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GLEASON’S PROBLEM AND SCHUR MULTIPLIERS IN THE
MULTIVARIABLE QUATERNIONIC SETTING
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ABSTRACT. We define and study the counterparts of Gleason’s problem, of the Arve-
son’s space and of Schur multipliers when the unit ball of C"V is replaced by the unit
ball of HY. Schur multipliers are characterized in terms of coisometric operator ma-
trices in quaternionic spaces. We define the counterpart of Blaschke factors in this
setting.
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1. INTRODUCTION AND PRELIMINARIES

This paper is part of a series of works where classical Schur analysis is considered in
the setting of slice-hyperholomoprhic functions; see for instance [2 4. 3] [I]. In these
papers the case of functions of one (as opposed to several) quaternionic variable was
considered. Slice-hyperholomorphic functions of several quaternionic variables have
been considered in [15], I7]. In the present work we consider the case of several quater-
nionic variables. A key player in the paper is a non-commutative version of Gleason’s
problem. To be more precise we first need some notation. We denote by M the free
monoid generated by pq, ..., pn, and by £ the set of finite ordered sequences a of pairs of
integers (ny, 1), ..., (ng, o), with k € Nandn; € {1,...,N}and o, e N, i =1,... k
and moreover ny # ny # ng---. We set

P* = PPy Py € M (1.1)
where ny # ny # ng---. When oy = -+ = a; = 0 we set p* = 1. Furthermore HY
denotes the N dimensional unit ball in HY, that is the set of elements (py,...,,py)

such that SN [p,|* < 1.
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With these definitions at hand, consider a right quaternionic Hilbert space H of con-
verging P-valued power series, defined in an open subset Q@ C HY, and where the
coefficient space P is a two-sided Pontryagin space. Thus elements of H are converging
series of the form

)= 04, (1.2)
ael
where the coefficients g, € P.

We say that Gleason’s is solvable in H if for every f € H there exist fi,..., fy € H
such that

F) = £0) = putfalp). (1.3)

Note that such a choice is highly non-unique when N > 1. Furthermore, equation (|1.3))
does not imply that any of the functions

p = pafalp)
belongs to H.

We refer to [20, 21] for more information on Gleason’s problem. This problem was
studied in the quaternionic setting in the framework of Fueter series in [I1]. In the
classical setting, condition for uniqueness of the decomposition have been given
in [7].

The purpose of this paper is to characterize a family of reproducing kernel Hilbert
spaces of converging power series in several quaternionic variables, and in which Glea-
son’s problem is solvable. It can be seen as the quaternionic version of [5].

We note that non-commutative interpolation with underlying field the complex number
has a long history; see for instance [19, [16] 18, [13]. Although some formulas that we
obtain have similarities with corresponding formulas in the aforementioned works, our
context is different.

Given a two-sided quaternionic vector space V endowed with an Hermitian form [-, ]
we assume that, besides the usual condition

[va, wb] = blv,wla, Yv,w €V and Va,bc H,
the Hermitian form also satisfies
[v, aw] = [av,w],Vv,w € V and Va € H. (1.4)
This property plays a crucial role in the sequel; see for instance the proof of STEP 1
of Theorem .11
We denote by * the adjoint with respect to the Hermitian forms.

Given a quaternionic right Pontryagin space P we denote by v_(P) its index of nega-
tivity, that is the dimension of a maximal strictly negative subspace of P.
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We now recall the following definitions (see [10] for the first). The definitions make
sense since the spectral theorem holds for Hermitian quaternionic matrices; see [22].

Definition 1.1. A H-valued function K (u,v) defined on a set B has k negative squares
iof it is Hermitian:

K(u,v) = K(v,u), Yu,v € A,
and if for everyn € N and every uy, ..., u, € B, the n xn Hermitian matriz with (t, s)

component K (us,u;) has at most k strictly negative eigenvalues, and ezxactly r strictly
negative eigenvalues for some choice of n,uy, ... Uy,.

Definition 1.2. Let A = A* be an everywhere defined bounded self-adjoint operator in
the Pontryagin space P. We denote by v_(A) the number of negative squares of the
function

K(f,g9) =[Af.g9lp, f.g€P.

2. SCHUR MULTIPLIER

Let P, and P, be two-sided quaternionic Pontryagin spaces with same index of nega-
tivity (we will call them the coefficient spaces), and let Q C HY denote a neighborhood
of the origin. Furthermore, let s :  — L(P;, P2). Consider the equation

ks(p, q) — ijks(p, Q)G =1—s(p)s(q)* (2.1)

where the unknown is the function ks(p, ¢), and where

p=(p1,....,pn) and q=(q1,.....,qn) € Q2 C ]I-]Ijlv

First note that (2.1)) indeed makes sense since the coefficient spaces are assumed two-
sided.

Remark 2.1. If one considers fundamental symmetries J; and J; such that the forms
[-, Ji]p, and [-, Jo-]p, are positive definite, then the right hand side of (2.1)) takes the

familar form
J2 — s(p)J1s(q)",

where now the * denotes adjoint between Hilbert spaces.

Proposition 2.2. Fquation (2.1) has a unique solution, given by the power series
exrpansion

ks(p.q) = p*(I = s(p)s(q)")q™ (2.2)
a€cl

Indeed, (2.2)) follows from iterating ({2.1)). Furthermore, the difference of two solutions
k1 and ko will correspond to (2.2]) with /—s(p)s(q)* replaced by 0, and hence k;—ks = 0.

Definition 2.3. Let Py and Ps be two-sided quaternionic Pontryagin spaces with same
index of negativity. A function s : Q C (HY); — L(Py, P2) defined in a neighborhood
of the origin is called Schur multiplier function if the kernel ks (that is, the unique
solution of equation ) 1s positive definite in ).
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3. THE CASE WHEN THE COEFFICIENT SPACES ARE HILBERT SPACES

In the complex case, it is well known that the positivity of the analog of the kernel k;
in an open subset U of the unit disk (in the case of one complex variable), or more
generally, in an open subset of the unit ball, implies that s is the restriction to U of an
analytic function. We now study the counterpart of this result in our setting.

Definition 3.1. The space F of power series of the form (1.2)) and such that ", ;]¢a|* <
oo is the full Fock space associated to the quaternionic variables py,...,pN.

In the complex setting, the space F with non commutative variables and complex co-
efficients is called the Fock space and used in [12], [T4]. The corresponding reproducing
kernel is called the non-commutative Szego kernel.

It is readily seen that it is the reproducing kernel Hilbert space with reproducing kernel
Hilbert space

ko(p,q) = Y p"¢" (3.1)

acl

Theorem 3.2. Let s be defined in HY and assume that the kernel ky(p,q) is positive
definite in Q. Then s is a converging power series in HY .

Proof. The method to prove the theorem is classical. We begin with a remark. Since
ks(q,q) > 0 we have

1— 2
Ii(q)l >0,
1- Zuzl |qu|2
and in particular |s(¢)| < 1. Thus the function p — Y .~ p“s(¢)g"h € F. Consider
now the linear relation Y C F x F spanned by the elements of the form

(k(p. )b, > p"s(q)q"h), q€H, and heH (3.2)

uel

ks(q,q) =

The positivity of the kernel forces Y to be contractive. Since it is densely defined, it
extends to the graph of a contraction T', whose adjoint is given by the formula

(T*(k(-.)h)(p) = >_ p"s(p)q"h. (3.3)
acl
Setting ¢ = 0 we get that s =T*1 € F, and in particular s is a converging power series
in HY. UJ
More generally it is readily seen that:

Proposition 3.3. Let f(p) = > 70" fu. Then
(T*f)(p) =D _p"s(p) f (34)
uel

Definition 3.4. The operator ([3.3) will be denoted by M,and is called a multiplication
operator, and a function s such that the kernel ky(p, q) is positive definite in HY is called
a Schur multiplier.
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When N = 1, these operators have been defined and studied in [2]. We note that

(1 = M;MZ)(k(-, q)u)) (p) = ks(p, q)u. (3.5)
In particular we have the following result, whose proof is the same as in the Hilbert

space setting. For the proof of the existence of a positive (Hermitian) squareroot, see
for instance [§].

Theorem 3.5. Let s be a L(H;, Hz)-valued Schur multiplier, where Hy and Hs are
two-sided quaternionic Hilbert space. Then

H(s) = ran /T — M M7
with the operator range norm defined by
(1 = MM flBysy = (T = MM f, [z, fEF.
As a corollary of the previous results we have:

Proposition 3.6. Let U C H; be such that ks(p,q) is positive definite on U, and
assume that 0 € U. Then s is the restriction of a power series to U.

Proof. The relation Y defined in (3.2]) need not be densely defined anymore. Let D
denote the closed linear span of the functions k(- q), with ¢ € U. We extend Y to a
densely defined linear relation by setting it equal to 0 on F © D. Formula is still
valid, but only on U. The result follows by setting ¢ = 0 in (3.3)). 0

4. REALIZATION THEOREM

Theorem 4.1. A function s : Q C HY — L(Py, Ps) defined in a neighborhood of the
origin s a Schur multiplier if and only if there exist a right quaternionic Hilbert space
H and a coisometric operator

T F
V=<G H) HeP, — HYN eP,

such that
(s(p)u) = Hu+F"(ks(,p)p*u) (4.1)

ks(aP)“ - ZT; (ks(ap)p_nu) = G'u. (42>

Proof. Let s be Schur multiplier, and let H(s) denote the associated reproducing kernel
Hilbert space of Py-valued functions defined on €2 and with reproducing kernel .
As in [5], we set

Hu(s) = (H(s))¥ O N,
where A/ denotes the space of functions f € (H(s))" such that pf(p) = 0. We define

a linear relation o ((’HN;s))N> y (Hﬁ))

as the right linear span of elements of the form:

(o) (oG-
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where u,v € Py and ¢ runs in ).

STEP 1: The relation R is isometric and densely defined.

Indeed,

<((/{;s(.,q)—ks(.,O))ul—i—ks(.,O)ug) (( s(p) = ks(, 0))vr + ki(-, 0)ve >> _
s(@)" = 5(0))ur +s(0)uz )7\ (s(p)* = 5(0)")v1 + 5(0)"va
ks(p, @)u, v1) — (ks(p, 0)ur, vi) — (Ks(0, q)ur, v1) + (ks (0, 0)ug, vi)+

Yug, v1) — (ks(0,0)us, v1) + (ks(0,0)us, vo) + (ks(0, q)ui, vo)—
Jur,vz2) + ((s(p) — s(0))(s(q)" — s(0)")ur, v1)+
0)5(0)*uz2, v2) + (s(0)(s(q)* — 5(0)")u1,v2) + {(s(p) — 3(0))5(0)*%27UEEl )

Now we compute

((s(p) — 5(0))(s(q)" — 5(0)")ur, v1) =
= ((s(p)s(@)" = I+ 1 = s(p)s(0)" + I — 5(0)s(q)" + 5(0)s(0)" — I)ua, v1)
= ((ks(p, 0) + k(0. ¢) = £(0,0))ur, v1) — (I = s(p)s(q)"){ur, v1)

where we have used the formula of the kernel k(p, ¢). Taking into account this equality,
we see that the right hand side of (4.3]) reduces to

(pha(p, 0)g™u1, v1) + (112, 1) = <<k5(.,q)q*u1> | (ks(,7p)p*v1)>_

U2 V2

Hence, R is a densely defined isometry relation between right Pontryagin spaces of
same index. By the quaternionic version of a theorem of Shmulyan (see [6, Theorem
1.4.2] for the complex case and [3, Theorem 7.2] for the quaternionic version), R can be
extended in a unique way to the graph of an everywhere defined continuous isometric
operator V', which we denote in the form

T F\*
v=(c n)

It follows then from the definition of the relation that:

T*(ks(, q)q"u) = (ks q) — ks(.,0))u (4.4)
Fr(ks(,q)g'v) = (s(g)" — s(0)")u (4.5)
G'ug = ks(.,0)us (4.6)
Hus = 5(0)"uqy (4.7)

STEP 2: s is a Schur multiplier.

We write

T = , with T, € L(H(s),H(s)), n=1,...,N.
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Equation (4.4) can be rewritten as (with p instead of ¢)

pu—Y_ T; (ks p)Pau) = G*u (4.8)

Using we can write
(I = s(p)s(q))u, v) = (u,v) = (s(q)"u, s(p)"v)
= ((HH* + GG*)u,v)—
—((Hu+ F* (k(-,q)q"w)) , (H"v + F* (k(-,p)p"v)))
= ((HH" + GG*)u,v) — (HH"u,v)—
— (HF" (k(-,q)q"u) ,v) = {u, HF™ (k(-, p)p™v))—
—((k(,@)q"u) , FF* (k(-, p)p"v))
= (GG u,v) = ((k(,q)q"u) , (I = TT") (k(-,p)p*v))
+(GT" (k(-,q)q"u) ,v) + {u, GT" (k(-, p)p"v)) —
= (GG u,v) = ((k(-,q)q"u) , (k(-, p)pv))+
+ (I (k( @)q"u) , T (k(-, p)p*v))+
+{(G(T" (k(-,@)q"u)) ,v) + (u, G (T" (k(:,p)p"v))).
We now use and write the above as
(I =s(p)s(q)*)u, v) = (GG™u,v) — (k(-, q)q"u, k(- p)p*v)+
+(G*u — k(- Q)u, G*v — kg(-, p)v)+
+ (G (ks u — Gu) ,v) + (u, G (ks (-, p)v — G™v)).

Hence,
((f— s(p)s(@)")u,v) = (ks(-, Qu, ks(-,p)v) — (ks(, @) u, ks (-, p)p™0),
which is

These same computatlons show in fact that a function s satisfying (4.1)) and . is a
Schur multiplier.

5. A STRUCTURE THEOREM

We now present a characterization of spaces associated to Schur multipliers. The state-
ment and proof are adapted from the commutative version. See [B, Theorem 3.2, p.
260] for the latter.

Note that equation (5.1)) in the statement of Theorem , since the coefficient space
is assumed two-sided. Equation ({5.1]) does not imply that any of the functions

p = pu(Tof)(p)

belongs to the space ‘H mentioned in the theorem.

Theorem 5.1. Let P be a two-sided quaternionic Pontraygin space, and let H be a
right-sided quaternionic reproducing kernel Hilbert space of P-valued functions defined
in a neighborhood Q@ C HY of the origin of H™. Then there exists a Pontryagin space
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Py of same index as P and a L(Py, P)-valued Schur multiplier s such that H = H(s)

if and only there exist linear bounded operators Ty, ..., TN such that
N
f0) = £(0) = pa(Tuf)(p) (5.1)
n=1
and
N
Nt IP < AP = [£0), f(O)] (5.2)
n=1

Proof. We proceed in a number of steps.

STEP 1: Equation (5.1)) is equivalent to equation (4.4)).

Indeed, let k(p,q) denote the reproducing kernel of H. From (5.1) we have for every
feHand ueP

WE

(fi kG p)uys = (RGO u)y = ) [n(T0f)(p), ulp

3
Il
—_

I
[ =

[(T5f)(P), Puulp

3
Il
—

<Tnf7 k(>p)p_nu>7'i7

n

I
= 1[M]=

n=1
where we have used ([1.4]) to go from the first to the second line. Equation (4.4]) follows.
The converse statement is proved by reading backwards the arguments.

We now define HY = HY © N, where N is the subspace of elements of H" such that
pf(p) =0.

STEP 2: There exist a Pontryagin space Py and operators H € L(P;,P) and F €

L(Py, 1Y) such that * *
e OO -@E o

We follow the arguments from [4, p. 862]. Let

e- (1)

where C' denotes the evaluation at the origin. From the equality

(IH 0 )(IH 0 )(IH 0 )*_
L IH{;’@P 0 IH{)V@P_EE* E ]Hévea?

(IH E* )(I%—E*E 0 )(IH E* )
0 Iynep 0 Lyyer ) \ 0 Iuyyep)
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we get
v-(Iyygp — EE") = v_(P).
By [4, Theorem 6.7,p. 859], there exists a Pontryagin space P; such that
v—(P1) =v-(P),
and linear bounded operators

F:P — HY and H: P — P

™ (T\" _(F\ (FY
byor =\c)\c) =\u)\u)
STEP 3: Let p € ). The formula
s(p)'u = Hu+ F* (k(-,p)p*u)

defines a linear bounded operator s(p) € L(Py, P) and s is a Schur multiplier.
The computations are the same as in the proof of STEP 2 of Theorem [.1] H

such that

6. EXAMPLE: BLASCHKE FACTORS AND INTERPOLATION IN THE FOCK SPACE

As an example we characterize the one dimensional #(s) spaces which are isometrically
included in F, and connect this result with homogeneous interpolation in F. The
analysis is inspired by [9], but there is a difference. Apparently one cannot iterate the
procedure and consider multipoint homogeneous interpolation problems.

Theorem 6.1. M is a one dimensional vector space isometrically included in F of
the form H(s) if and only if s is of the form
s(p) = —a+p)_p'a (Iy —a*a)'”* /1= o] (6.1)
ueZ
for some a € HY.
Proof. Let s be a (not necessarily scalar-valued) Schur multiplier such that the asso-

ciated space H(s) is one dimensional, and let f(p) be a basis of H(s). From ([5.1) we
have

N
F(p) = £(0) = puf(p)an (6.2)
n=1
for some quaternions aq,...,ay. Note that T,, = a,, here, or, more precisely,

(Tnfa)(p) = f(p)ang.
In particular, we have that f(0) # 0. Otherwise, iterating (6.2)) leads to f = 0. With
a=(ay,...,ay) we have a € HY and
f(p) = kO(pa CL),

and H(s) is included inside the Fock space. From (2.2)) and the formula for a one
dimensional reproducing kernel Hilbert space we have
1—[s(a)]*  ko(0,a)ko(a,0)

1—laf? 1Ko (-, @)lZs)

ks(a,a) =
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and so
1 1
||]€0(',CL>H2 s) = <
MO (1= s(@)P)(1 — [af?) T 1~ [af?
and so H(s) (if it exists, and with s still to be determined) will be isometrically included
inside F if and only if s(a) = 0. We claim is that a possible s is given by (6.1)). To
that purpose, we note that the matrix

ED-(a o) e

is unitary. With s as in (6.1]), and setting

Y(p)=> p"T"
uel
we have that
N
Y(p) =Y pY(p)a;=1. (6.4)
j=1

Taking into account that

(Iy — a*a)?a* = a*\/1 — |af?

we have:
s(p)s(q)" = la]* = pY ()T (1 = |a*) = TY (¢)*¢" (1 — |a|*)+
+ (1= [a®)pY (p)TT*Y (q)*q"—
— (1= 1a)pY (p)Y (9)*q",
and hence

1—s(p)s(q)* = (1= |a) {(I +pY (p)T)(I +T*Y (q)*¢") — pY (p)Y (¢)*¢*}
= (1= [a) {Y(p)Y(q)" = pY (p)Y (¢)"¢"}

which shows that s is a Schur multiplier. Furthermore the reproducing kernel of H(s)
1s

(1= aP)Y ()Y (q)" = (1 = |a])ko(p. a)ko(q, @) = ko(p, q)
by the formula for the reproducing kernel, so that H(s) has for basis by ko(p,a). O

Definition 6.2. Let a € Hy. The Schur multiplier corresponding to (6.3)) is called a
Blaschke factor,and will be denoted by by(p).

Remark 6.3. If one removes the hypothesis of being isometrically included, then the
example

s(p) = % (1 ba(p)

shows that s(a) need not be equal to 0.

Proposition 6.4. Let a € Hy. An element f € F is such that f(a) = 0 if and only if
it is of the form M, g for some g € FN.
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Proof. We first note that
F =ran /(I — My, M; ) +ran y/ My, M . (6.5)

ran (I — M, M; ) = span {ko(-,a)}
is one dimensional. Since ko(-,a) ¢ ran /My, M; (otherwise we would have F =

ran y /(I — My, My )) the sum in (6.5)) is direct and orthogonal and this ends the proof.
U

where

In opposition to [9] it seems difficult to iterate this procedure to more than one point,
because of the non-commutativity appearing in particular in formula (3.4)). Indeed if
a function f € F satisfies conditions

fla) =0 and f(az) =0

for some pre-assigned points a; and ay in HY, then

F(0) = (Mo, 9)(p) = > 0"bay()gu, where g(p) = p"gu € F".
u=0 u=0

The second interpolation condition then becomes

o0

Z ag ai (aQ)gu - Oa

u=0

which does not seem to be expressable in terms of g(az) unless b,, (a2) and a; commute.

Remark 6.5. The solution of equation ([6.4)),

Y(p) — ZPJY(p)Tj =1

can be seen as the non commutative version of the resolvent of the N-tuple of operators
(Ty, ..., Tn).
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