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A nonlinear Steklov problem arising in corrosion modeling

C.D. Pagani, D. Pierotti, G. Verzini and A. Zilio

Abstract

We investigate the existence of pairs (λ, u), with λ > 0 and u harmonic function in the unit ball
B ⊂ R

3, such that the nonlinear boundary condition ∂νu = λ sinhu holds on ∂B. This type of
exponential boundary condition arises in corrosion modeling (Butler-Volmer condition). We prove
existence of global branches of nontrivial solutions in the framework of analytic bifurcation theory
and investigate their properties both analytically and numerically.

1 Introduction

In a simple mathematical model of electrochemical corrosion, i.e. a deterioration of a metal by
electrochemical reaction with its environment, a (suitably defined) galvanic potential is represented
by a function u harmonic in a domain Ω ⊂ R

N whose boundary is partly electrochemically active and
partly inert. In the inactive boundary region the current density flow J · ν (ν is the outward unit
normal to ∂Ω) is of course zero, but in the active part it is modeled (by interpolating experimental
data) by a difference of two exponentials according to the so-called Butler-Volmer formula :

(

J · ν
)

(x) = λµ(x)
(

eβu(x) − e−(1−β)u(x)
)

+ g(x), x ∈ ∂Ω (1.1)

Here β ∈ (0, 1) is a constant depending on the constituents of the electrochemical system, the function
µ(x) distinguishes between the active and the inert boundary regions (typically µ is the characteristic
function of some subset ⊆ ∂Ω), λ is a real parameter which may take negative as well as positive
values and g is an externally imposed current (see [1] and references therein for a detailed discussion).
Assuming µ(x) ≥ 0 and not identically vanishing, the resulting mathematical problem is quite different
in the two cases, λ negative or positive; for, the corresponding linearized problem

∆u(x) = 0 in Ω

∂νu(x) = λµ(x)u(x) + g(x) on ∂Ω (1.2)

is a classical elliptic problem with a Robin (or mixed Neumann-Robin) boundary condition if λ < 0,
while for λ > 0 it is a Steklov problem. We stress that in the latter case, there are nontrivial solutions
of the problem with g = 0 (Steklov eigenvalue problem).
Another quite sensible parameter of the problem is the dimension N of the space. In fact, if N = 2 the
nonlinear problem is subcritical in the energy spaceH1(Ω) (thanks to the Moser-Trudinger inequality);
on the other hand, if N ≥ 3 (and therefore in the physically relevant case N = 3) the problem is
supercritical (see the discussion in [2]). The two-dimensional case has been considered by various
authors [1], [3], [4], [5], [6], [7].
The literature concerning the supercritical case is much more lacking and seems to take into consi-
deration mainly the case λ < 0 (that is, with the Robin boundary condition; see, e.g., [8]). A first
attempt to investigate the three-dimensional problem with λ > 0 (and vanishing external current g)
is in [2]. For the reader’s convenience, let us summarize with few details the main results obtained in
[2].
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The authors discuss the following problem: find a (non identically vanishing) function u in a bounded
domain Ω ⊂ R

3 with Lipschitz boundary, satisfying the system

∆u(x) = 0 in Ω

∂νu(x) = λµ(x) sinh[u(x)] on ∂Ω (1.3)

where λ > 0 and µ is a non negative function in L∞(∂Ω).
By observing that the above problem has the line of trivial solutions {(λ, 0) |λ ∈ R}, they look for
bifurcation solutions. By applying classical results of Bifurcation Theory [9], [10], the authors prove
that, for every eigenvalue κ of the linearized problem

∆u(x) = 0 in Ω

∂νu(x) = λµ(x)u(x) on ∂Ω (1.4)

(which is a classical Steklov eigenvalue problem [11]) the pair (κ, 0) is a bifurcation point for (1.3).
Further results on global existence are proved by assuming specific symmetries of the domain. By
restricting the study of the problem (1.3) in the unit ball of R3 and taking µ(x) ≡ 1, they prove the
existence of a branch of global solutions bifurcating from the first eigenvalue λ = 1 of the linearized
problem.
In the present paper, after recalling some general results about existence of global solutions (section
2) the analysis of the branch bifurcating from the first eigenvalue is expanded (section 3) and some
new properties (local analiticy, blow up of the solutions,..) as well as open problems are presented. In
section 4 we describe some numerical results illustrating the properties of the previously investigated
bifurcation branch.

2 Global existence of the bifurcation solutions

Hereafter, we consider the problem (1.3) with µ non negative and bounded. For more details and
some proofs of the results of this section, see [2]. As we will see below, it is convenient to search three
dimensional solutions in the Hilbert space H3/2(Ω).
Let f ∈ L2(∂Ω) satisfy

∫

∂Ω f = 0; define the Neumann to Dirichlet map

Gf = v0|∂Ω (2.1)

where v0 is the unique harmonic function in Ω with Neumann datum f and such that
∫

∂Ω µv0 = 0.

By known regularity results [12] we have v0 ∈ H3/2(Ω) and therefore Gf ∈ H1(∂Ω).
Let us define the subspace

Ḣ1(∂Ω) =
{

φ ∈ H1(∂Ω),

∫

∂Ω
µφ = 0

}

(2.2)

and the operator

G(λ, φ) = λG
(

µ sinh[φ+ s(φ)]
)

(2.3)

where

s(φ) = − tanh−1
(

∫

∂Ω µ sinh(φ)
∫

∂Ω µ cosh(φ)

)

=
1

2
log

(

∫

∂Ω µe−φ

∫

∂Ω µeφ

)

(2.4)

By known estimates on two dimensional manifolds, the exponentials e±φ lie in Lp(∂Ω) for every p ≥ 1;
moreover, by the definition (2.4) the argument of G at the right hand side of (2.3) has vanishing integral
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on ∂Ω. Then, by standard calculations one can show that the operator G(λ, ·) is a C1 map from Ḣ1(∂Ω)
in itself. Assume now that φ solves the functional equation

φ = G(λ, φ) = λG
(

µ sinh[φ+ s(φ)]
)

(2.5)

Then, the unique harmonic function u0 ∈ H1(Ω) such that u0|∂Ω = φ, satisfies the variational equation

∫

Ω
∇u0∇v = λ

∫

∂Ω
µ sinh[u0|∂Ω + s(u0|∂Ω)]v (2.6)

for every v such that
∫

∂Ω µv = 0.
Finally, by standard regularity results the function

u(x) = u0(x) + s(u0|∂Ω)

satisfies the boundary value problem (1.3). Then, the following result holds [2] :

Theorem 2.1. Let Ω ⊂ R
3 be a bounded domain with Lipschitz boundary and let µ be a bounded non

negative function on ∂Ω. Moreover, let κ be an eigenvalue of multiplicity nκ of the linear problem
(1.4). Then, there is an r0 > 0 such that for each r ∈ (0, r0) the bifurcation equation (2.5) has at least
nκ distinct pairs of non trivial solutions (λm(r),±φm(r)) ⊂ R × Ḣ1(∂Ω), m = 1, 2, ..., nκ; moreover,
as r → 0, λm(r)→ κ and ‖φm(r)‖H1(∂Ω) = O(r).

Thus, by the previous discussion, the nonlinear boundary value problem (1.3) has at least nκ distinct
pairs of non trivial solutions (λm(r),±um(r)) ⊂ R×H3/2(Ω), m = 1, 2, ...nκ for r ∈ (0, r0).
In the case of bifurcation from eigenvalues of odd multiplicity, a global result holds (see [10], Theorem
1.10). By denoting with S ⊂ R × Ḣ1(∂Ω) the closure of the set of the non trivial solutions (λ, φ) to
(2.5), we have

Proposition 2.2. Let κ be an eigenvalue of odd multiplicity of the linear problem (1.4) and let C be
the component (i.e. a closed connected subset maximal with respect to inclusion) of S to which (κ, 0)
belongs. Then, either C is unbounded or contains (κ̄, 0), where κ̄ 6= κ.

From now on, we consider the problem (1.3) with Ω ≡ B the unit ball of R
3 and µ ≡ 1. It is well known

that the eigenfunctions of the corresponding linear Steklov problem are the homogenous harmonic
polynomials of degree n and that the Steklov eigenvalues are precisely n, n = 0, 1, 2, ... Moreover,
the dimension of each eigenspace is 2n + 1. Hence, Proposition 2.2 applies to the component of S
containing (n, 0) for every n = 1, 2, ....
In a spherical domain it is natural to look for solutions with an axial symmetry with respect to a
diameter (note that there are no nontrivial radially symmetric solutions to (1.3) in the ball). By
suitably choosing the coordinate system, we may consider solutions symmetric with respect to the z
axis, i.e. solutions which are constant along the parallel lines of the sphere; in spherical coordinates,
they will only depend on the distance r =

√

x2 + y2 + z2 from the origin, and on the polar angle θ.

Let us denote by H
3/2
ax (B) the subspace of the functions v ∈ H3/2(B) with the above axial symmetry;

the boundary traces v|∂B with vanishing integral on the sphere will belong to a subspace of (2.2)
denoted by Ḣ1

ax(∂B). Now, by rotational invariance of the Laplacian, by the symmetry of the Neumann
condition on the sphere and by uniqueness of the solution to the Neumann problem, one can check
that the operator G(λ, ·) defined by (2.3) maps Ḣ1

ax(∂B) in itself. Moreover, the (non constant) axially
symmetric eigenfunctions of the Steklov problem in the ball are those harmonic polynomials which
(in polar coordinates) are independent of the azimuthal angle, that is rnPn(cos θ), n = 1, 2, ... where

3



the Pn are the Legendre polynomials. The restrictions of these eigenfunctions to the spherical surface
span the subspace of axially symmetric, zero mean functions of L2(∂B).

We now define axially symmetric φ ∈ Ḣ1
ax(∂B) and u0 ∈ H

3/2
ax (B) as in (2.2) and (2.6) respectively;

then (see [2], section 4) we find nontrivial solutions (λ, u) of (1.3) bifurcating from (n, 0), n = 1, 2, ...

and such that u ∈ H
3/2
ax (B). We stress that there is a unique (normalized) axially symmetric eigen-

function for every eigenvalue n, so that all the eigenvalues of the linear problem in H
3/2
ax (B) are simple.

Thus, we get

Proposition 2.3. Let B be the unit ball and let µ ≡ 1. Then, for any n = 1, 2, ... there is a component
Cn ⊂ R × Ḣ1

ax(∂B) of S which meets the point (n, 0); each Cn is either unbounded or meets (m, 0),
with m 6= n.

Remark 2.4. It is worthwhile to recall the following properties of the solutions bifurcating from
a simple eigenvalue λ0 (see [13], [10], [14]): the set of nontrivial solutions near to (λ0, 0) consists
precisely of a smooth (even analytic in our case, see below) curve (λ(s),Φ(s)), where s ∈ I, an open
neighborhood of the origin. Moreover, Φ(s) = sv0 + o(s), where v0 is an eigenfunction corresponding
to λ0.
Hence, by Theorem 2.1, it follows that near to (n, 0) each component Cn defined in the above propo-
sition is represented by a curve (λ(s),Φ(s)) such that Φ(−s) = −Φ(s) for s small.

Since G : R × Ḣ1
ax(∂B) → Ḣ1

ax(∂B) is real analytic, further properties of S can be deduced in the
framework of the analytic bifurcation theory due to Dancer (see [15, 16, 17]).

Proposition 2.5. Let B be the unit ball, µ ≡ 1, and, for any n = 1, 2, ..., let Cn denote the component
of S which meets the point (n, 0), according to Proposition 2.3. Then there exists a curve Cn with the
following properties:

1. Cn = {(Λ(s),Φ(s)) : s ∈ [0,∞)}, where (Λ,Φ) : [0,∞)→ R× Ḣ1
ax(∂B) is continuous;

2. (Λ(0),Φ(0)) = (n, 0), Cn ⊂ Cn;

3. the set Σn = {s ≥ 0 : ker (Id− ∂φG(Λ(s),Φ(s))) 6= {0}} has no accumulation point;

4. at each point, Cn has a local analytic re-parameterization (this holds, in particular, at each point
of Σn);

5. one of the following occurs:

(a) ‖(Λ(s),Φ(s))‖ → ∞ as s→∞ (which is much stronger than the claim that Cn is unbounded
in R× Ḣ1

ax(∂B));

(b) Cn is a closed loop.

In particular, we can assume without loss of generality that (Λ,Φ) is C∞; furthermore, outside the sin-
gular set Σn, which is discrete, φ (and hence its harmonic extension u) can be smoothly parameterized
with respect to λ along Cn.

The previous result is simply [18, Theorem 9.1.1] written in our context.

Remark 2.6. Since for every solution (Λ(s),Φ(s)) there is another solution (Λ(s),−Φ(s)), we can
define the curves

C̃n = {(Λ(−s),−Φ(−s)) : s ∈ (−∞), 0]}
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By Remark 2.4 above, the union of C̃n with Cn form a continuous, locally analytic curve, which in a
neighborhood of the origin takes the form

(

Λ(s),Φ(s)
)

=
(

n+ o(1), svn + o(s)
)

where vn is an eigenfunction corresponding to the eigenvalue n.

It would be interesting to establish which of the alternatives of the previous propositions actually
holds. For the analogous two-dimensional problem in a disk, the results obtained by variational
methods seem to indicate that, in the (λ, ‖φ‖) plane, the branches of solutions outgoing from (n, 0)
become asymptotic to the λ = 0 axis. Actually in [3] an explicit family of solutions of problem (1.3)
in the case of the unit disk and for µ = 1 is constructed. These solutions bifurcate from the Steklov
eigenfunctions of the disk and become asymptotic to the λ = 0 axis, blowing up at equidistant points
on the boundary (for any smooth two-dimensional domain, it has been proved in [7] that there are at
least two distinct families of solutions which for λ → 0 exhibit the same qualitative behaviour of the
explicit solutions in the disk).
The analysis of the three dimensional problem, even in the case of axially symmetric solutions in the
unit ball (with µ ≡ 1) is much more complicated; hence, we will study in detail the component of the
set of nontrivial solutions bifurcating from (1, 0).

3 Analysis of the first branch

We first prove that we can further restrict our problem to the subspace of the axially symmetric
functions u (in the unit ball) which are odd with respect to z; such subspace only contains the
components of S which meet the points (2k + 1, 0), k = 0, 1, 2, ...
In spherical coordinates, we may represent an axially symmetric function u by u = û(r, cos θ); by
putting cos θ = t, −1 ≤ t ≤ 1, we get u = û(r, t). Then, if u is odd with respect to z, we have
û(r,−t) = −û(r, t). We still denote by φ the traces φ = û(1, ·).
Now, let V be the subspace of the functions φ ∈ Ḣ1

ax(∂B such that φ(−t) = −φ(t); by the invariance
of the Laplace operator with respect to the reflection z 7→ −z and by the symmetry of the Neumann
condition on the sphere, it follows that any solution of the Neumann problem in the ball with boundary
data in V is axially symmetric and odd with respect to z.
Hence, we can further restrict the functional formulation of the nonlinear equation (2.5) to the subspace
V . Note that s(φ) = 0 for every φ ∈ V (see equation (2.4)) so that u = u0 for every solution of (1.3)
defined below (2.6). Then, we can rephrase Propositions 2.3 and 2.5 in this context.

Proposition 3.1. Let B be the unit ball and let µ = 1. Then, for any k = 0, 1, 2, ... there exist a
curve Dk, enjoying the properties of the curve Cn described in Proposition 2.5, and a connected set
Dk, enjoying the properties of the set Cn described in Proposition 2.3, such that

(2k + 1, 0) ∈ Dk ⊂ Dk ⊂ S ⊂ R× V.

The main advantage of this restriction is that now we can describe some finer properties of the first
branch. In fact, we can state

Proposition 3.2. Let λ > 0, u ∈ V be such that (λ, u|∂B) ∈ D0 and u 6= 0; we may assume that
u > 0 at some point of the upper half-sphere ∂B ∩{z > 0} (otherwise, take −u). Then, u|B∩{z>0} > 0
and (by writing as before u = û(r, cos θ) = û(r, t) with r, θ, spherical coordinates) the map t 7→ û(r, t)
is strictly increasing for every r > 0. Furthermore, λ < 1.
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Proof. By Theorem 4.1 of [2] we can assume that any solution to problem (1.3) in a ball (and with
smooth µ) is smooth up to the boundary. In the following, we will denote by u an axially symmetric
solution as a function of the cylindrical coordinates that is

u = u(ρ, z)

where ρ =
√

x2 + y2. We have

û(r, t) = u
(

r
√

1− t2, rt
)

(3.1)

Let us now define

v̂(r, t) =
1

r
ût(r, t) (3.2)

By (3.1) we have

v̂ = uz −
t√

1− t2
uρ = uz −

z

ρ
uρ ≡ v(ρ, z) (3.3)

Then, by applying to v the Laplace operator in cylindrical coordinates

∆v = vρρ +
1

ρ
vρ + vzz

we find after some calculations

∆v = −∆
(z

ρ
uρ

)

= −2

ρ
∂ρ

(

uz −
z

ρ
uρ

)

= −2

ρ
vρ

Then, the function v solves the equation

vρρ +
3

ρ
vρ + vzz = 0 (3.4)

for r =
√

ρ2 + z2 < 1. But the left hand side is the expression of the Laplace operator in cylindrical
coordinates in 5 dimensions applied to an axially symmetric function. Hence, v is harmonic (and
axially symmetric) in the unit ball B̃ ⊂ R

5.
Moreover, by definition (3.2),

v̂r = −
1

r2
ût +

1

r
ûtr = −

1

r
v̂ +

1

r
∂tûr

and by recalling (1.3) we find on the unit sphere

v̂r(1, t) = −v̂(1, t) + ∂t
(

λ sinh û(1, t)
)

= −v̂(1, t) + λ cosh û(1, t) v̂(1, t)

that is
v̂r(1, t) =

(

λ cosh û(1, t) − 1
)

v̂(1, t) (3.5)

Hence, v is an axially symmetric solution of the linear eigenvalue problem (1.4) in a ball Ω̃ ⊂ R
5, with

weight µ(x) = λ coshu(x)− 1 (and eigenvalue 1).
By our assumptions on u, we can write in a neighborhood of (1, 0) (see Remark 2.4)

(

λ, u
)

=
(

1 + ρ(ǫ), ǫ(z + w(ǫ))
)

where ǫ lies in some interval [−ǭ, ǭ] and ρ, w are such that:

1. ρ : [−ǭ, ǭ]→ R is continuous and ρ(0) = 0
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2. the map ǫ 7→ w(ǫ) ≡ w(ǫ;x, y, z), (x, y, z) ∈ B̄, is continuous from [−ǭ, ǭ] to C1(B̄) and w(0) = 0

Then we can write

v =
1

r
ut = ǫ(1 + ŵt(ǫ)/r)

where as before we set ŵ(ǫ) ≡ ŵ(ǫ; r, t) = w(ǫ; ρ, z). The function ŵt(ǫ)/r is harmonic in the unit ball
B̃ ⊂ R

5 and has the same normal derivative as v on the boundary ∂B; it follows by (3.5) that such
normal derivative is uniformly vanishing for ǫ→ 0. Then, limǫ→0 ŵt(ǫ)/r = c; now, by choosing r = 1
and recalling that ŵ(ǫ)→ 0 in C1(B̄) for ǫ→ 0, we conclude c = 0.
From the above result it follows that v > 0 for ǫ small enough. We claim that v > 0 all along D0;
if not, by continuity there is a pair (λ, u) ∈ D0 such that v ≥ 0 and v(x) = 0 for some x ∈ ∂B̃ (the
boundary the unit ball of R5). Then, by (3.5) we get vr(x) = 0 , contradicting the Hopf principle.
Since ût = rv, we find that t 7→ û(r, t) is strictly increasing for every r > 0. But û(r, 0) = 0, so that
û > 0 for t > 0, i.e. u > 0 on the upper half ball. Finally, by integration of both sides of (3.5) we get

∫

∂B
(λ coshu − 1) v = 0

which is possible for a positive v only if λ < 1. 2

Theorem 3.3. The set D0 is unbounded; more precisely, 0 < Λ(s) ≤ 1 and ‖Φ(s)‖L∞(∂B) → ∞ as
s→∞, where Φ(s), s ∈ [0,+∞) are the solutions defined in Proposition 2.5.

Proof. By Proposition 2.5 either D0 is unbounded, or it is a closed loop; in the latter case, by Remark
2.4 there exist two solutions of opposite sign at the beginning and at the end of the loop near to (1, 0);
since the nontrivial solutions in D0 only vanish at z = 0 (by Proposition 3.2) it is readily checked that
D0 must intersect the λ axis at some other point, which is necessarily (2j + 1, 0) for some j > 0.
By recalling that Φ(s) = u|∂B with u harmonic function (axially symmetric and odd with respect to
the reflection z 7→ −z) it now follows by continuity (see [2]) that there exists a (Λ,Φ) ∈ D0 ⊂ D0,
Φ 6= 0 such that Φ = û(1, t) (see (3.1)) and ût(1, t) = 0 at some point t ∈ (−1, 1) contradicting the
positivity of (3.2) on D0.
Thus, we conclude that D0 is unbounded; but we know from Proposition 3.2 that λ is bounded along
D0 ⊃ D0; then, again by Proposition 2.5, we have ‖Φ‖H1(∂Ω) → ∞ along D0. Hence, as remarked in
[2], we also have that the uniform norm ‖Φ‖L∞(∂Ω) becomes arbitrarily large; we stress that, due to
Proposition 3.2, the sup norm of Φ is given by the value u(0, 0, 1) where u is defined as above. 2

Before investigating the limiting behaviour of the solutions with increasing supremum norm along D0,
we point out some further properties of such solutions. Let us introduce the energy

Eλ(u) =
1

2

∫

B
|∇u|2 dx− λ

∫

∂B
(coshu− 1) dσ (3.6)

and assume that (Λ(s), u(s)) is the solution to (1.3) corresponding to the point (Λ(s),Φ(s)) ∈ D0; by
denoting with u′, Λ′. the derivatives with respect to s, we can compute

dEλ(u)
ds

=

∫

B
∇u∇u′ dx−Λ

∫

∂B
(sinhu)u′ dσ −Λ′

∫

∂B
(coshu− 1) dσ = −Λ′

∫

∂B
(coshu− 1) dσ (3.7)

the last equality following by the weak form of (1.3). Since the last integral is nonnegative, it follows
by (3.7) that the energy is decreasing for Λ′ ≥ 0; in particular, if s /∈ Σ0 (see Proposition 2.5), we can
take Φ, and consequently u, smoothly dependent on λ in certain intervals contained in (0, 1). Then,
in every such interval Eλ(u) is strictly decreasing with respect to λ.
As it is suggested by numerical experiments (see below) in the 3 dimensional problem we have Σ0 6= ∅,
and Λ′(s) changes its sign along D0. It is an open problem to find whether Σ0 is a finite or infinite
discrete set.
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3.1 Blow-up analysis

The final part of this section is devoted to the asymptotic analysis of solutions with increasing supre-
mum norm along D0. Taking into account Proposition 3.2 and Theorem 3.3, we have that any
unbounded subset of D0 contains a subsequence (λj , uj |∂B), with uj harmonic in B, such that uj > 0
on B ∩ {x3 > 0} and

0 < λj < 1, max
B

uj(x) = uj(k) = Mj →∞ (3.8)

as j →∞ (here x = (x1, x2, x3), and k = (0, 0, 1) denotes the north pole of B).
We choose a sequence rj such that rj → 0 for j → +∞ and define the transformation

y =
k − x

rj
(3.9)

which maps B onto a sphere Bj (of radius r−1
j , center at y = r−1

j k and outer normal νj = rjy − k) in
the upper half plane y3 ≥ 0. Note that the the point k is mapped to the origin y = 0 and that the
sequence Bj exhausts R3

+.
Let us now define

vj(y) =
e−Mj

rj

[

Mj − uj(−rjy + k)
]

(3.10)

The functions vj are harmonic in Bj , positive and symmetric with respect to the y3 axis, with minimum
vj(0) = 0. Moreover, they satisfy the following boundary conditions

∂νjvj(y) = (rjy − k) · ∇yvj(y) =
e−Mj

rj
(k − rjy) · ∇yuj(−rjy + k)

= −e−Mj∂νuj(−rjy + k) = −λje
−Mj sinh(uj(−rjy + k)), y ∈ ∂Bj (3.11)

By the assumptions on uj we have

−λj

2

(

1− e−2Mj
)

≤ ∂νjvj(y) < 0

for every y ∈ ∂Bj ∩ {y3 < r−1
j } (the lower half of the spherical surface ∂Bj).

By the above estimate, one can infer that the sequence vj converges uniformly in every bounded set
of R3

+. Of course, the form of the limit problem depends on the choice of rj . By taking rj = e−Mj we
get from (3.10) and (3.11),

∂νjvj(y) = −λje
−Mj sinh(Mj − vj(y)) = −

λj

2

[

e−vj(y) − e−2Mj+vj(y)
]

. (3.12)

Then (via suitable projections of the lower half spheres Bj ∩{y3 < r−1
j } to the upper half space y3 > 0

and letting j →∞) we obtain the following limit problem

∆v = 0 in R
3
+

∂νv = −λ∗

2
e−v on R

2 × {y3 = 0} (3.13)

v = v(ρ, z), v ≥ 0 in R
3
+, v(0) = 0,

where λ∗ ∈ [0, 1] is an accumulation point for the sequence (λj). In this way, the study of the
asymptotic behaviour of D0 is related to the classification of the entire solutions of problem (3.13).
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Figure 1: plot of the numerical simulations for the bifurcation branch D0.

Remark 3.4. The function

v∗(y) =
λ∗

2
y3

solves Problem (3.13). Moreover, if λ∗ > 0 it has infinite Morse index.
Indeed, by writing the energy functional associated to the problem:

E(v) =
1

2

∫

R3
+

|∇v|2 − λ∗

2

∫

R2

e−v (3.14)

we have that v solves (3.13) if and only if

E′(v)[φ] =

∫

R3
+

∇v · ∇φ+
λ∗

2

∫

R2

e−vφ = 0 (3.15)

for every φ ∈ C1
0 (R

3) (not necessarily vanishing on R
2 × {y3 = 0}); therefore

E′′(v)[φ, φ] =

∫

R3
+

|∇φ|2 − λ∗

2

∫

R2

e−vφ2 (3.16)

and

E′′(v∗)[φ, φ] =

∫

R3
+

|∇φ|2 − λ∗

2

∫

R2

φ2. (3.17)
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Figure 2: plot of the first 4 eigenvalues of the Steklov eigenvalues problem ∂νv − λ(coshu)v = κv
(above), and of the bifurcation parameter λ (below), as functions of ‖u‖L∞(∂B) along D0. The turning
points on the branch correspond to the increasing of the Morse index of the solution.

Now, for any fixed η ∈ C1
0 (R

3), r > 0 and ξ ∈ R
3, we can choose φξ(y) = rη(ry + ξ), so that

E′′(v∗)[φξ, φξ] = r2
∫

R3
+

|∇η|2 − λ∗

2

∫

R2

η2 < 0 for sufficiently small r.

As a consequence, for any m ∈ N, one can easily find ξ1, . . . , ξm ∈ R
3 in such a way that Wm =

span {φξ1 , . . . , φξm} has dimension m and E′′(v∗) is negative defined on Wm.

It remains an open question whether Problem (3.13) admits other nontrivial solutions, apart from v∗,
and in such a case whether solutions with finite Morse index may exist. In case λ∗ > 0, the absence
of finite Morse index solutions to (3.13) would indicate the presence of infinitely many secondary
bifurcation points (turning points) alongD0. Such kind of behaviour is also suggested by the numerical
simulations we discuss in the next section.
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4 Numerical simulations

In this section we present and discuss the numerical scheme that was used in order to approximate
the bifurcation branches of problem (1.3). We then give some comments on the numerical bifurcation
diagram that we have obtained.
The mathematical literature concerning continuation methods is vast and it is not our aim to give
here a complete list of the possible solutions already available, we just refer the interested reader to
[19, 20] and to the references therein. As a matter of fact, the method we implemented can be traced
back to the large class of predictor-corrector methods, where in our case the predictor step is obtained
through a projection on a suitable space of solutions, while the corrector step consists in a time step
of a suitable parabolic flow.
From a previous numerical investigation it is clear that λ can not be used to parametrize the curves
of the bifurcation diagram, due to the non monotonicity of this quantity along these curves. Moreover
the fact that for any λ > 0 the set of trivial solutions (λ, 0) is also the stable branch discourages the
direct use of more classical methods, such as the standard parabolic flow. As a concluding remark, we
recall that even from the theoretical point of view, the branches of non trivial solutions are obtained
in the functional space Ḣ1(∂B), which is somehow unnatural from a numerical point of view. For
all these reasons, after preliminary numerical investigations we consider worthwhile to assume the
L∞(∂B) norm of the solution to be a possible parameter to describe the curve, as it has already been
shown that such norm is unbounded along any bifurcation branch.

Algorithm 1 (Continuation method)

1: initialize s as a small number and let α be a large positive constant
2: initialize (λ, u)← (1, sz)
3: repeat

4: set s← s+ ǫ
5: (γ, v)← (λ, u)
6: repeat

7: ṽ ← v

‖v‖L∞

· s ⊲ Predictor step

8: γ ←
∫

B1
|∇ṽ|2

∫

∂B1
sinh(ṽ)ṽ

9: Solve

{

∆v = 0 in B1(0)

∂νv + α(v − ṽ) = γ sinh(ṽ) on ∂B1(0)
⊲ Corrector step

10: until convergence with a prescribed tolerance
11: (λ, u)← (γ, v)
12: until blow-up

Remark 4.1. Similar results can be obtained also in the case of parameter the Ḣ1(∂B), even though
the resulting method seems less efficient in terms of convergence rate.

Let us point out that both the L∞(∂B) and Ḣ1(∂B) norms constitute an unnatural choice as pa-
rameters from a point of view of the numerical method used in the corrector step (step 9 in the
algorithm), which is discretized using its weak formulation in H1(B). As a particular consequence,
this makes the predictor step a priori unfeasible, as the set {u ∈ H1(B) : ‖u‖L∞(∂B) = s} (and
{u ∈ H1(B) : ‖u‖Ḣ1(∂B) = s}) is not closed in the topology of H1(B): this complicates the conver-
gence analysis, which is not carried out in the following.
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Remark 4.2. One may also try to use a more sophisticated algorithm, such as the Newton’s method.
As it turns out from numerical investigation, the Morse index of the solutions increases by one unit
at each turning point, but the negative eigenvalues of the linearized operator diverge rather rapidly
(see Figure 2). Any attempt we tried in stabilizing such algorithm led us to loose the convergence of
the original method, and for this reason we chose to focus our attention on a more stable, even if less
efficient, fixed point method.

Now we proceed with some comments on the numerical bifurcation diagrams. The plots are obtained
from the simulation data using the LATEX-graphics packages TikZ and pgfplots. To start with, as
we already mentioned, the L∞(∂B) norm of the solution is increasing along the branch essentially by
construction. Also the Ḣ1(∂B) norm appears to increase (Figure 1). On the other hand, other norms
are not monotone, and the simulations suggest that D0 may be bounded in H1(B) (Figure 4).
The energy

Eλ(u) =
1

2

∫

B
|∇u|2 dx− λ

∫

∂B
(coshu− 1) dσ

exhibits an analogous behavior along the branch, but it looses smoothness: the turning points of D0
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become corner points for Eλ. Moreover, according to (3.7), Eλ(u) is decreasing with respect to λ in
every interval of smooth dependence (Figure 4).
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