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Abstract

The human brain is a really complex organization of connectivity whose principal elements are neurons,
synapses and brain regions. Up to now this connectivity is not fully understood, and recent impulse
in investigating its structure has been given by Graph Theory. However, some points remain unclear,
mainly due to possible mismatching between the Mathematical and the Neuroscientific approach. It
is known that neural connectivity is classified into three categories: structural (or anatomical) connec-
tivity, functional connectivity and effective connectivity. The point is that these categories demand
different kinds of graphs, except in the case of the resting state, and sometimes topological and metrical
parameters are involved simultaneously, without a specific distinction of their roles.

In this paper we propose a mathematical model for treating the functional connectivity, based
on directed graphs with weighted edges. The function W (i, j, t), representing the weight of the edge
connecting nodes i, j at time t, is obtained by splitting the model in two parts, where different parameters
have been introduced step by step and rigorously motivated. In particular, there is a double role
played by the notion of distance, which, according to the different parts of the model, assumes a
discrete or an Euclidean meaning. Analogously, the time t appears both from a local and from a global
perspective. The local aspect relates to a specific task submitted to an health volunteer (in view of
possible future applications also to subjects affected by neurological diseases), while the global one
concerns the different periods in the human life that characterize the main changes in the neural brain
network. In the particular case of the resting state, we have shown that W reduces to the usually
employed probabilistic growth laws for the edge formation. We tested the correctness of our model by
means of synthetic data, where the selection of all involved parameters has been motivated according
to what is known from the available literature. It turns out that simulated outputs fit well with the
expected results, which encourages further analysis on real data, and possible future applications to
neurological pathologies.
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1. Introduction

The human brain is a very complex structure, due to an intricate linking involving the structural
and functional connectivity of the basic constituents, i.e. neurons, synapses and brain regions. It is
remarkable how substantially different systems share key characteristics, which can be identified by
specific parameters such as: connectivity, centrality, clustering, hub, module (just to mention a few
of them). If we restrict our attention to the brain connectivity, other Neuromathematics concepts are
worth to be considered. The connectome, which is the network map of the anatomical connections
in the brain (regardless it is human or animal). The connectome plays a fundamental role in the
neurobiological research (see for example [26]). The parcellation which is the subdivision of the brain
into areas or regions. The structural connectivity represents the anatomical description of the synaptic
connections, namely of all connections among different areas or neurons, forming the directed anatomical
pathways derived from neural tract tracing. It can be retained static only in absence of injuries or
cerebral illnesses, or far from the childhood and old age. The functional connectivity is the statistical
dependence between the time series of two network nodes (e.g. brain regions or neurons) [37], and can
be represented by means of temporal correlations among remote neurophysiological events as reaction to
well specified external stimuli (e.g. social paradigms, social cognitive functions or other specific tasks).
It interests cerebral areas, not necessarily close each other (in the sense of Euclidean distance), and it is
different from effective connectivity, which is the influence that a neural system exerts over another one
[13]. Interestingly Van den Heuvel et al. [35] showed the relationship between efficiency of functional
brain networks and intellectual performances. Note that there is a particular cerebral state where the
functional and the structural networks seems to coincide. It is the resting state, namely, the network of
brain regions showing coherent functional connectivity during task free spontaneous activity.
A special feature of the brain architecture is the small-world organization [41]. This relates to a network
whose level of clustering is higher than in a regular network, and whose “average shortest path length”
behaves like in random networks. Basically, the small-world organization shares characteristics which
are typical of both regular network and random network. It is tacitly assumed a small number of
long-distance shortcuts among locally connected nodes. A first approach states that these shortcuts are
randomly placed within the network’s architecture, even if different conjectures suggest their aggregation
in hub nodes [36].
Structural (or anatomical), functional, and effective connectivity can be profitably explored by means of
Graph Theory [8], [28], and several papers are available where interesting neurological results have been
presented and commented with this approach. The point is that these three categories of connectivity
demand different kinds of graphs, where topological and metrical parameters are sometimes involved
simultaneously without a specific distinction of their roles. It would be desirable that different models
could be obtained one from the others, and also that all agree in the case of the resting state.
Starting from these remarks, we propose a mathematical model for treating the functional connectivity,
based on directed graphs with weighted edges. In Section 2 we detail how a general weight function
W (i, j, t) can be obtained for the edge connecting two arbitrarily selected nodes i, j at the time t. In
particular, we emphasize a double role played by the notions of distance and of time in our model.
Distance assumes both a discrete and an Euclidean meaning, according as it occurs in the evaluation
of topological or metrical parameters, respectively. Analogously, the time t appears both from a local
and from a global perspective. The local aspect relates to a specific task submitted to an health
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volunteer, while the global view concerns the different periods in the human life that characterize the
main changes in the neural brain network. Also, we have shown that, in the case of the resting state,
W reduces to the usually employed probabilistic growth laws for the edge formation. This occurs even
when a particular task does not affect the cerebral region the nodes belong to, even if it is not so
frequent, since when performing a task the regions of interest (ROI) are usually well known. In Section
3 we test the correctness of our model by means of synthetic data, where all the involved parameters
have been selected and motivated according to what is known from the available literature. It turns
out that simulated outputs fit well with the expected results, which encourages further analysis on real
data, and possible future applications to neurological pathologies. Sections 4 and 5 are devoted to the
discussion of results and conclusions, respectively.

2. Proposal of a mathematical model for functional connectivity

2.1. Précis

Graph Theory is of great help in studying the organization of the brain, both from the anatomical,
or structural connectivity, and from the functional connectivity point of view. It plays a fundamental
role in specific and critical cases, such as the evaluation of fetal brain functional organization, where a
priori knowledge is limited.

In this paper we consider the brain as a neural network, namely, as a graph G = (V ;E), being V

the set of vertices, or nodes, representing neural regions of interest, and E the set of edges, or synaptic
connections between pairs of nodes.

From the available literature we have noted that, in dealing with the various aspects of neural
connectivity, different kinds of graphs are employed. Concerning the structural connectivity, a few
growth models have been adopted for evaluating the probability of connection P (i, j) between two
arbitrary nodes i, j representing a pair of brain regions. A number of papers (see for instance [1], or
[18]) base on the spatial growth of real-world networks model, which assumes that P (i, j) is the following
function

P (i, j) ∝ exp [−η de(i, j)] , (1)

where η is a non-negative parameter which tunes the dependence of edge formation on the Euclidean
distance de(i, j) between the centroids of two existing nodes. A different approach exploits a P (i, j)
depending on the product between a power law of some topological parameter β(i, j), and a decreasing
function of de(i, j). This idea comes from growth models employed in other real-life complex systems,
such as genetic networks or the world wide web. For instance, in the Economical Preferential Attachment
model ([2], [42]), it results

P (i, j) ∝ β(i, j)γde(i, j)
−η, (2)

where β(i, j) = deg(i)deg(j), being deg the degree of a vertex (number of adjacent nodes), and γ is a
suitably selected parameter. In the Economical Clustering Model considered in [40], the same formula
has been proposed, but with the topological parameter β(i, j) computed as the number of nearest
neighbors shared by i and j. In particular the authors showed an interesting phase diagram of the
economical clustering model, where it appears that most values of the two parameters η and γ yield
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small-world networks, whereas only high values of γ yield networks with heavy-tailed (skew > 1) degree
distribution. The study was done on both healthy volunteers and participants with childhood onset
schizophrenia (COS).

In any case, since the employed parameters have a topological meaning, their evaluation in terms of
Graph Theory has nothing to do with the Euclidean metric, and connections in the underlying graph
have just a binary code, where 1 denotes the presence of a synapsis, and 0 means no connection. In
a sense, two kinds of distances are simultaneously considered for weighting the edges of a same graph
G(V,E). The Euclidean distance de(i, j) explicitly appears in equation (1), while the discrete distance
d(i, j) = N(i, j) − 1 works when focusing on β(i, j), being N(i, j) the total number of nodes on the
shortest path joining i and j.

On the contrary, as far as we know, up to now no specific procedure has been proposed concerning
a specific methodology for the assignment of weights to the functional connections. In fact, functional
connectivity is usually estimated by fixing, empirically, a threshold on the connectivity matrix resulting
from the correlation between each pair of neural regions. This involves the use of metrical parameters,
and consequently the distance is intended from an Euclidean point of view. Further, it is reasonable
to assume that functional connectivity changes with age, so that correlations and thresholds related
to a given task should also change accordingly. In order to sketch a possible general approach, we
wish to propose a mathematical model for the weights of the edges of the graph representing the
functional connectivity, depending on parameters usually appearing in neuroscience, and, in addition,
also including the role of time in the steering law for the edge formation.

2.2. Theoretical tenets

We assume, for the moment, to work with healthy subjects, and we consider an homogeneous
synaptic activity growth (namely in the whole brain as well as in single regions). This hypothesis may
be dropped if the function describing the synaptic activity growth in single brain areas is known. Before
the explicit presentation, we wish to resume the main cornerstones underlying our proposal.

• In Neuroscience, both the functional and the structural connectivity are basic concepts involving
distinct neural regions, but with a main difference: the structural connectivity exists regardless
the execution of a cognitive task performed by a subject.

• The connection strength is quantified by assigning a weight to the edges of the graph representing
the functional network. This operation is made by means of different methods, most of them are
of empirical nature [6], [20].

• The weights associated to the edges of the structural network should be viewed as border-
line/extreme values of the weights associated to the functional network. Typical is the case
of the resting state.

• In fixing the weights, one should consider also the role of time, mainly from two different perspec-
tives. From one side, there is the need to explain in which way the functional connectivity varies
across the human lifespan. On the other side, a temporal diversification is required between the
long-time evolutionary aspect and the one related to the execution of a particular cognitive test.
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As a consequence, we are proposing the following law underpinning the functional connection be-
tween two nodes, i and j,

W (i, j, t) = β (i, j, tfix) exp (− (η(t) de(i, j)− α(i, j, t))) , (3)

where tfix is an instant arbitrarily fixed in the interval of time related to some specific task designed
to inquire the functional connectivity. On the contrary, the time t in α(i, j, t) ranges on the whole life
of the investigated neural network. Therefore, the function β(i, j, tfix) is time dependent from a local
point of view, while α(i, j, t) is time dependent in a global way. Consequently, in our model, the weight
is time dependent both from a local and from a global perspective.

In the next subsections we give all details supporting our choice. In particular, we show how
β(i, j, x(tfix)) and α(i, j, t) should be evaluated, pointing out the neurological meaning of the math-
ematical steps. In addition, we enlighten a possible link between the functional and the structural
connectivity in the case of the resting state.

2.3. Evaluation of the function β(i, j, tfix)

For evaluating the function β(i, j, tfix) we assume that connections in G(V,E) are binary weighted,
so that, for i, j ∈ V , d(i, j) is the number of steps of the shortest path from i to j.

When the brain is stimulated, we can associate to each vertex i a random variable Xi, corresponding
to the functional stimulus produced by i on the other nodes in the brain, due to the performed task. Note
that Xi depends only on i, so that, for different vertices i, j, Xi, Xj are independent random variables.
Let Mi be the maximal distance from i to any other vertex in the graph G(V,E). Then, the possible
values that can be assumed by Xi result in a sequence of positive real numbers {γin}

Mi

n=0, where γin
denotes the correlation induced by the node i on each nodes at distance n from i as a consequence of the
considered solicitation. According to the growing consensus [29] that brain networks are approximately
scale-free1, with a preponderance of highly connected hub areas that, together, constitute a rich club,
it is quite reasonable to assume

γin ∝ N
γ
in, (4)

where Nin ⊂ V is the set of nodes having distance n from i, and γ is a parameter depending on the
topological growth of the neural network. Now, let Bi(t) be the generating function associated to Xi,
namely

Bi(t) =
∞∑

n=0

γint
n.

Of course, since the brain is modeled by means of a finite number N = |V | of neural regions, then n

can assume only a finite number of values, corresponding to all the possible distances between i and the
other nodes in V . Therefore, Bi(t) must be assumed to be the truncated generating function, namely

1A scale-free organization is a network characterized by a degree distribution that follows a power law. More pre-
cisely, there is a general opinion that brain networks besides showing a small-world organization also have broad degree
distributions that often follow a power law, i.e. a scale free organization.
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Bi(t) =

Mi∑

n=0

γint
n. (5)

Let us consider now a pair i, j of two different points. Since Xi and Xj are independent random
variables, a good representation of the functional stimulus resulting in the brain by the mutual activity
of i and j can be assumed to be

β(i, j, t) = Bi(t)Bj(t) =

Mi∑

n=0

γint
n

Mj∑

n=0

γjnt
n. (6)

Since β(i, j, t) is computed as a consequence of the brain stimulation related to a particular task, the
involved interval of time is very small if we normalize with respect to the medium span of the human
life, so that, without loss of generality, we can assume t close to 0. This means that, in the expansion
of (6), the preponderant terms have lower exponent. Therefore, we can write

β(i, j, t) =
(
1 + t γi1 + t2 γi2 + o(t2)

) (
1 + t γj1 + t2 γj2 + o(t2)

)
, (7)

where o(t2) represents the terms that could be neglected, being infinitesimal of higher order2. In
general we are not interested in self-loops, i.e. a node can not interact with itself, which implies that
the additional constraint n > 0 must be added. In this case equation (7) takes the simplest form:

β(i, j, t) =
(
t γi1 + t2 γi2 + o(t2)

) (
t γj1 + t2 γj2 + o(t2)

)
∼ γi1γj1t

2 + o(t2). (8)

By (4) we get

β(i, j, t) ∼ (deg(i)deg(j))γt2 + o(t2), (9)

where deg(i) (resp. deg(j)) is the degree of the node i (resp. j). Note that, up to infinitesimal of higher
order, we have

β(i, j, tfix) ∼ (deg(i)deg(j))γt2fix ∝ (deg(i)deg(j))γ, (10)

so that the resulting approximation equals the topological factor appearing in the growth models (2)
proposed in [2], [42]. In particular, in [2] the exponent γ can be 1 (linear case) or ranges from 1.2 to 4.

2.4. Self-loops

In the discretization of the synaptic field, the interaction of a node with itself was neglected. This
agrees with the usual approach in Neuroscience where zero valued entries on the main diagonal of
connectivity (and similarly adjacency) matrices are assumed. However, a node can represent a single
neuron as well as a whole cerebral region, and consequently, in principle, we could allow also self-loops
in our model. In this case (7) provides

2It is often used the “little-oh” notation in this way: f(t) = g(t) + o(h(t)). This intuitively means that the error in
using g(t) to approximate f(t) is negligible in comparison to h(t). The little-oh notation was first used by E. Landau in
1909.
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β(i, j, t) =
(
1 + t (deg(i)) + t2 γi2 + o(t2)

)
(
1 + t (deg(j)) + t2 γj2 + o(t2)

)

= 1 + (deg(i) + deg(j)) t+ (deg(i)deg(j) + γi2 + γj2)t
2 + o(t2).

(11)

Since self-looping results in increasing values of β(i, j, t), it is not surprising that the second order
approximations of β(i, j, t) provided by (8) and (11) are different, even if a precise quantification of the
change is not achievable. However, note that, in the case of self-looping allowed, the best approximation
of β(i, j, t) is a first order approximation, and we can assume

β(i, j, tfix) ∼ 1 + (deg(i) + deg(j)) tfix ∼ (deg(i) + deg(j)) tfix ∝ deg(i) + deg(j). (12)

Remark 1. Denoting by N1(i, j) the number of nearest neighbors shared by i and j, we can observe
that in the case of the Economical Clustering Model suggested by Vértes, Alexander-Bloch, Gogtay,
Giedd, Rapoport and Bullmore in [40], it is reasonable to assume deg(i) + deg(j) ∼ N1(i, j)

γ, for some
suitable exponent γ. Therefore (12) provides the coefficient appearing in the probability of connection of
the economical preferential attachment model, suggested by Vértes, Alexander-Bloch, Gogtay, Giedd,
Rapoport and Bullmore [40], where γ, in principle, ranges from 0 to 6.

Remark 2. As a consequence of all previous considerations, we can speculate that the proposed β(i, j, t)
provides a rigorous mathematical justification of the usual topological parameters of the growth models
employed in studying the structural connection. These represent a good first order approximation when
modeling the edge formation in a real neural network, which usually can be quite acceptable. However,
for possible deeper investigations, our approach suggests how a finer choice could be done.

2.5. Aging evolution of neural architecture

Before commenting on the evaluation of the function α(i, j, t) we wish to motivate our choices with
a (neuro)mathematical analysis based on the available neuroscientific information (to the best of our
knowledge) concerning the evolution of the neural architecture.

First of all, in the period ranging from the fetal stage to the birth, it is not possible to assume that
both anatomical and functional connections in the brain exhibit small-world topology [5], [25]3.

By studying fetuses of different gestational ages by means of fMRI analysis, Thomason et al. [33]
revealed that human fetal brain has modular structure, wherein connections are much stronger within,
than between, modules, and that modules overlap functional systems observed postnatally. This is in
agreement with observations in adults, and suggests that modularity is an early emergent characteristic
of the developing brain. In particular, Thomason et al. showed that the brain modularity decreases,
and more negative intermodular functional connectivity of the posterior cingulate cortex (PCC) occurs

3A small-world organization can support and justify several phenomena and processes proper of brain dynamics, e.g.
the segregation and integration of information. It is worthy to note that, talking about networks, an important notion is
the efficiency in exchanging information. For example, Latora and Marchiori [19] found that real systems such as neural
networks and man-made communication and transportation systems have a small-world architecture of high efficiency.
In addition this kind of network represents a trade off between wiring cost minimization and high dynamic complexity.
In this sense small-world are “economical” networks.
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with the advancing gestational age [33]. By mimicking functional principles observed postnatally, these
results support early emerging capacity for information processing in the human fetal brain. It should
be noted that a reduced intermodular connection strength, and high modularity in younger fetuses,
suggests that in early fetal life functional systems are independent, and only with time they begin to
collaborate more fully as members of a whole brain system. Prior observations in late childhood, adoles-
cence, and adulthood, have provided mixed evidence about age-related independence of brain modules.
Early research demonstrated that brain modules become increasingly independent and separable with
advancing age [11], [31].

Notably, from birth to 2 years, the human brain undergoes several extraordinary changes, including
rapid brain volume increases reaching 80 − 90% of adult volume by age 2 [24], rapid elaboration of
new synapses [15], very rapid gray matter volume increasing [14], rapid development of a wide range of
cognitive and motor functions [16]. In addition, modular organization and small-world attributes are
evident at birth, with several important topological metrics increasing monotonically during develop-
ment. Most significant increasing of regional nodes occurs in the posterior cingulate cortex, which plays
a pivotal role in the functional default mode network4 [15].

Fransson et al. [12] provided the possibility to assess whether the topographical functional network
structure of the infant brain possesses small-world characteristics, a network property that has previ-
ously been detected in the adult human brain [34], as well as in children aged from 7 years and upward
[11], [32].

In the childhood the human brain still develops. In this period several microstructural and macrostruc-
tural changes take place in order to reshape the brain’s anatomical networks. Moreover, the relation
between these cerebral anatomical networks and the functional networks still evolves, which will lead
to the cognitive functions and human behaviors.

In the adulthood, it is believed that the brain could develop up to 21-25 years. A study, conducted
by Sarah-Jayne Blakemore of University College London with brain scans (URL: http://www.ted.com/
talks/sarah_jayne_blakemore_the_mysterious_workings_of_the_adolescent_brain#) showed that
the prefrontal cortex is modified until the age of 30-40 years, and in fact she stated that the prefrontal
cortex begins to develop in the first childhood. Development continues in late adolescence, and up to
30-40 years, even if the wiring growth is slower than in childhood. Culture, job career, social relations
and environment may play a causal role in the “extra” frontal lobe wiring in the adult age. We recall
that the prefrontal cortex is a part of the brain associated with higher cognitive functions, including
decision-making, planning and social behavior.

Finally it is well known that with aging cerebral performances decrease. For example Liu et al.
[21] demonstrated age-related changes in the topological organization of large-scale functional brain
networks.

4The term “default mode” was first used by Dr. Marcus Raichle in 2001 to describe resting brain function. During the
resting state the brain uses hardly less energy than a brain engaged in a task, for example a decision making process. The
default mode network involves low frequency oscillations (about one Hertz). This kind of network is most active when
the brain is at rest, while is deactivated when the brain is focused towards a task. The default mode network includes
areas associated with some aspect of internal thought, such as the medial temporal lobe, the medial prefrontal cortex,
and the posterior cingulate cortex, as well as the ventral precuneus and parts of the parietal cortex. It is interesting to
note that there may be more than one default mode network, so what is known as default mode network actually should
be thought of as a collection of smaller networks, each one dedicated to something which is a bit different than the other.
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2.6. The evaluation of the function α(i, j, t)

The function α(i, j, t) depends on the specific test submitted to a volunteer, and on age (different
stages of life implies different cognitive performances). Therefore, we propose that α(i, j, t) is represented
as the product of two functions f(i, j) and g(t):

α(i, j, t) = f(i, j) g(t), (13)

where f(i, j) is strictly related to the task, while g(t) is connected to stage of life in which the volunteer
falls when performing the cognitive task. It is responsible for the changing of the weights associated to
the functional edges. We further suggest that f(i, j) is strictly dependent on the correlation, derived
from the particular task, between the two nodes i and j.

From the discussion presented in Subsection 2.5 we can derive a quantitative form for g(t). To this,
we propose a splitting of the human life into six different characteristic periods, which roughly reflects
the evolution of the brain architecture. More precisely:

Period 0: t = 0. The “Neural Big Bang.” This is the onset of brain evolution in human beings.
In analogy with Astrophysics, we can name this period the “Neural Big-Bang”. At this time, we remark
that α(i, j, t = 0) = 0, since, of course, no task is involved. As a consequence, equation (3) assumes the
form:

W (i, j, 0) = β(i, j, x) exp [−η(t = 0) de(i, j)] . (14)

Since we are in the Neural Big Bang (t = 0), this equality must be identically zero, which implies
β(i, j, x) = 0.

We showed that β is proportional to the product of the degrees of i and j. The constraint β(i, j, x) =
0 means that even if neurons are present in the brain, or better in the gray matter, at t = 0 no
connections are established between nodes.

Period 1: 0 ≤ t ≤ t̄. In this range of time, represented by the interval going from 0 to a time t̄,
we assume that small-world has not begun to take a shape yet. Some studies [32] point out that at
age of 7 the brain already has a few small-world characteristics. Consequently we can set t̄ equal to 7
years, in order to consider that the brain shows, at least partially, this kind of architecture. So in (3)
the contribution of α to W (i, j, t) is a monotonically growing function:

W (i, j, t) ∝ exp (h0t) , (15)

being h0 a constant depending on the stage of life.

Period 2. t̄ ≤ t ≤ t̃ A third period follows. It spans a time interval from t̄ to t̃, where t̃ may be
identified with age 20-25, typically the adulthood. So this case ranges from childhood to adulthood.
Generally, in this period, we have a great increasing in cognitive performances also due to the monotonic
increasing of cerebral connectivities (structural, functional and effective). From a mathematical point
of view, the function W (i, j, t) is proportional to:

W (i, j, t) ∝ exp
(
h1t

2
)
, (16)
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being h1 a constant depending on the stage of life.

Period 3. t̃ ≤ t ≤ t∗. Here we consider the possibility of an extra cerebral wiring. Of course we
expect that the growing is pretty slow in comparison with the previous cases. Realistically, we can
assume that W (i, j, t) is proportional to a power law:

W (i, j, t) ∝ th2 , (17)

being h2 a constant depending on the stage of life. Just to give an estimation we could set t̃ equal to
25 years.

Period 4. t∗ ≤ t ≤ t∗∗. This span of time is characterized by a steady situation, there is neither an
increase nor a decrease in edge formations, and the functional connectivity, on average, does not show
any change during a task performing. As a consequence we get:

W (i, j, t) ∝ W (i, j, t∗) ∀t ∈ [t∗, t∗∗] . (18)

We estimate t∗ as 50 years and t∗∗ as 60 years.

Period 5. t∗∗ ≤ t ≤ tend. Finally, during a sixth period, the small-world architecture and connec-
tivities, as well as other topological properties of the brain, decrease with aging. So we need to assume
an inverse power law for W (i, j, t):

W (i, j, t) ∝ exp

(
h4

1

t

)
(19)

being h3 a constant depending on the stage of life.

Remark. We observe that the temporal evolution of the functional connectivity highlights alternating
periods of higher and lower growth with respect to the previous period. In detail, in period 2 the
temporal evolution of the functional connectivity grows faster than in period 1, in period 3 it grows
more slowly than in period 2. In period 5 grows more slowly than in period 4, where it remains constant.

Since W (i, j, t) is strictly connected with the changing in the weight of the edges of a functional
graph, and from the above observations, it comes natural to propose a form of g(t) (cf. equation (13)),
which depends of course on the reference period of life.

Excluding the Neural Big Bang, which is characterized by g(t) = 0, we can identify five functions
g0(t), g1(t), g−1(t), gk̃(t), g−2(t)

5, so defined:

g0(t) ∼ h0t, (20)

g1(t) ∼ h1t
2, (21)

5The particular choice of the subscripts will soon be clear to the readership.
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g−1(t) ∼ h2 ln t, (22)

g
k̃
(t) ∼ h3 = constant. (23)

For example a remarkable choice is constant = g−1(t
∗).

g−2(t) ∼ h4
1

t
. (24)

2.7. A unifying law

We emphasize that h0, h1, h2, h3, h4 are constants and that the functions g’s come from a neuro-
scientific analysis about the cerebral activity in different periods of life. In addition it should be taken
into account that the brain evolves in a continuous fashion, so it would be desirable to consider the
functions as special cases of a general law. To this we can summarize the above results in an elegant
form that describes well all the mathematical comments written for Periods 0, 1, 2, 3, 4, namely:

gk(t) = ck

∫
tk dt, (25)

where k is a non-negative real number, and ck is a constant depending on the period of time. Specifically
it is possible to distinguish five basic cases:

k = 0, then (25) takes the form: g(t) = c0t + c̃0, clearly a monotonically growing function, where c0
and c̃0 are two constants to be determined. In particular c0 = h0 (cf. (20)) while c̃0 may be found
by imposing that, at time t = 0, g0(0) = 0 holds. This means a continuous connection of g0(t)
with the “Neural Big Bang”, leading to assume c̃0 = 0.

k = 1, in this case (25) takes the form: g(t) = c1
2
t2 + c̃1, where c1 = 2h1 (cf. (21)). In t = t, it must

hold g1(t) = g0(t). This means that h1t
2
+ c̃1 = h0t, then c̃1 = h0t− h1t

2
.

It is a monotonically growing function and its growth is faster than that in the case k = 0.

k = −1, then (25) takes the form: g(t) = c−1 ln t+ c̃−1, being as usual c−1 and c̃−1 two constants to be
determined. It is a monotonically growing function, and it is immediate to observe that it grows
slower than the one for k = 1. By (22) it follows c−1 = h2. In t = t̃ must hold g−1(t̃) = g1(t̃), so

h2 ln t̃+ c̃−1 = h1t̃
2 + h0t̄− h1t̄

2, then c̃−1 = h1t̃
2 + h0t− h1t

2
− h2 ln t̃.

Note that it is monotonically increasing, even if it increases slowly than in the previous period.

Interestingly, this case demands some clarifications: as we wrote before, there could be an extra
wiring also in age 30-40, and this additional wiring is strictly dependent on some social factors,
such as the environment, the kind of job, social relations and culture. It could be possible to take
into account all these factors to improve the function g(t), by introducing a weight ξ in (25), so
that the equation becomes:

g−1(t) = c−1 ξ

∫
t−1 ds (26)
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For example, similarly to an empirical technique used in Behavioral Economics (see for example
[17]), one could associate to ξ the weight equal to 1 in case of “best scenario”, i.e. high quality
job, stimulating environment, good social relations and high education level. Differently, if one of
these factors is not top ranked then the weight could be ξ = 0.9. If two of the four factors are not
top ranked then the weight could be ξ = 0.6. Finally if three or more factors are not top ranked
then ξ = 0.3.
The result is an increasing trend, varying with the four socio-psychological selected factors.

k = k̃, where k̃ is any value of k. In this case (25) takes the form: c
k̃
tk̃+1

k̃+1
+ c̃

k̃
. A comparison with

(23) leads to set c
k̃
= 0. In t = t∗ the functions g

k̃
(t) and g−1(t) must get the same value, i.e.

g
k̃
(t∗) = g−1(t

∗). It is easy to find that: c̃
k̃
= h3 = h2 ln t

∗ + c̃−1.
We assumed g

k̃
(t) constant over the interval of time going from t∗ to t∗∗, nevertheless it could

be possible to refine the analysis by introducing a function either slightly increasing or slightly
decreasing, depending on the subject.

k = −2, here (25) takes the form: −c−2

(
1
t

)
+ c̃−2. Immediately, by (24) we note that c−2 = −h4.

Similarly to the other cases we must impose the condition of continuity of the functions: g−2(t
∗∗) =

g−1(t
∗∗) = c̃

k̃
. It follows that h4

t∗∗
+ c̃−2 = h2 ln t

∗ + c̃−1, so c̃−2 = h2 ln t
∗ + c̃−1 −

h4

t∗∗
.

Also in this case decreasing depends upon the subject, so similarly to the case k = −1 one could
enrich the study by introducing a weight, in order to modulate the decreasing with the change in
the four socio-psychological factors.

2.8. The resting state

When a task performed at a time t does not involve the activity of the cerebral areas (or area)
which the nodes i and j belong to, then α(i, j, t) = 0, since the correlation between the activities of the
interested areas vanishes. In this case our model provides

W (i, j, t) = β(i, j, tfix) exp(−η(t)de(i, j)) ∝ exp(−η(t)de(i, j)).

Comparing with 1 this shows that the functional connectivity between nodes i, j reduces to the prob-
abilistic weight related to the structural connectivity. Moreover, in the typical situation of the resting
state we have, independently of t, α(i, j, t) = 0 for each i, j ∈ V . In this case due to (10), (12) and to
Remark 2, our model provides the typical growth laws for the structural connectivity employed in the
literature.

3. Model validation through simulation with synthetic data

In order to give an idea on the potential usefulness of our model, we implemented a simulation about
the change in time of the edge weights of the cerebral networks. We made use of softwares Matlabr,
Excelr and GephiTM to generate our analysis.
We focused on one healthy subject taking part to a particular cognitive test (e.g. a saccade test6) and
we computationally evaluated both his/her cerebral network and the most significative topological and

6Saccade tests are often involved in decision making processes.
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physical metrics in different periods of his/her life.
We considered the six periods introduced in the previous sections, then we identified, for any of this
“macro” period two or more most representative times. We emphasize that we fixed particular times in
subject’s life by following neurological observations in literature. For example, we chose t = 7 years in
Period1 since it has been detected in children aged from 7 years, and upward [11], [32], that the brain
reveals a presence of a small-world modular organization. The final step was devoted to compute the
average of some network metrics. We wish to remark that this is just a choice, since, of course, many
other kinds of statistical approaches could be considered.

3.1. Expected results

The reader will note we basically work with random matrices7, so we expect the application of our
model on healthy subjects gives the values of the most significative topological and physical metrics
reflecting their general mean values. In other words, for example, we expect that the Average Clustering
Coefficient is close to 0.5 since it ranges from 0 to 1. Similarly, in consideration that the Average Degree,
in a graph of N nodes, assumes a value between 0 and N − 1, it is expected its value is nearly 8.5, since
in our study we worked with graphs on 18 nodes.

Finally we expect to get information on the graph order as well as the density of connection by
means of the values of the Average Path Length and Graph Density. We recall that the Average Path
Length is a value between 1 and the graph diameter8, while Graph Density measures how close the
network is to a complete graph. A complete graph has all possible edges and density equal to 1, so
we expect that its value is 0.5 or so. Correctness of expected results reflects in validate the hypothesis
of working with healthy subjects, i.e. not affected by neuropathologies that could change the values
proper of the topological metrics by deviating them from their mean values.

3.2. Procedure

We started by fixing the number of nodes representing different cerebral areas, assumed to be 18,
and the value of threshold to select the entries of the matrices. We generated in a random way the
matrix of wiring anatomical Euclidean distances of nodes, whose entries are positive numbers ranging
from 0 to 10. This choice comes from the simple consideration that the anatomical evolution between
birth and adult age undergoes dramatic changes. In a neuroscientific analysis it should be taken into
account the fact that the cerebral anatomical distances vary with time. Anyway, this makes sense with
real/experimental data, so lies a bit outside of our aim, i.e. supplying the reader with a possible useful
procedure to evaluate functional connectivity strongness in healthy subjects. So, we considered the
connectivity matrix as constant throughout the life, this matrix should be thought of as a “lifelong
average matrix”. We decided to generate its entries from 0 to 10 basing on the paper by Supekar,
Musen and Menon [32], where they analyzed the functional connectivity versus wiring distance analysis

7In particular we generated the matrix of the anatomical distances as a matrix with random elements uniformly
distributed on the interval (0, 10), while the functional matrix as a matrix with normally distributed pseudo-random
elements having zero mean and variance one. This is because its entries reflect the indices of correlations, that may be
positive or negative ranging from −1 to 1.

8Connected nodes have graph distance 1. The diameter is the longest graph distance between any two nodes in
the network, i.e. how far apart are the two most distant nodes. Two measures derive from the distance: Betweenness
Centrality [4] and Closeness Centrality [27].
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using Euclidean distance instead of DTI-based wiring distance. Their results showed that functional
connectivity between more proximal anatomical regions in Euclidean space was significantly higher in
children, whereas functional connectivity between more distal anatomical regions in Euclidean space was
significantly higher in young-adults (p < 0.0001, where p is the the p-value). In particular they found
that the mean wiring distance of the connections that showed higher correlation values in young-adults,
compared to children, was 63.09mm, while the mean wiring distance of the connections that showed
higher correlation values in children, compared to young-adults, was 54.12mm. They considered the
connections that showed higher correlation values, so since we are interested also in areas both with
lower correlation values, and not necessarily anatomically close each other, we fixed the interval going
from 0 to 10.

Concerning the matrix of functional connections, we operated in a different way. This time the
entries where both positive and negative to represent positive and negative correlations between nodes
(cerebral areas) activities.

Since the matrix of functional connections depends on a particular cognitive test, only specific areas
are always activated. Then, in order to reproduce a task, we made the assumption that three nodes were
always active throughout the life, whenever the subject performed the experiment. With the purpose
of reckoning that the activation is supposed to decrease with age, we calculated the magnitude of the
activations as a function of the age; for example areas such as FEF (Frontal Eye Field), SC (Superior
Colliculus) and LIP (Lateral Intraparietal area) are involved in the signal transformations from cerebral
cortex to superior colliculus for the generation of saccades during a decision making process.

The matrices of anatomical distances and functional connections, for any selected time, have the
principal diagonal equal to zero since a node is not allowed to interact with itself.

It is then possible to calculate the exponent of equation (3) and apply a threshold that, according
to the choices usually done in the available literature, we fixed equal to 0.3. It was crucial to set the
values of η and g(t), where t is a reference time belonging to a particular period of time. We decided to
choose η = 8, a typical value for macaques [18], since, as far as we know, it does not exist a value of η
for human beings. In order to evaluate the g’s in different times we need, as a first step, to calculate the
constants h0, h1, h2, h3, h4. We did that by imposing the continuity condition between the functions
W (i, j, t) characterizing the pairwise consecutive periods. Once the constants h0, h1, h2, h3, h4 are
known, it is immediate to compute the expressions of g0, g1, g−1, gk̃ and g−2.
For a fixed t the function g(t) corresponds respectively to g0(t), g1(t), g−1(t), gk̃(t) and g−2(t), according
to the period where t falls.
We chose one, two or more most representative values belonging to a selected range of time inside
Periods 0, 1, 2, 3, 4.
In order to nail the evaluation of W (i, j, t) we need to know β(i, j, tfix), which we showed to have a first
order approximation equals to the product degi degj of the degrees of nodes i and j, respectively.
For any considered time (corresponding to a particular age) we gave the graph representation of the
cerebral functional network for a healthy subject, the most representative topological properties of the
network, and their averages. In detail, we identified five network statistics of particular neurobiological
interest: the average degree, the graph density, the modularity, the average clustering coefficient and
the average path length. For their meaning we invite the readership to refer to the box below.
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Most significative topological and physical metrics in this study.

The average degree of a graph G = (V ;E) is the measure of how many edges are in E compared to
the number of vertices in V . Because each edge is incident to two vertices, and counts in the degree of
both vertices, the average degree of an undirected graph is 2 |E|

|V |
, where |E| and |V | are the cardinality

of the set of edges and nodes respectively. The average degree is a way to classify nodes and may
influence graph measures (see for example [39]).

The density of a graph G computes how many edges are in E compared to the maximum possible
number of edges between vertices in V . The graph density calculation changes according as the graph
is undirected or direct:

• An undirected graph can have at most |V | (|V |−1)
2

edges, so its the density is 2 |E|
|V | (|V |−1)

.

• A directed graph can have at most |V | (|V | − 1) edges, so its the density is |E|
|V | (|V |−1)

.

It is crucial to remark that graph density is a function of the threshold used to generate the matrix
η(t) de(i, j)− α(i, j, t). In fact, as shown in [9], different thresholds generate graphs (or subgraphs) of
different sparsity or connection density. It is evident how graph density plays a fundamental role in
Neuromathematics since network properties are often explored over a range of plausible thresholds.

Modularity is the characteristic of a system whose components can be separated, or integrated,
without a change in their own properties or those of the rest of the system. A system lacks modularity
when a tweak to one of its components affects the functioning of others. In other words modularity
describes how the network is compartmentalized into sub-networks. A high modularity score indicates
a sophisticated internal structure. Basically modularity is a quality measure for graph clusterings.
In order to understand the neurobiological meaning of modularity the reader can refer to [10],
[22], [23], [28] where it is evident how modularity, as well as clustering coefficient, are related topo-
logical properties that are linked to specialized or segregated information processing in brain networks.

Average clustering coefficient. In undirected networks, the clustering coefficient Cn of a node n

is defined as Cn = 2 en
kn(kn−1)

, where kn is the number of neighbors of n, and en is the number

of connected pairs between all neighbors of n [3]. In directed networks, the definition is slightly
different: Cn = en

kn(kn−1)
. In both cases, the clustering coefficient is the ratio Nn

Mn
, where Nn is the

number of edges between the neighbors of n, and Mn is the maximum number of edges that could
possibly exist between the neighbors of n. The clustering coefficient of a node is always a number
between 0 and 1. The average clustering coefficient (also known as network clustering coefficient)
is the average of the clustering coefficients for all nodes in the network. Here, nodes with less
than two neighbors are assumed to have a clustering coefficient of 0. The clustering coefficient is
considered to be a measure of the local connectivity or “cliqueness” of a graph [7]. High clustering is as-
sociated with robustness of a network, that represents the resilience against (random) network damage.

Average path length is defined as the average number of steps along the shortest paths for all possible
pairs of network nodes. It is a measure of the efficiency of information and of the order of the network.
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4. Discussion

Let us now consider the six periods of reference and select in any of them two or more times (of
course with the exception of the Neural Big Bang), then we perform the analysis.
In the following a global view about the change in time of the functional brain network is shown.

(a) Period 0. Network for t=0y

(b) Period 1. Network for t=3y (c) Period 1. Network for g=7y (d) Period 2. Network for t=10y

(e) Period 2. Network for t=16y (f) Period 2. Network for t=20y (g) Period 2. Network for t=25y
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(h) Period 3. Network for g=35y (i) Period 3. Network for g=42y (j) Period 3. Network for g=50y

(k) Period 3. Network for g=60y (l) Period 4. Network for g=70y (m) Period 4. Network for
g=80y

(n) Period 4. Network for g=85y

Figure 1: Global view about the change in lifetime of the functional neural networks.

The following table summarizes the most important topological properties characterizing the func-
tional brain networks for any selected period.
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Networks Statistics
Time (years) N. of nodes N. of edges Avg. Degree Graph Density Modularity Avg. Clustering Coefficient Avg. Path Length
0 18 153 8.5 0.5 0.056 0.495 1.5
3 18 155 8.611 0.507 0.066 0.549 1.493
7 18 149 8.278 0.487 0.147 0.595 1.593
10 18 154 8.556 0.503 0.083 0.513 1.516
16 18 148 8.222 0.484 0.127 0.553 1.516
20 18 152 8.444 0.497 0.077 0.515 1.503
25 18 150 8.333 0.49 0.086 0.565 1.51
35 18 151 8.389 0.493 0.071 0.531 1.507
42 18 161 8.944 0.526 0.015 0.498 1.474
50 18 149 8.278 0.487 0.147 0.595 1.513
60 18 157 8.722 0.531 0.037 0.51 1.487
70 18 149 8.278 0.487 0.147 0.595 1.513
80 18 151 8.389 0.493 0.092 0.537 1.507
85 18 150 8.333 0.49 0.086 0.504 1.529
Avg. 18 152 8.448 0.499 0.091 0.540 1.512

Table 1: Overview about the neural networks statistics.

Table 1 shows a global view about the statistics concerning the considered topological and physical
metrics. As already mentioned in the previous section we generated connectivity (and consequently
adjacency) and functional matrices either with random entrances uniformly distributed on the interval
(0, 10), or with normally distributed pseudo-random entries having zero mean and variance one, respec-
tively. So we expect some metrics, whose values range from 0 to 1, could get a value close to 0.5. By
casting a glance over the Table 1, it is immediate to note that this is the case for Graph Density and
Average Clustering Coefficient. Interestingly we observe that the values of Modularity show fluctua-
tions. This could be unexpected but we recall that we used synthetic data and that we worked with 18
nodes, so it is reasonable to think that the smaller the number of nodes the greater is the fluctuation of
modularity values. The average path length is 1.5, a small value compared to 17, that is not a surprise
since randomness is reflected in short part length. In addition this small value is close to 1, the value
proper of complete graphs. We could lead to speculate that a number of cerebral areas in a healthy
subject undergoing a specific task (for example a saccade test), on average, are well connected.
Looking at figures, it is apparent that at age 16 there are several edges between the same nodes with
the same weight. This could means that, at that time, there is not a net effective connectivity, i.e.
the causal influence of one neuronal system over another. This could be a possible neurobiological
explanation of some irrational behaviors in adolescence (for example in risk taking, as show for instance
in [30]). Another interesting information regards the average degree. We found that average degree is
8.448. The degree spans a range of value going from 0 to N − 1, where N is the number of nodes, in
our case N = 18, so the average is 8.5 which is very close to the value we found.

Furthermore, it is worth making a comparison between the average degree, and the degree of the
three nodes we decided to keep active over the lifespan when the subject performs a particular test (in
our case we supposed to consider a saccade test where FEF, LIP, SC are active areas).
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Total Degree
Time (years) FEF LIP SC
0 19 17 15
3 19 13 19
7 17 15 17
10 19 19 19
16 16 16 16
20 18 18 18
25 16 18 16
35 19 19 19
42 23 20 18
50 15 15 17
60 17 19 13
70 17 15 17
80 17 17 19
85 14 19 15
Avg. 17.571 17.143 17

Table 2: Degree of FEF (Frontal Eye Field), LIP (Lateral Parietal Area) and SC (Superior Colliculus) in different times
of life. Degree is the sum of In-Degree and Out-Degree.

Table 2 exhibits a clear result: the areas always activated during a saccade test (FEF, LIP and SC),
shows a degree higher than the average degree, which is equal to 8.448 (cf. Table 1). This is a further
validation of the correctness of our model since we expected that these three areas are more connected
than the others, due to higher amount of information they must elaborate.

This kind of analysis could be helpful in view of applications to “real” data, i.e. coming from
experiments, since a comparison would offer the opportunity to inquire on the brain’s architecture. For
example interesting information on small-world organization could be obtained, in fact our approach
gives information on the random organized networks.

5. Conclusions

In this paper we dealt with Graph Theory and Neuroscience. After surveying the state of the art
we proposed a quantitative approach for the evaluation of the edge weights of a graph representing
the functional connectivity of the neural network. In our model the weight function W (i, j, t) depends
explicitly on the time, which allows a unified vision of different periods of life, where changing in cognitive
processes and behavior may happen. Moreover, we suggest a refinement of the probability of the edge
formation that is usually involved in the present literature [1], [18]. It provides a rigorous mathematical
justification of the usual growth models employed in studying the structural connection, and proposes
how finer choices could be done in possible deeper investigations. In particular, we emphasized a
double role played by the notions of distance, which can assume an Euclidean or a discrete meaning.
Analogously, the time t appears both from a local and a global perspective.
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Notably, we remark that equation (3), in the resting state, leads to the probability of connection
between pair of nodes, representing for example cerebral regions, as in [18], or [40], despite the fact that,
in general, W (i, j, t) is not a distribution of probability. When the brain is not in the resting state, then
W (i, j, t) changes the functional connectivity depending on the specific task submitted to the volunteer.
Further, in our approach there is not any experimental constraint, so it may be applied to different
brain survey techniques, e.g. fMRI, MEG, EEG, etc. The function W (i, j, t) could contribute to shed
more light in understanding how, in different periods of life, the functional graph and its topological
characteristics change.

Finally in order to check the correctness of our model a computational analysis was performed. Its
aim was to simulate the change in time of the functional neural networks throughout the life. We
assumed to perform the analysis on healthy people and what we found, by means of synthetic data,
is a validation of the consistency of the model we have proposed. Of course there are several different
statistics that could be performed. For example the threshold could be changed, or a sample of healthy
(or with neural pathologies) subjects, rather than only one single subject, could be consider too. We
hope this could help the analysis of experimental data. Next faithful step will be apply our model to
the study of functional connectivity in people affected by neuropathologies, so to point out anomalies
in topological and physical metrics, and to highlight deviation from neural architecture like small-world
(with respect of healthy subjects). We feel that the proposed model could be of help in the field of
cerebral brain network analysis.
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