. Let U be the solution to problem (3.5) and uǫ the solution to problem (3.1). Then

‖uǫ − U‖H1(Ω) ≤ C|ωǫ|
1
2 (4.16)

where C is a positive constant that depends on k, Ω, m and on ‖f‖Lp(Ω).

Proof. Using (3.5), we obtain

−∆U = −div (kǫ∇U)− div ((1− kǫ)∇U) = −div (kǫ∇U)− (1− k)div (χωǫ∇U) = −U3 + f

and therefore

−div (kǫ∇U) + χΩ\ωǫ
U3 = f + (1− k)div (χωǫ∇U)− χωǫU

3 (4.17)

Now subtracting the above (4.17) from the equation for uǫ in (3.1) we get

−div (kǫ∇(uǫ − U)) + χΩ\ωǫ
(u3ǫ − U3) = −(1− k)div (χωǫ∇U) + χωǫU

3

that, letting wǫ = uǫ − U and qǫ = U2 + Uuǫ + u2ǫ , we can rewrite as

−div (kǫ∇wǫ) + χΩ\ωǫ
wǫqǫ = (k − 1)div (χωǫ∇U) + χωǫU

3 (4.18)

Let’s now observe that in order to prove the theorem it is enough to show that

‖∇wǫ‖L2 ≤ C|ωǫ|
1
2 (4.19)

This follows from the fact that we can write wǫ = w̃ǫ + aǫ, where

∫

Ω\ωǫ

w̃ǫqǫ = 0 and aǫ =
1

∫

Ω\ωǫ
qǫ

∫

Ω\ωǫ

wǫqǫ (4.20)
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For the function w̃ǫ we have by Poincaré inequality (see Appendix)

‖w̃ǫ‖L2 ≤ C ‖∇w̃ǫ‖L2

(

= C ‖∇wǫ‖L2

)

(4.21)

Moreover, being
∫

Ω
div (kǫ∇wǫ) =

∫

∂Ω

∂wǫ
∂n

= 0

from (3.5) and
∫

Ω
div (χωǫ∇U) = 0

from divergence theorem, using (4.18) and integrating over Ω we get

|aǫ| =
1

∫

Ω\ωǫ
qǫ

∣

∣

∣

∣

∣

∫

Ω\ωǫ

wǫqǫ

∣

∣

∣

∣

∣

=
1

∫

Ω\ωǫ
qǫ

∣

∣

∣

∣

∫

ωǫ

U3

∣

∣

∣

∣

(4.22)

Now, by our assumptions on f , by the elementary estimate qǫ ≥ 3
4U

2 and by (4.12), we readily obtain

|aǫ| ≤
4

3m2/3|Ω \ ωǫ|
‖U‖3L6(Ω) |ωǫ|

1
2 (4.23)

Then, using (4.10), (4.21) and (4.23),

‖wǫ‖H1 = ‖w̃ǫ + aǫ‖H1 ≤ ‖w̃ǫ‖H1 + |aǫ| |Ω|
1
2 ≤ C|ωǫ|

1
2 (4.24)

In order to prove (4.19), multiplying (4.18) times wǫ and integrating over Ω by parts, we get

∫

Ω
kǫ |∇wǫ|2 +

∫

Ω\ωǫ

w2
ǫ qǫ = −(k − 1)

∫

ωǫ

∇U∇wǫ +
∫

ωǫ

U3wǫ

which leads to

k‖∇wǫ‖2L2 ≤
∣

∣

∣

∣

(1− k)

∫

ωǫ

∇U∇wǫ
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

ωǫ

U3wǫ

∣

∣

∣

∣

≤

{

(1− k)‖∇U‖L∞(ωǫ)‖∇wǫ‖L2 + ‖U‖3L∞(ωǫ)
‖wǫ‖L2

}

|ωǫ|
1
2 . (4.25)

using again the decomposition (4.20), Poincaré inequality (4.21) for w̃ǫ, estimate (4.23) for aǫ and
(4.10) we obtain

k‖∇wǫ‖2L2 ≤ C
(

‖f‖Lp(Ω) + ‖f‖3Lp(Ω)

){

‖∇wǫ‖L2 + |ωǫ|
1
2

}

|ωǫ|
1
2 .

where C = C(k,Ω).
Finally, solving second order inequality, we get

‖∇wǫ‖L2 ≤ C |ωǫ|
1
2

where C is a positive constant depending on Ω, k and on ‖f‖Lp(Ω).
2

We now derive energy estimates for uǫ − U .
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Theorem 4.11. Let f satisfy the same assumptions as in theorem 4.10. Then

‖uǫ − u‖L2(Ω) ≤ C|ωǫ|
1
2
+η (4.26)

for some η > 0 and where C is a positive constant depending on k,Ω,m and on ‖f‖Lp(Ω).

Proof. Set wǫ = uǫ − U . Then, wǫ ∈ H1(Ω) satisfies
∫

Ω
∇wǫ · ∇φ dx+

∫

Ω\ωǫ

qǫwǫφ dx = (k − 1)

∫

ωǫ

∇uǫ · ∇φ dx+

∫

ωǫ

U3φ dx ∀φ ∈ H1(Ω). (4.27)

where qǫ = u2ǫ + u2ǫU
2 + U2 and, by the estimate (4.16),

‖wǫ‖H1(Ω) ≤ C|ωǫ|1/2

where C = C(k,Ω, ‖f‖Lp(Ω)). Consider now w̄ǫ ∈ H1(Ω) weak solution to

∫

Ω
∇w̄ǫ · ∇φ dx+

∫

Ω\ωǫ

qǫw̄ǫφ dx =

∫

Ω
wǫφ dx ∀φ ∈ H1(Ω). (4.28)

Then, choosing φ = w̄ǫ, one has

‖w̄ǫ‖H1(Ω) ≤ C‖wǫ‖H1(Ω) ≤ C|ωǫ|1/2.

Furthermore by Theorem 2.4.2.7 in [12] we have that w̄ǫ belongs to H
2

‖w̄ǫ‖H2(Ω) ≤ C‖wǫ‖L2(Ω) (4.29)

Choosing φ = wǫ into (4.28) we get
∫

Ω
∇w̄ǫ · ∇wǫ, dx+

∫

Ω\ωǫ

qǫw̄ǫwǫ dx =

∫

Ω
w2
ǫ dx. (4.30)

On the other hand, choosing φ = w̄ǫ into (4.27) we derive
∫

Ω
∇w̄ǫ · ∇wǫ, dx+

∫

Ω\ωǫ

qǫw̄ǫwǫ dx = (k − 1)

∫

ωǫ

∇uǫ · ∇w̄ǫ dx+

∫

ωǫ

U3w̄ǫ dx. (4.31)

Hence, by (4.30) and (4.31), we have,
∫

Ω
w2
ǫ dx = (k − 1)

∫

ωǫ

∇uǫ · ∇w̄ǫ dx+

∫

ωǫ

U3w̄ǫ dx. (4.32)

From (4.29) and Sobolev Imbedding Theorem we have that w̄ǫ ∈ W 1,p′(ωǫ) for any p′ > 1 if N = 2
and for 1 < p′ ≤ 6 if N = 3.

‖w̄ǫ‖W 1,p′ (Ω) ≤ C‖wǫ‖L2(Ω). (4.33)

Since U ∈ H1(Ω), again from Sobolev Imbedding Theorem, U3 ∈ Lp, for all p > 1 if N = 2 and for
1 < p ≤ 2 if N = 3 . Hence, applying Holder inequality and choosing p′ so that 1 < p < 2, we get

∫

Ω
w2
ǫ dx ≤ |k − 1|‖∇w̄ǫ‖Lp′ (ωǫ)

‖∇uǫ‖Lp(ωǫ) + ‖w̄ǫ‖Lp′ (ωǫ)
‖U3‖Lp(ωǫ)

Observe now that
‖∇uǫ‖Lp(ωǫ) ≤ ‖∇wǫ‖Lp(ωǫ) + ‖∇U‖Lp(ωǫ)

11



By (4.10) the second term can be bounded as follows

‖∇U‖Lp(ωǫ) ≤ C(‖f‖Lp(Ω) + ‖f‖3Lp(Ω))|ωǫ|1/p

where C = C(Ω). Moreover, by Hölder inequality and by the energy estimates (4.16) we have

‖∇wǫ‖Lp(ωǫ) ≤ |ωǫ|
1
p
− 1

2 ‖wǫ‖H1 ≤ C|ωǫ|1/p

Hence, we get the bound
‖∇uǫ‖Lp(ωǫ) ≤ C|ωǫ|1/p

where C = C(‖f‖Lp(Ω), k,m). Analogously

‖U3‖Lp(ωǫ) ≤ C|ωǫ|1/p

where C = C(Ω, ‖f‖Lp(Ω)). Recalling (4.33), we get

∫

Ω
w2
ǫ ≤ C‖wǫ‖L2(Ω)|ωǫ|1/p

which finally gives
‖wǫ‖L2(Ω) ≤ C|ωǫ|1/p

with 1
p >

1
2 and C = C(k, (‖f‖Lp(Ω)). 2

5 Proof of main result: the asymptotic formula

In this section we deduce an asymptotic representation formula for the perturbed potential

wǫ = uǫ − U

analogous to the one obtained in theorem 1 of [7] for a voltage perturbation in the presence of inho-
mogeneities.
Let NU (x, y) be the Green function of the operator −∆+3U2 with homogeneous Neumann condition
defined in (3.6).
Note that we can write

NU (x, y) = N(x, y) + z(x, y)

where N is the Neumann function for the Laplacian, satisfying

−∆xN(x, y) = δ(x− y) for x ∈ Ω,
∂N

∂nx

∣

∣

∣

∂Ω
=

1

|∂Ω| (5.1)

and, for every y ∈ Ω, the function x 7→ z(x, y) solves the problem







−∆xz(x, y) + 3U2(x)z(x, y) = −3U2(x)N(x, y), in Ω
∂z

∂nx
= − 1

|∂Ω| , on ∂Ω,
(5.2)

We recall that N(·, y) ∈ W 1,1(Ω) and therefore it belongs to Lp(Ω) for p in some interval depending
on the dimension (for every p > 1 in dimension two). Then, by the smoothness of U and by the same
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regularity arguments as in the previous section, we may take z and ∇z continuous and bounded; it
follows in particular that

NU (·, y) ∈ Lp(Ω)

Let us now multiply both the equations (3.1) and (3.5) by a test function φ, integrate by parts and
use the boundary condition; we get the identity

∫

Ω
kǫ∇uǫ∇φ+

∫

Ω\ωǫ

u3ǫφ =

∫

Ω
∇U∇φ+

∫

Ω
U3φ (5.3)

By subtracting to both sides of (5.3) the quantity

∫

Ω
∇uǫ∇φ+

∫

Ω
u3ǫφ

we obtain
∫

ωǫ

(k − 1)∇uǫ∇φ−
∫

ωǫ

u3ǫφ =

∫

Ω
∇(U − uǫ)∇φ+

∫

Ω
(U3 − u3ǫ )φ

By introducing the perturbed potential wǫ = uǫ − U , we can write the above equation in the form
∫

Ω
∇wǫ∇φ+

∫

Ω
wǫ
(

U2 + U uǫ + u2ǫ
)

φ =

∫

ωǫ

(1− k)∇uǫ∇φ+

∫

ωǫ

u3ǫφ

Finally, by using the identity

U2 + U uǫ + u2ǫ = 3U2 + 3U wǫ + w2
ǫ

we get
∫

Ω
∇wǫ∇φ+

∫

Ω
3U2wǫφ =

∫

ωǫ

(1− k)∇uǫ∇φ+

∫

ωǫ

u3ǫφ−
∫

Ω
3U w2

ǫφ−
∫

Ω
w3
ǫφ (5.4)

Let us fix y ∈ ∂Ω (or even y ∈ Ω\ωǫ) and let φm ∈ C1(Ω) be a sequence converging to NU (·, y) in
W 1,1(Ω) and in C1(D), where ωǫ ⊂ D ⊂⊂ Ω . Now, the regularity of U provided by (4.10) and the
discussion following (4.13) allow us to insert φm into (5.4) and to pass to the limit, so that

∫

Ω
∇wǫ∇xNU dx+

∫

Ω
3U2wǫNU dx =

∫

ωǫ

(1− k)∇uǫ∇xNU dx+

∫

ωǫ

u3ǫNU dx

−
∫

Ω
3U w2

ǫNU dx−
∫

Ω
w3
ǫNU dx

After integration by parts in the first term by using (3.6) (here we exploit the homogeneous Neumann
condition satisfied by NU ) we obtain

wǫ(y) =

∫

ωǫ

(1− k)∇uǫ∇xNU dx+

∫

ωǫ

u3ǫNU dx−
∫

Ω
3U w2

ǫNU dx−
∫

Ω
w3
ǫNU dx (5.5)

The following result is a first step towards an asymptotic representation formula in our non linear
setting:

Proposition 5.1. Let 1ωǫ denotes the indicator function of the set ωǫ. Then the following relation
holds

wǫ(y) = |ωǫ|
(

(1− k)

∫

Ω
|ωǫ|−11ωǫ∇uǫ∇xNU dx+

∫

Ω
|ωǫ|−11ωǫu

3
ǫNU dx

)

+ o(|ωǫ|) (5.6)
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Proof. We need to prove suitable bounds of the two last terms in (5.5). By Hölder inequality, the
last term is bounded by ‖wǫ‖3L3q(Ω)‖NU‖Lp(Ω), where q = p/(p − 1). Hence, by Sobolev embedding

and by (4.16) we get
∣

∣

∣

∫

Ω
w3
ǫNU dx

∣

∣

∣
≤ C|ωǫ|3/2

for some constant C depending on k, Ω and U . Let us now consider the remaining term; by the
boundedness of U and again by Hölder inequality we have

∣

∣

∣

∫

Ω
3U w2

ǫNU dx
∣

∣

∣
≤ 3‖U‖L∞(Ω)

∣

∣

∣

∫

Ω
w2
ǫNU dx

∣

∣

∣
≤ 3‖U‖L∞(Ω)‖NU‖Lp(Ω)‖wǫ‖2L2q(Ω) (5.7)

By a version of the Gagliardo-Nirenberg inequality for bounded domains (the constants depending only
on q and on the domain, see [16]) we now get

‖wǫ‖L2q(Ω) ≤ C1‖∇wǫ‖
1− 1

q

L2(Ω)
‖wǫ‖

1
q

L2(Ω)
+ C2‖wǫ‖L2(Ω) ≤

(by (4.16) and (4.26))

≤ C̃1 |ωǫ|
1
2
+ η

q + C̃2 |ωǫ|
1
2
+η

Then, the proposition follows by inserting these estimates into (5.5). 2

Remark 5.2. Equation (5.6) should be compared with the analogous formula (8) given in [7] for the
steady state voltage perturbation caused by internal conductivity inhomogeneities. The different sign
of the term containing the gradients is due to the definition (3.6) of the Green function NU .

Following [7] we now introduce the variational solutions V (j), v
(j)
ǫ to the problems







∆V (j) = 0, in Ω

∂V (j)

∂n
= nj , on ∂Ω,

(5.8)







div(kǫ(x)∇v(j)ǫ ) = 0, in Ω

∂v
(j)
ǫ

∂n
= nj , on ∂Ω,

(5.9)

nj being the j−th coordinate of the outward normal to ∂Ω and where the functions V (j), v
(j)
ǫ are

normalized by
∫

∂Ω V
(j) =

∫

∂Ω v
(j)
ǫ = 0. We observe that

V (j) = xj −
1

|∂Ω|

∫

∂Ω
xj (5.10)

and that the difference v
(j)
ǫ − V (j) satisfies estimates analogous to (4.16) and to (4.26) (see [7] sect.2).

Hence, by integration by parts and by exploiting such estimates, we get (see [7] sect.3, eqs. (20)-(21))
∫

Ω
kǫ∇(uǫ−U)∇(v(j)ǫ φ) dx =

∫

Ω
∇(uǫ−U)∇(V (j)φ) dx+

∫

ωǫ

(k−1)∇(uǫ−U)∇φV (j) dx+o(|ωǫ|) (5.11)

for every φ smooth enough. Now, again using the weak form of the equations (3.1) and (3.5), we easily
get the identities
∫

Ω
kǫ∇(uǫ − U)∇(v(j)ǫ φ) dx =

∫

ωǫ

(1− k)∇U∇(v(j)ǫ φ) dx+

∫

ωǫ

U3 v(j)ǫ φ dx+

∫

Ω\ωǫ

(U3 − u3ǫ ) v
(j)
ǫ φ dx
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∫

Ω
∇(uǫ − U)∇(V (j)φ) dx =

∫

ωǫ

(1− k)∇uǫ∇(V (j)φ) dx+

∫

ωǫ

U3 V (j)φ dx+

∫

Ω\ωǫ

(U3 − u3ǫ )V
(j)φ dx

By inserting these into (5.11) we obtain

∫

ωǫ

(1− k)∇U∇(v(j)ǫ φ) dx+

∫

ωǫ

U3 v(j)ǫ φ dx+

∫

Ω\ωǫ

(U3 − u3ǫ ) v
(j)
ǫ φ dx =

∫

ωǫ

(1−k)∇uǫ∇(V (j)φ) dx+

∫

ωǫ

U3 V (j)φ dx+

∫

Ω\ωǫ

(U3−u3ǫ )V (j)φ dx+

∫

ωǫ

(k−1)∇(uǫ−U)∇φV (j) dx+o(|ωǫ|)

That is, by straightforward rearrangements,

(1− k)

∫

ωǫ

∇U∇(v(j)ǫ φ) dx = (1− k)

[

∫

ωǫ

∇uǫ∇(V (j)φ) dx−
∫

ωǫ

∇uǫ∇φV (j) dx+

∫

ωǫ

∇U∇φV (j) dx

]

−
∫

ωǫ

U3 (v(j)ǫ − V (j))φ dx+

∫

Ω\ωǫ

(u3ǫ − U3) (v(j)ǫ − V (j))φ dx+ o(|ωǫ|)

By the boundedness of U , uǫ, by Hölder inequality and by the previous L2 estimates of the pertur-

bations uǫ − U and v
(j)
ǫ − V (j), we conclude that the whole last term of the above equation is o(|ωǫ|).

Hence we can write
∫

ωǫ

∇U∇(v(j)ǫ φ) dx =

∫

ωǫ

∇uǫ∇(V (j)φ) dx−
∫

ωǫ

∇uǫ∇φV (j) dx+

∫

ωǫ

∇U∇φV (j) dx+ o(|ωǫ|)

=

∫

ωǫ

∇uǫ∇V (j) φ dx+

∫

ωǫ

∇U∇φV (j) dx+ o(|ωǫ|)

=

∫

ωǫ

∇uǫ∇V (j) φ dx+

∫

ωǫ

∇U∇φ v(j)ǫ dx+O
(

‖v(j)ǫ − V (j)‖L2(Ω)|ωǫ|1/2‖∇U‖L∞(ωǫ)

)

+ o(|ωǫ|)

=

∫

ωǫ

∇uǫ∇V (j) φ dx+

∫

ωǫ

∇U∇φ v(j)ǫ dx+ o(|ωǫ|)

After a further rearrangement, we get

∫

ωǫ

∇U∇v(j)ǫ φ dx =

∫

ωǫ

∇uǫ∇V (j) φ dx+ o(|ωǫ|)

A final rescaling yields

∫

Ω
∇U |ωǫ|−11ωǫ∇v(j)ǫ φ dx =

∫

Ω
|ωǫ|−11ωǫ∇uǫ∇V (j) φ dx+ o(1) (5.12)

By the results of [7] there exist a regular Borel measure µ, functions Mi j ∈ L2(Ω, dµ) and a sequence
ωǫn , with |ωǫn | → 0, such that

|ωǫn |−11ωǫn
dx→ dµ, |ωǫn |−11ωǫn

∂

∂xi
v(j)ǫn dx→ Mi j dµ (5.13)

in the weak* topology of the dual of C0(Ω). Then, passing to the limit in (5.12) and by recalling (5.10)
we can state
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Proposition 5.3. Let uǫ, U denote the solutions to (3.1) and (3.5) and let ωǫn, with |ωǫn | → 0, be a
sequence satisfying (3.2) and (5.13). Then

lim
n→∞

|ωǫn |−11ωǫn

∂uǫn
∂xj

dx = Mi j
∂U

∂xi
dµ (5.14)

in the weak* topology of the dual of C0(Ω).

We are now in position to prove our asymptotic representation formula. We’ll state it here in a more
precise way:

Theorem 5.4. Let uǫ, U denote the solutions to (3.1) and (3.5) and let ωǫn, with |ωǫn | → 0, be a
sequence satisfying (3.2) and (5.13). Then, if wǫn = uǫn − U , we have

wǫn(y) = |ωǫn |
∫

Ω

(

(1− k)Mi j
∂U

∂xi

∂NU

∂xj
+ U3NU

)

dµ(x) + o(|ωǫn |) y ∈ ∂Ω (5.15)

where NU (x, y) is the solution of (3.6).

Proof. By proposition 5.1 we have

wǫn(y) = |ωǫn |
(

∫

Ω
(1− k)|ωǫn |−11ωǫn

∇uǫn∇xNU dx+

∫

Ω
|ωǫn |−11ωǫn

u3ǫnNU dx
)

+ o(|ωǫn |)

Let K0 is a compact set such that ωǫ ⊂ K0 ⊂ Ω. By the properties of NU we can find a vector valued
test function Φy ∈ C0(Ω) such that

Φy(x) = ∇xNU (x, y), for x ∈ K0, y ∈ ∂Ω.

Then, by proposition 5.3,
∫

Ω
(1− k)|ωǫn |−11ωǫn

∂uǫn
∂xj

∂NU

∂xj
dx =

∫

Ω
(1− k)Mi j

∂U

∂xi

∂NU

∂xj
dµ(x) + o(1)

Moreover, by now standard estimates one can readily prove
∫

Ω
|ωǫn |−11ωǫn

u3ǫnNU dx =

∫

Ω
U3NU dµ(x) + o(1)

By inserting the above relations in the previous identity, the theorem follows. 2

We are now ready for:

Proof of theorem 3.1. The asymptotic formula (3.7) is the same as equation (5.15) proved in the
previous theorem. In order to prove the last statement of the theorem, we remark that the polarization
tensor Mi j is defined exactly as in [7]; hence, the stated properties follow by the same arguments as
in section 4 of [7] with trivial modifications.

6 Localization of small inhomogeneities

Let us consider the case of a finite number of well separated homogeneities of small diameter ǫ centered
at points z1, ..., zm ∈ Ω. In the limit ǫ → 0, one obtains from the asymptotic formula (3.7) (see also
[7])

wǫ(y) = ǫN
m
∑

l=1

(

(1− k)Mi j(zl)
∂U

∂xi
(zl)

∂NU

∂xj
(zl, y) + U3(zl)NU (zl, y)

)

+ o(ǫN ) y ∈ ∂Ω (6.1)
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We now show that the above formula, together with a suitable integration of (measured) boundary
data, allows one to obtain useful identities for localizing the inhomogeneities and reconstructing the
polarization tensor.
We first prove an auxiliary identity; let g be a given function on ∂Ω and consider the (unique) solution
W of the boundary value problem

{ −∆W + 3U2W = 0, in Ω
∂W

∂n
= g, on ∂Ω,

(6.2)

where U is the background potential which solves (3.5). Then we have

W (z) =

∫

∂Ω
NU (z, y) g(y) dSy z ∈ Ω (6.3)

where NU is the Neumann function defined by (3.6). The proof follows readily by observing that, due
to the homogeneous Neumann condition satisfied by NU , we can write

∫

∂Ω
NU (z, y) g(y) dSy =

∫

∂Ω
NU (z, y)

∂W

∂n
dSy −

∂NU

∂n
(z, y)W (y) dSy

We now consider the average measurement

Γ ≡
∫

∂Ω
wǫ(y) g(y) dSy (6.4)

By inserting (6.1) in this expression and taking account of (6.3) we get

Γ = ǫN
m
∑

l=1

[

(1− k)Mi j(zl)
∂U

∂xi
(zl)

∂W

∂xj
(zl) + U3(zl)W (zl)

]

+ o(ǫN ) (6.5)

We first apply the previous formula to the simple case of approximating the location and the polari-
zation tensor of a single small inhomogeneity (in two dimension) centered at the point (x̄, ȳ).
We observe that by choosing a constant datum f in problem (3.5), the (unique) solution is a constant
background potential U = λ ≡ f1/3. In that case, the equation for the auxiliary function W becomes

−∆W (x, y) + 3λ2W (x, y) = 0

The above equation has a family of solutions of the form

W (x, y) = eax+by, a, b ∈ R

provided that a2 + b2 = 3λ2. In particular, we have the two solutions

W1(x, y) = eλ
√
3x, W2(x, y) = eλ

√
3 y

respectively with Neumann data

g1(x, y) = λ
√
3n1(x, y) e

λ
√
3x, g2(x, y) = λ

√
3n2(x, y) e

λ
√
3 y, (x, y) ∈ ∂Ω

where ni, i = 1, 2 are the component of the normal unit vector to ∂Ω.
Now, by denoting with Γ1(λ), Γ2(λ) the average measurements (6.4) with data g1, g2, and with
wǫ = uǫ − λ where uǫ solves (3.1) with f = λ3, we obtain from (6.5) (with N = 2, m = 1)

Γ1(λ) = ǫ2λ3 eλ
√
3 x̄ + o(ǫ2), Γ2(λ) = ǫ2λ3 eλ

√
3 ȳ + o(ǫ2) (6.6)

17



By choosing a specific value of λ, the above relations can be used to approximate the position of the
center of a small inhomogeneity. The determination of the polarization tensor requires a non constant
background potential U . In order to further simplify the problem, we assume that Ω = [0, 1] × [0, 1]
and try to identify the single element M11 of the (2× 2) polarization matrix (we also assume that k is
known). By the geometry of the domain, we can take a background potential U = U(x) independent
of y, provided that U ′(0) = U ′(1) = 0. Hence, we look for an auxiliary function W = W (x) which
solves the linear ordinary equation of the second order

−W ′′(x) + 3U(x)2W (x) = 0

By looking for a solution in the form
W (x) = eϕ(x)

we find that the function ϕ satisfies the equation

ϕ′′(x) + ϕ′(x)2 = 3U(x)2

By the substitution ψ(x) = ϕ′(x) we are reduced to a first order Riccati equation

ψ′(x) + ψ(x)2 = 3U(x)2 (6.7)

In general, there are no explicit solutions of such equation for a given U ; on the other hand, there are
large families of functions ψ such that the left hand side of (6.7) is a positive function with vanishing
derivative at x = 0 and x = 1. Thus, for any such ψ, the function U defined (except for the sign) by
(6.7) is an admissible background potential. For example, a straightforward calculation shows that

ψ(x) =
1

3
(x2 + x− 3)

solves (6.7) with U(x) smooth function in [0, 1] satisfying homogeneous Neumann conditions (it can
be easily seen that no linear ψ can generate an admissible non constant potential). Then, if we have
previously detected the position (x̄, ȳ), the matrix element M11(x̄, ȳ) can be approximated as follows:
insert at the right hand side of (6.5) the values U(x̄), U ′(x̄) calculated with the above potential,
together with W (x̄) = e

∫
ψ (x̄), W ′(x̄) = ψ(x̄)e

∫
ψ (x̄); note that by an appropriate choice of the in-

tegration constant we may take e
∫
ψ (x̄) = 1. Then, put at the left hand side of (6.5) the average

measurement (6.4) with g the Neumann datum of W (x) and wǫ = uǫ − U , uǫ = uǫ(x, y) being the
solution of (3.1) with f(x, y) = −U ′′(x) + U(x)3.

Remark 6.1. It may be interesting to compare the above discussion to the detection of one small
inhomogeneity for the linear problem in [Ammari-Moskow-Vogelius]. We stress that the reconstruction
algorithm for the non linear problem, though more difficult from a computational point of view, allows
to detect the position of the inhomogeneity (by using a constant background potential) independently
of the polarization tensor. However, it is not clear if it is possible to perform an efficient localization
of many separated inhomogeneities.

7 Appendix: Poincaré inequalities

There are different versions of inequalities which are usually known as Poincaré inequalities. Essen-
tially, they relate the L2 norm of the fluctuation of a function to the L2 norm of its gradient. In this
paper we use the following special case of the inequality proved in [13], Theorem 8.11 :
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Theorem 7.1. Let g be a function in L2(Ω) such that
∫

Ω g = 1. Then, there is S > 0 which depends
on Ω, g, such that for any u ∈ H1(Ω)

∥

∥

∥
u−

∫

Ω
ug
∥

∥

∥

L2(Ω)
≤ S‖∇u‖L2(Ω) (7.1)

The proof follows a classical reductio ad absurdum argument relying on compactness.
If we now choose u ≡ uǫ,

g = |Ω\ωǫ|−11Ω\ωǫ
(7.2)

and put

ūǫ = |Ω\ωǫ|−1

∫

Ω\ωǫ

uǫ

we obtain

‖uǫ‖2L2(Ω) ≤ 2
(

‖uǫ − ūǫ‖2L2(Ω) + |Ω|ū2ǫ
)

≤ 2S2‖∇uǫ‖2L2(Ω) + 2
|Ω|

|Ω\ωǫ|
‖uǫ‖2L2(Ω\ωǫ)

(7.3)

By this estimate it follows easily

‖uǫ‖2H1(Ω) ≤
1

C

(

‖∇uǫ‖2L2(Ω) + ‖uǫ‖2L2(Ω\ωǫ)

)

(7.4)

which was used in theorem 4.1 and in proposition 4.4. Since the functions (7.2) are uniformly bounded
for ǫ→ 0, one can show that the costant S can be chosen independent of ǫ; thus, by (7.3), we can also
take C independent of ǫ in (7.4).
Finally, by choosing u ≡ wǫ = uǫ − U ,

g =
(

∫

Ω\ωǫ

qǫ

)−1
qǫ 1Ω\ωǫ

(where qǫ = U2 + Uuǫ + u2ǫ ) and by recalling (4.20), we readily see that (7.1) is equivalent to the
estimate (4.21).
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