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Abstract

The brain is a really complex organization of connectivity whose principal
elements are neurons, synapses and brain regions. To date this connectiv-
ity is not fully understood. Graph Theory represents a powerful tool in the
study of brain networks.
Though the complex organization of connectivity in human and animal brain
has found a great impulse by the use of Graph Theory, some points result
to be not very clear and need to be clarified, the weakness lies in the mis-
matching between the mathematical and neuroscientific approach. In this
paper we focus, in particular, on two points: the concept of distance and a
mathematical approach in treating functional and structural connectivity by
means of the introduction of the parameter time.
It is known that neural connectivity is classify into three categories: struc-
tural (or anatomical) connectivity, functional connectivity and effective con-
nectivity. Structural connectivity can be visualized as the anatomical neural
network in particular range of the life of human beings (and animals). It
represents the synaptic connections, or directed anatomical pathways derived
from neural tract tracing. It can be retained static only in absence of injuries
or cerebral illnesses, or far from the childhood and old age. The functional
connectivity, i.e. the temporal correlations between remote neurophysiologi-
cal events as reaction to well specific external stimuli (e.g. social paradigms,
social cognitive functions or other specific tasks), interests cerebral areas not
necessarily close each other (in the sense of Euclidean distance). Aside we
emphasize that the functional connectivity is very distinctive from effective
connectivity, i.e. the influence a neural system exerts over another one [27].
The point is that these categories demand different kinds of graphs, except
the case of resting state. In this paper we formalize in a mathematical way
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the concept of distance and we introduce a function W (i, j, t) whose pecu-
liarity is to give the weight of the edges composing the graph representing
the functional connectivity.
This function W (i, j, t) depends on the position of nodes i, j and on the
time t at which a specific task is submitted to an health volunteer (and in
in relation to the future to subjects affected by neurological diseases). In-
terestingly this function, in particular cases, comes down to the probability
of edge formation. Basically these particular cases are the resting state and
when a particular task do not affect the cerebral region the nodes belong to.
This second case is rare since when performing a task the region of interest,
ROI, are well known.

Keywords: Brain networks, connectivity, distance, Graph Theory, time,
edge weights

1. Introduction

The brain is a very complex structure, more precisely it has a compli-
cated structural and functional connectivity between its basic constituents,
i.e. neurons, synapses and brain regions.
It is remarkable how substantially different systems share key characteristics
identified by specific parameters such as: connectivity, centrality, clustering,
hub, module (just to mention a few).
If we restrict our attention to the brain connectivity, we should introduce
other very important concepts in Neuromathematics:
The connectome, defined as the network map of the anatomical connections
in the brain (regardless it is human or animal).
The parcellation which is the subdivision of the brain into areas or regions.
The structural connectivity, that may be viewed as the anatomical descrip-
tion of all connections between the different areas or neurons; when we talk
about projections we mean both the anatomical projections and directed
anatomical pathways and synaptic connections between different neurons.
The functional connectivity, which is strictly related with the activation of
different cerebral areas not necessarily close to one another. It is the statis-
tical dependence between the time series of two network nodes (e.g. brain
regions or neurons) [68]. Importantly, there is a particular cerebral state
where the functional and structural networks seems to coincide: the resting
state. The resting state network is the set of brain regions showing coherent
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functional connectivity during task free spontaneous activity.
As concerns the brain architecture, we cite the small world organization. The
small world organization is a network that has well defined characteristics:
high level of clustering, or better, higher than that proper of regular networks,
and an average shortest path length equal to the one observed in random net-
works. Basically the small world organization shares characteristics typical
of both regular network and random network. It is important to clarify a
point regarding the small world organization: the length of a path. Above
we have mentioned the “average shortest length path”, but concerning the
longest paths, we tacitly assume a small number of long-distance shortcuts
among locally connected nodes. A first approach states that these shortcuts
are randomly placed within the network’s architecture but there are other
conjectures, in hub modeling, that suggest that these shortcuts aggregate
hub nodes [67].
We organize the paper as follows: section 2 has the purpose to show how
concepts proper of Graph Theory could be applied to shed more light on
unaddressed questions in Neuroscience. In section 3 the definitions of Eu-
clidean distance and of Discrete distance are shown, the goal is to emphasize
that these two distances cannot be employed together in the same analy-
sis. In section 4 we propose a function whose scope is to assign a weight
to an edge between two arbitrary nodes. Its most interesting characteristics
is the time-dependence. Finally, Section 5 is devoted to the discussion of
conclusions.

2. Graph Theory applied to Neuroscience: basics

In this section we are going to give some useful notions proper of Graph
Theory and largely employed in Neuroscience: edge, node, graph, path
length, efficiency, cost, hub, modularity, small world.

2.1. Edge, node, graph

A graph is a mathematical tool useful to describe a network. It is defined
as a collection of nodes (also known as vertices) and of connection between
edges, called edges.

2.2. Path length, mean path length, efficiency

Given two nodes i and j, the path length, li,j, is defined as the number
of edges that must be traversed in a sequence of connections starting from i
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and arriving to j.
The shortest path length is the minimum number of edges needed to link
one node to another. If we consider the whole-brain network architecture,
than it is useful to define another topological concept: the mean shortest
path length, l̄ (generally the reference scalar), is defined as the average of
the shortest path lengths between any pair of nodes in the network. It mea-
sures the distance (i.e., the number of edges) between any pair of nodes in a
network or the extent of overall communication efficiency of a network. The
mean path length can be short, for example in the case of random and/or
complex networks, or long in the matter of regular lattices1. The mean path
length is a measure of the global connectivity of the network and it is strictly
related to the global efficiency, its inverse. This means that random and
complex networks have high global efficiency of parallel information transfer.
On the contrary, for regular lattices, the global efficiency is low.
Nonetheless the beauty of the intuitive definition of mean path length, there
is an important problem to face with: what about if the network has nodal
pairs that have no connecting path? It is clear that the shortest path length
for such disconnected node pairs is infinite. It is possible to bypass this prob-
lem by mean of the “harmonic mean”, that is calculating the reciprocal of
the average of the reciprocals [42].
A shorter distance means higher routing efficiency, because information is
exchanged via fewer steps.

2.3. Cost

In this paper we shall not deal with the concept of cost of a graph. For
the moment it is enough to know that the simplest estimator of the phys-
ical cost of a network is the connection density, which is the proportion of
the number of edges in the observed graph with respect to the number of
edges of the complete graph on the same number of vertices. The cost is
threshold-dependent [1], [38], the threshold plays a fundamental role in de-
termining the adjacency matrix which resumes the vertex-adjacencies in the
given graph. Thus, it is possible to represent various measures of network
organization within each group as a function of the cost and to compare

1A regular lattice is a graph where each node has the same degree, i.e. each vertex has
the same number of neighbors.

4



topological and anatomical properties of the graphs between groups under
the constraint that the number of edges is the same for each group over the
range of the considered thresholds [15].

2.4. Hub, clustering

Clustering is the tendency of a small groups of nodes to form connected
triangles (which are particular motifs2) or in other words the clustering coef-
ficient (the measure of clustering) is an index of local structure, and has been
interpreted as a measure of resilience to random error (if vertex i is lost, do
its neighbors remain still connected?). Moreover clustering is related to the
local efficiency, i.e. can be regarded as a measure of information transfer in
the immediate neighborhood of each node. It follows that clustering is a mea-
sure of the local connectivity of a regional node. The clustering coefficient is
defined by the following ratio:

C =
1

NGi
(NGi

− 1)

∑
j,k∈Gi

1

lj,k
, (1)

Where Gi is the subgraph connected to the node i and lj,k is the (shortest)
path length connecting the nodes j and k in the subgraph Gi.
The clustering coefficient can be averaged across an entire network.

The basic question underpinning the concept of clustering is to determine
the likelihood of a vertex to have a degree k, i.e. the bayesian distribution
P (V,E|k). Its advantage is that it is a global measure of a graph. While
for a random graph the corresponding degree distribution is a Gaussian one,
many complex networks show non-Gaussian degree distributions. When a
given vertex shows a high-degree centrality, it is called hub [54].

2A motif is a small subset of network nodes and edges, forming a subgraph. Basically
motifs are visually represented by building blocks (in analogy to driving elements that
are elaborated in a musical theme or composition) of different forms, and they are very
common in contexts such as Genetics, Neuroscience, and other biological and artificial
networks. Motifs occur in distinct classes, that can be distinguished according to the size
of the motif, equal to the number of nodes (vertices), and the number and pattern of
interconnections. For a more formal definition of motifs and related concepts we refer the
reader to [53]
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The hub is a node that occupies a central position inside the network. A
central hub can be a connector hub, i.e. an hub that is mainly connected to
vertices in other modules, or a provincial hub, which is a high-degree node
that is primarily connected to node in the same module. Provincial and
connector hubs may play different functional roles within a network. It is
interesting to note that a connector hub mediate a high proportion of inter-
modular, and often long-distance, connections.

There are several criteria/measures of a graph to identify centrality, but
none of them is unquestionable to select an hub. A few of them are described
below:

2.5. Node degree

Node degree is the number of edge attached to a single node. Highly
connected nodes have large node degree. The node degree distribution rep-
resents the probability of a given node degree over all node degrees in the
network.

2.6. Closeness centrality

Closeness is based on the length of the average shortest path between a
node and all nodes in the graph. It can be identified as the inverse of the
sum of all length paths joining two arbitrary nodes:

Cc(i) =
1∑n

j=1 li,j
. (2)

Someone refers to Normalized Closeness Centrality, it is the ratio between
the closeness centrality and the total number of nodes minus one:

C
′

c(i) =
Cc(i)

N − 1
. (3)

2.7. Betweenness centrality

The basic intuition on which betweenness centrality (BC) rests, is that a
node is central if it is between many pairs of other nodes [9].
More formally, betweenness centrality counts the fraction of shortest paths
going through a given node with respect to the total number of shortest paths
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from the starting node to the ending one [17]. In a mathematical way, for an
arbitrary node i belonging to a graph G, the betweenness centrality of the
node i is given by:

BC(i) =
∑

j 6=k 6=i∈G

σj,k(i)

σj,k
, (4)

where σj,k(i) is the number of geodesic3 paths connecting node j and k with
the constraint to pass through node i and σj,k is the number of geodesic path
between the node j and k.

Since this paper is concerned with Neuroscience, as domain of application
of Graph Theory, it is helpful to remark that when we mention the word
“node”, experimentally speaking, it can be associated to a cerebral region,
identified for example by a point of the scalp where an electrode is placed
during an EEG experiment.

We would like to remark that betweenness centrality, as well as the other
criteria mentioned above and in the following, is not an unquestionable cri-
terium to select an hub. In fact, it can be shown that there may exist distinct
vertices of a tree4 endowed with the same set of “paths-through”, i.e. σj,k(i),
for each i, j ∈ V (G)5. This implies that the selection of a hub based only on
the evaluation of its “paths-from” can be misleading, since two vertices can
have very different numbers of paths-from but the same number of paths-
through, in other words if the node i

′
is adjacent to the node i then it can

happen that σj,k(i) = σj,k(i
′
) [23].

3For any two vertices j and k in a graph G, the geodesic is the distance between j and
k defined to be the length of the shortest path between j and k, often denoted with d(j, k).

4A tree is a specialized case of a graph. A tree is a connected graph with no circuits
and no self loops. As already mentioned graph consists of three sets: vertices, edges and a
set representing relations between vertices and edges. A circuit is an alternating sequence
of edges and vertices wherein edges are not repeated and starting and ending vertices are
the same; this forms a loop. A self loop is a vertex looping on to itself and in the middle,
no vertex is traveled twice. As a tree does not contain any loops and is connected, it is
also called a minimally connected graph on the same number of nodes, i.e. there is just
one path between any two vertices.

5V (G) is the set of the nodes of a graph G.
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2.8. Eigenvector centrality

In this case the intuition is that a node is central, if it has many central
neighbors. Bonacich [16] suggested that the eigenvector of the largest eigen-
values of an adjacency matrix could make a good network centrality measure.
So the eigenvector centrality of the node i is the i-th component of the eigen-
vector of the adjacency matrix A associated with the largest eigenvalue.
Unlike degree, which equally weights every contact, the eigenvector weights
ties with others according to their centralities. Eigenvector centrality can
also be seen as a weighted sum of not only direct connections but indirect
connections of every length. Thus it takes into account the whole pattern in
the network.

2.9. Graph Theory and the study of neuropathologies

We do emphasize the importance to detect a central hub since they play
a crucial role in explaining cerebral damages or pathologies. Hubs play a
very important role in brain dysfunctions.
Van den Heuvel and Sporns in their lovely paper [68] listed a series of inter-
esting studies on this topic, we shall cite the most relevant in the following
sections.
Basically Graph Theory could help to answer questions on neuropathologies
such as autism, schizophrenia and Alzheimer. We base on the paper of Van
den Heuvel and Sporns to give a brief overview on the relations between
the above neuropathologies and Graph Theory. Some studies speculate that
functional connectivity as well as an abnormal anatomical connectivity of
hub regions are related to behavioral and cognitive impairment in several
neurological and psychiatric brain disorders [12], [18], [20], [48]. For exam-
ple, it has been shown a reduced frontal hub connectivity [5], [25], [36], [41],
[66], [73] and disturbed rich club6 formation in patients [69], [72] as well as
their offspring [49], which provides empirical evidence for the long-standing
disconnectivity hypothesis of the disease [25]. Developmental studies have
reported altered intra-modular and inter-modular connectivity7 of densely

6Rich club nodes are highly interconnected, high degree hub nodes.
7Intra-modular connectivity is the connectivity of nodes to other nodes within the same

module. The inter-modular connectivity gives a measure about how different modules are
connected one each other. The participation coefficient, PC measures the inter-modular
connectivity of node i and, for each cortical region, may be mathematically expressed, in
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connected limbic, temporal, and frontal regions in children with autism [50].
Furthermore, childhood-onset schizophrenia, COS, has been associated with
a disrupted modular architecture [3], together with disturbed connectivity of
network connector hubs in multimodal association cortex [4]. In late aging,
network analyses applied to neurodegenerative conditions such as Alzheimer’s
disease [22], [29], [57], [59] and frontotemporal dementia (FTD) [2] have in-
dicated the involvement of, respectively, medial parietal and frontal regions
in the etiology of these disorders, regions that have high spatial overlap with
network hubs. Computational network studies have further suggested an
important role for the brain’s highly connected nodes in the spread of neu-
rodegenerative disease effects within and between functional network [46],
[48], [62], [64], [63].

2.10. Module and modularity

Many complex networks consist of a number of modules. Modules are
subgraphs or group of nodes that consist of sets of vertices that are more
strongly connected to each other than to the rest of the network. This al-
lows to maintain a large number of mutual connections and a small number
of connections to nodes outside their module. Modules often correspond to
different functional aspects of the networks. Modules may also be important
for the way normal and abnormal activity can spread through the network.
It is also possible to define sub-modules within modules. It is evident how
the identification of modules and sub-modules within complex networks is
important.
Networks with such a structure are said to have a hierarchical modularity.
The concept of a module is a statistical one.
There are various algorithms that estimate the modularity of a network,
many of them based on hierarchical clustering. Each module contains sev-
eral densely interconnected nodes, and there are relatively few connections
between nodes in different modules. Hubs can therefore be described in terms

terms of their inter-modular connection density, by means of the following equation:

PC(i) = 1−
NM∑
s=1

(
ωis

ωi

)2

, (5)

where NM is the number of modules and ωis is inter-modular connectional weight between
the node i and module s and ωi is the total weight of node i in the network. The PC of
node i will be close to 0 if all weights are within its module.
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of their roles in this community structure. Provincial hubs are connected
mainly to nodes in their own modules, differently from connector hubs, that
are connected to nodes in other modules [19].
Given the modular nature of neuronal networks, the modularity M of a graph
describes the degree to which a given network can be broken up into clusters
of highly connected nodes, also called modules or communities, with only
sparse inter-cluster connections. There are different definitions of modular-
ity, and the most common one is the modularity function defined by Newman
[43], which expresses the ratio of the number of existing edges in a cluster
relatively to the number of all possible edges in the community. Equivalently
up to a multiplicative constant, it is the number of edges falling within groups
minus their expected number in an equivalent random network. Inside mod-
ules, hubs are called provincial, while hubs connecting different modules are
called connector hubs. They serve to measure hierarchical structures in com-
plex networks in as much as a hierarchical network exhibits many provincial
and only few connector hubs [37], [47].
Taking about the human cerebral cortex, modularity is a sort of synonym of
specialization (of particular tasks). The cerebral cortex combines attributes
that promote modularity with attributes that ensure efficient communica-
tion, or in other words integration.

2.11. Small world

The small-world [71] is an important model for characterizing the organi-
zation principles that govern a remarkable variety of complex networks, such
as social, economic, and biological networks. In details, the small-world is
a network with specific characteristics: high local clustering (high clustering
coefficient C compared to the clustering of a comparable random graph CR),
and low minimum path length between any pair of nodes (low characteristic
path length l̄, i.e. comparable with the one of a random network l̄R).

If we introduce a scalar σ, defined as σ =
C
CR
l̄

l̄R

, then the small world is char-

acterized by having σ > 1 [31] .
In short, small world is a topological organization mostly structured with a
few random connections.

Basically, there are different types of small world networks. We cite three
of them and we emphasize their characteristics:
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2.11.1. Scale free organization

We talk about scale free organization when a network has a proper degree
node distribution whose mathematical expression is a power-law function,
for example k−γ where γ is a coefficient that represents the hierarchy of the
network; generally γ ranges from 2 to 3 [21], [44].

One important features of this network is the dependance of the clustering
coefficient upon a voxel’s degree. It was found that in many cases C(k) scales
in the following way:

C ∼ k−γ, (6)

that is an indication of hierarchical organization [32], [47]. Bassett et al.
[11] estimated a parameter β by fitting a linear regression line to the plot
of logC versus log k for the network at a given cost. A large positive value
of β means that the hubs of the network have high degrees. The network is
totally connected, but low clustering, so this suggests that a local connection
is favored. These two facts show that, for large positive values of β, hubs are
connected predominantly to other nodes not otherwise connected.

Notably, a scale-free network always has small-world property [6], but the
converse is not necessarily true. This observation holds for both broad- and
single-scale organizations.

2.11.2. Broad-scale organization

This kind of network is characterized by a degree that has a power law
regime followed by a sharp cutoff, like an exponential or Gaussian decay of
the tail [6].

2.11.3. Single-scale organization

This class of small-world network is characterized by a connectivity dis-
tribution with a fast decaying tail, such as exponential or Gaussian. Some
examples are shown in [6].

2.12. Matrices of importance in Graph Theory

In order to study structural and functional brain networks, it is funda-
mental to handle important matrices and follow a sequence of steps to create
them. First, it needs to define the network nodes. Second, generate an asso-
ciation matrix (also known as connection matrix), i.e. a matrix to establish
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the interrelationships between nodes to determine how all pairwise associate
between them. Third, to fix strategies for thresholding association matrices.
Generally the threshold is represented by a cost to get a graph. Four, to pro-
duce an adjacency matrix, namely a matrix A representing which vertices
(or nodes) of a graph are adjacent8 to which other vertices. Generally A is
a binary matrix, that is its entries aij = 1 if two distinct nodes i and j are
adjacent, and aij = 0 otherwise. For undirected graph adjacency matrix is
symmetrical.

3. Distance

A metric on a set X is a function (called the distance function or simply
distance) d : X ×X → R (where R is the set of real numbers) such that for
all x, y, z belonging to X, it is required to satisfy the following conditions:

1. d(x, y) ≥ 0 (non-negativity, or separation axiom)

2. d(x, y) = 0 if and only if x = y (identity of indiscernibles, or coincidence
axiom)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (subadditivity/ triangle inequality).

Basically, as far as the Complex Brain Networks analysis is concerned,
two kinds of distance are of great interest: one is derived by the Graph
Theory and it is a discrete metric, the other is a metric directly linked to
a continuous space (e.g. the Euclidean metric, which is associated to the
Euclidean space).

3.1. Discrete metric

The discrete metric on a set S is the metric satisfying:

d(x, y) =

{
0 if x = y,
1 if x 6= y.

(7)

The resulting metric space M = (S, d) is the discrete metric space on S.

8Two vertices are said to be adjacent if they are the end vertices of an edge.
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The discrete metric plays a fundamental role anytime we are interested
in studying connections rather than physical distances, like anatomical dis-
tances. In detail, when we use the discrete metric we deal with the number
of edges that join a node with another, in a network modeling the brain, and
importantly, it does not matter if the anatomical distance between the two
nodes is small or large when compared with the average largest distance in
the brain. In fact, just to give an example let us consider two cases:

Case a If a node represents the Dorso Lateral Prefrontal Cortex (DLPF )
and the other the Primary Visual Cortex (V 1) and these two areas
are connected through another node, set in Brodmann Area 7 (BA7)
then the distance between DLPF and V 1 is 2, since we have the path
consisting of the edge connecting the nodes DLPF and BA7 plus the
edge linking the nodes BA7 and V 1.

Case b Now let us consider the connection of two other different nodes
such as the Frontal Eye Fields (FEF ) and Superior Colliculus (SC)
via Lateral Intraparietal Area (LIP ).

So the discrete distance in Case a and Case b is the same, but of course the
anatomical distances in these two cases are different.

3.2. Euclidean Metric

On way to define the Euclidean metric is by means of the inner product
on R3 whose origin is 0 = (0, 0, 0). Let us define two vectors belonging to
R3, namely x = (x1, x2, x3) and y = (y1, y2, y3), then the Euclidean inner
product is:

< x,y >= x · y = x1 y1 + x2 y2 + x3 y3.

This inner product, denoted by ·, “induces” a norm and consequently a
length (and in turn a metric):

d(x,0) = ||x|| =
√
< x,x >. (8)

and an angle:

θ = cos−1
(
< x,y >

||x|| ||y||

)
. (9)

13



Generalizing, if we consider the Euclidean space (Rn, d), where n is a
natural finite number, then the metric d on such a space assumes the well
known expression:

d(x,y) = ||x− y|| =
√
< x− y,x− y > =

√√√√ n∑
i=1

(xi − yi)2. (10)

This is called the Euclidean metric in its more general form.

The Euclidean metric plays an important role whenever the physical dis-
tance should be taken into account, for example when talking about wiring
and physical distance between cerebral areas.

The focal point is that these two metrics, the discrete and the Euclidean,
cannot be mixed since they are associated to different spaces. A big corp of
literature seems to show that different metrics are employed together when
studying the neural network. In these cases we must be careful to avoid
confusion between the two different metrics. It becomes immediately evident
that the difference in using the discrete or the Euclidean distance when talk-
ing about the costs.
It is not correct to mix two different metrics, but it is possible to note that
despite cerebral areas may be far away each others from an Euclidean point
of view, they can be activated simultaneously and so connected from a point
of view of Graph Theory.

4. Quantitative proposal for functional connectivity: the analysis

4.1. Précis

Graph Theory is of great help in studying the functional organization of
the brain. It plays a fundamental role in specific and critical cases such as the
evaluation of fetal brain functional organization, where a priori knowledge
is limited.

We begin our analysis by specifying two working assumptions:

1. We consider, for the moment, healthy subjects.

2. We consider an homogeneous synaptic activity growth (namely in the
whole brain as well as in single regions). This hypothesis may be
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dropped if the function describing the synaptic activity growth in single
brain areas is known.

A number of papers start their analysis by assuming that the probability
of connection, P (i, j), between two arbitrary nodes, that can represent, for
example, a pair of brain regions, is a function of the Euclidean distance
d(i, j). More precisely the probabilistic law is assumed to be:

P (i, j) = β exp [−η d(i, j)] , (11)

d(i, j) represents the anatomical distance between the arbitrary regions i and
j, β is a parameter in the range (0, 1], while η is a non-negative parameter
regulating the dependence of edge formation on the distance of two existing
nodes [4], [35].

4.2. Theoretical tenets

We intend to introduce the parameter time since, in our opinion, several
neural phenomena such as the onset of neurological disorders or the struc-
tural and functional development could be accounted for, at least partially,
by this approach. Moreover we propose a function whose role is to give the
weight of the edges of a functional graph.

So we suggest that a law underpinning the functional connection between
two nodes, i and j, is not only function of the distance but also of time.
Consequently we proposed to modify:

W (i, j, t) = β (i, j, x(tfix)) exp− [η(t) d(i, j)− α(i, j, t)] . (12)

Here x(tfix) is the relative density of the synaptic activity9 at time tfix, which
is the (fixed) time denoting the starting time of a specific task, in order to
inquire the functional connectivity, so β(i, j, x(tfix)) is time dependent but
in a discrete fashion. On the contrary, the weight W (i, j, t) depends contin-
uously on time due to the exponent in the power law.
This choice is motivated by the following observations:

9With relative density of synaptic activity we denote the ratio between the synaptic
activity of an arbitrary region of brain containing the nodes i and j and the overall synaptic
activity, these synaptic activities are both evaluated at a specific time tfix.
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• In Neuroscience functional and structural connectivities are very im-
portant concepts, both of them involve distinct neural regions but with
a main difference: the structural connectivity exists regardless the ex-
ecution of a cognitive task performed by a subject.

• The connection strength is quantified by assigning a weight to the edge
of the graph representing that particular connection. This operation
is made by means of different methods, most of them are of empirical
nature [13], [39].

• The weights associated to the edges of the structural network should
be viewed as a borderline/extreme case of the ones associated to the
functional network. Typical is the case of the resting state, and this
is the case represented by α = 0. Notably there is another case where
α = 0, when a task do not involve the activity of the cerebral areas
(or area) to which the nodes i and j belong, in fact in these case the
correlation between the activities of the interested areas vanish.

• There is the need to explain in which way the functional connectivity
varies across the human lifespan. Note that the parameter t inside α
is related to this spanning.

In the next steps we show how to evaluate β(i, j, x(tfix)) and α(i, j, t).

Evaluation of the function β(i, j, x(tfix))

Let us suppose to consider the brain as a continuum. For each point i
we can consider an open ball U (i, ε) of center i and radius ε, where ε can be
arbitrarily small. In addition we consider the relative density of the synaptic
activity, x, in the open ball, where 0 < x < 1. For the sake of simplicity,
from now on we shall write just x by understanding x(tfix).

The following data are known:

a. N, the number of nodes.

b. The reciprocal position of such nodes.

c. The Euclidean distance between any pair of nodes.
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In order to model the brain connectivity, we suggest the introduction of
a synaptic field so defined:

Bi(x) =

∫∫
Dj⊂R2

xde(i,j) dDj, (13)

where Dj is the closed subset of R2. It represents a part of the cranial sur-
face containing the node j, de(i, j) stands for the Euclidean distance between
two nodes i and j, and dDj is the differential surface (or area) element on
a surface Dj. If D is the cranial surface, the following relation holds: Dj ⊂ D .

For application purposes we should discretize the equation (13), so ob-
taining:

Bi(x) =
∑
j∈V

xde(i,j). (14)

where V is the set of nodes on the surface D .

We need to introduce a combinatorial evaluation of all synaptic interac-
tions between two arbitrary nodes i and j. To that end let us introduce the
following polynomial function β(i, j, x):

β (i, j, x) = Bi(x)Bj(x) =
∑
k∈V

xde(i,k)
∑
k′∈V

xde(j,k
′) (15)

Now we can study the neural network as a graph G = (V ;E), which is an
ordered pair (V ;E) comprising a set V of vertices or nodes together with a
set E of edges. It is worth remarking that once a graph has been introduced
in the analysis, then the distance must no longer be regarded as Euclidean
(de(i, j)) but only as discrete (d(i, j)). Consequently, in the following, we
must approximate de(i, j) with d(i, j).

de(i, j) ∼ d(i, j) = min l̄(i, j) = min|N(i, j)| − 1, (16)

where l̄(i, j) is the characteristic path length between two nodes i and j,
min l̄(i, j) is the shortest path length and min|N(i, j)| is the total number
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of nodes10 on the shortest path length joining two nodes i and j.

By plugging (16) into (15) we get:

β(i, j, x) =
∑
k∈V

xd(i,k)
∑
k′∈V

xd(j,k
′) =

(
1 + x (deg(i)) + x2N2i + o(x2)

)
(
1 + x (deg(j)) + x2N2j + o(x2)

)
,

(17)

where deg(i) is the degree of the node i (similarly for node j), N2i is the num-
ber of nodes set at distance 2 from the node i, o(x2) represent the terms that
could be neglected due to the fact that they are infinitesimal of higher order11.

If no self-loops are considered in the analysis then an additional constraint
is demanded: i 6= j, i.e. a node can not interact with itself.
In this case equation (17) takes the simplest form:

β(i, j, x) =
(
x (deg(i)) + x2N2i + o(x2)

) (
x (deg(j)) + x2N2j + o(x2)

)
∼ (deg(i))(deg(j))x2 + o(x2)

(18)
The expression (18) is very similar to the probability of connection of

a new vertex with any other vertex in the network found by Barabási and
Réka [7]. It is also quite close to the expression of the coefficient appearing
in probability of connection of the economical preferential attachment model,
suggested by Vértes, Alexander-Bloch, Gogtay, Giedd, Rapoport and Bull-
more [70]. In [7] the exponent γ in the linear case equals to 1, while in the
non-linear case ranges from 1.2 to 4; in [70], γ, the parameter of preferential
attachment, in principle goes from 0 to 6. In particular the authors showed
an interesting phase diagram of the economical clustering model, where it
appears that most values of two parameters η and γ yield small-world net-
works, whereas only high values of γ yield networks with heavy-tailed (skew
> 1) degree distribution. The study was done on both healthy volunteers

10The number of nodes (vertices of the graph), which represents the cardinality of V , is
called the order of the graph and denoted by | V |.

11It is often used the “little-oh” notation in this way: f(x) = g(x) + o(h(x)). This intu-
itively means that the error in using g(x) to approximate f(x) is negligible in comparison
to h(x). The little-oh notation was first used by E. Landau in 1909.
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and participants with childhood onset schizophrenia (COS).

We emphasize that during the discretization of the synaptic field, the
interaction of a node with itself was neglected. This is not a trivial remark
since a node can represent a single neuron as well as cerebral region.
So theoretically speaking we could interested in considering also a special
case: the interaction of a node with itself. In this case it is worth giving some
details: first, we do not have to set any constraint on vertices so d(i, i) = 0.
Second, if i is fixed then d(i, j) = 1 for any j adjacent to i. Third, deg(i) is
the number of nodes, adjacent to i and connected with it.
Starting from equation (17) and after a bit of algebraic work, it comes out
that:

β(i, j, x) =
(
1 + x (deg(i)) + x2N2i + o(x2)

)(
1 + x (deg(j)) + x2N2j + o(x2)

)
= 1 + (deg(i) + deg(j))x+ (deg(i) deg(j) +N2i +N2j)x

2 + o(x2)
(19)

It is interesting to note how the expressions (18) and (19) differ. So in-
troducing or not self-looping has great impact on the analysis. It is also
worth pointing out that generally Neuromathematics disallow self-loops, in
fact connectivity (and similarly adjacency) matrices are matrices with the
main diagonal elements equal to zero and all other elements either positive
numbers or zero.

The evaluation of the function α(i, j, t)

The function α(i, j, t) depends on the specific test submitted to the healthy
volunteer and on age (different stages of life implies different cognitive per-
formances).
We propose that α(i, j, t) could be represented by the product of two func-
tions f(i, j) and g(t):

α(i, j, t) = f(i, j) g(t), (20)

where f(i, j) is strictly related to the task, while g(t) is connected to stage of
life in which the healthy volunteer fall when performing the cognitive task.
It is responsible for the changing of the weights associated to the functional
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edges. We further suggest that f(i, j) is strictly dependent on the correla-
tion, derived from the particular task, between the two nodes i and j.

From the available neuroscientific literature there are interesting evi-
dences about the evolution of the neural architecture. The following in-
formation will be of great help for our (neuro)mathematical analysis.

In the period going from the fetal stage to birth it is not possible to state
that both anatomical and functional connections in the brain can be assumed
to exhibit small-world topology [10], [52]12.
By studying fetuses of different gestational ages, Thomason et al. [61] by
means of fMRI analysis revealed that human fetal brain has modular struc-
ture, wherein connections are much stronger within, than between, modules,
and modules overlap functional systems observed postnatally. This is in
agreement with observations in adults, and suggests modularity is an early
emergent characteristic of the developing brain.
In particular, Thomason et al. showed that the brain modularity decreases,
and more negative intermodular functional connectivity of the posterior cin-
gulate cortex (PCC) occurs with the advancing gestational age [61]. By
mimicking functional principles observed postnatally, these results support
early emerging capacity for information processing in the human fetal brain.
It should be noted that a reduced intermodular connection strength, and high
modularity in younger fetuses, suggests that in early fetal life functional sys-
tems are independent, and only with time they begin to collaborate more
fully as members of a whole brain system. Prior observations in late child-
hood, adolescence, and adulthood, have provided mixed evidence about age-
related independence of brain modules. Early research demonstrated that
brain modules become increasingly independent and separable with advanc-
ing age [24], [58].
Notably, from birth to 2 years, the human brain undergoes several extraor-
dinary changes, including rapid brain volume increases reaching 80 − 90%
of adult volume by age 2 [45], rapid elaboration of new synapses [30], very
rapid gray matter volume increasing [28], rapid development of a wide range
of cognitive and motor functions [33]. In addition, modular organization and

12A small-world organization can support and justify several phenomena and processes
proper of brain dynamics, e.g. the segregation and integration of information. In addition
this kind of network represents a trade off between wiring cost minimization and high
dynamic complexity. In this sense small-world are “economical” networks.
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small-world attributes are evident at birth with several important topological
metrics increasing monotonically during development. Most significant in-
creases of regional nodes occur in the posterior cingulate cortex, which plays
a pivotal role in the functional default mode network13 [30].
Fransson et al. in their paper [26] provided the possibility to assess whether
the topographical functional network structure of the infant brain possesses
small-world characteristics, a network property that has previously been de-
tected in the adult human brain [65], as well as in children aged from 7 years
and upward [24], [60].
In the childhood the human brain still develops. In this period several mi-
crostructural and macrostructural changes take place in order to reshape the
brain’s anatomical networks. Moreover, the relation between these cerebral
anatomical networks and the functional networks still evolves, that will lead
to the cognitive functions and human behaviors.
In the adulthood, it is believed that the brain could develop up to 21-25
years. A study, conducted by Sarah-Jayne Blakemore of University College
London, [14], with brain scans showed that the prefrontal cortex is modified
until the age of 30-40 years, and in fact she stated that the prefrontal cortex
begins to develop in the first childhood. Later development continues in late
adolescence and up to 30-40 years, even if the wiring growth is slower than
in childhood. Culture, job career, social relations and environment may play
a causal role in the “extra” frontal lobe wiring in adult age. We recall that
the prefrontal cortex is a part of the brain associated with higher cognitive
functions, including decision-making, planning and social behavior.
Finally it is well known that with aging cerebral performances decrease. For
example Liu et al. [40] demonstrated age-related changes in the topological
organization of large-scale functional brain networks.

13The term “default mode” was first used by Dr. Marcus Raichle in 2001 to describe
resting brain function. During the resting state the brain uses hardly less energy than a
brain engaged in a task, for example a decision making process. The default mode network
involves low frequency oscillations (about one Hertz). This kind of network is most active
when the brain is at rest, while is deactivated when the brain is focused towards a task.
The default mode network includes areas associated with some aspect of internal thought,
such as the medial temporal lobe, the medial prefrontal cortex, and the posterior cingulate
cortex, as well as the ventral precuneus and parts of the parietal cortex. It is interesting
to note that there may be more than one default mode network, so what is known as
default mode network actually should be thought of as a collection of smaller networks,
each dedicated to something which is a bit different than the other.
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In order to give a quantitative form of the above discussion we suggest a
division of the human life into six different characteristic periods. This split-
ting roughly reflects the evolution of the brain architecture. More precisely:

Period 0: t = 0. The “Neural Big Bang.”
This is the onset of brain evolution in human beings. In analogy with As-
trophysics, we can name this period the “Neural Big-Bang”. At this time,
we remark that α(i, j, t = 0) = 0, since, of course, no task is involved. As a
consequence, equation (12) assumes the form:

W (i, j, 0) = β(i, j, x) · exp [−η(t = 0) d(i, j)] (21)

Again, since we are in the Neural Big Bang (t = 0), this equality, must
be identically null. Immediately we get the constraint on β: β(i, j, x) = 0.

We showed that β is proportional to the product of the degrees of i and
j. The constraint β(i, j, x) = 0 means that even if neurons are present in the
brain, or better in the gray matter, at t = 0 no connections are established
between nodes.

Period 1: 0 ≤ t ≤ t̄.
In this interval of time, represented by the time interval going from 0 to a
time t̄, it was believed that the small world, had not begun to take a shape
yet, but studies [60] pointed out that at age 7 the brain already shows small
world characteristics. Consequently we can set t̄ equal to 7 years, in order to
consider that the brain shows, at least partially, this kind of architecture. So
in (12) the contribution of α to W (i, j, t) is a monotonically growing function:

W (i, j, t) ∝ exph0t, (22)

being h0 a constant depending on the stage of life.

Period 2. t̄ ≤ t ≤ t̃
A third period follows. It spans a time interval from t̄ to t̃, where t̃ may
be fixed in age 20-25, typically the adulthood. So this case ranges from
childhood to adulthood. Generally, in this period, we have a great increasing
in cognitive performances also due to the monotonic increasing of cerebral
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connectivities (structural, functional and effective). From a mathematical
point of view, the function W (i, j, t) is proportional to:

W (i, j, t) ∝ exph1
(
t2
)
, (23)

being h1 a constant depending on the stage of life.

Period 3. t̃ ≤ t ≤ t∗.
Here we consider the possibility of an extra cerebral wiring. Of course we
expect that the growing is pretty slow in comparison with the previous cases.
We can realistically assume that W (i, j, t) is proportional to a power law:

W (i, j, t) ∝ th2 , (24)

being h2 a constant depending on the stage of life. Just to give an estimation
we could set t̃ equal to 25 years.

Period 4. t∗ ≤ t ≤ t∗∗.
This span of time is characterized by a steady situation, there is neither an
increase nor a decrease in edge formations, and the functional connectiv-
ity, on average, does not show any change during a task performing. As a
consequence we get:

W (i, j, t) ∝ W (i, j, t∗) ∀t ∈ [t∗, t∗∗] . (25)

We estimate t∗ as 50 years and t∗∗ as 60 years.

Period 5. t∗∗ ≤ t ≤ tend.
Finally, there is a fifth period where the small world architecture and con-
nectivities, as well as other topological properties of the brain, decrease with
aging. So we need to assume an inverse power law for W (i, j, t):

W (i, j, t) ∝ exp

(
h4

1

t

)
(26)

being h3 a constant depending on the stage of life.

Remark. We observe that the temporal evolution of the functional connec-
tivity highlights alternating periods of higher and lower growth with respect
to the previous period. In detail, in period 2 the temporal evolution of the
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functional connectivity grows faster than in period 1, in period 3 it grows
more slowly than in period 2. In period 5 grows more slowly than in period
4.

Since W (i, j, t) is strictly connected with the changing in the weight of
the edges of a functional graph, and from the above observations, it comes
natural to propose a form of g(t) (cf. equation (20)), which depends of course
on the reference period of life.

As a first step we identify five functions g0(t), g1(t), g−1(t), gk̃(t), g−2(t)
14,

so defined:

g0(t) ∼ h0t, (27)

g1(t) ∼ h1t
2, (28)

g−1(t) ∼ h2 ln t, (29)

gk̃(t) ∼ h3 = constant. (30)

For example a remarkable choice is constant = g−1(t
∗).

g−2(t) ∼ h4
1

t
. (31)

We emphasize that h0, h1, h2, h3, h4 are constants and that the functions
g’s come from a neuroscientific analysis about the cerebral activity in different
periods of life. In addition it should be taken into account that the brain
evolves in a continuous fashion, so it would be desirable to consider the
functions as special cases of a general law. To this we can summarize the
above results in an elegant form that describes well all the mathematical
comments written for Periods 0, 1, 2, 3, 4, namely:

gk(t) = ck

∫
tk dt, (32)

14The particular choice of the subscripts will soon be clear to the readership.
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where k is a non-negative real number, and ck is a constant depending on
the period of time.

Specifically it is possible to distinguish five basic cases:

k = 0, then (32) takes the form: g(t) = c0t + c̃0, clearly a monotonically
growing function. Where c0 and c̃0 are two constants to be determined.
In particular c0 = h0 (cf. (27)) while c̃0 may be found by imposing that
at t = 0 holds g0(0) = 0, i.e. the continuity of function gk(t) with the
“Neural Big Bang”. This leads to set c̃0 = 0.

k = 1, in this case (32) takes the form: g(t) = c1
2
t2 + c̃1, where c1 = 2h1

(cf. (28)). In t = t, it must hold g1(t) = g0(t). This means that

h1t
2

+ c̃1 = h0t, then c̃1 = h0t− h1t
2
.

It is a monotonically growing function and its growth is faster than
that in the case k = 0.

k = −1, then (32) takes the form: g(t) = c−1 ln t+c̃−1, being as usual c−1 and
c̃−1 two constants to be determined. It is a monotonically growing func-
tion, and it is immediate to observe that it grows slower than the one for
k = 1. By (29) it follows c−1 = h2. In t = t̃ must hold g−1(t̃) = g1(t̃),

so h2 ln t̃+ c̃−1 = h1t̃
2 +h0t̄−h1t̄2, then c̃−1 = h1t̃

2 +h0t−h1t
2−h2 ln t̃.

Remark. Immediately one notes its monotonic increasing, even if it
increases in a slow fashion.

Interestingly this case demands some clarifications: as we wrote before
there could be an extra wiring also in age 30-40, and this additional
wiring is strictly dependent on some social factors, such as the envi-
ronment, the kind of job, social relations and culture. So it could be
possible to take into account all these factors to improve the function
g(t), by introducing a weight ξ in (32), so that the equation becomes:

g−1(t) = c−1 ξ

∫
t−1 ds (33)

For example, similarly to an empirical technique used in Behavioral
Economics (see for example [34]) one could associate to ξ the weight
equal to 1 in case of “best scenario”, i.e. high quality job, stimulating
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environment, good social relations and high education level. Differ-
ently, if one of these factors is not top ranked then the weight could be
ξ = 0.9. If two of the four factors are not top ranked then the weight
could be ξ = 0.6. Finally if three or more factors are not top ranked
then ξ = 0.3.
The final result is an increasing trend, varying with the four socio-
psychological selected factors.

k = k̃, where k̃ is any value of k. In this case (32) takes the form: ck̃
tk̃+1

k̃+1
+ c̃k̃.

A comparison with (30) leads to set ck̃ = 0. In t = t∗ the functions
gk̃(t) and g−1(t) must get the same value, i.e. gk̃(t

∗) = g−1(t
∗). It is

easy to find that: c̃k̃ = h3 = h2 ln t∗ + c̃−1.
We assumed gk̃(t) constant over the interval of time going from t∗ to t∗∗,
nevertheless it could be possible to refine the analysis by introducing a
function either slightly increasing or slightly decreasing, depending on
the subject.

k = −2, here (32) takes the form: −c−2
(
1
t

)
+ c̃−2. Immediately, by (31) we

note that c−2 = −h4. Similarly to the other cases we must impose the
condition of continuity of the functions: g−2(t

∗∗) = g−1(t
∗∗) = c̃k̃. It

follows that h4

t∗∗
+ c̃−2 = h2 ln t∗ + c̃−1, so c̃−2 = h2 ln t∗ + c̃−1 − h4

t∗∗
.

Additionally, also in this case the decreasing depends upon the subject,
so similarly to case k = −1 one could enrich the study by introducing,
once again, a weight in order to modulate the decreasing with the
change in the four socio-psychological factors.

5. Conclusions

In this paper we dealt with Graph Theory and Neuroscience. After sur-
veying the state of the art we proposed a quantitative approach for the eval-
uation of the weights of the edges of a graph representing the functional
connectivity of the neural network. We introduced the parameter time in
the usual approach of Neuroscience. This allows a unified vision of differ-
ent periods of life where changing in cognitive processes and behavior may
happen. Moreover this paper suggests a refinement of the probability of the
edge formation that is usually involved in the present literature [4], [35].
Notably, we remark that (12) in resting state becomes the probability of con-
nection between any pair of nodes, representing for example cerebral regions
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[35], [70], despite the fact that in general W (i, j, t) is not a distribution of
probability. If we are not in the resting state, W (i, j, t) changes the functional
connectivity depending on the specific task submitted to the volunteer.
Interestingly, in this approach there is not any experimental constraint so it
may be applied to different brain survey techniques, e.g. fMRI, MEG, EEG,
etc.
The function W (i, j, t) could contribute to shed more light on understand-
ing how, in different periods of life, the functional graph and its topological
characteristics change.
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