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ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO THE

FRACTIONAL POROUS MEDIUM EQUATION WITH VARIABLE DENSITY

GABRIELE GRILLO, MATTEO MURATORI, FABIO PUNZO

Abstract. We are concerned with the long time behaviour of solutions to the fractional porous
medium equation with a variable density. We prove that if the density decays slowly at infinity,
then the solution approaches the Barenblatt-type solution of a proper singular fractional problem.
If, on the contrary, the density decays rapidly at infinity, we show that the minimal solution
multiplied by a suitable power of the time variable converges to the minimal solution of a certain
fractional sublinear elliptic equation.
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1. Introduction

We investigate the asymptotic behaviour, as t → ∞, of nonnegative solutions to the following
parabolic nonlinear, degenerate, nonlocal weighted problem:

{
ρ(x)ut + (−∆)s (um) = 0 in R

d × (0,∞) ,

u = u0 on R
d × {0} ,

(1.1)

where the initial datum u0 is nonnegative and belongs to

L1
ρ(R

d) =

{
u : ‖u‖1,ρ =

∫

Rd

|u(x)| ρ(x)dx <∞

}
,

and the weight ρ is assumed to be positive, locally essentially bounded away from zero (namely
ρ−1 ∈ L∞

loc(R
d)) and to satisfy suitable decay conditions as at infinity, which we shall specify later.

As for the parameters involved, we shall assume throughout the paper that m > 1 and d > 2s.
1



2 GABRIELE GRILLO, MATTEO MURATORI, FABIO PUNZO

Moreover, for all s ∈ (0, 1), the symbol (−∆)s denotes the fractional Laplacian operator, that is

(−∆)s(φ)(x) = p.v. Cs,d

∫

Rd

φ(x)− φ(y)

|x− y|d+2s
dy ∀x ∈ R

d , ∀φ ∈ C∞
c (Rd) , (1.2)

Cs,d being a suitable positive constant depending only on s and d. For less regular functions, the
fractional Laplacian is meant in the usual distributional sense.

For weights ρ(x) that decay slowly as |x| → ∞, we shall also be able to consider the more general
problem {

ρ(x)ut + (−∆)s (um) = 0 in R
d × (0,∞) ,

ρ(x)u = µ on R
d × {0} ,

(1.3)

where µ is a positive finite measure. More precisely, here we shall assume that ρ complies with the
following assumptions:

cR ≤ ρ(x) ≤ c |x|−γ ∀x ∈ BR , ∀R > 0 , lim
|x|→∞

ρ(x)|x|γ = c∞

for γ ∈ (0, 2s) and suitable strictly positive constants cR, c and c∞ (BR denotes the ball of radius R
centred at x = 0, while Bc

R denotes its complement). Note that in this case ρ(x) is allowed to have
a singularity as |x| → 0.

The local version of problem (1.1), that is
{
ρ(x)ut −∆(um) = 0 in R

d × (0,∞) ,

u = u0 on R
d × {0} ,

(1.4)

has been largely studied in the literature (see e.g. [13, 14, 16, 17, 19, 24, 21, 31]). In particular,
for d ≥ 3, it is shown that (1.4) admits a unique very weak solution if ρ(x) decays slowly as
|x| → ∞, while nonuniqueness prevails when ρ(x) decays fast enough as |x| → ∞. In the latter
case, uniqueness can be restored by imposing on the solutions proper extra conditions at infinity.
Also note that, independently of the behaviour of ρ(x) as |x| → ∞, existence and uniqueness of the
so-called weak energy solutions (namely solutions belonging to suitable functional spaces) hold true
(see [16]). Furthermore, the long time behaviour of solutions to problem (1.4) has been addressed
in [30, 32] and [20]. To be specific, in [32] it is proved that if ‖u0‖1,ρ = M , ρ > 0 and ρ(x) ∼ |x|−γ

as |x| → ∞, for some γ ∈ [0, 2), then the solution u to problem (1.4) satisfies

lim
t→∞

‖u(t)− u∗M (t)‖1,ρ = 0

and

lim
t→∞

tα ‖u(t)− u∗M (t)‖∞ = 0 .

Here, u∗M is the self-similar Barenblatt solution of mass
∫
Rd u

∗
Mρ =M , that is

u∗M (x, t) = t−αF
(
t−κ|x|

)
∀(x, t) ∈ R

d × (0,∞) ,

with

F (ξ) = (C − kξ2−γ)
1

m−1

+ ∀ξ ≥ 0

for suitable positive constants C and k depending on M , m, d, γ. Moreover,

α = (d− γ)κ , κ =
1

d(m− 1) + 2−mγ
.

We stress that u∗M solves the singular problem
{
|x|−γut −∆(um) = 0 in R

d × (0,∞) ,

|x|−γu =Mδ on R
d × {0} ,

where M = ‖u0‖1,ρ and δ is the Dirac delta centred at x = 0. Note that, for ρ ≡ 1, and so γ = 0,
the same asymptotic results have been shown in [15] and in [34].
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On the contrary, in [20] it is proved that if ρ > 0 and ρ(x) ∼ |x|−γ as |x| → ∞, for some γ > 2,
then the minimal solution to problem (1.4), which is unique in the class of solutions fulfilling

1

Rd−1

∫

∂BR

∫ t

0

um(x, τ) dτdS → 0 as R→ ∞

for all t > 0, satisfies

t
1

m−1u(x, t) → (m− 1)−
1

m−1W
1
m (x) as t→ ∞ , uniformly w.r.t. x ∈ R

d .

Here W is the unique (minimal) positive solution to the sublinear elliptic equation

−∆W = ρW
1
m in R

d ,

and it is such that
lim

|x|→∞
W (x) = 0 .

Problem (1.1) with ρ ≡ 1, nonnegative initial datum u0 in L1(Rd) and s ∈ (0, 1), namely
{
ut + (−∆)s (um) = 0 in R

d × (0,∞) ,

u = u0 on R
d × {0} ,

(1.5)

has been recently addressed in the breakthrough papers [9, 10]. In particular, existence, uniqueness
and qualitative properties of solutions have been studied. Furthermore, the asymptotic behaviour,
as t→ ∞, has been investigated in [36]. More precisely, it is first shown that, for any M > 0, there
exists a unique solution u∗M to the singular problem

{
ut + (−∆)s (um) = 0 in R

d × (0,∞) ,

u =Mδ on R
d × {0} .

Furthermore, such u∗M has the following self-similar form:

u∗M (x, t) = t−αf(t−κ|x|) ∀(x, t) ∈ R
d × (0,∞) ,

where

α =
d

d(m− 1) + 2s
, κ =

1

d(m− 1) + 2s

and the profile f : [0,∞) → (0,∞) is a bounded, Hölder continuous decreasing function, with
f(r) → 0 as r → ∞. In view of such properties, u∗M is still called a Barenblatt-type solution. Then
it is proved that the solution u to problem (1.5) satisfies

lim
t→∞

‖u(t)− u∗M (t)‖1 = 0

and
lim
t→∞

tα ‖u(t)− u∗M (t)‖∞ = 0 . (1.6)

Existence and uniqueness of nonnegative bounded solutions to problem (1.1) for nonnegative
initial data u0 ∈ L1

ρ(R
d) ∩ L∞(Rd) and strictly positive weights have been investigated in [27, 26].

More precisely, it is proved that if γ ∈ (0, 2s) and there exists C0 > 0 such that if

ρ(x) ≥ C0|x|
−γ a.e. in Bc

1 ,

then problem (1.1) admits a unique bounded solution. Furthermore, when γ ∈ (2s,∞) and there
exists C0 > 0 such that

ρ(x) ≤ C0|x|
−γ a.e. in Bc

1 , (1.7)

we have existence of solutions satisfying a proper decaying condition at infinity. Within this class
of solutions, uniqueness can be restored provided (1.7) holds true with γ ∈ (d,∞), basically as
a consequence of the results of [26]. In addition, in the present paper we shall prove uniqueness
under the weaker requirement that (1.7) holds true with γ ∈ (4s ∧ d,∞) (see Theorem 2.4 below).
Actually, for generic positive densities ρ ∈ L∞

loc(R
d) such that ρ−1 ∈ L∞

loc(R
d), namely without

assuming further conditions on ρ(x) as |x| → ∞, one can also prove existence and uniqueness of
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weak energy solutions in the same spirit of [16] (see Proposition 2.3 below). The point is that the
uniqueness results of Theorem 2.4 hold for a more general notion of solution, and we shall use them
as such.

The main goal of this paper is to study the large time behaviour of solutions to problem (1.1). To
this end, similarly to the results recalled above in the local case, we shall distinguish two situations:

i) ρ(x) → 0 as |x| → ∞ slowly, in the sense that for a suitable γ ∈ (0, 2s) there holds

lim
|x|→∞

ρ(x)|x|γ = c∞ > 0 ; (1.8)

ii) ρ(x) → 0 as |x| → ∞ rapidly, in the sense that for a suitable γ ∈ (2s,∞) (1.7) holds true.

In case i) we shall describe the asymptotic behaviour of solutions to problem (1.3), namely with
initial data which can be positive finite measures. Such asymptotics is obtained in terms of a
Barenblatt-type solution to a proper nonlocal singular problem, that is the unique solution uc∞M to

{
c∞|x|−γut + (−∆)s (um) = 0 in R

d × (0,∞) ,

c∞|x|−γu =Mδ on R
d × {0} ,

(1.9)

whereM > 0 is the (fixed) mass and c∞ is as in (1.8). Existence and uniqueness of solutions to (1.9)
actually follow from the results established in [18] for the more general problem (1.3). In particular,
existence is ensured supposing that γ ∈ (0, 2s ∧ (d− 2s)), while uniqueness holds under the weaker
condition γ ∈ (0, 2s) ∩ (0, d− 2s].
Coming back to the asymptotics of the solutions to the evolution equations considered, we shall
show that

lim
t→∞

‖u(t)− uc∞M (t)‖1,|x|−γ = lim
t→∞

∫

Rd

|tαu(tκx, t)− uc∞M (x, 1)| |x|−γdx = 0 , (1.10)

where

α = (d− γ)κ , κ =
1

d(m− 1) + 2s−mγ
.

In order to prove (1.10), we partially follow the general strategy used in the literature to prove
similar convergence results (see e.g. [15, 34, 35, 31, 36]). However, here several technical difficulties
arise, due to the simultaneous presence of the weight ρ(x) and of the nonlocal operator (−∆)s. To
overcome them, we adapt to the present situation some ideas used in [18] to prove existence. Besides,
the lack of known regularity results for the Barenblatt solutions considered, which hold true in the
unweighted case because of the theory developed in [1], forces us to introduce a different argument
in the final convergence step (which however does not allow to prove a stronger L∞ convergence
result of the type of (1.6)).

In case ii), the long time behaviour of the minimal solution to problem (1.1) is deeply linked with
the minimal solution w to the following nonlocal sublinear elliptic equation:

(−∆)sw = ρwα in R
d , (1.11)

where α = 1/m ∈ (0, 1). Note that the local case s = 1 has been thoroughly studied (see e.g.
[5], [29] and references therein). For general s ∈ (0, 1) it has been addressed in [25], following the
same line of arguments of [5]. However, in [25] it is supposed that (1.7) holds true for γ > d (with
d > 4s) and ρ ≥ 0 (with ρ 6≡ 0). Furthermore, energy solutions have been dealt with. In the present
work, existence of nontrivial very weak solutions is established whenever (1.7) holds for γ > 2s (with
d > 2s). In doing this, a central role will be played by the solution to the linear equation

(−∆)sV = ρ in R
d .

We shall also prove uniqueness of very weak solutions to equation (1.11), satisfying proper decay
conditions at infinity, assuming that (1.7) holds for γ > 4s ∧ d. We then show that, whenever (1.7)
holds for γ > 4s ∧ d, there holds

lim
t→∞

t
1

m−1u(x, t) = (m− 1)−
1

m−1w
1
m (x) for a.e. x ∈ R

d ,
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where w is the minimal positive (very weak) solution to equation (1.11) with α = 1/m.

Organization of the paper. In Section 2 we give the definitions of solution to problems (1.1) and
(1.3); moreover, preliminary results concerning the well posedness of the problems are stated. As
for long time behaviour of solutions, our results both for fast decaying densities (Theorem 3.1) and
for slowly decaying densities (Theorem 3.3) are stated in Section 3. In Section 4 we consider the
sublinear elliptic equation (1.11), and we show some new existence and uniqueness results for the
corresponding solutions in Theorems 4.4 and 4.5, which have also an independent interest. We take
advantage of such results in Section 5 in order to prove Theorem 3.1. Finally, in Section 6 we prove
Theorem 3.3.
In Appendix A some useful properties of Riesz potential are discussed. In Appendix B the well
posedness of problem (1.1) for rapidly decaying densities is proved: here we improve in various
directions previous results in [26].

2. Preliminary results

We start this section by providing a suitable definition of weak solution to problem (1.1), which
will be primarily interesting for the case of rapidly decaying densities. We shall always assume
ρ ∈ L∞

loc(R
d) and ρ−1 ∈ L∞

loc(R
d). Hereafter, by the symbol Ḣs(Rd) we shall denote the completion

of C∞
c (Rd) w.r.t. the norm

‖φ‖Ḣs =
∥∥(−∆)

s
2 (φ)

∥∥
2

∀φ ∈ C∞
c (Rd) .

Definition 2.1. A nonnegative function u is a weak solution to problem (1.1) corresponding to the
nonnegative initial datum u0 ∈ L1

ρ(R
d) if:

• u ∈ C([0,∞);L1
ρ(R

d)) ∩ L∞(Rd × (τ,∞)) for all τ > 0;

• um ∈ L2
loc((0,∞); Ḣs(Rd));

• for any ϕ ∈ C∞
c (Rd × (0,∞)) there holds

∫ ∞

0

∫

Rd

u(x, t)ϕt(x, t) ρ(x)dxdt−

∫ ∞

0

∫

Rd

(−∆)
s
2 (um)(x, t)(−∆)

s
2 (ϕ)(x, t) dxdt = 0 ; (2.1)

• limt→0 u(t) = u0 in L1
ρ(R

d).

A classical notion in the literature is the following (see e.g. [10, Section 8.1]).

Definition 2.2. Let u be a weak solution to problem (1.1) (according to Definition 2.1). We say
that u is a strong solution if, in addition, ut ∈ L∞((τ,∞);L1

ρ(R
d)) for every τ > 0.

Existence and uniqueness of weak solutions to problem (1.1), by means of standard techniques (see
e.g. [9, 10, 16, 26]), are discussed in Appendix B. The first result we provide reads as follows (for a
sketch of proof see again Appendix B – Parts I and II).

Proposition 2.3. Let ρ ∈ L∞
loc(R

d) be positive and such that ρ−1 ∈ L∞
loc(R

d). Then there exists
a unique weak solution u to problem (1.1), in the sense of Definition 2.1, which is also a strong
solution in the sense of Definition 2.2.

Let us introduce the Riesz kernel of the s-Laplacian:

I2s(x) =
ks,d

|x|d−2s
∀x ∈ R

d \ {0} , (2.2)

where ks,d is a suitable positive constant that depends only on s and d. Recall that for a sufficiently
regular function f there holds

(−∆)s (I2s ∗ f) = f ,

namely the convolution against I2s represents the operator (−∆)−s.
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2.1. Rapidly decaying density. Given a weak solution u to (1.1) and any fixed t0 ≥ 0, let us set

U(x, t) =

∫ t

t0

um(x, τ) dτ ∀(x, t) ∈ R
d × (t0,∞) .

Notice that U depends implicitly on t0 as well.
When ρ(x) is a density that decays sufficiently fast as |x| → ∞, we shall often need to deal with

solutions to (1.1) which are meant in a more general sense with respect to the one of Definition 2.1,
namely what we call local strong solutions. The corresponding definition is technical, and we leave
it to Appendix B (see Definition B.4). The result we present here below concerns existence and
uniqueness of local strong solutions.

Theorem 2.4. Let ρ ∈ L∞(Rd) be positive and such that ρ−1 ∈ L∞
loc(R

d). Let u0 ∈ L1
ρ(R

d) be

nonnegative. Assume in addition that ρ(x) ≤ C0 |x|
−γ a.e. in Bc

1 for some γ > 2s and C0 > 0.
Then the weak solution to problem (1.1) provided by Proposition 2.3 is the minimal solution in the
class of local strong solutions (according to Definition B.4) and satisfies

U(x, t) → 0 as |x| → ∞ (2.3)

for all t0 > 0 and t ≥ t0. More precisely, for any t0 > 0 there holds

U(x, t) ≤ C (I2s ∗ ρ)(x) for a.e. (x, t) ∈ R
d × (t0,∞) (2.4)

for some C = C(t0) > 0, whence (2.3) follows by Corollary A.2. Furthermore:

(i) under the more restrictive assumption that γ > d, the solution is unique in the class of local
strong solutions satisfying

um ∈ L1
(1+|x|)−α(Rd × (0, T )) ∀T > 0 , (2.5)

given any α < 2s;
(ii) if u0 is also bounded, then under the more restrictive assumption that γ > 4s ∧ d the solution

is unique in the class of bounded local strong solutions satisfying

um ∈ L1
(1+|x|)−d+2s(R

d × (0, T )) ∀T > 0 . (2.6)

For the proof of Theorem 2.4, we refer the reader to Appendix B – Part III.

Remark 2.5. Note that, in case (i), if the initial datum u0 belongs to L1
ρ(R

d) ∩ L∞(Rd) then the

solution provided by Proposition 2.3 is bounded in the whole of Rd×(0,∞), so that one can actually
pick t0 = 0 in (2.4) (see [26, Theorems 5.5 and 5.6]).
Statement (i) can be proved proceeding as in the proof of [26, Theorem 6.10], where condition (2.4)
is required instead of (2.5). However, in view of the results collected in Appendices A and B, one
easily deduces that (2.4) is stronger than (2.5) but the latter is actually enough.
Finally notice that, as concerns uniqueness, when d ≤ 4s condition (2.5) is weaker than (2.6). Hence,
in this case, the uniqueness result of (ii) is just a consequence of the uniqueness result of (i).

2.2. Slowly decaying densities. In this subsection we deal with weights ρ(x) which decay slowly
as |x| → ∞. More precisely, we shall assume once for all that the following hypotheses are satisfied:

c ≤ ρ(x) ≤ C2|x|
−γ for a.e. x ∈ B1 , C1|x|

−γ ≤ ρ(x) ≤ C2|x|
−γ for a.e. x ∈ Bc

1 (2.7)

for some positive constants c, C1, C2 and γ ∈ (0, 2s). Note that ρ(x) might possibly be unbounded
as x→ 0.

Below we recall the definition of weak solution to the more general problem (1.3) given in [18,
Definition 3.1]. Before doing it, following the same notation as in [23], we need to introduce some
notions of convergence in measure spaces. Let M(Rd) be the cone of positive, finite measures on
R

d. A sequence {µn} ⊂ M(Rd) is said to converge to µ ∈ M(Rd) in σ(M(Rd), Cb(R
d)) if

lim
n→∞

∫

Rd

φ(x) dµn =

∫

Rd

φ(x) dµ ∀φ ∈ Cb(R
d) ,
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where Cb(R
d) is the space of continuous, bounded functions in R

d. An analogous definition holds
for σ(M(Rd), Cc(R

d)).

Definition 2.6. By a weak solution to problem (1.3), corresponding to the initial datum µ ∈ M(Rd),
we mean a nonnegative function u such that:

u ∈ L∞((0,∞);L1
ρ(R

d)) ∩ L∞(Rd × (τ,∞)) ∀τ > 0 , (2.8)

um ∈ L2
loc((0,∞); Ḣs(Rd)) , (2.9)

∫ ∞

0

∫

Rd

u(x, t)ϕt(x, t) ρ(x)dxdt−

∫ ∞

0

∫

Rd

(−∆)
s
2 (um)(x, t) (−∆)

s
2 (ϕ)(x, t) dxdt = 0 (2.10)

∀ϕ ∈ C∞
c (Rd × (0,∞))

and

lim
t→0

ρ u(t) = µ in σ(M(Rd), Cb(R
d)) .

It is plain that, when µ = ρ u0 ∈ L1(Rd), a solution to (1.1) with respect to Definition 2.1 is also
a solution to (1.3) with respect to Definition 2.6. However, Definition 2.6 permits to handle more
general initial data (positive, finite measures). In particular, we cannot ask u ∈ C([0,∞);L1

ρ(R
d)).

Nevertheless, thanks to the fundamental Theorem 2.7 which we state below, when µ = ρ u0 ∈
L1(Rd) such two solutions do coincide (provided the parameters γ, s and d meet the corresponding
assumptions).

We recall now some well posedness results proved in [18]. In fact, thanks to the theory developed
therein, we can guarantee existence and uniqueness of weak solutions to (1.3) (according to Definition
2.6). Besides, Proposition 4.1 of [18] ensures that

∫

Rd

u(x, t) ρ(x)dx = µ(Rd) ∀t > 0 , (2.11)

namely there is conservation of mass. This is actually a sole consequence of Definition 2.6 and the
hypothesis γ ∈ (0, 2s).

The next result is a crucial one but its proof follows along known lines.

Theorem 2.7. Let d > 2s and γ ∈ (0, 2s ∧ (d − 2s)). Assume that ρ satisfies (2.7). Then there
exists a weak solution u to problem (1.3), in the sense of Definition 2.6, which satisfies the smoothing
estimate

‖u(t)‖∞ ≤ K t−αµ(Rd)β ∀t > 0 , (2.12)

where K is a suitable positive constant depending only on m, γ, s, d and

α =
d− γ

(m− 1)(d− γ) + 2s− γ
, β =

2s− γ

(m− 1)(d− γ) + 2s− γ
. (2.13)

In particular, u(t) ∈ L1
ρ(R

d) ∩ L∞(Rd) for all t > 0. Moreover, u satisfies the energy estimates
∫ t2

t1

∫

Rd

∣∣(−∆)
s
2 (um) (x, t)

∣∣2 dxdt+
∫

Rd

um+1(x, t2) ρ(x)dx =

∫

Rd

um+1(x, t1) ρ(x)dx (2.14)

and ∫ t2

t1

∫

Rd

|zt(x, t)|
2
ρ(x)dxdt ≤ C (2.15)

for all t2 > t1 > 0, where z = u
m+1

2 and C is a positive constant that depends only on t1, t2, m and
on ∫

Rd

um+1(x, t∗) ρ(x)dx

for some t∗ ∈ (0, t1).
Furthermore, such solution is unique.
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Remark 2.8. (i) The smoothing effect (2.12) can be proved as in [18, Proposition 4.6]. In fact,
such proof only relies on the validity of the fractional Sobolev inequality

‖v‖2 d−γ
d−2s

,ρ ≤ C̃ ‖(−∆)s(v)‖2 ∀v ∈ Ḣs(Rd) ,

which, thanks to the assumptions on ρ, is a trivial consequence of

‖v‖2 d−γ
d−2s

,−γ ≤ CS,γ ‖(−∆)s(v)‖2 ∀v ∈ Ḣs(Rd) . (2.16)

For the validity of (2.16), we refer the reader to [18, Lemma 4.5] and references quoted.
(ii) Thanks to the results of [18, Section 3.1] (which in turn go back to [10, Section 8.1]), or to

the discussion in Appendix B – Part I (which applies to slowly decaying densities as well), we
have that the solutions provided by Theorem 2.7 are also strong. In particular, they belong to
C((0,∞);L1

ρ(R
d)).

(iii) Note that, for d ≥ 4s, the hypotheses of Theorem 2.7 on γ reduce to γ ∈ (0, 2s).

3. Main results: large time behaviour of solutions

In this section we state our main results for the asymptotics (as t → ∞) of the solutions to
problems (1.1) and (1.3) provided by Proposition 2.3 and Theorem 2.7, respectively.

3.1. Rapidly decaying densities. As concerns solutions to (1.1) when ρ(x) is a density that
decays sufficiently fast as |x| → ∞, we have the following result.

Theorem 3.1. Let ρ ∈ Cσ
loc(R

d) for some σ > 0, with ρ > 0. Let u0 ∈ L1
ρ(R

d) be nonnegative.

Assume in addition that ρ(x) ≤ C0|x|
−γ in Bc

1 for some γ > 2s and C0 > 0. Let u be the (minimal)
weak solution to problem (1.1) provided by Proposition 2.3 and w be the very weak solution to the
sublinear elliptic equation (1.11), with α = 1/m, provided by Theorem 4.4 below (which is also
minimal in the class of solutions specified by the corresponding statement). Then,

lim
t→∞

t
1

m−1 u(x, t) = (m− 1)−
1

m−1 w
1
m (x) for a.e. x ∈ R

d .

Remark 3.2. Let u0 ∈ L1
ρ(R

d) ∩ L∞(Rd) be nonnegative. Let ρ ∈ Cσ
loc(R

d) for some σ > 0, with
ρ > 0, and assume that condition (1.7) is satisfied with γ > 4s ∧ d. Then, by Theorem 2.4, the
minimal solution u to (1.1) provided by Proposition 2.3 is characterized to be the unique solution
in the class of local strong solutions such that um ∈ L1

(1+|x|)−β (R
d × (0, T )) for all T > 0, where β

is as in (4.5).
Moreover, the minimal solution w to the sublinear elliptic equation (1.11) provided by Theorem 4.4
is the unique solution in a certain class of solutions such that w ∈ L1

(1+|x|)−β (R
d) for a suitably

chosen value of β (see the statement of Theorem 4.5 below).

3.2. Slowly decaying densities. In the analysis of the long time behaviour of solutions to (1.3)
when ρ(x) is density that decays slowly as |x| → ∞, a major role is played by the solution to the
same problem in the particular case ρ(x) = c∞|x|−γ and µ = Mδ, for given positive constants c∞
and M (namely, the solution to (1.9)). From now on we shall denote such solution as uc∞M .
Let us define the positive parameters α and κ as follows:

α = (d− γ)κ , κ =
1

(m− 1)(d− γ) + 2s− γ
. (3.1)

Notice that α is the same parameter appearing in (2.13). It is immediate to check that, for any
given λ > 0, the function

uc∞M,λ(x, t) = λαuc∞M (λκx, λt)

is still a solution to problem (1.9). Hence, as a consequence of the uniqueness result contained in
Theorem 2.7, uc∞M,λ and uc∞M must necessarily coincide, that is

uc∞M (x, t) = λαuc∞M (λκx, λt) ∀t, λ > 0 , for a.e. x ∈ R
d . (3.2)
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As already mentioned, the special solution uc∞M , thanks to the self-similarity identity (3.2) it satisfies,
will be crucial in the study of the asymptotic behaviour of any solution to (1.3) (provided ρ complies
with (3.3) as well). This is thoroughly analysed in Section 6.

Our main result concerning the asymptotics of solutions to (1.3) is the following.

Theorem 3.3. Let d > 2s and γ ∈ (0, 2s ∧ (d − 2s)). Suppose that ρ satisfies (2.7) and that, in
addition,

lim
|x|→∞

ρ(x)|x|γ = c∞ > 0 . (3.3)

Let u be the unique weak solution to problem (1.3), in the sense of Definition 2.6, provided by
Theorem 2.7 and corresponding to µ ∈ M(Rd) as initial datum, with µ(Rd) =M > 0. Then,

lim
t→∞

‖u(t)− uc∞M (t)‖1,|x|−γ = 0 (3.4)

or equivalently

lim
t→∞

∫

Rd

|tαu(tκx, t)− uc∞M (x, 1)| |x|−γ dx = 0 , (3.5)

where uc∞M is the Barenblatt solution defined as the unique solution to problem (1.9), and the param-
eters α, κ are as in (3.1).

Notice once again that the range of γ for which the above theorem holds true simplifies to (0, 2s)
when d ≥ 4s, which is, to some extent, the maximal one for which one can expect a similar result.
Theorem 3.1 will be proved in Section 5, while Theorem 3.3 will be proved in Section 6.

4. A sublinear elliptic equation

Prior to analysing the asymptotic behaviour of solutions to (1.1) when ρ(x) is a density that
decays fast as |x| → ∞ (discussed in Section 5), we need to study the sublinear elliptic equation
(1.11), which naturally arises from such asymptotic analysis.

Let us recall that if ϕ is a smooth and compactly supported function defined in R
d, we can

consider its s-harmonic extension E(ϕ) to the upper half-space R
d+1
+ = {(x, y) : x ∈ R

d, y > 0},
namely the unique smooth and bounded solution to the problem

{
div
(
y1−2s∇E(ϕ)

)
= 0 in R

d+1
+ ,

E(ϕ) = ϕ on ∂Rd+1
+ = R

d × {y = 0} .

It has been proved (see e.g. [6], [7], [10]) that

−µs lim
y→0+

y1−2s ∂E(ϕ)

∂y
(x, y) = (−∆)

s
(ϕ)(x) ∀x ∈ R

d ,

where µs =
22s−1Γ(s)
Γ(1−s) . It is therefore convenient to define the operators

Ls = div
(
y1−2s∇

)
,

∂

∂y2s
= −µs lim

y→0+
y1−2s ∂

∂y
.

We also denote by Xs the completion of C∞
c (Rd+1

+ ∪ ∂Rd+1
+ ) w.r.t. the norm

‖ψ‖Xs =

(
µs

∫

R
d+1

+

y1−2s |∇ψ(x, y)|
2
dxdy

) 1
2

∀ψ ∈ C∞
c (Rd+1

+ ∪ ∂Rd+1
+ ) .

Furthermore, by the symbol Xs
loc, we shall mean the space of all functions v such that ψv ∈ Xs for

any ψ ∈ C∞
c (Rd+1

+ ∪ ∂Rd+1
+ ).
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It is possible to prove that there exists a well defined notion of trace on ∂Rd+1
+ for every function

in Xs (see e.g. [4, Section 2], [6, Section 3.1] or [10, Section 3.2]). Moreover, for every v ∈ Ḣs(Rd)
there exists a unique extension E(v) ∈ Xs such that

E(v)(x, 0) = v(x) for a.e. x ∈ R
d

and

µs

∫

R
d+1

+

y1−2s〈∇E(v),∇ψ〉(x, y) dxdy =

∫

Rd

(−∆)s(v)(x) (−∆)s(ψ)(x, 0) dx

for any ψ ∈ C∞
c (Rd+1

+ ∪ ∂Rd+1
+ ).

Having at our disposal the above tools, we can provide suitable weak formulations of problem
(1.11) which deal with the harmonic extension. In fact, at a formal level, looking for a solution w
to (1.11) is the same as looking for a pair of functions (w, w̃) solving the problem





Lsw̃ = 0 in R
d+1
+ ,

w̃ = w on ∂Rd+1
+ ,

∂w̃

∂y2s
= ρwα on ∂Rd+1

+ ,

(4.1)

with 0 < α < 1.

Definition 4.1. A local weak solution to problem (4.1) is a bounded nonnegative function w such

that, for some nonnegative w̃ ∈ Xs
loc ∩ L

∞
loc(R

d+1
+ ∪ ∂Rd+1

+ ) (what we call a local extension for w),
there holds w̃|∂Rd+1

+

= w and
∫

Rd

wα(x)ψ(x, 0) ρ(x)dx = µs

∫

R
d+1

+

y1−2s〈∇w̃,∇ψ〉(x, y) dxdy

for any ψ ∈ C∞
c (Rd+1

+ ∪ ∂Rd+1
+ ).

Definition 4.2. A bounded, nonnegative function w is a very weak solution to problem (1.11) if it
satisfies ∫

Rd

wα(x)ϕ(x) ρ(x)dx =

∫

Rd

w(x)(−∆)s(ϕ)(x) dx

for any ϕ ∈ C∞
c (Rd).

Definition 4.3. A nonnegative function w ∈ Ḣs(Rd) is a weak solution to problem (1.11) if it
satisfies ∫

Rd

wα(x)ψ(x, 0) ρ(x)dx =

∫

Rd

(−∆)
s
2 (w)(x)(−∆)

s
2 (ψ)(x, 0) dx

=µs

∫

R
d+1

+

y1−2s〈∇E(w),∇ψ〉(x, y) dxdy
(4.2)

for any ψ ∈ C∞
c (Rd+1

+ ∪ ∂Rd+1
+ ).

Note that a bounded weak solution is a solution to (1.11) in the sense of both Definition 4.1 and
Definition 4.2.

What follows in this section aims at studying existence and uniqueness of solutions to (4.1) (and
(1.11)), according to Definition 4.1 (and 4.2, 4.3). Our results are the following.

Theorem 4.4 (existence). Let α ∈ (0, 1). Let ρ ∈ C0,σ
loc (R

d) (for some σ ∈ (0, 1)) be strictly positive
and such that ρ(x) ≤ C0|x|

−γ in Bc
1 for some γ > 2s and C0 > 0. Then there exists a local

weak solution w to problem (4.1), which is minimal in the class of nonidentically zero local weak
solutions (according to Definition 4.1). Moreover, w is a very weak solution to (1.11) (in the sense
of Definition 4.2) and satisfies the estimate

w(x) ≤ C(I2s ∗ ρ)(x) for a.e. x ∈ R
d (4.3)
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for some C > 0.
Finally, if γ complies with the more restrictive condition

γ >
d+ 2s(α+ 1)

α+ 2
, (4.4)

then w is also a weak solution to (1.11) (according to Definition 4.3).

Theorem 4.5 (uniqueness). Let α ∈ (0, 1). Let ρ ∈ C0,σ
loc (R

d) (for some σ ∈ (0, 1)) be strictly
positive and such that ρ(x) ≤ C0|x|

−γ in Bc
1 for some γ > 4s∧ d and C0 > 0. Let w be the minimal

solution to problem (4.1) provided by Theorem 4.4. Let w be any other local weak solution to problem
(4.1) (according to Definition 4.1), which is also a very weak solution to problem (1.11) (according
to Definition 4.2) and such that w 6≡ 0 and w ∈ L1

(1+|x|)−β (R
d), where

β =





d− 2s if d ≥ 4s ,

2s− ε if d < 4s ,
(4.5)

for some ε > 0. Then w = w a.e. in R
d.

Remark 4.6. Observe that, thanks to Corollary A.2 and Remark A.3, when γ > 4s∧d the minimal
solution w provided by Theorem 4.4 does belong to L1

(1+|x|)−β (R
d) with β as in (4.5). That is, the

class of solutions in Theorem 4.5 among which we claim uniqueness is nonempty.

4.1. Existence for the sublinear elliptic equation. Here we shall prove all the properties of
w claimed in Theorem 4.4, except the fact that w is a very weak solution to problem (1.11) in the
sense of Definition 4.2 for all γ > 2s. This will be in fact a consequence of the asymptotic analysis
of Section 5.

Let us start off with some preliminaries. We consider first the following problem: find (wR, w̃R)
such that 




Lsw̃R = 0 in ΩR ,

w̃R = 0 on ΣR ,

w̃R = wR on ΓR ,
∂w̃R

∂y2s
= ρwα

R on ΓR ,

(4.6)

where ΩR = {(x, y) ∈ R
d+1
+ : |(x, y)| < R}, ΣR = ∂ΩR ∩ {y > 0} and ΓR = ∂ΩR ∩ {y = 0}. We

denote by Xs
0(ΩR) the completion of C∞

c (ΩR ∪ ΓR) w.r.t. the norm

‖ψ‖Xs
0
(ΩR) =

(
µs

∫

ΩR

y1−2s|∇ψ(x, y)|2 dxdy

) 1
2

∀ψ ∈ C∞
c (ΩR ∪ ΓR) .

Definition 4.7. A weak solution to problem (4.6) is a pair of nonnegative functions (wR, w̃R) such
that:

• wα
R ∈ L1(BR), w̃R ∈ Xs

0(ΩR);
• w̃R|ΓR

= wR;
• for any ψ ∈ C∞

c (ΩR ∪ ΓR) there holds
∫

BR

wα
R(x)ψ(x, 0) ρ(x)dx = µs

∫

ΩR

y1−2s〈∇w̃R,∇ψ〉(x, y) dxdy . (4.7)

The next existence result concerning problem (4.6) can be proved by standard variational methods
(see e.g. [4]).

Proposition 4.8. Let α ∈ (0, 1). Let ρ ∈ L∞
loc(R

d) be positive and such that ρ−1 ∈ L∞
loc(R

d). Then
there exists a nonidentically zero weak solution (wR, w̃R) to problem (4.6), in the sense of Definition
4.7.
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The following regularity and comparison results for problem (4.6) will be crucial in the proof of
Theorem 4.4 (specially as for minimality).

Proposition 4.9. Let α ∈ (0, 1). Let ρ ∈ L∞
loc(R

d) be positive and such that ρ−1 ∈ L∞
loc(R

d). Let
(wR, w̃R) be a solution to problem (4.6) (according to Definition 4.7), such that wR ∈ L∞(BR) and
w̃R ∈ L∞(ΩR). Then, for some β ∈ (0, 1),

‖w̃R‖C0,β(ΩR) ≤ C1 , (4.8)

where C1 is a positive constant depending only on s, d, R and ‖wR‖∞, ‖w̃R‖∞.

If furthermore ρ ∈ C0,σ
loc (R

d) for some σ ∈ (0, 1), then, for some β1 ∈ (0, 1),
∥∥∥∥
∂w̃R

∂y2s

∥∥∥∥
C0,β1 (ΩR)

≤ C2 , (4.9)

where C2 is a positive constant depending on ‖wR‖C0,β(BR), ‖ρ‖C0,σ(BR) and on the same quantities

as for C1.

Proof. It is a direct consequence of [6, Lemma 4.5]. �

Lemma 4.10. Let α ∈ (0, 1). Let ρ ∈ L∞
loc(R

d) be positive and such that ρ−1 ∈ L∞
loc(R

d).

(i) Let (w
(1)
R , w̃

(1)
R ) and (w

(2)
R , w̃

(2)
R ) be a subsolution and a supersolution, respectively, to problem

(4.6) (in a weak sense, in agreement with Definition 4.7). Assume that w̃
(1)
R , w̃

(2)
R ≥ 0 a.e.

in ΩR, w
(1)
R ≥ 0 a.e. in BR, w

(2)
R > 0 a.e. in BR and w̃

(1)
R |ΣR

≤ w̃
(2)
R |ΣR

a.e. in ΣR. Then

w̃
(1)
R ≤ w̃

(2)
R a.e. in ΩR and w

(1)
R ≤ w

(2)
R a.e. in BR.

(ii) Suppose in addition that ρ ∈ C0,σ
loc (R

d) (for some σ ∈ (0, 1)). Let (wR, w̃R) be a solution to
problem (4.6) (according to Definition 4.7), such that wR ∈ L∞(BR) and w̃R ∈ L∞(ΩR). Then
(in particular) w̃R ∈ C(ΩR) and either (wR, w̃R) ≡ (0, 0) or wR > 0 in BR and w̃R > 0 in ΩR.

Proof. Statement (i) follows by performing minor modifications to the proof of [4, Lemma 5.3].
In order to prove (ii) just notice that, thanks to (4.8) and (4.9), we can exploit exactly the same
arguments as in [6, Corollary 4.12] and get the assertion. �

We are now in position to prove Theorem 4.4 as concerns the existence of a minimal local weak
solution to (4.1). The fact that such solution is also a very weak solution to (1.11) (according to
Definition 4.2) will be deduced in the end of the proof of Theorem 3.1 in Section 5.

Proof of Theorem 4.4 (first part). For any R > 0, by Proposition 4.8 we know that there exists a
nontrivial solution (wR, w̃R) to problem (4.6). Let now (χR, χ̃R) be the unique regular solution to
the problem 




Lsχ̃R = 0 in CR ,

χ̃R = 0 on ∂CR ∩ {y > 0} ,

χ̃R = χR on ΓR ,
∂χ̃R

∂y2s
= ρ on ΓR ,

where CR = BR × {y > 0}. By standard results (see e.g. [8]), we have:

χ̃R(x, y) =

∫

BR

GR((x, y), z) ρ(z)dz ∀(x, y) ∈ CR , (4.10)

where GR((x, y), z) (let (x, y) ∈ CR and z ∈ BR) is the Green function, namely the solution of




LsGR(·, z) = 0 in CR ,

GR(·, z) = 0 on ∂CR ∩ {y > 0} ,
∂GR(·, z)

∂y2s
= δz on ΓR ,
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for each z ∈ BR. It is well known that the Green functions are positive and ordered w.r.t. R, that
is, if R1 ≤ R2 then

0 < GR1
≤ GR2

in CR1
. (4.11)

Furthermore, they are all bounded from above by the Green function G+ for the half-space:

GR((x, y), z) ≤ G+((x, y), z) ∀(x, y) ∈ CR , ∀z ∈ BR , ∀R > 0 , (4.12)

where

G+((x, y), z) =
ks,d

|((x− z), y)|d−2s
∀(x, y) ∈ R

d+1
+ , ∀z ∈ R

d

(for the same constant ks,d appearing in (2.2)). The function G+ solves



LsG+(·, z) = 0 in R

d+1
+ ,

∂G+(·, z)

∂y2s
= δz on ∂Rd+1

+ ,

for each z ∈ R
d (see again [8] and also [11]). From (2.2), (4.10) and (4.12) it clearly follows that, for

any R > 0 and any (x, y) ∈ CR,

χ̃R(x, y) ≤

∫

Rd

G+((x, y), z) ρ(z)dz ≤

∫

Rd

G+((x, 0), z) ρ(z)dz = (I2s ∗ ρ)(x) ≤ ‖I2s ∗ ρ‖∞ = Ĉ

(4.13)
(for the last inequality, see Corollary A.2). Now note that, for any test function ψ as in Definition
4.7, we have:

µs

∫

ΩR

y1−2s〈∇χ̃R,∇ψ〉(x, y) dxdy = µs

∫

CR

y1−2s〈∇χ̃R,∇ψ〉(x, y) dxdy =

∫

BR

ψ(x, 0) ρ(x)dx .

(4.14)

If we choose any C ≥ Ĉ
α

1−α , then the function (CχR, Cχ̃R) is a supersolution to problem (4.6). In
fact, thanks to (4.13) and (4.14), in this case there holds

µs

∫

ΩR

y1−2s
〈
∇
(
Cχ̃R

)
,∇ψ

〉
(x, y) dxdy =

∫

BR

Cψ(x, 0) ρ(x)dx ≥

∫

BR

[
CχR(x)

]α
ψ(x, 0) ρ(x)dx

for all nonnegative ψ as above. Hence, thanks to (4.10) and (4.11), we are in position to apply

the comparison principle provided by Lemma 4.10-(i) with the choices (w
(1)
R , w̃

(1)
R ) = (wR, w̃R) and

(w
(2)
R , w̃

(2)
R ) = (CχR, Cχ̃R), to get:

w̃R ≤ Cχ̃R a.e. in ΩR , (4.15)

and

wR ≤ CχR a.e. in BR . (4.16)

In particular, by (4.13), (4.15) and (4.16) we deduce that wR ∈ L∞(BR) and w̃R ∈ L∞(ΩR). We
can now exploit Lemma 4.10-(ii) and infer that

w̃R > 0 in ΩR (4.17)

and

wR > 0 in BR . (4.18)

Let 0 < R1 < R2. The strict positivity, for all R > 0, of (wR, w̃R) given by (4.17) and (4.18)

allows us to apply again Lemma 4.10-(i), this time with the choices (w
(1)
R , w̃

(1)
R ) = (wR1

, w̃R1
) and

(w
(2)
R , w̃

(2)
R ) = (wR2

, w̃R2
), to get:

w̃R1
≤ w̃R2

in ΩR , wR1
≤ wR2

in BR ∀R2 > R1 > 0 . (4.19)
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We need to pass to the limit on (wR, w̃R) as R → ∞. Given any fixed η ∈ C∞
c (Rd+1

+ ∪ ∂Rd+1
+ ),

for every R > 0 large enough we can pick (after approximation) ψ = w̃Rη
2 as a test function in

Definition 4.7. So, it is easily seen that

µs

∫

ΩR

y1−2s |∇w̃R(x, y)|
2
η2 dxdy

≤2 ‖wR‖
α+1
∞

∫

BR

η2(x, 0) ρ(x)dx+ 4µs ‖w̃R‖
2
∞

∫

ΩR

y1−2s |∇η(x, y)|
2
dxdy .

(4.20)

From (4.13), (4.15), (4.16) and (4.20) we deduce that, for any Ω0 ⋐ R
d+1
+ ∪ ∂Rd+1

+ , there holds
∫

Ω0

y1−2s |∇w̃R(x, y)|
2
dxdy ≤ K (4.21)

for a suitable positive constant K independent of R > 0. By collecting (4.13), (4.15), (4.16) and
(4.19), we infer that there exist the following (nontrivial) pointwise limits:

lim
R→∞

w̃R = w̃ ∈ L∞(Rd+1
+ ) , lim

R→∞
wR = w ∈ L∞(Rd) . (4.22)

Due to (4.21), by standard compactness arguments we can pass to the limit in the weak formulation
(4.7) and infer that w is a local weak solution to (4.1) in the sense of Definition 4.1 (with local
extension w̃).

Now we have to prove minimality. Hereafter, we shall denote by w the solution constructed above
and by w any other nonidendically zero local weak solution to (4.1) (according to Definition 4.1). In
particular, for R large enough (w|BR

, w̃|ΩR
) is a nontrivial solution to problem (4.6), in the sense of

Definition 4.7, except for the fact that w̃|ΩR
is not necessarily zero on ΣR (that is, w̃ has finite energy

in ΩR but does not belong to Xs
0(ΩR)). However, the regularity results of [6] still hold: namely,

Lemma 4.10-(ii) is applicable in this case as well, ensuring that w > 0 in BR. Because (wR, w̃R) is
also a weak solution to (4.6) and, trivially, w̃R|ΣR

≤ w̃|ΣR
on ΣR, thanks to Lemma 4.10-(i) (with

the choices (w
(1)
R , w̃

(1)
R ) = (wR, w̃R) and (w

(2)
R , w̃

(2)
R ) = (w|BR

, w̃|ΩR
)) we deduce

wR ≤ w|BR
in BR ,

whence w ≤ w in Γ by letting R→ ∞, so that w is indeed minimal. The bound (4.3) is then just a
consequence of (4.13), (4.16) and (4.22).

From the above method of proof one can check that, under the more restrictive condition (4.4),
then w is also a weak solution to (1.11) in the sense of Definition 4.3. In fact, thanks to Remark
A.3, the inequalities (4.13), (4.16) and condition (4.4) ensure that {‖wα+1

R ‖1,ρ} is uniformly bounded

with respect to R. As a consequence, it is easy to verify that estimate (4.21) holds with Ω0 = R
d+1
+

(up to setting w̃R = 0 in Ωc
R). By passing to the limit as R → ∞, this implies that w̃ ∈ Xs,

w ∈ Ḣs(Rd), w̃ = E(w) and w satisfies (4.2).
As already remarked, the fact that w is a very weak solution to (1.11) in the sense of Definition

4.2 for all γ > 2s will be deduced at the end of the asymptotic analysis of Section 5 (see the proof
of Theorem 3.1). �

4.2. Uniqueness for the sublinear elliptic equation. In this section we prove our uniqueness
result, stated in Theorem 4.5, for solutions to (1.11). The strategy of proof strongly relies on the
uniqueness result provided by Theorem 2.4 for solutions to (1.1).

Proof of Theorem 4.5. Set m = 1/α and

Cm = (m− 1)−
1

m−1 .

For any k ∈ N let ζk ∈ C∞(Rd) be such that ζk = 1 in Bk, ζk = 0 in Bc
2k and 0 ≤ ζk ≤ 1 in R

d. Take
R > 2k and denote as (vR,k, ṽR,k) the unique strong solution to the following evolution problem (see
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Appendix B – Part II): 



Ls

(
ṽmR,k

)
= 0 in ΩR × (0,∞) ,

ṽR,k = 0 on ΣR × (0,∞) ,

∂
(
ṽmR,k

)

∂y2s
= ρ

∂vR,k

∂t
on ΓR × (0,∞) ,

vR,k = Cm ζkw
1
m on BR × {t = 0} .

(4.23)

Let (wR, w̃R) be defined as in the proof of Theorem 4.4. Since by hypothesis w ∈ L∞(Rd), thanks
to (4.18) we can select a suitable τR > 0 so that

w
1
m

R+1

τ
1

m−1

R

≥ w
1
m in BR . (4.24)

We have:

ŨR =
Cmw̃

1
m

R+1

(t+ τR)
1

m−1

≤
Cmw̃

1
m

R+1

t
1

m−1

= Ũ0R in ΩR × (0,∞) . (4.25)

Set UR(·, t) = ŨR(·, 0, t) and U0R(·, t) = Ũ0R(·, 0, t), for each t > 0. By definition of (UR, ŨR) and

recalling (4.24), we get that (UR, ŨR) is a strong supersolution to (4.23). Hence, by the comparison
principle stated in Proposition B.3 and (4.25), we deduce:

vR,k ≤ UR ≤ U0R a.e. in BR × (0,∞) . (4.26)

In addition to the above bounds we also have that, for any k2 > k1 and R > 2k1, there holds

vR,k1
≤ vR,k2

≤
Cmw

1
m

(t+ 1)
1

m−1

= V a.e. in BR × (0,∞) . (4.27)

Such inequalities follow by noticing that (V, Ṽ ) is a strong supersolution to (4.23) for all R > 0 and
k ∈ N, while (vR,k2

, ṽR,k2
) is a strong supersolution to (4.23) for k = k1. One then applies again

Proposition B.3.
Since for each k ∈ N we have Cmζkw

1
m ∈ L1

ρ(R
d) ∩ L∞(Rd), by standard arguments (e.g. similar to

the ones exploited in the proof of [26, Theorem 3.1], see also Appendix B – Part II) one sees that
there exists the limit

v∞,k = lim
R→∞

vR,k a.e. in R
d

and it is a solution of the problem
{
ρ (v∞,k)t + (−∆)s(vm∞,k) = 0 in R

d × (0,∞) ,

v∞,k = Cm ζkw
1
m on R

d × {0} ,

both in the sense of Definition 2.1 and in the sense of Definition B.6. Moreover, as a consequence of
(4.27), such limit satisfies the bounds

v∞,k1
≤ v∞,k2

≤ V a.e. in R
d × (0,∞) (4.28)

for all k2 > k1. Thanks to (4.28) we get the existence of the pointwise limit

v∞ = lim
k→∞

v∞,k ≤ V a.e. in R
d × (0,∞) ; (4.29)

by passing to the limit in the very weak formulation solved by v∞,k for all k ∈ N, we infer that v∞
is a very weak solution, in the sense of Definition B.6, to the problem

{
ρ (v∞)t + (−∆)s(vm∞) = 0 in R

d × (0,∞) ,

v∞ = Cmw
1
m on R

d × {0} .
(4.30)
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Now notice that V is also a very weak solution to (4.30). Because, by hypothesis, w ∈ L1
(1+|x|)−β (R

d),

clearly V m ∈ L1
(1+|x|)−β (R

d × (0, T )). Hence, thanks to (4.29), we deduce that also vm∞ belongs to

L1
(1+|x|)−β (R

d × (0, T )). We are therefore in position to apply Theorem 2.4 (after Remark B.7) and

obtain

v∞ = V a.e. in R
d × (0,∞) .

Passing to the limit in (4.26) (first as R→ ∞, then as k → ∞) and using (4.22), we infer that

v∞ ≤
Cmw

1
m

t
1

m−1

a.e. in R
d × (0,∞) ,

Hence,

w
1
m

w
1
m

≤
(t+ 1)

1
m−1

t
1

m−1

, (4.31)

and by letting t→ ∞ in (4.31) we deduce

w
1
m ≤ w

1
m a.e. in R

d .

Since w is nontrivial and w is minimal, it follows that w ≡ w. �

5. Asymptotic behaviour for rapidly decaying densities: proofs

Before proving Theorem 3.1, we need the following intermediate result, which gives a crucial
bound from above for the solution to problem (1.1) provided by Theorem 2.4.

Lemma 5.1. Under the same assumptions and with the same notations as in Theorem 3.1, we have:

u ≤ (m− 1)−
1

m−1 t−
1

m−1w
1
m a.e. in R

d × (0,∞) . (5.1)

Proof. Suppose at first that u0 ∈ L1
ρ(R

d)∩L∞(Rd). Let Cm, (wR, w̃R) and (UR, ŨR) (for a suitable
τR > 0 to be chosen later) be defined as in the proofs of Theorems 4.4 and 4.5. For any R > 0, let
(uR, ũR) be the unique strong solution to the following evolution problem (see Appendix B – Part
II): 




Ls (ũ
m
R ) = 0 in ΩR × (0,∞) ,

ũR = 0 on ΣR × (0,∞) ,
∂ũmR
∂y2s

= ρ
∂uR
∂t

on ΓR × (0,∞) ,

uR = u0 on BR × {t = 0} .

(5.2)

By standard arguments (see again the proof of [26, Theorem 3.1] and Appendix B – Part II), we
have that

lim
R→∞

uR = u a.e. in R
d × (0,∞) , lim

R→∞
ũmR = ũm = E(um) a.e. in R

d+1
+ × (0,∞) , (5.3)

where u is the solution to (1.1) provided by Proposition 2.3. Note that, thanks to (4.18), for any
R > 0 there holds

min
BR

wR+1 > 0 . (5.4)

Hence, in view of (5.4) and recalling that we assumed u0 ∈ L1
ρ(R

d) ∩ L∞(Rd), we can pick τR > 0
so that

Cmw
1
m

R+1

τ
1

m−1

R

≥ u0 a.e. in BR . (5.5)

Due to (5.5), (UR, ŨR) is a strong supersolution to problem (5.2). Therefore, by comparison princi-
ples (see Proposition B.3),

uR ≤ UR a.e. in BR × (0,∞) . (5.6)
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Because trivially UR ≤ Cmt
− 1

m−1w
1
m

R+1, from (5.6) we deduce the fundamental estimate

uR ≤ Cm t−
1

m−1w
1
m

R+1 a.e. in BR × (0,∞) . (5.7)

By letting R→ ∞ in (5.7) and recalling (4.22) and (5.3), we finally get (5.1).
Consider now general data u0 ∈ L1

ρ(R
d). In this case, we have that

u = lim
n→∞

un a.e. in R
d × (0,∞) ,

where for every n ∈ N we denote as un the solution to problem (1.1) corresponding to the initial
datum u0n ∈ L1

ρ(R
d) ∩ L∞(Rd), and the sequence {u0n} is such that 0 ≤ u0n ≤ u0 in R

d for all

n ∈ N and u0n → u0 in L1
ρ(R

d) as n → ∞ (see [26, Section 6.2] and Appendix B – Parts I, II ). In
view of the first part of the proof, we know that for every n ∈ N there holds

un ≤ Cm t−
1

m−1w
1
m a.e. in R

d × (0,∞) . (5.8)

The assertion then follows by passing to the limit as n→ ∞ in (5.8). �

Remark 5.2. As a consequence of the method of proof of Lemma 5.1 we also get the validity of
the estimate

E(um) ≤ Cm
m t−

m
m−1 w̃ a.e. in R

d+1
+ × (0,∞) , (5.9)

where E(um) is the extension of um (see the beginning of Section 4) and w̃ is the local extension of
w, in agreement with Definition 4.1, provided along the first part of the proof of Theorem 4.4. In
fact it is enough to notice that, by standard comparison principles for sub- and supersolutions to
the problem Ls = 0 in ΩR, from (5.7) it follows that

ũmR ≤ Cm
m t−

m
m−1 w̃R+1 a.e. in ΩR × (0,∞) , (5.10)

whence (5.9) upon letting R→ ∞ in (5.10).

Proof of Theorem 3.1 and end of proof of Theorem 4.4. Let us denote as v(x, τ) the following rescal-
ing of u(x, t):

u(x, t) = e−βτv(x, τ) , t = eτ , β =
1

m− 1
. (5.11)

It is immediate to check that v is a (weak, and in particular very weak) solution to the equation

ρvτ = −(−∆)s(vm) + βρv in R
d × (0,∞) ,

in the sense that

−

∫ ∞

0

∫

Rd

v(x, τ)ϕτ (x, τ) ρ(x)dxdτ +

∫ ∞

0

∫

Rd

vm(x, τ)(−∆)s(ϕ)(x, τ) dxdτ

=β

∫ ∞

0

∫

Rd

v(x, τ)ϕ(x, τ) ρ(x)dxdτ +

∫

Rd

u(x, 1)ϕ(x, 0) ρ(x)dx

(5.12)

for all ϕ ∈ C∞
c (Rd × [0,∞)). Moreover, E(vm) ∈ L2

loc((0,∞);Xs) and

−

∫ T

0

∫

Rd

v(x, τ)ψτ (x, 0, τ) ρ(x)dxdτ + µs

∫ T

0

∫

R
d+1

+

y1−2s 〈∇E(vm),∇ψ〉 (x, y, τ) dxdydτ

=β

∫ T

0

∫

Rd

v(x, τ)ψ(x, 0, τ) ρ(x)dxdτ

(5.13)

for all T > 0 and ψ ∈ C∞
c ((Rd+1

+ ∪ ∂Rd+1
+ )× (0, T )). Thanks to Lemma 5.1, we have:

v(x, τ) ≤ Cmw
1
m (x) ≤ Cm ‖w‖

1
m
∞ for a.e. (x, τ) ∈ R

d × (0,∞) ; (5.14)

furthermore, recalling Remark 5.2,

E(vm)(x, y, τ) ≤ Cm
m w̃(x, y) ≤ Cm

m‖w̃‖∞ for a.e. (x, y, τ) ∈ R
d+1
+ × (0,∞) . (5.15)
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Now let us show that

v(x, τ2) ≥ v(x, τ1) for a.e. x ∈ R
d , E(vm)(x, y, τ2) ≥ E(vm)(x, y, τ1) for a.e. (x, y) ∈ R

d+1
+

(5.16)
for all τ2 ≥ τ1 > 0. To this purpose, first of all note that, similarly to [35, p. 182] (see also the
original reference [2]), one can prove the fundamental Bénilan-Crandall inequality

ut ≥ −
u

(m− 1)t
a.e. in R

d × (0,∞)

which, recalling (5.11), implies that

vτ ≥ 0 a.e. in R
d × (0,∞) . (5.17)

Thanks to (5.17) we obtain the first inequality in (5.16), and therefore also the second one because
the extension operator is order preserving. Hence, by (5.14), (5.15) and (5.16) we infer that there
exist finite the limits

h(x) = lim
τ→∞

v(x, τ) for a.e. x ∈ R
d , H(x, y) = lim

τ→∞
E(vm)(x, y, τ) for a.e. (x, y) ∈ R

d+1
+ .

(5.18)
Moreover, since u0 6≡ 0, (5.16) implies that h 6≡ 0 and H 6≡ 0, while (5.14) and (5.15) ensure that

h ∈ L∞(Rd) and H ∈ L∞(Rd+1
+ ).

Let us set

g = C−m
m hm , g̃ = C−m

m H . (5.19)

First we want to prove that g (with the corresponding local extension g̃) is a solution to problem
(4.1) (for α = 1/m) in the sense of Definition 4.1. To this end, for any fixed 0 < τ1 < τ2 and
0 < ǫ < (τ2 − τ1)/2, let ζǫ(τ) be a smooth approximation of the function χ[τ1,τ2](τ) such that

0 ≤ ζǫ(τ) ≤ 1 ∀τ ≥ 0 , ζǫ(τ) = 0 ∀τ 6∈ [τ1, τ2] , ζǫ(τ) = 1 ∀τ ∈ [τ1 + ǫ, τ2 − ǫ] .

Furthermore, we can and shall assume that

ζ ′ǫ(τ) → δ(τ − τ1)− δ(τ − τ2)

as ǫ→ 0. Consider now a cut-off function η as in the first part of the proof of Theorem 4.4 and plug
in the weak formulation (5.13) the test function ψ = ζǫη

2E(vm). Upon letting ǫ→ 0, we get:

1

m+ 1

∫

Rd

vm+1(x, τ2) η
2(x, 0) ρ(x)dx+µs

∫ τ2

τ1

∫

R
d+1

+

y1−2s
〈
∇E(vm),∇[η2 E(vm)]

〉
(x, y, τ) dxdydτ

=
1

m+ 1

∫

Rd

vm+1(x, τ1) η
2(x, 0) ρ(x)dx+ β

∫ τ2

τ1

∫

Rd

vm+1(x, τ) η2(x, 0) ρ(x)dxdτ .

Thanks to (5.14) and (5.15), by setting τ1 = τ̃ , τ2 = τ̃ + 1 and proceeding as in the proof of (4.21),
we obtain the estimate

∫ τ̃+1

τ̃

∫

Ω0

y1−2s |∇E(vm)(x, y, τ)|
2
dxdydτ ≤ K (5.20)

for any Ω0 ⋐ R
d+1
+ ∪ ∂Rd+1

+ and a suitable constant K > 0 independent of τ̃ > 0. Take any function

φ ∈ C∞
c (Rd+1

+ ∪ ∂Rd+1
+ ). By plugging in (5.13) the test function ψ(x, y, τ) = φ(x, y)ζǫ(τ), with

τ1 = τ̃ and τ2 = τ̃ + 1, and letting ǫ→ 0, we infer that
∫

Rd

[v(x, τ̃ + 1)− v(x, τ̃)]φ(x, 0) ρ(x)dx+µs

∫ τ̃+1

τ̃

∫

R
d+1

+

y1−2s 〈∇E(vm)(x, y, τ),∇φ(x, y)〉 dxdydτ

=β

∫ τ̃+1

τ̃

∫

Rd

v(x, τ)φ(x, 0) ρ(x)dxdτ .

(5.21)
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Thanks to (5.14), (5.15), (5.18), (5.20) and standard local compactness arguments we can pass to
the limit in (5.21) (along a suitable subsequence τ̃n ∈ [τ̃ , τ̃ +1], with τ̃n → ∞) to find that h and H
satisfy

µs

∫

R
d+1

+

y1−2s 〈∇H,∇φ〉 (x, y) dxdy = β

∫

Rd

h(x)φ(x, 0) ρ(x)dx

and H(x, 0) = hm(x). That is, the function g (with g̃ as a local extension) defined in (5.19) is a
local weak solution to (4.1) (for α = 1/m) in the sense of Definition 4.1. Moreover, g is also a very
weak solution to (1.11) (for α = 1/m) in the sense of Definition 4.2. In order to prove this fact, we
can proceed as above: for any ϕ ∈ C∞

c (Rd) we plug in the weak formulation (5.12) the test function
ψ(x, τ) = ζǫ(τ)ϕ(x), let ǫ→ 0 and get
∫

Rd

[v(x, τ̃ +1)− v(x, τ̃)]ϕ(x)ρ(x)dx =

∫ τ̃+1

τ̃

∫

Rd

[−vm(x, τ)(−∆)s(ϕ)(x) + βv(x, τ)ϕ(x)ρ(x)] dxdτ .

(5.22)
By letting τ̃ → ∞ in (5.22) and recalling (5.19), we finally deduce that

0 = −

∫

Rd

g(x)(−∆)s(ϕ)(x) dx+

∫

Rd

g
1
m (x)ϕ(x)ρ(x)dx . (5.23)

Now note that, passing to the limit in (5.14) as τ → ∞, we obtain:

g(x) ≤ w(x) for a.e. x ∈ R
d . (5.24)

Because g 6≡ 0 and it is a solution to (4.1) in the sense of Definition 4.1, the minimality of w ensured
by Theorem 4.4 and (5.24) necessarily imply that g ≡ w. Hence, thanks to (5.23), we can conclude
the proof of Theorem 4.4 by inferring that the minimal solution provided by it is also a very weak
solution to (1.11) (for α = 1/m) in the sense of Definition 4.2.

�

6. Asymptotic behaviour for slowly decaying densities: proofs

In order to prove Theorem 3.3, we first need some preliminary results. The following one has
been proved in [18, Lemma 4.8].

Lemma 6.1. Let γ ∈ (0, 2s), v ∈ L1
|x|−γ (Rd)∩L∞(Rd) and Uv

γ be the Riesz potential of |x|−γv, that

is

Uv
γ = I2s ∗

(
|x|−γv

)
.

The following properties hold true:

• Uv
γ belongs to C(Rd) ∩ Lp(Rd) for all p satisfying

p ∈

(
d

d− 2s
,∞

]
. (6.1)

• Under the additional condition

γ < d− 2s ,

for any p > 1 such that

p ∈

(
d

d− 2s
,
d

γ

)

there holds

Uv
γ ∈W r,p(Rd)

for all r ∈ (0, 2s).

In all the above cases, the norms ‖Uv
γ ‖Lp(Rd) and ‖Uv

γ ‖W r,p(Rd) can be estimated from above by a
constant that depends on v only through ‖v‖1,|x|−γ and ‖v‖∞.
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Let u be a weak solution to problem (1.3), according to Definition 2.1. For any λ > 0, set

uλ(x, t) = λαu(λκx, λt) ∀(x, t) ∈ R
d × (0,∞) , (6.2)

where α, κ are defined in (3.1). Notice that (6.2) is the same scaling under which uc∞M is invariant
(see Section 3.2).

Proposition 6.2. Let the assumptions of Theorem 3.3 hold true. Then, for any sequence λn → ∞,
{uλn

} converges to uc∞M almost everywhere in R
d × (0,∞) along subsequences.

Proof. For notational simplicity, we shall again put c∞ = 1. We shall also assume, with no loss of
generality, that µ = ρu0 ∈ L1(Rd) (recall e.g. the smoothing effect (2.12)).

Here we shall not give a fully detailed proof, since the procedure follows closely the one performed
in the proof of [18, Theorem 3.2]. To begin with, note that uλ solves the problem

{
ρλ ut + (−∆)s (umλ ) = 0 in R

d × (0,∞) ,

uλ = u0λ on R
d × {0} ,

(6.3)

where

ρλ(x) = λκγρ(λκx) , u0λ(x) = λαu0(λ
κx) ∀x ∈ R

d . (6.4)

It is easily seen that (recall the conservation of mass (2.11))

‖uλ(t)‖1,ρλ
= ‖u0λ‖1,ρλ

=M ∀t, λ > 0 . (6.5)

Claim 1: There exists a subsequence {uλm
} ⊂ {uλn

} which converges pointwise a.e. in R
d × (0,∞)

to some function u. Furthermore, the limit u satisfies (2.8), (2.9) and (2.10).

Noticing that

c0
1 + |x|γ

≤ ρλ(x) ≤
C0

|x|γ
for a.e. x ∈ R

d , ∀λ > 0 (6.6)

for suitable positive constants c0, C0 independent of λ and combining the smoothing effect (2.12)
with (6.5), we obtain:

‖uλ(t)‖∞ ≤ Kt−αMβ ∀t, λ > 0 , (6.7)

where K > 0 is a constant depending only on C0, m, γ, s and d. In particular,
∫

Rd

um+1
λ (x, t) ρλ(x)dx ≤ Kmt−αmMβm+1 ∀t, λ > 0 . (6.8)

By (2.14) and (6.8) we infer that
∫ t2

t1

∫

Rd

∣∣(−∆)
s
2 (umλ )(x, t)

∣∣2 dxdt+
1

m+ 1

∫

Rd

um+1
λ (x, t2) ρλ(x)dx ≤ Kmt−αm

1 Mβm+1 (6.9)

for all λ > 0 and all t2 > t1 > 0. On the other hand, due to (2.15),
∫ t2

t1

∫

Rd

|(zλ)t(x, t)|
2
ρλ(x)dxdt ≤ C ∀t2 > t1 > 0 , ∀λ > 0 , (6.10)

where zλ = u
m+1

2

λ and C is another positive constant depending on t1 and t2 but independent of λ.
In view of (6.5), (6.7), (6.9) and (6.10), by standard compactness arguments (see again the proof
of [18, Theorem 3.2]) the sequence {uλn

} admits a subsequence {uλm
} converging pointwise a.e.

in R
d × (0,∞) to some function u which complies with (2.8) and (2.9). Moreover, because of the

assumptions on ρ, (6.6) holds true and

lim
λ→∞

ρλ(x) = |x|−γ for a.e. x ∈ R
d . (6.11)

It is then immediate to pass to the limit in the weak formulation solved by uλm
and find that u

satisfies also (2.10), and Claim 1 is shown. However, (2.10) does not provide any information about
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the initial datum assumed by u(t). To this end it is convenient to exploit some results in potential
theory, following [23] or [36]. Hence, let us introduce the Riesz potential Uλ(t) of ρλuλ(t), that is

Uλ(t) = I2s ∗ (ρλuλ(t)) ∀t, λ > 0 .

Claim 2: For any λ > 0, the function Uλ satisfies the following differential equation:

(Uλ)t(t) = −umλ (t) for a.e. t > 0 . (6.12)

In order to prove (6.12) rigorously, one proceeds exactly as in the proof of [18, Theorem 3.2]. Notice
however that, formally, (−∆)s(Uλ)(t) = ρλuλ(t), so that (6.12), still at a formal level, just follows
by applying the operator (−∆)−s to both sides of the differential equation in (6.3).

Claim 3: Let U0λ = I2s ∗ (ρλu0λ). For any fixed λ > 0, the following equality holds:

lim
t→0

Uλ(x, t) = U0λ(x) for a.e. x ∈ R
d . (6.13)

In fact, by (6.12), we deduce that Uλ(t) has an absolutely continuous version (for instance in
L1
loc(R

d)) which is nonincreasing t. Consequently, Uλ(t) admits a pointwise limit as t → 0. Since
we also know (Definition 2.1) that ρλuλ(t) converges to ρλu0λ in L1(Rd) as t → 0, Theorem 3.8 of
[22] guarantees the identification (a.e. in R

d) between the pointwise limit of {Uλ(t)} and the Riesz
potential of ρλu0λ, whence (6.13) and Claim 3 is proved.

Now we need to deal with the convergence of {Uλ} as λ→ ∞.

Claim 4: Up to subsequences,

lim
m→∞

Uλm
(y, t) =

[
I2s ∗

(
|x|−γu(t)

)]
(y) = U(y, t) for a.e. (y, t) ∈ R

d × (0,∞) . (6.14)

Exploiting (6.5), (6.7) and Lemma 6.1 we deduce that

sup
λ≥1

sup
t≥τ

‖Uλ(t)‖W r,p(Rd) <∞ ∀τ > 0

for any r ∈ (0, 2s) and p complying with (6.1). From standard Hölder embeddings for fractional
Sobolev spaces (see e.g. [12, Theorem 8.2]), this implies in turn that

sup
λ≥1

sup
t≥τ

‖Uλ(t)‖Cβ(Ω) <∞ ∀Ω ⋐ R
d , ∀τ > 0 , (6.15)

provided r is sufficiently close to 2s, p is sufficiently close to d/γ and β = r − d/p. But (6.7) and
(6.12) ensure that {Uλ} is uniformly Lipschitz in time. Combining this information with (6.15)
yields

sup
λ≥1

‖Uλ‖Cβ(Ω×(t1,t2))
<∞ ∀Ω ⋐ R

d , ∀t2 > t1 > 0 .

In particular, there exists a function U ∈ Cβ
loc(R

d × (0,∞)) such that, up to subsequences,

lim
m→∞

Uλm
(x, t) = U(x, t) ∀(x, t) ∈ R

d × (0,∞) . (6.16)

Thanks to (6.6), (6.7) and (6.11), by dominated convergence we infer that for a.e. t > 0

lim
m→∞

ρλm
uλm

(t) = |x|−γu(t) in σ(M(Rd), Cc(R
d)) .

Recalling that ‖ρλm
uλm

(t)‖1 =M , in view of (6.16) and [22, Theorem 3.8] we deduce (6.14).

Claim 5: The following limit holds true:

lim
t→0

U(x, t) =MI2s(x) for a.e. x ∈ R
d . (6.17)

Proceeding as in [36, Section 6], we multiply (6.12) by ρλ(x), integrate in R
d × (t1, t2) and use (6.5)

and (6.7) on the r.h.s. to get
∫

Rd

|Uλ(x, t2)− Uλ(x, t1)| ρλ(x)dx ≤ Km−1M1+β(m−1) t
1−α(m−1)
2 − t

1−α(m−1)
1

1− α(m− 1)
. (6.18)
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Letting t1 → 0 in (6.18), exploiting (6.13) and Fatou’s Lemma yields

∫

Rd

|Uλ(x, t2)− U0λ(x)| ρλ(x)dx ≤ Km−1M1+β(m−1) t
1−α(m−1)
2

1− α(m− 1)
. (6.19)

Now notice that {ρλu0λ} tends to Mδ in σ(M(Rd), Cb(R
d)) as λ→ ∞. In fact, ‖ρλu0λ‖1 =M and

for any φ ∈ Cc(R
d) one has (recalling (3.1) and (6.4))

lim
λ→∞

∫

Rd

φ(x)ρλ(x)u0λ(x) dx

= lim
λ→∞

λα+κγ

∫

Rd

φ(x)ρ(λκx)u0(λ
κx) dx = lim

λ→∞

∫

Rd

φ
( y
λκ

)
u0(y) ρ(y)dy =Mφ(0) .

In particular, as a direct consequence of [22, Theorem 3.8],

lim inf
λ→∞

U0λ(x) =MI2s(x) for a.e. x ∈ R
d . (6.20)

Using (6.11), (6.14), (6.20), the fact that Uλ(t) is nonincreasing w.r.t. t and applying Fatou’s Lemma
to (6.19) we obtain

∫

Rd

|U(x, t2)−MI2s(x)| |x|
−γ dx ≤ Cm−1M1+β(m−1) t

1−α(m−1)
2

1− α(m− 1)
. (6.21)

Letting t2 → 0 in (6.21) we deduce in particular the validity of (6.17).
We can finally prove the following result.

Claim 6: There holds

ess lim
t→0

|x|−γu(t) =Mδ in σ(M(Rd), Cb(R
d)) . (6.22)

Passing to the limit in (6.5) as λ = λm → ∞ entails
∥∥|x|−γu(t)

∥∥
1
≤M for a.e. t > 0 . (6.23)

Estimate (6.23) implies that |x|−γu(t) converges, up to subsequences, to some positive, finite measure
ν in σ(M(Rd), Cc(R

d)) as t→ 0. However, a priori such ν may depend on the particular subsequence.
The fact that ν = Mδ, and so that (6.22) holds at least in σ(M(Rd), Cc(R

d)), follows thanks to
(6.17) and [22, Theorems 1.12 and 3.8] (for the details, see the proof of [18, Theorem 3.2]). In order
to get such convergence also in σ(M(Rd), Cb(R

d)) it is enough to show that

ess lim
t→0

∥∥|x|−γu(t)
∥∥
1
=M . (6.24)

By the convergence of |x|−γu(t) to Mδ in σ(M(Rd), Cc(R
d)) we have

M ≤ ess lim inf
t→0

∥∥|x|−γu(t)
∥∥
1
. (6.25)

But letting t→ 0 in (6.23) entails

ess lim sup
t→0

∥∥|x|−γu(t)
∥∥
1
≤M . (6.26)

Combining (6.25) and (6.26), (6.24) clearly follows, so that Claim 6 is proved and we can conclude
that u satisfies (1.9), that is u = uc∞M . �

We are now in position to prove Theorem 3.3.

Proof of Theorem 3.3. Take any sequence λn → ∞. Our first aim is to prove that, along any of the
subsequences {λm} ⊂ {λn} given by Proposition 6.2, there holds

lim
m→∞

∫

BR

|uλm
(x, t)− uc∞M (x, t)| |x|−γ dx = 0 ∀R > 0 , ∀t > 0 . (6.27)
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Thanks to the smoothing estimates (2.12), (6.7) and to the fact that for almost every t > 0 we know
that {uλm

(t)} converges pointwise almost everywhere to uc∞M (t), by dominated convergence

lim
m→∞

∫

BR

|uλm
(x, t)− uc∞M (x, t)| dx = 0 ∀R > 0 , for a.e. t > 0 . (6.28)

Moreover, estimate (B.7) for uλ reads

‖(uλ)t(t)‖1,ρλ
≤

2

(m− 1) t
M for a.e. t > 0 . (6.29)

Gathering (6.29) and (6.6), we can assert that for every R, τ > 0 there exists a positive constant
C(R, τ) (independent of λ) such that

‖(uλ)t(t)‖L1(BR) ≤ C(R, τ) for a.e. t ≥ τ . (6.30)

Of course (6.30) also holds for uc∞M . It is now possible to infer that (6.28) actually holds for every
t > 0:

lim
m→∞

∫

BR

|uλm
(x, t)− uc∞M (x, t)| dx = 0 ∀R > 0 , ∀t > 0 . (6.31)

In fact, for any given t0, ε > 0, there exists t > t0 such that (6.28) holds and |t− t0| ≤ ε. Exploiting
(6.30), we get:
∫

BR

|uλm
(x, t0)− uc∞M (x, t0)| dx

≤

∫

BR

|uλm
(x, t0)− uλn

(x, t)| dx+

∫

BR

|uλm
(x, t)− uc∞M (x, t)| dx+

∫

BR

|uc∞M (x, t)− uc∞M (x, t0)| dx

≤2C(R, t0) ε+

∫

BR

|uλm
(x, t)− uc∞M (x, t)| dx .

(6.32)
Letting m→ ∞ in (6.32) yields

lim sup
m→∞

∫

BR

|uλm
(x, t0)− uc∞M (x, t0)| dx ≤ 2C(R, t0)ε . (6.33)

Letting now ε → 0 in (6.33) shows that (6.28) holds for t = t0 as well. The validity of (6.27)
is then just a consequence of (6.31), the local integrability of |x|−γ and the uniform bound over
‖uλm

(t)− uc∞M (t)‖∞ ensured by the smoothing estimates (2.12) and (6.7).
The consequence of Proposition 6.2 and what we proved above is that any sequence λn → ∞ satisfies
(6.27) along subsequences. We can thus infer that

lim
λ→∞

∫

BR

|uλ(x, t)− uc∞M (x, t)| |x|−γ dx = 0 ∀R > 0 , ∀t > 0 . (6.34)

Upon fixing t = 1, relabelling λ as t and recalling the definition of uλ, note that (6.34) reads

lim
t→∞

∫

BR

|tαu(tκx, t)− uc∞M (x, 1)| |x|−γ dx = 0 ∀R > 0 .

Performing the change of variable y = tκx and using the fact that α+ κ(γ − d) = 0, we obtain:

lim
t→∞

∫

BRtκ

∣∣u(y, t)− t−αuc∞M (t−κy, 1)
∣∣ |y|−γ dy = lim

t→∞

∫

BRtκ

|u(y, t)− uc∞M (y, t)| |y|−γ dy = 0

(6.35)
for all R > 0, where we used (3.2) with λ = t−1.
From now on we shall denote as εR any function of the spatial variable (possibly constant) which is
independent of t and vanishes uniformly as R → ∞. Going back to the original variable x = t−κy
we find that ∫

Bc
Rtκ

uc∞M (y, t) |y|−γ dy =

∫

Bc
R

uc∞M (x, 1) |x|−γ dx = εR ∀R > 0 . (6.36)
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Hence, the conservation of mass for uc∞M , (6.35) and (6.36) imply that

lim
t→∞

∫

BRtκ

u(y, t) |y|−γ dy =Mc−1
∞ − εR ∀R > 0 . (6.37)

Next we show that

lim
t→∞

∫

Rd

u(y, t) |y|−γ dy =Mc−1
∞ . (6.38)

To this end first notice that, thanks to (2.7) and (3.3), there holds

|y|−γ =
ρ(y)

c∞ + εR(y)
∀y ∈ Bc

R ,

whence ∫

Rd

u(y, t) |y|−γ dy =

∫

BR

u(y, t) |y|−γ dy +

∫

Bc
R

u(y, t)
ρ(y)

c∞ + εR(y)
dy . (6.39)

Thanks to (6.39) and the conservation of mass (2.11) for u, we get:
∣∣∣∣
∫

Rd

u(y, t) |y|−γ dy −Mc−1
∞

∣∣∣∣ =
∣∣∣∣
∫

Rd

u(y, t) |y|−γ dy −

∫

Rd

u(y, t)
ρ(y)

c∞
dy

∣∣∣∣

≤

∫

BR

u(y, t) |y|−γ dy

+

∫

BR

u(y, t)
ρ(y)

c∞
dy +

‖εR‖∞
c∞(c∞ − ‖εR‖∞)

∫

Bc
R

u(y, t) ρ(y) dy .

(6.40)
Letting t → ∞ in (6.40), using the smoothing effect (2.12) (as a decay estimate) and the fact that
both ρ(y) and |y|−γ are locally integrable, we obtain:

lim sup
t→∞

∣∣∣∣
∫

Rd

u(y, t) |y|−γ dy −Mc−1
∞

∣∣∣∣ ≤
M ‖εR‖∞

c∞(c∞ − ‖εR‖∞)
. (6.41)

By letting R→ ∞ in (6.41) we get (6.38). Now notice that
∫

Rd

|u(y, t)− uc∞M (y, t)| |y|−γ dy ≤

∫

BRtκ

|u(y, t)− uc∞M (y, t)| |y|−γ dy

+

∫

Bc
Rtκ

u(y, t) |y|−γ dy +

∫

Bc
Rtκ

uc∞M (y, t) |y|−γ dy .
(6.42)

Moreover, (6.37) and (6.38) imply that

lim
t→∞

∫

Bc
Rtκ

u(y, t) |y|−γ dy = εR . (6.43)

Collecting (6.35), (6.36), (6.42) and (6.43) we finally get

lim sup
t→∞

∫

Rd

|u(y, t)− uc∞M (y, t)| |y|−γ dy ≤ 2εR ,

whence (3.4) follows by letting R→ ∞. The validity of (3.5) is just a consequence of (3.4) and the
change of variable y = tκx (one exploits again the scaling property (3.2) of uc∞M ). �

Appendix A. Some technical results concerning Riesz potentials

We discuss here some properties of the Riesz potential I2s ∗ f of a function f . To begin with,
note that it is straightforward to show that, if f ∈ L∞

loc(R
d) is such that

∫

Rd

|f(y)|

1 + |y|d−2s
dy <∞ , (A.1)

then I2s ∗ f ∈ C(Rd). From [33, Theorem 2] (see also [26, Proposition 5.1]) and [26, Remark 5.3] we
get the next result.
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Proposition A.1. Let d ≥ 1 and r > 1, with 2
r < 2s < d. Let

ν > 2s−
d

r
. (A.2)

Suppose that f = f(|x|) ∈ L∞
loc(R

d), with f(|x|)|x|ν ∈ Lr(Rd). Then there exists a constant C > 0
such that

|(I2s ∗ f)(x)| ≤ C ‖|x|νf‖Lr(Rd) |x|
2s−ν− d

r for a.e. x ∈ R
d .

Corollary A.2. Let d > 2s. Let ρ ∈ L∞(Rd) be such that ρ−1 ∈ L∞
loc(R

d). Suppose moreover that
ρ(x) ≤ C0|x|

−γ in Bc
1 for some γ > 2s and C0 > 0. Then, I2s ∗ ρ ∈ C(Rd) ∩ L∞(Rd) and

(I2s ∗ ρ)(x) → 0 as |x| → ∞ .

More precisely, for some C > 0 we have

(I2s ∗ ρ)(x) ≤ C|x|2s−ν− d
r ∀x ∈ R

d , (A.3)

provided 2s < ν < γ and

r > max

{
1

s
,

d

γ − ν

}
. (A.4)

Proof. In view of the hypotheses on ρ, we can choose ρ̃(x) = ρ̃(|x|) ∈ C(Rd) such that

ρ(x) ≤ ρ̃(x) for a.e. x ∈ R
d . (A.5)

Furthermore, we can and shall assume that ρ̃(x) ≤ C1|x|
−γ in Bc

1 for some γ > 2s and C1 > 0.
Note that |x|ν ρ̃ ∈ Lr(Rd) whenever (γ − ν)r > d. It is plain that 0 ≤ I2s ∗ ρ ≤ I2s ∗ ρ̃. In order to
apply Proposition A.1 (with f ≡ ρ̃), we need to find r > 1 and ν > 0 such that (A.2) and (A.4) are
fulfilled. Since γ > 2s, there certainly exists ν satisfying 2s < ν < γ, whence r > 1 such that (A.2)
and (A.4) hold true. The thesis then follows thanks to (A.5) and the discussion before Proposition
A.1 (in view of the assumptions on ρ, the integral (A.1) is clearly finite for f ≡ ρ). �

Remark A.3. Since in (A.3) and (A.4) we can choose ν arbitrarily close to γ, in fact we have that,
under the same assumptions of Corollary A.2, for all positive ε there exists C > 0 such that

(I2s ∗ ρ)(x) ≤ C|x|2s−γ+ε ∀x ∈ R
d .

A direct calculation shows however that the above formula also holds for ε = 0. In particular, it
is immediate to see that if γ > 4s then I2s ∗ ρ ∈ L1

(1+|x|)−d+2s(R
d). More in general, I2s ∗ ρ ∈

L1
(1+|x|)−α(Rd) for all α > d+ 2s− γ.

Appendix B. Well posedness of the parabolic problem for rapidly decaying

densities

Throughout this section, we shall use of the same notations as in Section 4.
Part I. If ρ ∈ L∞

loc(R
d) is positive and such that ρ−1 ∈ L∞

loc(R
d), u0 is nonnegative and such that

u0 ∈ L1
ρ(R

d)∩L∞(Rd), then we can argue as in the proof of [10, Theorem 7.3 (first construction)] in
order to get the existence of a weak solution to problem (1.1), in the sense of Definition 2.1, which
is bounded in the whole of Rd × (0,∞). Furthermore, the following L1

ρ comparison principle holds
true: ∫

Rd

[u1(x, t)− u2(x, t)]+ ρ(x)dx ≤

∫

Rd

[u01 − u02]+ ρ(x)dx ∀t > 0 , (B.1)

where u1 and u2 are the solutions to problem (1.1), constructed as above, corresponding to the
initial data u01 ∈ L1

ρ(R
d) ∩ L∞(Rd) and u02 ∈ L1

ρ(R
d) ∩ L∞(Rd), respectively.

As for uniqueness, a quite standard result for (suitable) weak solutions to problem (1.1) is the
following.
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Proposition B.1. Let ρ ∈ L∞
loc(R

d) be positive and such that ρ−1 ∈ L∞
loc(R

d). Let u and v be two
nonnegative weak solutions to (1.1), corresponding to the same nonnegative u0 ∈ L1

ρ(R
d), in the

sense that:
u, v ∈ Lm+1

ρ (Rd × (0,∞)) , (B.2)

um, vm ∈ L2
loc([0,∞); Ḣs(Rd)) (B.3)

and

−

∫ ∞

0

∫

Rd

u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞

0

∫

Rd

(−∆)
s
2 (um)(x, t)(−∆)

s
2 (ϕ)(x, t) dxdt

=−

∫ ∞

0

∫

Rd

v(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞

0

∫

Rd

(−∆)
s
2 (vm)(x, t)(−∆)

s
2 (ϕ)(x, t) dxdt

=

∫

Rd

u0(x)ϕ(x, 0) ρ(x)dx

(B.4)

holds true for any ϕ ∈ C∞
c (Rd × [0,∞)). Then, u = v a.e. in R

d × (0,∞).

Proof. In view of the hypotheses on u and v, using a standard approximation argument one can
show that the so-called Olĕınik’s test function

ϕ(x, t) =

∫ T

t

[um(x, τ)− vm(x, τ)] dτ in R
d × (0, T ] , ϕ = 0 in R

d ∈ (T,∞) ,

is in fact an admissible test function in the weak formulations (B.4) (for each T > 0). The conclusion
then follows by arguing exactly as in [10, Theorem 6.1] (see also the subsequent remark). �

Let us discuss some further properties of the solutions we constructed, which can be proved by
means of standard tools. To begin with note that, by proceeding exactly as in [35, Lemma 8.5], one
can show that ρ ut(t) is a Radon measure on R

d satisfying the inequality

‖ρ ut(t)‖M(Rd) ≤
2

(m− 1) t
‖u0‖1,ρ for a.e. t > 0 , (B.5)

where here, as opposed to Subsection 2.2, with a slight abuse of notation we indicate by M(Rd) the
Banach space of Radon measures on R

d endowed with the usual norm of the total variation. Letting

z = u
m+1

2 and following [10, Lemma 8.1] we also get the validity of the estimate
∫ t2

t1

∫

Rd

|zt(x, t)|
2
ρ(x)dxdt ≤ C ∀t2 > t1 > 0 (B.6)

for some positive constant C depending on t1, t2 and m. In view of (B.6) and the general result
provided by [3, Theorem 1.1] one infers that ut ∈ L1

loc((0,∞);L1
ρ(R

d)). Moreover, the inequality

‖ut(t)‖1,ρ ≤
2

(m− 1) t
‖u0‖1,ρ for a.e. t > 0 (B.7)

holds true as a direct consequence of (B.5). In particular, our solution u is also a strong solution
to problem (1.1) in the sense of Definition 2.2. The fact that solutions are strong permits to assert
that they also solve the differential equation in (1.1), for a.e. t > 0, in the L1 sense. This allows to
get the following energy estimate (for the details, see e.g. [18, Sections 4.1 and 4.2]):
∫ t2

t1

∫

Rd

∣∣(−∆)
s
2 (um)(x, t)

∣∣2 dxdt+
1

m+ 1

∫

Rd

um+1(x, t2) ρ(x)dx =
1

m+ 1

∫

Rd

um+1(x, t1) ρ(x)dx ,

(B.8)
for all t2 > t1 > 0. Furthermore, by suitably exploiting the celebrated Stroock-Varopoulos inequality
(see [10, Proposition 8.5] or [18, Section 4.2]), one can show that for any p ∈ [1,∞] the Lp

ρ norm of
u(t) does not increase in time.
Now suppose that, in addition to the above hypotheses, ρ ∈ L∞(Rd). Thanks to the latter assump-
tion, from the classical fractional Sobolev embedding (we refer the reader e.g. to the survey paper
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[12] and references quoted therein) one immediately deduces the validity of the following weighted,
fractional Sobolev inequality:

‖v‖ 2d
d−2s

,ρ ≤ C̃S

∥∥(−∆)
s
2 (v)

∥∥
2

∀v ∈ Ḣs(Rd) , (B.9)

where C̃S = C̃S(‖ρ‖∞, s, d) is a suitable positive constant. By interpolation it is straightforward
to check that, as a consequence of (B.9), also the weighted, fractional Nash-Gagliardo-Nirenberg
inequality

‖v‖q,ρ ≤ C̃GN

∥∥(−∆)
s
2 (v)

∥∥ 1
a+1

2
‖v‖

a
a+1

p,ρ ∀v ∈ Lp
ρ(R

d) ∩ Ḣs(Rd) (B.10)

holds true for any a ≥ 0, p ≥ 1 and

q =
2d(a+ 1)

da
p + d− 2s

,

where C̃GN = C̃GN (‖ρ‖∞, a, p, s, d) is another suitable positive constant. Taking advantage of
(B.10), by means of the same techniques as in [10, Section 8.2] or [18, proof of Proposition 4.6], one
can prove the smoothing estimate

‖u(t)‖∞ ≤ K t−αp ‖u0‖
βp

p,ρ ∀t > 0 , ∀p ≥ 1 , (B.11)

where

αp =
d

d(m− 1) + 2sp
, βp =

2spαp

d

and K = K(‖ρ‖∞,m, s, d) > 0.
Still under the additional assumption ρ ∈ L∞(Rd), it is possible to construct solutions to (1.1)
corresponding to any nonnegative data u0 ∈ L1

ρ(R
d). One proceeds picking a sequence of nonnegative

data u0n ∈ L1
ρ(R

d)∩L∞(Rd) such that u0n → u0 in L1
ρ(R

d) and pass to the limit in (2.1) as n→ ∞
by exploiting (B.1), (B.8) and (B.11) for p = 1 (see also [26, Theorem 6.5 and Remark 6.11]).
Such solutions are still strong because the L1

ρ comparison principle (B.1) is preserved (which is
in fact one of the main tools to prove that solutions are strong – see again [10, Section 8.1] and
references quoted). We have therefore proved the existence result contained in Proposition 2.3.
As concerns uniqueness, one can reason as follows. Proposition B.1, in particular, ensures that if
u0 ∈ L1

ρ(R
d) ∩ L∞(Rd) then the solution to (1.1) that we constructed above is unique in the class

of weak solutions satisfying (B.2), (B.3) and (B.4). Moreover, any weak solution u(x, t) to (1.1), in
the sense of Definition 2.1, is such that u(x, t+ ε) is a weak solution to (1.1), corresponding to the
initial datum u0(x, ε) ∈ L1

ρ(R
d) ∩ L∞(Rd), satisfying (B.2), (B.3) and (B.4), for any ε > 0. Thanks

to these properties, one can then proceed exactly as in the proof of [26, Theorem 6.7].

Part II. We describe here another method for constructing weak solutions to problem (1.1). Take
again nonnegative initial data u0 ∈ L1

ρ(R
d) ∩ L∞(Rd) and consider the following problem (see also

the discussion at the beginning of Section 4):




Ls (ũ
m
R ) = 0 in ΩR × (0,∞) ,

ũR = 0 on ΣR × (0,∞) ,

ũR = uR on ΓR × (0,∞) ,
∂ (ũmR )

∂y2s
= ρ

∂uR
∂t

on ΓR × (0,∞) ,

uR = u0 on BR × {t = 0} .

(B.12)

Definition B.2. A weak solution to problem (B.12) is a pair of nonnegative functions (uR, ũR) such
that:

• uR ∈ C([0,∞);L1
ρ(BR)) ∩ L

∞(BR × (τ,∞)) for all τ > 0;

• ũmR ∈ L2
loc((0,∞);Xs

0(ΩR));
• ũR|ΓR×(0,∞) = uR;
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• for any ψ ∈ C∞
c ((ΩR ∪ ΓR)× (0,∞)) there holds

−

∫ ∞

0

∫

BR

uR(x, t)ψt(x, 0, t) ρ(x)dxdt+ µs

∫ ∞

0

∫

ΩR

y1−2s〈∇(ũmR ),∇ψ〉(x, y, t) dxdydt = 0 ;

• limt→0 uR(t) = u0|BR
in L1

ρ(BR).

Weak sub– and supersolutions to (B.12) are defined in agreement with Definition B.2. In addition,
we say that (uR, ũR) is a strong solution if (uR)t ∈ L∞((τ,∞);L1

ρ(BR)) for every τ > 0. By means of
the same arguments used in the proof of [10, Theorem 6.2], it is direct to deduce the next comparison
principle.

Proposition B.3. Let ρ ∈ L∞
loc(R

d) be positive and such that ρ−1 ∈ L∞
loc(R

d). Let (u
(1)
R , ũ

(1)
R )

and (u
(2)
R , ũ

(2)
R ) be a strong subsolution and a strong supersolution, respectively, to problem (B.12).

Suppose that u
(1)
R ≤ u

(2)
R on BR × {t = 0} and ũ

(1)
R ≤ ũ

(2)
R on ΣR × (0,∞). Then u

(1)
R ≤ u

(2)
R in

BR × (0,∞) and ũ
(1)
R ≤ ũ

(2)
R in ΩR × (0,∞).

Making use of quite standard tools (see e.g. [10, 26]), one can prove that for any R > 0 and
u0 ∈ L1

ρ(R
d) ∩ L∞(Rd) there exists a unique strong solution (uR, ũR) to problem (B.12) (in the

sense of Definition B.2). Moreover, the limit function u = limR→∞ uR (note that the family {uR} is
monotone inR thanks to Proposition B.3) is nonnegative, bounded in R

d×(0,∞) and such that (B.2),
(B.3) and (B.4) hold true. Hence, in view of Proposition B.1, such a u necessarily coincides with
the solution constructed in Part I: this in particular ensures that u ∈ C([0,∞), L1

ρ(R
d)). Again, for

general data u0 ∈ L1
ρ(R

d), we can select a sequence {u0n} ⊂ L1
ρ(R

d)∩L∞(Rd) such that 0 ≤ u0n ≤ u0
and u0n → u0 in L1

ρ(R
d) and pass to the limit in (2.1) as n → ∞ to get a solution to (1.1) in the

sense of Definition 2.1 (which still coincides with the one obtained in Part I).
Finally, we should note that in [10] and [26] the approximating problems are a little different from
(B.12) (namely, cylinders in the upper plane are used instead of half-balls). However, this change
does not affect the construction of the solution u. Indeed, the present idea of using problem (B.12)
is taken from [9, Section 2], where the case s = 1/2 and ρ ≡ 1 is studied.

Part III. Let us now address the following problem, which is the analogue of (B.12) in the whole
upper plane: 




Ls(ũ
m) = 0 in R

d+1
+ × (0,∞) ,

ũ = u on ∂Rd+1
+ × (0,∞) ,

∂ (ũm)

∂y2s
= ρ

∂u

∂t
on ∂Rd+1

+ × (0,∞) ,

u = u0 on R
d × {t = 0} .

(B.13)

Definition B.4. A nonnegative function u is a local weak solution to problem (B.13) corresponding
to the nonnegative initial datum u0 ∈ L1

ρ(R
d) if, for some nonnegative function ũ such that

ũm ∈ L2
loc((0,∞);Xs

loc) ∩ L
∞(Rd+1

+ × (τ,∞)) ∀τ > 0 ,

there hold:

• u ∈ C([0,∞);L1
ρ(R

d)) ∩ L∞(Rd × (τ,∞)) for all τ > 0;
• ũ|∂Rd+1

+
×(0,∞) = u;

• for any ψ ∈ C∞
c ((Rd+1

+ ∪ ∂Rd+1
+ )× (0,∞)),

−

∫ ∞

0

∫

Rd

u(x, t)ψt(x, 0, t) ρ(x)dxdt+ µs

∫ ∞

0

∫

R
d+1

+

y1−2s 〈∇(ũm),∇ψ〉 (x, y, t) dxdydt (B.14)

(in fact ũm is a local extension for um);
• for any ϕ ∈ C∞

c (Rd × (0,∞)),

−

∫ ∞

0

∫

Rd

u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞

0

∫

Rd

um(x, t)(−∆)s(ϕ)(x, t) dxdt = 0 ; (B.15)
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• limt→0 u(t) = u0 in L1
ρ(R

d).

Moreover, we say that u is a local strong solution if, in addition, ut ∈ L∞((τ,∞);L1
ρ,loc(R

d)) for
every τ > 0.

Notice that (B.15) is related to the so-called very weak formulation of problem (1.1) (see also

Definition B.6 below). For local weak solutions, in general um 6∈ L2
loc((0,∞); Ḣs(Rd)). Hence,

equivalence between (B.14) and (B.15) cannot be established.
The criterion of Proposition B.1 here is not applicable in order to prove uniqueness. However, it is
possible to restore the latter by imposing extra integrability conditions, as stated in Theorem 2.4.
In order to prove it, we need some preliminaries. Given a nonnegative f ∈ C∞

c (Rd), let h = I2s ∗ f ,
so that

(−∆)s(h) = f in R
d . (B.16)

Exploiting the properties of I2s and of the convolution operation, it is not difficult to show that
h ∈ C∞(Rd), h ≥ 0 and

h(x) + |∇h(x)| ≤ |x|−d+2s ∀x ∈ R
d .

Now take a cut-off function ξ ∈ C∞
c (Rd) such that 0 ≤ ξ ≤ 1 in R

d, ξ = 1 in B1/2 and ξ = 0 in Bc
1.

For any R > 0, let

ξR(x) = ξ
( x
R

)
∀x ∈ R

d . (B.17)

After straightforward computations, we obtain:

(−∆)s (hξR) (x) = h(x)(−∆)s(ξR)(x) + (−∆)s(h)(x) ξR(x) + B(h, ξR)(x) ∀x ∈ R
d ,

where B(φ1, φ2)(x) is the bilinear form defined as

B(φ1, φ2)(x) = 2Cs,d

∫

Rd

(φ1(x)− φ1(y))(φ2(x)− φ2(y))

|x− y|d+2s
dy ∀x ∈ R

d

and Cs,d is the positive constant appearing in (1.2). By means of the same techniques used in the
proof of [28, Lemma 3.1], we get the following result.

Lemma B.5. Let f ∈ C∞
c (Rd), with f ≥ 0, h = I2s ∗ f and ξR be as in (B.17). Then, for any

T > 0 and v ∈ L1
(1+|x|)−d+2s(R

d × (0, T )), there holds

lim
R→∞

∫ T

0

∫

Rd

|v(x, t)h(x) (−∆)s(ξR)(x)| dxdt+

∫ T

0

∫

Rd

|v(x, t)B(h, ξR)(x)| dxdt = 0 .

Having at our disposal Lemma B.5, we are now in position to prove Theorem 2.4.

Proof of Theorem 2.4. Let u be the weak solution to problem (1.1) provided by Proposition 2.3.
First of all, note that its minimality in the class of solutions described in Definition B.4 (namely
local strong solutions) is a consequence of the construction outlined in Part II and the comparison
principle given in Proposition B.3. Moreover, estimates (2.3) and (2.4) can be obtained using the
same arguments as in [26, Theorem 5.5], combined with the smoothing effect (B.11) and [26, Remark
6.11].

(i) The thesis is a consequence of estimate (2.4), Remark A.3 and the method of proof of [26,
Theorems 6.9 and 6.10], which here can be exploited with inessential modifications in view of (B.11)
and [26, Remark 6.11]. For further references, let us just mention that it is appropriate to take as
a test function in (B.15) ϕ(x, t) = ξR(x)ηǫ(t), where ηǫ(t) properly tends to χ[t1,t2](t) as ǫ → 0 (let
t2 > t1 > 0 be fixed).

(ii) We claim that um ∈ L1
(1+|x|)−d+2s(R

d × (0, T )) for all T > 0: in fact, this follows immediately

from estimate (2.4) and Remark A.3. Let u be another bounded local strong solution to (1.1). Since,
by definition, both u and u belong to

C([0,∞), L1
ρ,loc(R

d)) ∩ L∞((0,∞)× R
d) ,
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it is direct to see that for any ϕ ∈ C∞
c (Rd × [0,∞)) there holds

−

∫ ∞

0

∫

Rd

u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞

0

∫

Rd

um(x, t)(−∆)s(ϕ)(x, t) dxdt

=−

∫ ∞

0

∫

Rd

u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞

0

∫

Rd

um(x, t)(−∆)s(ϕ)(x, t) dxdt

=

∫

Rd

u0(x)ϕ(x, 0) ρ(x)dx .

(B.18)

Let η ∈ C∞(R) be such that

η = 1 in (−∞, 0] , η = 0 in [1,∞) , 0 ≤ η ≤ 1 , η′ ≤ 0 in R .

For any ǫ ∈ (0, T ) and τ ∈ (0, T − ǫ), set

ηǫτ (t) = η

(
t− τ

T − ǫ− τ

)
∀t > 0 .

Now take the test function

ϕ(x, t) = h(x)ξR(x)ηǫτ (t) ∀(x, t) ∈ R
d × (0,∞)

(h is given by (B.16)) and plug it into the weak formulation solved by u− u (according to (B.18)).
We get:

∫ T−ǫ

0

∫

Rd

f(x)ξR(x)ηǫτ (t)[u
m(x, t)− um(x, t)] dxdt

=

∫ T−ǫ

0

∫

Rd

h(x)ξR(x)η
′
ǫτ (t)[u(x, t)− u(x, t)] ρ(x)dxdt

−

∫ T−ǫ

0

∫

Rd

[h(x)(−∆)s(ξR)(x) + B(h, ξR)(x)] ηǫτ (t) [u
m(x, t)− um(x, t)] dxdt .

(B.19)

Because u ≤ u and η′ǫτ ≤ 0, from (B.19) we deduce that

0 ≤

∫ T−ǫ

0

∫

Rd

f(x)ξR(x)ηǫτ (t)[u
m(x, t)− um(x, t)] dxdt

≤

∫ T−ǫ

0

∫

Rd

|h(x)(−∆)s(ξR)(x) + B(h, ξR)(x)| [u
m(x, t) + um(x, t)] dxdt .

(B.20)

Letting R→ ∞ in (B.20) and applying Lemma B.5 to the r.h.s., with the choice v = um+um (recall
that by hypothesis (2.6) holds both for u and u), we infer that u = u in the region supp f×(0, T −ǫ).
Thanks to the arbitrariness of f , T and ǫ we finally obtain that u = u in the whole of Rd×(0,∞). �

Let us consider the next definition of very weak solution to problem (1.1).

Definition B.6. A nonnegative function u ∈ L∞(Rd × (0,∞)) is a very weak solution to problem
(1.1) corresponding to the nonnegative initial datum u0 ∈ L∞(Rd) if, for any ϕ ∈ C∞

c (Rd × [0,∞)),
(B.18) holds true.

Clearly, any bounded weak solution to (1.1) (according to Definition 2.1) is also a very weak solution
in the sense of Definition B.6.

Remark B.7. From the proof of the uniqueness results in Theorem 2.4, it follows that if u1 and
u2 are very weak solutions to problem to (1.1) (in the sense of Definition B.6), having the same
integrability properties required in the hypotheses of Theorem 2.4 and such that u1 ≤ u2 a.e. in
R

d × (0,∞), then u1 ≡ u2. We should note that, in case (i), a minor change in the proof is
needed since Definition B.6 does not imply that limt→0 u(t) = u0 in L1

ρ,loc(R
d). However, the initial

condition is taken in the sense of (B.18): this is enough in order to repeat the proof of Theorem
2.4-(i) (to be specific, it suffices to choose t1 = 0 when we define the test function ηε).
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