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WEIGHTED FRACTIONAL POROUS MEDIA EQUATIONS: EXISTENCE AND

UNIQUENESS OF WEAK SOLUTIONS WITH MEASURE DATA

GABRIELE GRILLO, MATTEO MURATORI, FABIO PUNZO

Abstract. We shall prove existence and uniqueness of solutions to a class of porous media equa-
tions driven by weighted fractional Laplacians when the initial data are positive finite measures
on the Euclidean space R

d. In particular, Barenblatt-type solutions exist and are unique for the
evolutions considered. The weight can be singular at the origin, and must have a sufficiently slow
decay at infinity (power-like). Such kind of evolutions seems to have not been treated before even
as concerns their linear, non-fractional analogues.

Contents

1. Introduction 1
2. Preliminary tools 3
3. Statements of the main results 5
4. Existence of weak solutions 6
4.1. Strong solutions 20
4.2. Decrease of the norms 21
5. Uniqueness of weak solutions 21
5.1. Construction and properties of the family {ψn,ε} 23
5.2. Passing to the limit as n→ ∞ 26
5.3. Passing to the limit as ε→ 0 and proof of Theorem 3.3 28
Appendix A. 30
Appendix B. 32
References 34

1. Introduction

The main goal of this note is to prove existence and uniqueness of solutions to the following
problem: {

|x|−γut + (−∆)s (um) = 0 in R
d × R

+ ,

|x|−γu = µ on R
d × {0} ,

(1.1)

where we assume that s ∈ (0, 1), d > 2s, γ ∈ (0, 2s), m > 1 and that µ is a positive finite measure
on R

d (so that u ≥ 0). The unweighted case (namely when γ = 0) is known as fractional porous
media equation and has been thoroughly analysed in [16] and [17] for initial data in L1(Rd). Here
we study some of its possible weighted variants whose model is (1.1), and want to extend the set of
initial data to positive finite measures. For greater readability we shall consider explicitly only the

Key words and phrases. Weighted porous media equation; weighted Sobolev inequalities; nonlinear diffusion equa-
tions; smoothing effect; asymptotics of solutions.
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case of such a model problem, that is when the singular weight is exactly |x|−γ . However, notice
that all of our main results also apply to the more general problem

{
ρ(x)ut + (−∆)s (um) = 0 in R

d × R
+ ,

ρ(x)u = µ on R
d × {0} ,

(1.2)

where we the weight ρ is assumed to satisfy

c ≤ ρ(x) ≤ C|x|−γ ∀x ∈ B1(0) and c|x|−γ ≤ ρ(x) ≤ C|x|−γ ∀x ∈ Bc
1(0) (1.3)

for some positive constants c < C. This is recalled in Section 3.
Above we listed the ranges in which the parameters d, s, γ and m are allowed to vary. Actually,

the methods of proof we exploit will require a further restriction on d, s and γ, which we shall clarify
later (see the hypotheses of Theorems 3.2 and 3.3).

As a particular case, our results entail the existence and uniqueness of Barenblatt solutions for
the equations considered, which extends to the cases considered here recent deep results of Vázquez
[41]. We shall show in [24] that such Barenblatt solutions determine the asymptotics of solutions
corresponding to integrable data, and shall consider there also other weighted fractional porous
media equations with rapidly decaying weights, for which the asymptotics of solutions is radically
different.

The analysis of the evolutions considered here poses significant difficulties, as can be guessed even
when considering their linear analogues. In fact, the first issue we have to deal with is the essential
self-adjointness of the operator formally defined as |x|γ(−∆)s on test functions and the validity of
the Markov property for the associated linear evolution. This will be crucial in the uniqueness part,
and seemed not to be known so far. We just sketch in Appendix B the long and technical proof
of these properties, which takes into account the fact that γ is sufficiently close to zero. For larger
γ one expects that conditions at zero and/or at infinity should be needed to get self-adjointness.
Notice that the study of weighted linear differential operator of second order has a long story, see
for example [12, Sect. 4.7], or [31]. Recently, the study of the spectral properties of operators which
are modeled on the critical operator formally given by |x|2∆ has been performed in [13].

As for nonlinear evolutions, the study of porous media and fast diffusion equations with measure
data can be tracked back to the pioneering, fundamental papers [3, 7, 33, 10]. See [42, Sect. 13]
for details and additional references. The fast diffusion case, which will not be dealt with here,
is investigated in [8, 9]: notice that in such case Dirac delta may not be smoothed into regular
solutions, so that different approaches must be used, see the recent paper [34] for a general approach.
In the breakthrough papers [16, 17], the fractional porous media and fast diffusion equations were
introduced and thoroughly studied when the data are integrable functions. The construction of
Barenblatt solutions and the study of their role as asymptotic attractors for general integrable data
is performed in [41]. Existence and uniqueness of solutions in the fractional, weighted case, is studied
in [36, 37]: there, the weights are regular and data cannot be measures. Notice that fractional porous
media equations are being used as a model in several applied situations, see [5, Appendix B] and
reference quoted for details. We also remark that the terminology “measure data” is sometimes used
in different contexts in which a measure appears as source term in certain evolution equations: see
e.g. [29] and references quoted.

There is a huge literature on the weighted, non fractional porous media equation: with no claim of
generality we quote [14, 15, 19, 20, 22, 23, 25, 26, 27, 35, 38, 39, 40] and references quoted therein. It
should be noticed explicitly that the possible singularity of the weight, and the fact that we want to
consider measure data as well, makes our problem significantly different both from the unweighted,
fractional case, and from the weighted, non-fractional case: straightforward modifications of the
strategies valid in such cases are then not applicable here.

The paper is organized as follows. Section 2 briefly collects some preliminary tools on measure
theory, fractional Laplacians and fractional Sobolev spaces. In Section 3 we prove our main result on
existence, whereas in Section 4 uniqueness is addressed. Appendix A includes some technical results
used in the approximating procedures developed in the paper. Finally, in Appendix B we state the
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main properties of the linear operator formally given by |x|γ(−∆)s in the appropriate range of γ,
and give a sketch of the corresponding proofs.

2. Preliminary tools

In this section we outline some basic notation, definitions and properties that we shall make us of
later concerning weighted Lebesgue spaces, measures, fractional Laplacian, fractional Sobolev spaces
and Riesz potentials of measures.
Weighted Lebesgue spaces. For a given measurable function ρ : Rd → R

+ (that is, a weight),
we denote as Lp

ρ(R
d) (let p ∈ [1,∞)) the Banach space constituted by all (classes of equivalence of)

measurable functions v : Rd → R such that

‖v‖
p
p,ρ =

∫

Rd

|v(x)|
p
ρ(x)dx <∞ .

In the special case ρ(x) = |x|α (let α ∈ R) we simplify notation and replace Lp
ρ(R

d) by Lp
α(R

d)
and ‖v‖p,ρ by ‖v‖p,α. For the usual unweighted Lebesgue spaces we keep the traditional notation
Lp(Rd), denoting the corresponding norms as ‖v‖p. Later on we might also use the more detailed
notation ‖v‖Lp(RN ) (let N be d or d+ 1) in order to avoid ambiguity.

Positive finite measures on R
d. Since in (1.1) we deal with positive, finite measures µ on R

d, it
is convenient to recall some basic properties enjoyed by the set of such measures, which we denote
as M(Rd) (with a slight abuse of notation: this is the usual symbol for the space of signed measures
on R

d). To begin with, consider a sequence {µn} ⊂ M(Rd). Following the notation of [33], we say
that {µn} converges to µ ∈ M(Rd) in σ(M(Rd), Cc(R

d)) if there holds

lim
n→∞

∫

Rd

φ dµn =

∫

Rd

φ dµ ∀φ ∈ Cc(R
d) , (2.1)

where Cc(R
d) is the space of continuous, compactly supported functions on R

d. This is usually
referred to as local weak∗ convergence (see [2, Def. 1.58]). A classical theorem in measure theory
asserts that if

sup
n
µn(R

d) <∞ (2.2)

then there exists µ ∈ M(Rd) such that {µn} converges to µ in σ(M(Rd), Cc(R
d)) up to subsequences

(see [2, Th. 1.59]). A stronger notion of convergence is the following. A sequence {µn} ⊂ M(Rd) is
said to converge to µ ∈ M(Rd) in σ(M(Rd), Cb(R

d)) if

lim
n→∞

∫

Rd

φ dµn =

∫

Rd

φ dµ ∀φ ∈ Cb(R
d) , (2.3)

where Cb(R
d) is the space of continuous, bounded functions on R

d. Trivially, (2.3) implies (2.1). The
opposite holds true under a further hypothesis. That is, if {µn} converges to µ in σ(M(Rd), Cc(R

d))
and

lim
n→∞

µn(R
d) = µ(Rd)

then {µn} converges to µ also in σ(M(Rd), Cb(R
d)) (see [2, Prop. 1.80]). Notice that if {µn}

converges to µ in σ(M(Rd), Cc(R
d)) and (2.2) holds, a priori one only has a weak∗ lower semi-

continuity property:
µ(Rd) ≤ lim inf

n→∞
µn(R

d)

(see again [2, Th. 1.59]).
Fractional Laplacian and fractional Sobolev spaces. The fractional s-Laplacian operator
which appears in (1.1) is defined, at least for any φ ∈ D(Rd) := C∞

c (Rd), as

(−∆)s(φ)(x) = p.v. Cd,s

∫

Rd

φ(x)− φ(y)

|x− y|d+2s
dy ∀x ∈ R

d , (2.4)

where Cd,s is a suitable positive constant depending only on d and s. However, since a priori we
have no clue about the regularity of solutions to (1.1), it is necessary to reformulate the problem in a
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suitable weak sense, see Definition 3.1 below. Before doing it, we need to introduce some fractional
Sobolev spaces. Here we shall mainly deal with Ḣs(Rd), that is the closure of D(Rd) w.r.t. the norm

‖φ‖
2
Ḣs = Cd,s

∫

Rd

∫

Rd

(φ(x)− φ(y))2

|x− y|d+2s
dx dy ∀φ ∈ D(Rd) .

Notice that the space usually denoted as Hs(Rd) is just L2(Rd) ∩ Ḣs(Rd). For definitions and
properties of the general fractional Sobolev spaces W r,p(Rd) (let r > 0 and p ∈ [1,∞)) we refer the
reader to the survey paper [18].

At first glance the link between the fractional s-Laplacian and the space Ḣs(Rd) might not be very
clear. In order to make it apparent, one can first start from the validity of the identities

Cd,s

∫

Rd

∫

Rd

(φ(x)− φ(y))(ψ(x)− ψ(y))

|x− y|d+2s
dx dy =

∫

Rd

(−∆)
s
2 (φ)(x) (−∆)

s
2 (ψ)(x) dx

=

∫

Rd

φ(x)(−∆)s(ψ)(x) dx

(2.5)

for all φ, ψ ∈ D(Rd), namely a sort of “integration by parts” formula. For a rigorous proof of (2.5),
which exploits Fourier transform methods, see [18, Sect. 3]. In particular, letting φ = ψ, one gets
the equality

‖φ‖
2
Ḣs =

∥∥(−∆)
s
2 (φ)

∥∥2
L2 ∀φ ∈ D(Rd) . (2.6)

Now fix v ∈ Ḣs(Rd) and pick a sequence {φn} ⊂ D(Rd) converging to v in Ḣs(Rd). Thanks to
fractional Sobolev embeddings (see [18, Sect. 6] or Lemma 4.5 below) the sequence {φn} converges

to v also in L
2d

d−2s (Rd). This is enough to pass to the limit on the r.h.s. of the second identity in
(2.5), since (−∆)s(ψ)(x) is a regular function decaying at least like |x|−d−2s as |x| → ∞ (see Lemma
A.1 of Appendix A). On the l.h.s. of the first identity in (2.5) we can also pass to the limit because
by definition of ‖φ‖Ḣs the sequence

φn(x)− φn(y)

|x− y|
d
2+s

converges in L2(Rd × R
d), and by the convergence of {φn} to v in L

2d
d−2s (Rd) such limit must

necessarily coincide a.e. with
v(x)− v(y)

|x− y|
d
2+s

.

Arguing similarly and passing to the limit on the r.h.s. of the first identity in (2.5), one finds that
there exists a function h ∈ L2(Rd) such that

∫

Rd

h(x) (−∆)
s
2 (ψ)(x) dx =

∫

Rd

v(x)(−∆)s(ψ)(x) dx ∀ψ ∈ D(Rd) . (2.7)

Formula (2.7) is nothing but the definition of (−∆)
s
2 (v) = h in the sense of distributions. Gathering

all this information, one finally obtains the identities

Cd,s

∫

Rd

∫

Rd

(v(x)− v(y))(ψ(x)− ψ(y))

|x− y|d+2s
dx dy =

∫

Rd

(−∆)
s
2 (v)(x) (−∆)

s
2 (ψ)(x) dx

=

∫

Rd

v(x)(−∆)s(ψ)(x) dx

(2.8)

for all v ∈ Ḣs(Rd) and ψ ∈ D(Rd), which clearly illustrate the link between the fractional s-Laplacian

and the space Ḣs(Rd). Moreover, letting ψ tend to w ∈ Ḣs(Rd) and passing to the limit in the first
identity of (2.8) yields

Cd,s

∫

Rd

∫

Rd

(v(x)− v(y))(w(x)− w(y))

|x− y|d+2s
dx dy=

∫

Rd

(−∆)
s
2 (v)(x) (−∆)

s
2 (w)(x) dx ∀v,w ∈ Ḣs(Rd) .

(2.9)
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If we set v = w in (2.9) we deduce that (2.6) also holds in Ḣs(Rd). In Sections 4 and 5 (and in

Appendix B) we shall focus on functions which belong to Ḣs(Rd) and to weighted Lebesgue spaces.
Riesz potentials. Another mathematical object deeply linked with the fractional s-Laplacian is
its Riesz kernel, namely the function

I2s(x) =
kd,s

|x|d−2s
,

where kd,s is a positive constant depending only on d and s. For a given positive finite measure ν,
one can show that the convolution

Uν = I2s ∗ ν

produces an L1
loc(R

d) function referred to as the Riesz potential of ν, which formally satisfies

(−∆)s(Uν) = ν .

That is, still at a formal level, the convolution against I2s coincides with the operator (−∆)−s.
One of the most important and classical references for Riesz potentials is the monograph [28] by N.
S. Landkof. In the proof of Theorem 3.2 and throughout Section 5 we shall exploit some crucial
properties of Riesz potentials collected in [28], along with their connections with the fractional
s-Laplacian.

3. Statements of the main results

Having introduced all the basic mathematical tools we need, we can provide a suitable notion of
weak solution to (1.1) (and (1.2)), in the spirit of [17] and [36]. Before going on note that, in the
present and in the next sections, by the symbol u(t) we shall mean the whole of the function u(x, t)
evaluated at time t ≥ 0.

Definition 3.1. Given a finite positive measure µ, by a weak solution to problem (1.1) we mean a
nonnegative function u such that

u ∈ L∞((0,∞);L1
−γ(R

d)) ∩ L∞(Rd × (τ,∞)) ∀τ > 0 , (3.1)

u ∈ L2
loc((0,∞); Ḣs(Rd)) , (3.2)

−

∫ ∞

0

∫

Rd

u(x, t)ϕt(x, t) |x|
−γdx dt+

∫ ∞

0

∫

Rd

(−∆)
s
2 (um)(x, t) (−∆)

s
2 (ϕ)(x, t) dx dt = 0 (3.3)

∀ϕ ∈ C∞
c (Rd × (0,∞))

and

ess lim
t→0

|x|−γu(t) = µ in σ(M(Rd), Cb(R
d)) . (3.4)

For problem (1.2) weak solutions are understood analogously, provided one replaces |x|−γ with ρ
accordingly.

Our first main result concerns existence.

Theorem 3.2. Let d > 2s and γ ∈ (0, 2s∧ (d− 2s)). Let µ be a positive finite measure. Then there
exists a weak solution u to (1.1) in the sense of Definition 3.1. It satisfies the smoothing effect

‖u(t)‖∞ ≤ K t−α µ(Rd)β ∀t > 0 (3.5)

where K is a suitable positive constant depending only on m, γ, s, d and

α =
d− γ

(m− 1)(d− γ) + (2s− γ)p0
, β =

(2s− γ)p0
(m− 1)(d− γ) + (2s− γ)p0

.

In particular u(t) ∈ Lp
−γ(R

d) for all t > 0 and p ∈ [1,∞]. The solution satisfies the energy estimates
∫ t2

t1

∫

Rd

∣∣(−∆)
s
2 (um) (x, t)

∣∣2 dx dt+
∫

Rd

um+1(x, t2) |x|
−γdx =

∫

Rd

um+1(x, t1) |x|
−γdx
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and ∫ t2

t1

∫

Rd

|zt(x, t)|
2
|x|−γdx dt ≤ C

for all t2 > t1 > 0, where z = u
m+1

2 and C is a positive constant that depends only on t1, t2 and on
∫

Rd

um+1(x, t∗) |x|
−γdx

for some t∗ ∈ (0, t1).
The same results hold for weak solutions to (1.2), provided |x|−γ is replaced by any ρ satisfying

conditions (1.3).

As for uniqueness, we have the following result.

Theorem 3.3. Let d > 2s and γ ∈ (0, 2s) ∩ (0, d − 2s]. Let u1, u2 be two weak solutions to (1.1)
in the sense of Definition 3.1. Suppose that they assume as initial datum the same finite positive
measure µ in the sense of (3.4). Then u1 = u2.

The same result holds true for weak solutions to (1.2), provided |x|−γ is replaced by any ρ satisfying
conditions (1.3).

Remark 3.4. Notice that, if d ≥ 4s, then the assumptions on γ in the above theorems reduce to
γ ∈ (0, 2s).

Remark 3.5. As a consequence of our method of proof, uniqueness of the initial trace for weak
solutions to the equations considered, in the spirit of [5, Sect. 7] and [4], can be proved. In fact,
given a function u satisfying (3.1), (3.2), (3.3), it can be shown easily, thanks to the monotonicity in
time of the associated potential (see the proof of Theorem 3.2 in this connection), that there exists
a unique positive finite measure µ which is the initial trace of u in the sense that (3.4) holds true.

4. Existence of weak solutions

We stress again the fact that we shall prove our results only for weak solutions to (1.1). The
modifications required to deal with (1.2), provided ρ is any weight complying with (1.3), are straight-
forward.

Before proceeding with the proof of Theorem 3.2 (and associated preliminary lemmas), we shall
show a first, direct consequence of Definition 3.1, namely the conservation in time of the quantity∫
Rd u(x, t) |x|

−γdx, that is the L1
−γ(R

d) norm of u(t) since we consider nonnegative solutions.

Proposition 4.1. Let γ ∈ (0, 2s) and u be the weak solution to (1.1) according to Definition 3.1.
Then there holds

‖u(t)‖1,−γ =

∫

Rd

u(x, t) |x|−γdx = µ(Rd) for a.e. t > 0 , (4.1)

namely the conservation of mass.

Proof. In order to prove (4.1) we plug into (3.3) the following test function:

ϕR(x, t) = ϑ(t)ξR(x) ,

where ξR is a cut-off function as in Lemma A.3 of Appendix A and ϑ is a suitable positive, regular and
compactly supported approximation of the function χ[t1,t2] (let t2 > t1 > 0). As already mentioned,

(−∆)s(ξ)(x) is a regular function which decays at least like |x|−d−2s as |x| → ∞ (see Lemma A.1).
Moreover, by the scaling properties recalled in Lemma A.3, there holds

(−∆)s(ξR)(x) =
1

R2s
(−∆)s(ξ)

( x
R

)
∀x ∈ R

d .

Thanks to these properties, we have:

||x|γ(−∆)s(ξR)(x)| =

∣∣∣∣
1

R2s−γ

∣∣∣
x

R

∣∣∣
γ

(−∆)s(ξ)
( x
R

)∣∣∣∣ ≤
1

R2s−γ
‖|x|γ(−∆)s(ξ)‖∞ ∀x ∈ R

d . (4.2)
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Now we let R→ ∞ in (3.3). Clearly,

lim
R→∞

∫ ∞

0

∫

Rd

u(x, t)(ϕR)t(x, t) |x|
−γdx dt =

∫ ∞

0

∫

Rd

u(x, t)ϑ′(t) |x|−γdx dt . (4.3)

As for the second integral on the l.h.s. of (3.3), note that
∫ ∞

0

∫

Rd

(−∆)
s
2 (um)(x, t) (−∆)

s
2 (ϕR)(x, t) dx dt =

∫ ∞

0

∫

Rd

um(x, t) (−∆)s(ϕR)(x, t) dx dt , (4.4)

where integration by parts is justified since ϕR is regular and compactly supported and um(t) ∈

Ḣs(Rd) (recall (2.8)). Estimate (4.2) ensures that
∣∣∣∣
∫ ∞

0

∫

Rd

um(x, t) (−∆)s(ϕR)(x, t) dx dt

∣∣∣∣ ≤
‖ϑ‖∞ ‖|x|γ(−∆)s(ξ)‖∞

R2s−γ

∣∣∣∣∣

∫ t∗

t∗

∫

Rd

um(x, t) |x|−γdx dt

∣∣∣∣∣ ,

(4.5)
where t∗ > t∗ > 0 are chosen so that suppϑ ⊂ [t∗, t

∗]. The integral on the r.h.s. of (4.5) is finite
thanks to (3.1). Hence, letting R → ∞, we infer that the integrals in (4.4) converge to zero (recall
that γ < 2s), which together with (4.3) yields

∫ ∞

0

∫

Rd

u(x, t)ϑ′(t) |x|−γdx dt = 0 . (4.6)

Letting ϑ→ χ[t1,t2] in (4.6) and using Lebesgue differentiation Theorem we infer that ‖u(t2)‖1,−γ =
‖u(t1)‖1,−γ for a.e. t2 > t1. This property and (3.4) finally yield (4.1). �

The proof of existence of weak solutions to (1.1) (Theorem 3.2) is based on an approximation
procedure. That is, the idea is to approximate the measure µ with data u0 ∈ L1

−γ(R
d) ∩ L∞(Rd).

This calls first for an existence result of solutions to the following problem:
{
|x|−γut + (−∆)s (um) = 0 in R

d × R
+ ,

u = u0 on R
d × {0} .

(4.7)

In order to obtain it, we need in turn to approximate problem (4.7), just by regularizing the weight
|x|−γ in a neighbourhood of x = 0. This is thoroughly described in the proof of Lemma 4.3 below.
For the success of such a procedure, the following elementary lemma turns out to be crucial.

Lemma 4.2. Let γ ∈ (0, d + 2s] and ρ be a weight that complies with (1.3). Consider a function

v ∈ L2
loc((0,∞); Ḣs(Rd)) such that, for all t2 > t1 > 0,

∫ t2

t1

∫

Rd

|v(x, t)|
2
ρ(x)dx dt ≤ C , (4.8)

∫ t2

t1

∫

Rd

∣∣(−∆)
s
2 (v) (x, t)

∣∣2 dx dt ≤ C (4.9)

and ∫ t2

t1

∫

Rd

|vt(x, t)|
2
ρ(x)dx dt ≤ C , (4.10)

where C is a positive constant depending only on t1 and t2. Take any cut-off functions ξ1 ∈ C∞
c (Rd),

ξ2 ∈ C∞
c ((0,∞)) and define vc : R

d → R as follows:

vc(x, t) = ξ1(x)ξ2(t)v(x, t) ∀(x, t) ∈ R
d × R ,

where we implicitly assume ξ2 and v to be zero for t < 0. Then there holds

‖vc‖
2
Hs(Rd+1) = ‖vc‖

2
L2(Rd+1) + ‖vc‖

2
Ḣs(Rd+1) ≤ C ′ (4.11)

for a positive constant C ′ that depends only on ξ1 and ξ2 (also through C).
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Proof. The validity of
‖vc‖

2
L2(Rd+1) ≤ C ′ (4.12)

is an immediate consequence of (4.8) and of the fact that ρ is bounded away from zero on compact
sets (from now on C ′ will be a constant as in the statement of the lemma, which we shall not relabel
throughout the proof). Moreover, since

(vc)t = ξ1ξ
′
2v + ξ1ξ2vt ,

by (4.8), (4.10) and again the fact that ρ is bounded away from zero on compact sets we deduce
that

‖(vc)t‖
2
L2(Rd+1) ≤ C ′ . (4.13)

Now we have to handle the spatial regularity of vc. First it is convenient to recall the identity
∫

Rd

∣∣(−∆)
s
2 (vc) (x, t)

∣∣2 dx = Cd,s

∫

Rd

∫

Rd

(vc(x, t)− vc(y, t))
2

|x− y|d+2s
dx dy = ‖vc(t)‖

2
Ḣs(Rd) .

Straightforward computations show that

‖vc(t)‖
2
Ḣs(Rd) =Cd,s ξ

2
2(t)

∫

Rd

ξ21(x)

(∫

Rd

(v(x, t)− v(y, t))
2

|x− y|d+2s
dy

)
dx

+ Cd,s ξ
2
2(t)

∫

Rd

|v(y, t)|
2

(∫

Rd

(ξ1(x)− ξ1(y))
2

|x− y|d+2s
dx

)
dy

+ 2Cd,s ξ
2
2(t)

∫

Rd

∫

Rd

ξ1(x)v(y, t)
(v(x, t)− v(y, t)) (ξ1(x)− ξ1(y))

|x− y|d+2s
dx dy .

(4.14)

An immediate application of the Cauchy-Schwarz inequality entails that the third integral on the
r.h.s. of (4.14) is controlled by the first two integrals. As concerns the first one, we have:

Cd,s ξ
2
2(t)

∫

Rd

ξ21(x)

(∫

Rd

(v(x, t)− v(y, t))
2

|x− y|d+2s
dy

)
dx ≤ χsupp ξ2(t) ‖ξ2‖

2
∞ ‖ξ1‖

2
∞ ‖v(t)‖

2
Ḣs(Rd) . (4.15)

In order to bound the second integral, it is important to recall that the function ls(ξ1)(y) ( see
Lemma A.3) is regular and decays at least like |y|−d−2s as |y| → ∞ (for the definition and properties
of ls(·) see Lemma A.2). Hence, by the assumptions on ρ and γ, we infer that

ξ22(t)

∫

Rd

|v(y, t)|
2

(∫

Rd

(ξ1(x)− ξ1(y))
2

|x− y|d+2s
dx

)
dy ≤ c′χsupp ξ2(t) ‖ξ2‖

2
∞

∫

Rd

|v(y, t)|
2
ρ(y)dy (4.16)

for a suitable positive constant c′. Integrating in time (4.14) and using (4.15), (4.16), (4.8) and (4.9)
we then get ∥∥(−∆)

s
2 (vc)

∥∥2
L2(Rd+1)

≤ C ′ . (4.17)

By exploiting (4.12), (4.13) and (4.17) one deduces (4.11). This is easily justified by means of Fourier
transforms. In fact, upon denoting F(f)(x′, t′) as the Fourier transform of a function f(x, t), from
(4.13) we obtain

∫

Rd+1

|t′|2 |F(vc)(x
′, t′)|

2
dx′dt′ =

∫

Rd+1

(vc)
2
t (x, t) dx dt ≤ C ′ , (4.18)

whereas (4.17) gives
∫

Rd+1

|x′|2s |F(vc)(x
′, t′)|

2
dx′dt′ =

∫

Rd+1

∣∣(−∆)
s
2 (vc)(x, t)

∣∣2 dx dt ≤ C ′ . (4.19)

Thus, thanks to (4.12), (4.18) and (4.19) we finally get the estimate
∫

Rd+1

(
1 + |x′|2 + |t′|2

)s
|F(vc)(x

′, t′)|
2
dx′dt′ ≤ C ′ ,

which is equivalent to (4.11) (see e.g. [18, Sect. 3]). �
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We are now able to prove existence of weak solutions to (4.7). Such solutions are understood in
the sense of Definition 3.1, just by replacing µ with |x|γu0.

Lemma 4.3. Let d > 2s, γ ∈ (0, 2s) and u0 ∈ L1
−γ(R

d)∩L∞(Rd), with u0 ≥ 0. There exists a weak
solution u to (4.7) which satisfies the following energy estimates:

∫ t2

t1

∫

Rd

∣∣(−∆)
s
2 (um) (x, t)

∣∣2 dx dt+
∫

Rd

um+1(x, t2) |x|
−γdx =

∫

Rd

um+1(x, t1) |x|
−γdx (4.20)

∀t2 > t1 ≥ 0

and ∫ t2

t1

∫

Rd

|zt(x, t)|
2
|x|−γdx dt ≤ C ∀t2 > t1 > 0 , (4.21)

where z = u
m+1

2 and C is a positive constant that depends only on t1, t2 and on the initial datum
u0 through the integral

∫

Rd

um+1(x, t∗) |x|
−γdx ≤

∫

Rd

um+1
0 (x) |x|−γdx , (4.22)

for some t∗ ∈ (0, t1).

Proof. First of all it is convenient to introduce the following approximation of problem (4.7):
{
ρη(x) (uη)t + (−∆)s

(
umη
)
= 0 in R

d × R
+ ,

uη = u0 on R
d × {0} ,

where {ρη} ⊂ C(Rd) is a family of positive weights (depending on the positive parameter η) which
behave like |x|−γ at infinity and approximate |x|−γ monotonically from below. For instance, one
can pick

ρη(x) =
(
|x|2 + η

)− γ
2 ∀x ∈ R

d . (4.23)

Notice that, thanks to the properties of ρη, one has that u0 ∈ L1
ρη
(Rd) ∩ L∞(Rd). Existence (and

uniqueness) of weak solutions to (4.23) for such weights and initial data have already been established
in [37, Th. 3.1]. Actually the solutions constructed there also belong to C([0,∞);L1

ρη
(Rd)) and

satisfy the bound

‖uη‖L∞(Rd×(0,∞)) ≤ ‖u0‖L∞(Rd) . (4.24)

Exploiting these properties it is easy to show that each uη satisfies a weak formulation which is
slightly stronger than the one of Definition 3.1:

−

∫ T

0

∫

Rd

uη(x, t)ϕt(x, t) ρη(x)dx dt+

∫ T

0

∫

Rd

(−∆)
s
2 (umη )(x, t) (−∆)

s
2 (ϕ)(x, t) dx dt

=

∫

Rd

u0(x)ϕ(x, 0) ρη(x)dx

(4.25)

for all T > 0 and ϕ ∈ C∞
c (Rd × [0, T )) such that ϕ(T ) = 0, where umη ∈ L2((0,∞); Ḣs(Rd)). The

latter property follows from the validity of the key energy identity
∫ t2

t1

∫

Rd

∣∣(−∆)
s
2

(
umη
)
(x, t)

∣∣2 dx dt+ 1

m+ 1

∫

Rd

um+1
η (x, t2)ρη(x)dx

=
1

m+ 1

∫

Rd

um+1
η (x, t1)ρη(x)dx

(4.26)

for all t2 > t1 ≥ 0. Formally, (4.26) can be proved by plugging the test function ϕ(x, t) = ϑ(t)umη (x, t)
into the weak formulation (4.25) and letting ϑ tend to χ[t1,t2] as in the proof of Proposition 4.1. The
problem is that, a priori, such a ϕ is not admissible as a test function. In order to justify (4.26)
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rigorously one must proceed as in Section 8 of [17]. A crucial point concerns the fact that solutions
can be proved to be strong, that is

(uη)t ∈ L∞((τ,∞);L1
ρη
(Rd)) ∀τ > 0 .

We refer the reader to Sections 4.1 and 4.2 below for the details. The discussion there is focussed,
for simplicity, on the special case of the weight |x|−γ , but as recalled in the Introduction it applies
safely to any weight ρ complying with (1.3). Another fundamental energy estimate that we shall
exploit in order to manage the passage to the limit in (4.25) as η → 0 is the following:

∫ t2

t1

∫

Rd

|(zη)t(x, t)|
2
ρη(x)dx dt ≤ C ∀t2 > t1 > 0 ,

where zη = u
m+1

2
η and C is a suitable positive constant that depends only on t1, t2 and on the initial

datum u0 through the integral
∫

Rd

um+1
η (x, t∗) ρη(x)dx ≤

∫

Rd

um+1
0 (x) ρη(x)dx

for some t∗ ∈ (0, t1). Again, (4.3) can be formally proved by picking the test function ϕ(x, t) =
ζ(t)(umη )t(x, t) and integrating by parts in time, where ζ is any positive regular function with compact
support in (0,∞) (t∗ is the infimum of its support) such that ζ = 1 on [t1, t2]. Actually the validity
of (4.3) is one of the main tools that one uses to prove that solutions are strong, and its rigorous
proof follows exactly as in [17, Lem. 8.1].
Now notice that, since

(
umη
)
t
=

2m

m+ 1
z

m−1
m+1
η (zη)t

and

‖zη‖L∞(Rd×(0,∞)) = ‖uη‖
m+1

2

L∞(Rd×(0,∞))
≤ ‖u0‖

m+1
2

L∞(Rd)

(recall (4.24)), from (4.3) we deduce that
∫ t2

t1

∫

Rd

∣∣∣
(
umη
)
t
(x, t)

∣∣∣
2

ρη(x)dx dt ≤

(
2m

m+ 1

)2

‖u0‖
m−1
∞ C ∀t2 > t1 > 0 . (4.27)

Moreover, the validity of
∫ t2

t1

∫

Rd

∣∣umη (x, t)
∣∣2 ρη(x)dx dt ≤ C ′ ∀t2 > t1 ≥ 0 (4.28)

for another suitable positive constant C ′ that depends only on t1, t2 and u0 is ensured by the
conservation of mass (4.1) (with |x|−γ replaced by ρη), which yields

‖uη(t)‖1,ρη
= ‖u0‖1,ρη

≤ ‖u0‖1,γ ∀t > 0 ,

and by the uniform boundedness of uη given by (4.24). Thanks to (4.26), (4.27) and (4.28) we are in
position to apply Lemma 4.2 with the choice v = umη . In place of the weight ρ there, exploiting the

monotonicity of {ρη}, we can pick for instance ρ1. Hence, estimate (4.11) and the fact that Hs(Rd+1)
is compactly embedded in L2

loc(R
d+1) (see e.g. [18, Th. 7.1]) imply that, up to subsequences, {uη}

converges at least pointwise to some limit function u as η → 0. Furthermore, from (4.26) we deduce

that {umη } admits (still up to subsequences) a weak limit w in L2((0, T ); Ḣs(Rd)) for all T > 0. The
identification between w and um is just a consequence of the pointwise convergence of {uη} to u.
We can therefore pass to the limit in the weak formulation (4.25) and obtain that such u satisfies

−

∫ T

0

∫

Rd

u(x, t)ϕt(x, t) |x|
−γdx dt+

∫ T

0

∫

Rd

(−∆)
s
2 (um)(x, t) (−∆)

s
2 (ϕ)(x, t) dx dt

=

∫

Rd

u0(x)ϕ(x, 0) |x|
−γdx

(4.29)
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for all T > 0 and ϕ ∈ C∞
c (Rd × [0, T )) such that ϕ(T ) = 0. In fact, the passage to the limit in

the first integral on the l.h.s. of (4.25) is justified by dominated convergence (there holds (4.24) and
the weight |x|−γ is locally integrable), while in the second integral one directly exploits the weak

convergence of {umη } to um in L2((0, T ); Ḣs(Rd)). Finally, on the r.h.s. one uses again dominated
convergence. As remarked in the beginning of the proof, it is not difficult to show that (4.29) implies
that u is a weak solution also in the sense of Definition 3.1. Indeed, the only nontrivial point is to
show that (3.4) holds true. In order to do it, one proceeds similarly to the proof of Proposition 4.1.
We omit details, but recall that the idea is to plug into (4.29) the test function ϕ(x, t) = ϑ(t)φ(x),
where φ is either a function of D(Rd) or an approximation of 1, while ϑ is a regular approximation
of χ[0,t2]. Then, one lets t2 → 0.
As concerns (4.20) and (4.21), they can be obtained reasoning exactly as we did for the proof of
(4.26) and (4.3) (we use again the fact that solutions are strong, see Sections 4.1 and 4.2). �

Having at our disposal an existence result for problem (4.7), we can let |x|−γu0 approximate µ.
In order to show that the corresponding solutions converge to a solution of (1.1), we need first some
technical Lemmas.

The next result is a slight modification (in the hypotheses) of the classical Stroock-Varopoulos
inequality. A simple proof of the latter (with different assumptions on the function v below), which
exploits the extension in the upper plane, can be found in [17, Sect. 5]. See also [12, formula (2.2.7)]
for a similar inequality involving general Dirichlet forms.

Lemma 4.4. Let d > 2s. For all nonnegative v ∈ L∞(Rd)∩ Ḣs(Rd) such that (−∆)s(v) ∈ L1(Rd),
the inequality ∫

Rd

vq−1(x)(−∆)s(v)(x) dx ≥
4(q − 1)

q2

∫

Rd

∣∣∣(−∆)
s
2 (v

q
2 )(x)

∣∣∣
2

dx (4.30)

holds true for any q > 1.

Proof. We shall assume, with no loss of generality, that v is a regular function. Indeed, by standard
mollification arguments, one can always pick a sequence {vn} ⊂ C∞(Rd) ∩ L∞(Rd) ∩ Ḣs(Rd) such
that {vn} converges pointwise to v, ‖vn‖∞ ≤ ‖v‖∞ and {(−∆)s(vn)} converges to (−∆)s(v) in
L1(Rd). This suffices to pass to the limit as n → ∞ on the l.h.s. of (4.30), while on the r.h.s. one
exploits the weak lower semi-continuity of the L2 norm.
Consider now the following sequences of functions:

ψn(x) =

∫ x∧ 1
n

0

y
4s

d−2s dy + (q − 1)

∫ x∨ 1
n

1
n

yq−2 dy ∀x ∈ R
+ ,

Ψn(x) =

∫ x∧ 1
n

0

y
2s

d−2s dy + (q − 1)
1
2

∫ x∨ 1
n

1
n

y
q
2−1 dy ∀x ∈ R

+ .

It is plain that ψn and Ψn are absolutely continuous, monotone increasing functions such that

ψ′
n(x) = [Ψ′

n(x)]
2

∀x ∈ R
+ .

For any R > 0, take a cut-off function ξR as in Lemma A.3 of Appendix A. To the function ξRv one
can apply Lemma 5.2 of [17] with the choices ψ = ψn and Ψ = Ψn, which yields

∫

Rd

ψn(ξRv)(x) (−∆)s(ξRv)(x) dx ≥

∫

Rd

∣∣(−∆)
s
2 (Ψn(ξRv))(x)

∣∣2 dx . (4.31)

Expanding the s-Laplacian of the product of two functions, we get that the l.h.s. of (4.31) equals
∫

Rd

ψn(ξRv)(x) ξR(x)(−∆)s(v)(x) dx+

∫

Rd

ψn(ξRv)(x)(−∆)s(ξR)(x)v(x) dx

+ 2Cd,s

∫

Rd

ψn(ξRv)(x)

∫

Rd

(ξR(x)− ξR(y))(v(x)− v(y))

|x− y|d+2s
dy dx .

(4.32)
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By dominated convergence,

lim
R→∞

∫

Rd

ψn(ξRv)(x) ξR(x)(−∆)s(v)(x) dx =

∫

Rd

ψn(v)(x)(−∆)s(v)(x) dx .

Our aim is to show that the other two integrals in (4.32) go to zero as R→ ∞. We have:
∣∣∣∣
∫

Rd

ψn(ξRv)(x)(−∆)s(ξR)(x)v(x) dx

∣∣∣∣

≤‖(−∆)s(ξR)‖∞

(
d− 2s

d+ 2s

∫

{v≤ 1
n
}

v
2d

d−2s (x) dx+ ψn(‖v‖∞)‖v‖∞

∫

{v> 1
n
}

dx

) (4.33)

and ∣∣∣∣
∫

Rd

ψn(ξRv)(x)

∫

Rd

(ξR(x)− ξR(y))(v(x)− v(y))

|x− y|d+2s
dy dx

∣∣∣∣

≤‖v‖Ḣs

(∫

Rd

[ψn(ξRv)(x)]
2
∫

Rd

(ξR(x)− ξR(y))
2

|x− y|d+2s
dy dx

) 1
2

≤‖v‖Ḣs ‖l(ξR)‖
1
2
∞

([
d− 2s

d+ 2s

]2 ∫

{v≤ 1
n
}

v2
d+2s
d−2s (x) dx+ [ψn(‖v‖∞)]

2
∫

{v> 1
n
}

dx

) 1
2

,

(4.34)

where l(·) is defined in Lemma A.2. Thanks to the scaling properties of both (−∆)s(ξR) and l(ξR)
(see again Lemma A.3), it is immediate to check that limR→∞ ‖(−∆)s(ξR)‖∞ = limR→∞ ‖l(ξR)‖∞ =

0. Moreover, notice that v ∈ L
2d

d−2s (Rd) ∩ L∞(Rd) (see [18, Sect. 6] or Lemma 4.5 below). In

particular, v also belongs to L2 d+2s
d−2s (Rd). Thus, letting R→ ∞ in (4.33) and (4.34), we deduce that

the last two integrals in (4.32) vanish, so that we can pass to the limit on the l.h.s. of (4.31). On
the r.h.s. we just use the fact that (−∆)

s
2 (Ψn(ξRv)) converges to (−∆)

s
2 (Ψn(v)) weakly in L2(Rd).

This proves the validity of
∫

Rd

ψn(v)(x)(−∆)s(v)(x) dx ≥

∫

Rd

∣∣(−∆)
s
2 (Ψn(v))(x)

∣∣2 dx . (4.35)

The final step is to let n → ∞ in (4.35). It is clear that the sequence {ψn(x)} converges locally

uniformly to the function xq−1, while {Ψn(x)} converges locally uniformly to 2(q−1)
1
2x

q
2 /q. Hence,

{ψn(v)} and {Ψn(v)} converge in L∞(Rd) to vq−1 and 2(q − 1)
1
2 v

q
2 /q, respectively. This is enough

in order to pass to the limit in (4.35) and obtain (4.30). �

Lemma 4.5. Let d > 2s and γ ∈ [0, 2s). There exists a positive constant CCKN = CCKN (γ, s, d)
such that the Caffarelli-Kohn-Nirenberg type inequalities

‖v‖q,−γ ≤ CCKN

∥∥(−∆)
s
2 (v)

∥∥ 1
α+1

2
‖v‖

α
α+1

p,−γ ∀v ∈ Lp
−γ(R

d) ∩ Ḣs(Rd) (4.36)

hold true for any α ≥ 0, p ≥ 1 and

q = 2
(d− γ)(α+ 1)

(d− γ)α
p
+ d− 2s

.

For α = 0 one recovers the fractional Sobolev inequalities

‖v‖2 d−γ
d−2s ,−γ

≤ CS

∥∥(−∆)
s
2 (v)

∥∥
2

∀v ∈ Ḣs(Rd) . (4.37)

Proof. Inequality (4.36) is just a particular case of [11, Th. 1.8]. Alternatively, one can prove it by
interpolating between the fractional Sobolev inequality (4.37) in the case γ = 0 (see [18, Th. 6.5])
and the fractional Hardy inequality (see e.g. [21] and references quoted therein)

‖v‖2,−2s ≤ CH

∥∥(−∆)
s
2 (v)

∥∥
2

∀v ∈ Ḣs(Rd) .

�
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Lemmas 4.4 and 4.5 provide us with functional inequalities which are key in order to prove the
following smoothing effect for solutions to (4.7), a result which is in turn crucial for the rest of this
Section. The strategy of proof is standard and we stress the main points only.

Proposition 4.6. Let d > 2s and γ ∈ (0, 2s). There exists a constant K > 0 depending only on m,
γ, s, d such that, for all nonnegative initial datum u0 ∈ L1

−γ(R
d) ∩ L∞(Rd) and the corresponding

weak solution u to (4.7) constructed in Lemma 4.3, the following Lp0

−γ-L
∞ smoothing estimate holds

true for any p0 ∈ [1,∞):

‖u(t)‖∞ ≤ K t−α ‖u0‖
β
p0,−γ ∀t > 0 , (4.38)

where

α =
d− γ

(m− 1)(d− γ) + (2s− γ)p0
, β =

(2s− γ)p0
(m− 1)(d− γ) + (2s− γ)p0

. (4.39)

Proof. We proceed exactly as in [17, Th. 8.2], i.e. by means of a standard parabolic Moser iteration,
so we stress just the main steps for the convenience of the reader. First of all, let us fix any
t > 0 and consider the time sequence tk := (1 − 2−k) t. Let us also denote as {pk} ⊂ (1,∞)
another numerical sequence to be chosen later. By multiplying the differential equation in (4.7) by
upk−1(x, t), integrating over R

d × [tk, tk+1], applying Lemma 4.4 to the function v = um (with the
choice q = (pk +m − 1)/m) and exploiting the fact that the Lp

−γ norms do not increase along the
evolution (see Section 4.2), we get:

‖u(tk)‖
pk

pk,−γ ≥
ck

‖u(tk)‖
pk

pk,−γ

∫ tk+1

tk

∥∥∥(−∆)
s
2

(
u

pk+m−1

2 (τ)
)∥∥∥

2

2
‖u(τ)‖

pk

pk,−γ dτ , (4.40)

where ck = 4mpk(pk − 1)/(pk +m − 1)2. The above computations are justified since, as we recall
in Section 4.1, our solutions are strong. In particular both sides of the differential equation in (4.7)
belong to L1(Rd).
Now note that, using (4.36) with the choices p = 2pk/(pk +m− 1) and α = pk/(pk +m− 1), we
obtain:

∥∥∥(−∆)
s
2

(
u

pk+m−1

2 (τ)
)∥∥∥

2

2
‖u(τ)‖

pk

pk,−γ ≥ C
−2

2pk+m−1

pk+m−1

CKN ‖u(τ)‖
2pk+m−1
(d−γ)(2pk+m−1)

2d−γ−2s ,−γ
. (4.41)

Thanks to (4.41) and again the fact that the Lp
−γ norms of u(τ) do not grow, we have:

∫ tk+1

tk

∥∥∥(−∆)
s
2

(
u

pk+m−1

2 (τ)
)∥∥∥

2

2
‖u(τ)‖

pk

pk,−γ dτ ≥ C
−2

2pk+m−1

pk+m−1

CKN 2−(k+1)t ‖u(tk+1)‖
2pk+m−1
(d−γ)(2pk+m−1)

2d−γ−2s ,−γ
.

(4.42)
Gathering (4.40) and (4.42) we get the recursive inequality

‖u(tk+1)‖pk+1,−γ ≤


2k+1 C

2
2pk+m−1

pk+m−1

CKN

ck t




σ
2pk+1

‖u(tk)‖
σ

pk
pk+1

pk,−γ ,

where

pk+1 =
σ

2
(2pk +m− 1) , σ =

2(d− γ)

2d− γ − 2s
.

Observe that, since 0 < γ < 2s, σ > 1. Furthermore, if we take p0 > 1, it is easy to check that

pk = A(σk − 1) + p0 , A = p0 +
(d− γ)(m− 1)

2s− γ
> 0 ,

whence pk+1 > pk and limk→∞ pk = ∞. Thus, upon setting Uk := ‖u(tk)‖pk,−γ , one can find a

constant c0 = c0(p0, γ,m, s, d) > 0 (in particular, independent of k) such that

Uk+1 ≤ c
k

pk+1

0 t
− σ

2pk+1 U
σ

pk
pk+1

k . (4.43)
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Iterating (4.43) yields

Uk ≤ c
1
pk

∑k−1
j=1 (k−j)σj

0 t
− 1

2pk

∑k
j=1 σj

U
σk p0

pk

0 . (4.44)

Letting k → ∞ in (4.44) one infers the validity of

‖u(t)‖∞ ≤ K ′ t
− d−γ

(m−1)(d−γ)+(2s−γ)p0 ‖u0‖
(2s−γ)p0

(m−1)(d−γ)+(2s−γ)p0
p0,−γ (4.45)

for some positive constant K ′ = K ′(p0, γ,m, s, d) > 0. However, estimate (4.45) only holds for
p0 > 1, and to go down to p0 = 1 one must proceed as in the proof of [17, Cor. 8.1]. �

Before proving the existence Theorem 3.2, we still need two technical lemmas concerning Riesz
potentials.

Lemma 4.7. Let d > 2s and φ : Rd → R be a continuous function which belongs to L1(Rd) and
decays at least like |x|−d as |x| → ∞. Then, the convolution I2s ∗ φ (namely, the Riesz potential of
φ) is also a continuous function, decaying at least like |x|−d+2s as |x| → ∞.

Proof. The fact that (I2s ∗φ) is continuous easily follows from continuity and integrability properties
of both I2s and φ. In order to prove the claimed decay behaviour as |x| → ∞ we have to work a bit
more. To begin with, let us split the convolution in this way:

(I2s ∗ φ) (x) =

∫

Rd

kd,s φ(y)

|x− y|d−2s
dy =

∫

B2|x|(0)

kd,s φ(y)

|x− y|d−2s
dy

︸ ︷︷ ︸
F1(x)

+

∫

Bc
2|x|

(0)

kd,s φ(y)

|x− y|d−2s
dy

︸ ︷︷ ︸
F2(x)

.

As concerns F2, we have:

|F2(x)| =

∣∣∣∣∣

∫

Bc
2|x|

(0)

kd,s φ(y)

|x− y|d−2s
dy

∣∣∣∣∣ ≤ 2d−2s C kd,s

∫

Bc
2|x|

(0)

1

|y|2d−2s
dy ≤

C kd,s d|B1|

(d− 2s)|x|d−2s
, (4.46)

where we used the inequalities

|φ(y)| ≤
C

|y|d
∀y ∈ R

d , |x− y| ≥
|y|

2
∀y ∈ Bc

2|x|(0) ,

valid for some C > 0. On the other, hand F1 can be handled as follows:

|F1(x)| =

∣∣∣∣∣

∫

B2|x|(0)

kd,s φ(y)

|x− y|d−2s
dy

∣∣∣∣∣ ≤

∣∣∣∣∣∣

∫

B |x|
2

(x)

kd,s φ(y)

|x− y|d−2s
dy

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫

B2|x|(0)\B |x|
2

(x)

kd,s φ(y)

|x− y|d−2s
dy

∣∣∣∣∣∣
.

Since∣∣∣∣∣∣

∫

B |x|
2

(x)

kd,s φ(y)

|x− y|d−2s
dy

∣∣∣∣∣∣
≤

2dC kd,s
|x|d

∣∣∣∣∣∣

∫

B |x|
2

(x)

1

|x− y|d−2s
dy

∣∣∣∣∣∣
≤

2d−2s−1C kd,s d|B1|

s|x|d−2s
(4.47)

and ∣∣∣∣∣∣

∫

B2|x|(0)\B |x|
2

(x)

kd,s φ(y)

|x− y|d−2s
dy

∣∣∣∣∣∣
≤

2d−2skd,s
|x|d−2s

‖φ‖1 , (4.48)

by gathering (4.46), (4.47) and (4.48) we finally deduce that (I2s ∗φ)(x) decays at least like |x|−d+2s

as |x| → ∞. �

Lemma 4.8. Let d > 2s, γ ∈ (0, 2s), v ∈ L1
−γ(R

d) ∩ L∞(Rd) and Uv
γ be the Riesz potential of

|x|−γv, that is

Uv
γ = I2s ∗

(
|x|−γv

)
. (4.49)

The following properties hold true:
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• Uv
γ belongs to C(Rd) ∩ Lp(Rd) for all p such that

p ∈

(
d

d− 2s
,∞

]
. (4.50)

• Under the additional condition
γ < d− 2s , (4.51)

one has that Uv
γ ∈W r,p(Rd) for any r ∈ (0, 2s) and p such that

p ∈

(
d

d− 2s
,
d

γ

)
. (4.52)

In all of the above cases, the norms ‖Uv
γ ‖Lp(Rd) and ‖Uv

γ ‖W r,p(Rd) can be bounded from above by a
constant that depends on v only through ‖v‖1,−γ and ‖v‖∞.

Proof. In order to prove that Uv
γ belongs to C(Rd) ∩ Lp(Rd) for all p complying with (4.50), it is

convenient to split the convolution (4.49) as follows:

Uv
γ (x) =

∫

B1(0)

|y|−γv(y) I2s(x− y) dy

︸ ︷︷ ︸
Uv

γ,1(x)

+

∫

Rd

χBc
1(0)

(y) |y|−γv(y) I2s(x− y) dy

︸ ︷︷ ︸
Uv

γ,2(x)

. (4.53)

Exploiting the fact that v ∈ L∞(Rd) and γ < 2s (so that |y|−d+2s−γ is locally integrable), it is
easily seen that Uv

γ,1(x) is a continuous function which decays at least like |x|−d+2s as |x| → ∞. In

particular, it belongs to Lp(Rd) for all p satisfying (4.50). As concerns the second integral on the
r.h.s. of (4.53), notice that since v ∈ L1

−γ(R
d) ∩ L∞(Rd) we have that the function χBc

1(0)
|y|−γv

belongs to L1(Rd) ∩ L∞(Rd). Hence, thanks to the properties of the Riesz kernel I2s, it is easy to
check that even Uv

γ,2 is a continuous function. In order to prove that it belongs to Lp(Rd) for all p
satisfying (4.50), let us first write it in this way:

Uv
γ,2 =

(
χB1(0) I2s

)
∗
(
χBc

1(0)
|y|−γv

)
+
(
χBc

1(0)
I2s
)
∗
(
χBc

1(0)
|y|−γv

)
. (4.54)

Since χB1(0) I2s ∈ L1(Rd) and we have just seen that χBc
1(0)

|y|−γv ∈ L1(Rd) ∩ L∞(Rd), the first

convolution in (4.54) belongs to L1(Rd) ∩ L∞(Rd). Using the fact that χBc
1(0)

I2s ∈ Lp(Rd) for all

p satisfying (4.50) and in particular χBc
1(0)

|y|−γv ∈ L1(Rd), we infer that the second convolution in

(4.54) belongs to Lp(Rd) for all p satisfying (4.50). The latter property is then inherited by Uv
γ,2.

Now we aim at proving the second part of the lemma. To begin with, we need to establish for
which values of p ≥ 1 the function |x|−γv belongs to Lp(Rd). We have:

∥∥|x|−γv
∥∥p
p
=

∫

Rd

∣∣|x|−γv(x)
∣∣p dx =

∫

B1(0)

|v(x)|
p
|x|−γp dx+

∫

Bc
1(0)

|v(x)|
p
|x|−γp dx

≤‖v‖
p−1
∞

(
‖v‖∞

∫

B1(0)

|x|−γp dx+

∫

Bc
1(0)

|v(x)| |x|−γ dx

)
.

(4.55)
The last line of (4.55) is finite provided |x|−γp is integrable in B1(0), namely for p < d/γ. From
Proposition 3.1.7 and Theorem 1.1.1 of [1] it is immediate to deduce that, whenever a (nonnegative)
function f and its potential I2s ∗ f belong to the same Lp(Rd) space for some p ∈ [1,∞), then the
potential actually belongs to W r,p(Rd) for all r ∈ (0, 2s), with estimates on the corresponding W r,p

norm that depend on f and I2s ∗ f only through ‖f‖p and ‖I2s ∗ f‖p. Thanks to the integrability
properties of |x|−γv and Uv

γ we proved above, it is clear that for any p complying with (4.52) both

|x|−γv and Uv
γ belong to Lp(Rd) and so Uv

γ ∈ W r,p(Rd) for all r ∈ (0, 2s). Condition (4.51) is
necessary and sufficient to prevent that the interval in (4.52) is empty.

Finally, the fact that in all of the cases the norms ‖Uv
γ ‖Lp(Rd) and ‖Uv

γ ‖W r,p(Rd) can be bounded
from above by constants depending on v only through ‖v‖−1,γ and ‖v‖∞ is just a consequence of
the above computations. �
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Proof of Theorem 3.2. We start dealing with the case of a measure µ which is also compactly
supported. In order to construct solutions to problem (1.1) for such a µ, the idea is to exploit the
existence result provided by Lemma 4.3. That is, we first consider the family of weak solutions that
take on the regular initial data µε = ψε ∗ µ (let ε > 0), where

ψε =
1

εd
ψ
(x
ε

)

and ψ is a nonnegative function of D(Rd) such that
∫
Rd ψ = 1. Namely, {ψε} is a regular ap-

proximation of the Dirac δ and so {µε} is a regular approximation (the mollification) of µ. It is
straightforward to check that µε ∈ D(Rd) (recall that µ is compactly supported) and

‖µε‖1 =

∫

Rd

µε(x) dx = µ(Rd) . (4.56)

We shall denote as uε the weak solution to (1.1) corresponding to the initial datum µε, whose
existence is ensured by Lemma 4.3 (with u0 = |x|γµε). What follows in the proof aims at showing
that, as ε→ 0, {uε} suitably converges to a weak solution of (1.1) starting from µ.
The first problem we consider is the convergence of {uε} (up to subsequences) to a certain function
u which satisfies (3.1), (3.2) and (3.3). Afterwards we shall come to the initial condition (3.4). To
this end, the idea is to exploit estimates (4.20) and (4.21) (with u replaced by uε) from Lemma 4.3.
Combining the smoothing effect (4.38) with (4.56) and the conservation of mass (4.1), we obtain:

∫

Rd

um+1
ε (x, t) |x|−γdx ≤ ‖uε(t)‖

m
∞

∫

Rd

uε(x, t) |x|
−γdx = ‖uε(t)‖

m
∞ ‖µε‖1

≤Km t−αm µ(Rd)1+βm

(4.57)

for all t > 0. Hence, using (4.20), (4.21) and (4.57) (evaluated at t = t1 and t = t∗) we get the
validity of the following energy estimates:

∫ t2

t1

∫

Rd

∣∣(−∆)
s
2 (umε ) (x, t)

∣∣2 dx dt+
∫

Rd

um+1
ε (x, t2) |x|

−γdx ≤ Km t−αm
1 µ(Rd)1+βm , (4.58)

∫ t2

t1

∫

Rd

|(zε)t (x, t)|
2
|x|−γdx dt ≤ C (4.59)

for all t2 > t1 > 0, where zε = u
m+1

2
ε and C is a positive constant that depends on t1, t2 and µ(Rd)

but is independent of ε. Thanks to (4.58), (4.59) and the smoothing effect (which, in particular,
bounds {uε} in L∞(Rd× (τ,∞)) for all τ > 0 independently of ε), we are allowed to proceed exactly
as in the proof of Lemma 4.3. That is, we obtain that the pointwise limit u of {uε} satisfies (3.1)
(consequence of the smoothing effect and the conservation of mass), (3.2) (consequence of (4.58))
and, passing to the limit (up to subsequences) in the weak formulation (3.3) solved by uε,

−

∫ ∞

0

∫

Rd

u(x, t)ϕt(x, t) |x|
−γdx dt+

∫ ∞

0

∫

Rd

(−∆)
s
2 (um)(x, t) (−∆)

s
2ϕ(x, t) dx dt = 0 (4.60)

∀ϕ ∈ C∞
c (Rd × (0,∞)) .

Notice that we cannot pass to the limit directly in the stronger weak formulation (4.29): the problem
is that estimate (4.58) blows up as t1 → 0. Hence, we can only take test functions which are
compactly supported in R

d× (0,∞). In particular, (4.60) does not provide any information over the
initial datum assumed by u(x, t). In order to prove that such initial datum is indeed µ (in the sense
of (3.4)) we have to work more and exploit some results in potential theory, following [33] or [41].
To begin with, let us introduce the Riesz potential Uε(t) of |x|−γuε(t), A first crucial point is to
check the differential equation solved by Uε. Note that, formally, there holds

|x|−γ(uε)t(x, t) = − (−∆)
s
(umε )(x, t) ∀(x, t) ∈ R

d × (0,∞) (4.61)
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(a posteriori (4.61) is rigorous at least in L1(Rd), see Section 4.1). Hence, still at a formal level, we
can apply to both sides of (4.61) the operator (−∆)−s, namely the convolution against the Riesz
kernel I2s (recall the discussion in Section 2), which yields

(Uε)t (x, t) = −umε (x, t) ∀(x, t) ∈ R
d × (0,∞) . (4.62)

Now we prove (4.62) rigorously. For any given t2 > t1 > 0 and for any given function φ ∈ D(Rd),
let us plug into (3.3) (with u = uε) the test function ϕ(x, t) = ϑ(t)φ(x), where ϑ is a smooth and
compactly supported approximation of χ[t1,t2] (we follow [33, proof of Lemma 2]). Integrating by
parts (in space) and letting ϑ tend to χ[t1,t2] (and also using Lebesgue differentiation Theorem for
vector valued functions) we get
∫

Rd

uε(y, t2)φ(y) |y|
−γdy −

∫

Rd

uε(y, t1)φ(y) |y|
−γdy = −

∫

Rd

(∫ t2

t1

umε (y, t) dt

)
(−∆)s(φ)(y) dy .

(4.63)
For any fixed x ∈ R

d we can replace in (4.63) the function φ(y) by φ(y + x), thus obtaining
∫

Rd

uε(y, t2)φ(y + x) |y|−γdy −

∫

Rd

uε(y, t1)φ(y + x) |y|−γdy

=−

∫

Rd

(∫ t2

t1

umε (y, t) dt

)
(−∆)s(φ)(y + x) dy .

(4.64)

Integrating (4.64) against the Riesz kernel I2s(x) gives
∫

Rd

∫

Rd

|y|−γuε(y, t2)φ(y + x)I2s(x) dy dx−

∫

Rd

∫

Rd

|y|−γuε(y, t1)φ(y + x)I2s(x) dy dx

=−

∫

Rd

∫

Rd

(∫ t2

t1

umε (y, t) dt

)
(−∆)s(φ)(y + x)I2s(x) dy dx ,

(4.65)

whence (let z = y + x)
∫

Rd

Uε(z, t2)φ(z) dz −

∫

Rd

Uε(z, t1)φ(z) dz

=−

∫

Rd

(∫ t2

t1

umε (y, t) dt

)(∫

Rd

(−∆)s(φ)(y + x)I2s(x) dx

)
dy = −

∫

Rd

(∫ t2

t1

umε (y, t) dt

)
φ(y) dy .

(4.66)
The exchange of order of integration between (4.65) and (4.66) (that is, the application of Fubini
Theorem) is justified since

∫

Rd

∫

Rd

∣∣|y|−γuε(y, t)φ(y + x)I2s(x)
∣∣ dy dx <∞ t ∈ {t1, t2} (4.67)

and ∫

Rd

∫

Rd

∣∣∣∣
(∫ t2

t1

umε (y, t) dt

)
(−∆)s(φ)(y + x)I2s(x)

∣∣∣∣ dy dx <∞ . (4.68)

In fact, both the functions

y →

∫

Rd

|φ(y + x)|I2s(x) dx (4.69)

and

y →

∫

Rd

|(−∆)s(φ)(y + x)|I2s(x) dx (4.70)

are continuous and decay at least like |y|−d+2s as |y| → ∞. These are consequences of Lemma 4.7
(recall that (−∆)s(φ)(y) is regular and decays at least like |y|−d−2s as |y| → ∞, see Lemma A.1).
In particular, (4.69) is bounded and in (4.67) is integrated against |y|−γuε(t), an L1(Rd) function.

As concerns (4.70), we see that in (4.68) it is integrated against the function
∫ t2

t1
umε (y, t)dt, which

belongs to L1
−γ(R

d) ∩ L∞(Rd) thanks to (3.1). Hence, by the just remarked decay properties of
(4.70), the integral in (4.68) is finite provided d− 2s ≥ γ, which holds by hypothesis.
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Clearly, the validity of (4.66) implies that Uε(x, t) has an absolutely continuous version (w.r.t. t)
satisfying (4.62), from which we deduce that it is decreasing in time (a priori Uε(x, t2) ≤ Uε(x, t1)
for a.e. x ∈ R

d, but Lemma 4.8 ensures that our potentials are continuous w.r.t. x, whence the
inequality actually holds for any x ∈ R

d). In particular, Uε(t) admits a pointwise limit as t → 0.
Since we also know that |x|−γuε(t) converges to µε in σ(M(Rd), Cb(R

d)) as t → 0 (consequence
of Lemma 4.3 and Definition 3.1), Theorem 3.8 of [28] guarantees the identification between such
pointwise limit and the potential Uµε = I2s ∗ µε of µε:

lim
t→0

Uε(x, t) = Uµε(x) for a.e. x ∈ R
d . (4.71)

Now we need to deal with the convergence of {Uε} as ε → 0. We have already mentioned the fact
that, at any fixed t > 0, Uε(x, t) is a continuous function of x. However, we can exploit Lemma 4.8
more profitably. First of all recall that, thanks to the conservation of mass (4.1),

‖uε(t)‖1,−γ = µ(Rd) ∀t > 0 , (4.72)

while from the smoothing effect (4.38) (for p0 = 1) we deduce that

‖uε(t)‖∞ ≤ K t−α µ(Rd)β ∀t > 0 . (4.73)

This means that, for any τ > 0, both supt≥τ ‖uε(t)‖1,−γ and supt≥τ ‖uε(t)‖∞ are uniformly bounded
w.r.t. ε. Since γ < d−2s, applying Lemma 4.8 we infer that also supt≥τ ‖Uε(t)‖W r,p(Rd) is uniformly
bounded w.r.t. ε for any r ∈ (0, 2s) and p satisfying (4.52). From standard Hölder embeddings for
fractional Sobolev spaces (see e.g. [18, Th. 8.2]), for r and p such that r > d/p and λ defined as
λ = r− d

p
, we can uniformly (still w.r.t. ε) bound supt≥τ ‖Uε(t)‖Cλ(Ω) for any τ > 0 and any Ω ⋐ R

d.

Notice that, in order to ensure that r > d/p as requested, it is enough to choose r sufficiently close
to 2s and p sufficiently close to d/γ (this is feasible because γ < 2s).
As concerns the time behaviour of Uε(x, t), the differential equation (4.62) and the smoothing esti-
mate (4.73) imply that, for any τ > 0, supt≥τ ‖(Uε)t‖L∞(Rd×(τ,∞)) is also uniformly bounded w.r.t.

ε. We can therefore conclude that, for any t2 > t1 > 0 and any Ω ⋐ R
d, there holds

sup
ε>0

‖Uε‖Cλ(Ω×(t1,t2))
<∞ . (4.74)

In particular, (4.74) guarantees the existence of a function U ∈ Cλ
loc(R

d × (0,∞)) such that, up to
subsequences,

lim
ε→0

Uε(x, t) = U(x, t) ∀(x, t) ∈ R
d × (0,∞) . (4.75)

As discussed above, we know that uε(x, t) converges pointwise a.e. (still up to subsequences) to a
function u(x, t) which satisfies (3.1), (3.2) and (3.3). Thanks to the smoothing estimate (4.73), by
dominated convergence we deduce that for a.e. t > 0 such convergence also takes place locally in
L1
−γ(R

d), which of course implies that

lim
ε→0

|x|−γuε(t) = |x|−γu(t) in σ(M(Rd), Cc(R
d)) .

Since ‖uε(t)‖1,−γ = µ(Rd) (in particular, ‖uε(t)‖1,−γ is uniformly bounded w.r.t. ε), using (4.75)
and applying again Theorem 3.8 of [28] we deduce that

lim
ε→0

Uε(x, t) = U(x, t) =
(
I2s ∗

(
|y|−γu(t)

))
(x) for a.e. x ∈ R

d , (4.76)

namely it is possible to identify (almost everywhere) U(x, t) with the potential of |x|−γu(x, t).
Our aim is to take advantage of the properties of Uε and U in order to deal with the initial condition
assumed by u(x, t). Proceeding as in Section 6 of [41], let us multiply (4.62) by |x|−γ and integrate
in R

d × (t1, t2). We obtain:
∫

Rd

|Uε(x, t2)− Uε(x, t1)| |x|
−γdx =

∫ t2

t1

(∫

Rd

umε (x, t) |x|−γdx

)
dt .
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The r.h.s. can be controlled by exploiting (4.72) and (4.73) as follows:
∫

Rd

|Uε(x, t2)− Uε(x, t1)| |x|
−γdx ≤ Km−1 µ(Rd)1+β(m−1)

∫ t2

t1

t−α(m−1)dt (4.77)

(note that α(m− 1) < 1 thanks to (4.39) evaluated at p0 = 1). Letting t1 → 0 in (4.77), exploiting
(4.71) and Fatou’s Lemma on the l.h.s., we get:

∫

Rd

|Uε(x, t2)− Uµε(x)| |x|−γdx ≤ Km−1 µ(Rd)1+β(m−1) t
1−α(m−1)
2

1− α(m− 1)
. (4.78)

It is straightforward to check that µε → µ in σ(M(Rd), Cb(R
d)) as ε → 0, so that as a direct

consequence of [28, Th. 3.8] there holds

lim inf
ε→0

Uµε(x) = Uµ(x) for a.e. x ∈ R
d . (4.79)

Thanks to (4.76), (4.79) and to the fact that Uε(x, t) is nonincreasing w.r.t. t, we get:

lim inf
ε→0

|Uε(x, t2)− Uµε(x)| = Uµ(x)− U(x, t2) = |U(x, t2)− Uµ(x)| for a.e. x ∈ R
d . (4.80)

Hence, by Fatou’s Lemma and (4.80), letting ε→ 0 in (4.78) yields
∫

Rd

|U(x, t2)− Uµ(x)| |x|−γdx ≤ Km−1 µ(Rd)1+β(m−1) t
1−α(m−1)
2

1− α(m− 1)
. (4.81)

From (4.81) we then deduce that the difference U(x, t) − Uµ(x) converges to zero in L1
−γ(R

d) as
t→ 0. In particular,

lim
t→0

U(x, t) = Uµ(x) for a.e. x ∈ R
d , (4.82)

where the pointwise limit on the l.h.s. exists by monotonicity (trivially, also U(x, t) is decreasing in
t). Passing to the limit in (4.72) as ε→ 0 we obtain

‖u(t)‖1,−γ ≤ µ(Rd) for a.e. t > 0 . (4.83)

By the results recalled in Section 2, (4.83) implies that (almost) every sequence tn → 0 admits a
subsequence {tnk

} such that |x|−γu(tnk
) converges in σ(M(Rd), Cc(R

d)) to a certain positive, finite
measure ν (which, a priori, depends on the particular subsequence). From (4.82) and [28, Th. 3.8]
we infer that necessarily

Uν(x) = Uµ(x) for a.e. x ∈ R
d .

The uniqueness Theorem 1.12 of [28] ensures that two positive finite measures whose potentials are
equal almost everywhere must coincide. Hence, ν = µ and the limit measure does not depend on
the particular subsequence, so that

ess lim
t→0

|x|−γu(t) = µ in σ(M(Rd), Cc(R
d)) .

In order to prove that such convergence also takes place in σ(M(Rd), Cb(R
d)), it is enough to show

that
ess lim

t→0
‖u(t)‖1,−γ = µ(Rd) . (4.84)

By the convergence of |x|−γu(t) to µ in σ(M(Rd), Cc(R
d)) we already know that

µ(Rd) ≤ ess lim inf
t→0

‖u(t)‖1,−γ (4.85)

(see again Section 2). Combining (4.85) with (4.83) we easily get (4.84).
Finally, the validity of the smoothing estimate (3.5) is just a consequence of passing to the limit

in (4.73) as ε→ 0 (recall that {uε} converges pointwise to u).
In the beginning of the proof we required µ to be compactly supported. If µ does not meet

this assumption, one can take a sequence of compactly supported measures {µn} converging to µ
in σ(M(Rd), Cb(R

d)) (for instance, dµn = χBn(0)dµ) and consider the corresponding sequence of
solutions {un} to (1.1), which exist thanks to the first part of the proof. The fundamental estimates



20 GABRIELE GRILLO, MATTEO MURATORI, FABIO PUNZO

(4.58), (4.59), (4.72) and (4.73) are clearly stable as ε→ 0, thus they also hold true upon replacing
uε with un and µε with µn. It is then just a matter of using exactly the same techniques as above
to prove that {un} converges to a solution u of (1.1) starting from µ. �

4.1. Strong solutions. In order to justify rigorously some of the above computations (in particular,
we refer to the proofs of Lemma 4.3 and Proposition 4.6), it is essential to show that the weak
solutions constructed in Lemma 4.3 are actually strong. By a “strong solution”, following [17, Sect.
6.2], we mean a weak solution u (in the sense of Definition 3.1) having the property

ut ∈ L∞((τ,∞), L1
−γ(R

d)) ∀τ > 0 . (4.86)

Here we shall only give a sketch of how it is possible to prove that our solutions are indeed strong,
as the techniques are analogous to the ones used in [17, Sect. 8.1]. The first step consists in showing
that |x|−γut(t) is a bounded Radon measure which satisfies the estimate

∥∥|x|−γut(t)
∥∥
M(Rd)

≤
2 ‖u0‖1,−γ

(m− 1)t
∀t > 0 , (4.87)

where now we mean M(Rd) as the Banach space of signed measures on R
d, equipped with the usual

norm of the variation. This can be proved proceeding exactly as in [42, Lem. 8.5], by exploiting in
a crucial way the validity of the L1

−γ(R
d) contraction principle

∫

Rd

[u(x, t)− ũ(x, t)]+ |x|−γdx ≤

∫

Rd

[u0(x)− ũ0(x)]+ |x|−γdx ∀t > 0 , (4.88)

where u and ũ are the solutions to (4.7) constructed in Lemma 4.3 corresponding to the initial data
u0 and ũ0, respectively. Such principle does hold for the approximate solutions uη and ũη used in
the proof of Lemma 4.3:

∫

Rd

[uη(x, t)− ũη(x, t)]+ ρη(x)dx ≤

∫

Rd

[u0(x)− ũ0(x)]+ ρη(x)dx ∀t > 0 . (4.89)

This is proved in [36, Prop. 3.3]. Hence, (4.88) is just a consequence of passing to the limit in (4.89)
as η → 0.

Afterwards one proves that z = u
m+1

2 is a function satisfying estimate (4.21), with a constant C
which a priori depends on

∫ t∗

t∗

∫

Rd

∣∣(−∆)
s
2 (um) (x, t)

∣∣2 dx dt

for some t∗ < t1 < t2 < t∗. In order to do that, one can just repeat the proof of [17, Lem. 8.1] (the
idea is to use Steklov averages). In particular,

zt ∈ L2
loc((0,∞);L2

−γ(R
d)) . (4.90)

The dependence of the constant C in (4.21) on the initial datum as in (4.22) is then a consequence of
the energy identity (4.20) (the proof of which requires however that solutions are strong, see Section
4.2 below). Having at our disposal (4.87) and (4.90) we apply the general result [6, Th. 1.1], which
ensures that ut is actually a function satisfying

ut ∈ L1
loc((0,∞);L1

−γ(R
d)) . (4.91)

Thanks to (4.87) and (4.91) we then get the estimate

‖ut(t)‖1,−γ ≤
2 ‖u0‖1,−γ

(m− 1)t
.

In particular, (4.86) holds true and solutions are strong.
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Remark 4.9. We have just shown that the weak solutions to (4.7) constructed in Lemma 4.3 are
strong. Since, for any τ > 0, every weak solution u to (1.1) provided by Theorem 3.2 can be seen as a
weak solution to (4.7) corresponding to the initial datum u(τ) ∈ L1

−γ(R
d)∩L∞(Rd), one may claim

that also such u is a strong solution. This is actually true: however, in order to prove it rigorously,
we first need a uniqueness result (see Section 5) which ensures that u coincides (up to time shifts)
with the weak solution starting from u(τ) constructed in Lemma 4.3.
Knowing that also the weak solutions provided by Theorem 3.2 are strong allows us (a posteriori)
to state properties of such solutions for all t > 0 rather than only for a.e. t > 0, which we do in the
corresponding statement.

4.2. Decrease of the norms. A very important consequence of the fact that the solutions con-
structed in Lemma 4.3 are strong is the decrease of their Lp

−γ norms for any p ∈ [1,∞]. Indeed,

thanks to (4.86), we are allowed to multiply the differential equation in (4.7) by up−1 and integrate in
R

d×[t1, t2]. Exploiting the Stroock-Varopoulos inequality (4.30) (let v = um and q = (p+m−1)/m),
we obtain:
∫

Rd

up(x, t2) |x|
−γdx−

∫

Rd

up(x, t1) |x|
−γdx = −p

∫ t2

t1

∫

Rd

up−1(x, t)(−∆)s(um)(x, t) dx dt ≤ 0

(4.92)
for all t2 > t1 > 0. In order to retrieve the case t1 = 0 we cannot simply let t1 → 0 in (4.92), since a
priori we have no information about the continuity of ‖u(t)‖p,−γ down to t = 0. However, reasoning
exactly as above, we can prove that also the approximate solutions uη of Lemma 4.3 are strong and
hence satisfy ∫

Rd

upη(x, t2) ρη(x)dx ≤

∫

Rd

upη(x, t1) ρη(x)dx . (4.93)

Moreover, from the results of [36], we are allowed to let t1 → 0 in (4.93), which yields
∫

Rd

upη(x, t) ρη(x)dx ≤

∫

Rd

up0(x) ρη(x)dx ∀t > 0 . (4.94)

This can be proved by exploiting the fact that uη ∈ C([0,∞);L1
ρη
(Rd)) ∩ L∞(Rd × (0,∞)) (see [36,

Th. 3.1]). Hence, letting η → 0 and using for instance Fatou’s Lemma on the l.h.s. of (4.94), we get
that ∫

Rd

up(x, t2) |x|
−γdx ≤

∫

Rd

up(x, t1) |x|
−γdx (4.95)

holds true for all t2 > t1 ≥ 0.
Notice that, when p = m+ 1, (4.92) becomes exactly the energy identity (4.20).
Of course the above computations are rigorous provided p ∈ (1,∞). Nevertheless, we already

know that ‖u(t)‖1,−γ is preserved, while the case p = ∞ can be handled by taking limits.

5. Uniqueness of weak solutions

As in the previous section, we shall prove the results only for weak solutions to (1.1), but notice
once again that the modifications required to deal with (1.2) (provided ρ complies with (1.3)) are
inessential.

Prior to the proof of the uniqueness Theorem 3.3, we need some technical lemmas. We use some
of the ideas of the pioneering paper [33], which need to be carefully modified in order to deal with
our fractional, weighted problem. The Markov property for the linear semigroup associated to the
operator A = |x|γ(−∆)s will have a crucial role in our strategy.

Hereafter, we shall always refer to a “weak solution” to (1.1) in the sense of Definition 3.1.

Lemma 5.1. Let γ ≤ d − 2s. Let u be a weak solution to (1.1). Then the potential U(t) of
|x|−γu(t) admits an absolutely continuous version (w.r.t. t > 0, for instance in L1

loc(R
d)), which is

nonincreasing in t.
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Proof. One proceeds just as in the proof of Theorem 3.2, in particular using the same technique we
exploited to prove (4.62). �

Lemma 5.2. Let γ ≤ d − 2s. Let u be a weak solution to (1.1), starting from the initial datum µ
whose potential is Uµ. There holds

lim
t↓0

U(x, t) = Uµ(x) ∀x ∈ R
d . (5.1)

Proof. Thanks to Theorem 3.8 of [28] and the monotonicity ensured by Lemma 5.1, we have that the
limit (5.1) is taken at least for a.e. x ∈ R

d. However, for what follows it will be crucial to prove that
this relation holds for every x ∈ R

d. To this end we make use again of the monotonicity property
given in Lemma 5.1. In fact, Lemma 1.12 of [28] shows that, as a consequence of monotonicity of
potentials, there exist a positive finite measure ν, whose potential is denoted by Uν , and a constant
A ≥ 0 such that

lim
t↓0

U(x, t) = Uν(x) +A ∀x ∈ R
d .

Since (5.1) holds almost everywhere,

Uµ(x) = Uν(x) +A for a.e. x ∈ R
d . (5.2)

But using the corollary at p. 129 of [28], from (5.2) we deduce that necessarily A = 0. Hence,
(5.2) implies that Uν = Uµ almost everywhere, and from Theorem 1.12 of [28] we know that two
potentials coinciding a.e. are in fact equal everywhere, whence (5.1) follows. �

Now let u1 and u2 be two weak solutions to (1.1) (in the sense of Definition 3.1), such that they
both take a common positive, finite measure µ as initial datum. We denote as U1(t) and U2(t) the
corresponding potentials of |x|−γu1(t) and |x|−γu2(t), respectively. Fix once for all the parameters
h, T > 0 and consider the function

g(x, t) = U2(x, t+ h)− U1(x, t) ∀(x, t) ∈ R
d × (0, T ] . (5.3)

Proceeding again as in the proof of Theorem 3.3 (under the hypothesis γ ≤ d− 2s, see in particular
the proof of (4.62)), we get that g(t) is an absolutely continuous curve (for instance in L1

loc(R
d))

satisfying

|x|−γgt(x, t) = |x|−γ (um1 (x, t)− um2 (x, t+ h)) = −a(x, t)(−∆)s(g)(x, t) for a.e. (x, t) ∈ R
d× (0, T ) ,

(5.4)
where we used the fact that, thanks to the properties of Riesz potentials,

(−∆)s(g)(x, t) = |x|−γu2(x, t+ h)− |x|−γu1(x, t) ,

and we defined the function a as

a(x, t) =

{
um
1 (x,t)−um

2 (x,t+h)
u1(x,t)−u2(x,t+h) if u1(x, t) 6= u2(x, t+ h) ,

0 if u1(x, t) = u2(x, t+ h) .
(5.5)

Note that, since m > 1 and u1, u2 ∈ L∞(Rd × (τ,∞)) for all τ > 0, a is a nonnegative function
belonging to L∞(Rd × (τ,∞)) for all τ > 0.

Let us briefly describe the strategy of the proof. A particular role will be played by a suitable
family of positive finite measures {ν(t)}, which is somehow related to equation (5.4). More precisely,
ν(t) is the limit in σ(M(Rd), Cc(R

d)) as ε→ 0 of {|x|−γψε(t)}. Here, ψε(t) is in turn the weak limit
in L2

−γ(R
d × (τ, T )) (for all τ ∈ (0, T )) as n → ∞ of a suitable sequence {ψn,ε(t)}. Such a ψn,ε is

defined, for every n ∈ N and ε > 0, to be a solution (in a sense which will be clarified later) to the
problem {

|x|−γ (ψn,ε)t = (−∆)s [(an + ε)ψn,ε] in R
d × (0, T ) ,

ψn,ε = ψ on R
d × {T} .

(5.6)

The sequence {an} is a suitable approximation of the function a defined in (5.5). In particular we
suppose that, for every n ∈ N, an(x, t) is a piecewise constant function of t (regular in x) on the
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time intervals (T − (k + 1)T/n, T − kT/n], for any k ∈ {0, . . . n − 1}. This allows to treat problem
(5.6) by means of standard semigroup theory, after having shown some preliminary results which are
contained in Appendix B. In [33, Theorem 1] such difficulty is not present because of the parabolic
regularity of the equation dealt with there.

5.1. Construction and properties of the family {ψn,ε}.

Lemma 5.3. Let d > 2s and γ ∈ (0, 2s). Let {an} be a sequence of functions converging a.e. to the
function a as in (5.5) such that:

• for any n ∈ N and t > 0, an(x, t) is a regular function of x;
• for any n ∈ N and x ∈ R

d, an(x, t) is a piecewise constant function of t on the time intervals
(T − (k + 1)T/n, T − kT/n], for any k ∈ {0, . . . n− 1};

• {‖an‖L∞(Rd×(τ,∞))} is uniformly bounded in n for any τ > 0.

Then, for any ε > 0 and any nonnegative ψ ∈ D(Rd), there exists a nonnegative solution ψn,ε to
problem (5.6), in the sense that ψn,ε(t) is a continuous curve in Lp

−γ(R
d) for all p ∈ (1,∞) satisfying

ψn,ε(0) = ψ(0) and it is absolutely continuous on (T−(k + 1)T/n, T−kT/n) for all k ∈ {0, . . . n−1},
so that the identity

ψn,ε(t2)− ψn,ε(t1) =

∫ t2

t1

|x|γ(−∆)s [(an + ε)ψn,ε] (τ) dτ (5.7)

∀t1, t2 ∈

(
T −

(k + 1)T

n
, T −

kT

n

)
, ∀k ∈ {0, . . . n− 1}

holds true in Lp
−γ(R

d) for all p ∈ (1,∞). Moreover,

ψn,ε ∈ L∞((0, T );Lp
−γ(R

d)) ∀p ∈ [1,∞] and ‖ψn,ε(t)‖1,−γ
≤ ‖ψ‖1,−γ ∀t ∈ [0, T ] . (5.8)

Proof. To construct ψn,ε as in the statement, we first define ζ1 as the solution of
{
|x|−γ (ζ1)t = (−∆)s [(an(T ) + ε) ζ1] in R

d ×
(
T − T

n
, T
)
,

ζ1 = ψ on R
d × {T} .

(5.9)

In fact, to obtain ζ1, one can for instance exploit the change of variable

φ1(x, t) = (an (x, T ) + ε) ζ1(x, t) (5.10)

and consider φ1 as the solution of the problem
{
(φ1)t = (an(T ) + ε) |x|γ(−∆)s(φ1) in R

d ×
(
T − T

n
, T
)
,

φ1 = (an(T ) + ε)ψ on R
d × {T} .

(5.11)

Problem (5.11) is indeed solvable by standard semigroup theory. Indeed, letting

ρ1(x) = (an (x, T ) + ε)
−1

|x|−γ ∀x ∈ R
d , (5.12)

we have that the operator

ρ−1
1 (−∆)s ,

with domain Xs,γ (see Appendix B for the definition of Xs,γ), is positive, self-adjoint and generates
a Markov semigroup on L2

ρ1
(Rd). All these properties have been analysed in Appendix B for the

case ρ1(x) = |x|−γ , but notice that the discussion there also applies to a weight ρ1 as in (5.12) with
inessential modifications. We do not claim that our initial datum φ1 belongs to Xs,γ . However,
it clearly belongs to Lp

ρ1
(Rd) for all p ∈ [1,∞], and this is enough in order to have a solution to

(5.11) which is continuous up to t = T and absolutely continuous in
(
T − T

n
, T
)

in Lp
ρ1
(Rd) for

all p ∈ (1,∞). In fact, as recalled in Theorem B.2, the semigroup associated to A is Markov and
therefore, as a consequence of [12, Theorems 1.4.1, 1.4.2], it is extendible to a contraction semigroup
on Lp

ρ1
(Rd) (consistent with the original semigroup on L2

ρ1
(Rd) ∩ Lp

ρ1
(Rd)) for all p ∈ [1,∞], which

is analytic with a suitable angle θp > 0 when p ∈ (1,∞). By classical results (see e.g. [32, Th. 5.2
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at p. 61]) the latter property ensures in particular that problem (5.11) is solved by a differentiable
curve φ1(t) in Lp

ρ1
(Rd) for all p ∈ (1,∞).

Going back to the original variable ζ1 through (5.10), we deduce that it solves (5.9) in the same
sense in which φ1 solves (5.11). Having at our disposal such a ζ1, we can then solve the problem

{
|x|−γ (ζ2)t = (−∆)s

[(
an
(
T − T

n

)
+ ε
)
ζ2
]

in R
d ×

(
T − 2T

n
, T − T

n

)
,

ζ2 = ψ1 = (an (x, T ) + ε)
−1
φ1 on R

d ×
{
T − T

n

}
,

just by proceeding as above. That is, we perform the change of variable

φ2(x, t) =

(
an

(
x, T −

T

n

)
+ ε

)
ζ2(x, t)

and take φ2 as the solution of the problem
{
(φ2)t =

(
an(T − T

n
) + ε

)
|x|γ(−∆)s(φ2) in R

d ×
(
T − 2T

n
, T − T

n

)
,

φ2 =
(
an(T − T

n
) + ε

)
ζ1 =

(an(T−T
n
)+ε)

(an(T )+ε) φ1 on R
d ×

{
T − T

n

}
.

It is clear how the procedure goes on and allows to obtain a solution ψn,ε to (5.6) in the sense of
the statement, just by defining it as

ψn,ε(t) = ζk+1(t) ∀t ∈

(
T −

(k + 1)T

n
, T −

kT

n

]
, ∀k ∈ {0, . . . n− 1} .

Finally, since

ρ−1
k+1(−∆)s

generates a contraction semigroup on Lp
ρk+1

(Rd) for all p ∈ [1,∞], where

ρk+1(x) =

(
an

(
x, T −

kT

n

)
+ ε

)−1

|x|−γ ∀x ∈ R
d , (5.13)

the inequalities

‖φk+1(t)‖p,ρk+1
≤

∥∥∥∥∥∥

(
an(T − kT

n
) + ε

)
(
an(T − (k−1)T

n
) + ε

)φk
(
T −

kT

n

)∥∥∥∥∥∥
p,ρk+1

(5.14)

∀t ∈

(
T −

(k + 1)T

n
, T −

kT

n

]
, ∀p ∈ [1,∞]

hold true for any k ∈ {0, . . . n − 1} (on the r.h.s. of (5.14), for k = 0 we conventionally set φ0 = ψ
and an(T + T/n) + ε = 1). Going back to the variables ζk+1 and recalling (5.13), from (5.14) one
deduces (5.8): in fact, for p = 1 it is easy to see that the terms containing an cancel out and give
the right inequality in (5.8), while for p > 1 such terms remain and one obtains an inequality of
the type ‖ψn,ε(t)‖p,−γ ≤ C(n, ε)‖ψ‖p,−γ , where C(n, ε) is a suitable positive constant depending on
n, ε. �

Lemma 5.4. Let d > 2s and γ ∈ (0, 2s) ∩ (0, d − 2s]. Let g be as in (5.3), a as in (5.5) and an,
ψn,ε, ψ as in Lemma 5.3. Then the identity

∫

Rd

g(x, T )ψ(x) |x|−γ dx−

∫

Rd

g(x, t)ψn,ε(x, t) |x|
−γ dx

=

∫ T

t

∫

Rd

(an(x, τ) + ε− a(x, τ)) (−∆)s(g)(x, τ)ψn,ε(x, τ) dx dτ

(5.15)

holds true for all t ∈ (0, T ].
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Proof. To begin with, let us set

tk = T −
kT

n
∀k ∈ {0, . . . n} . (5.16)

Recall that, from Lemma 5.3, we have that ψn,ε(t) is a continuous curve in Lp
−γ(R

d) on (0, T ],
absolutely continuous on any interval (tk+1, tk) for k ∈ {0, . . . n − 1} and satisfying the differential
equation in (5.6) on those intervals, for all p ∈ (1,∞). Moreover, g(t) is an absolutely continuous
curve in Lp

−γ(R
d) on (0, T ] for all p such that

p ∈

(
d− γ

d− 2s
,∞

)
. (5.17)

In fact, to prove that g(t) ∈ Lp
−γ(R

d) for all p as in (5.17), it suffices to show that g(t) ∈ Lp
−γ(B

c
1)

for such p, since g(x, t) is a continuous function of x (recall Lemma 4.8) and the weight |x|−γ is
locally integrable. Still Lemma 4.8 ensures that g(t) ∈ Lp(Rd) for all p satisfying (4.50): the latter
property and Hölder inequality imply that g(t) ∈ Lp

−γ(B
c
1) for all p satisfying (5.17).

The fact that g(t) is also absolutely continuous in Lp
−γ(R

d) for such p on the time interval (0, T ] is
then a consequence of (5.4) and of the integrability properties of u1, u2. Hence, thanks to Lemma
5.3, we get that the product ∫

Rd

g(x, t)ψn,ε(x, t) |x|
−γdx (5.18)

is a continuous function on (0, T ], absolutely continuous on each (tk+1, tk) and satisfying

d

dt

∫

Rd

g(x, t)ψn,ε(x, t) |x|
−γdx

=

∫

Rd

(−a(x, t)(−∆)s(g)(x, t)ψn,ε(x, t) + g(x, t) (−∆)s [(an + ε)ψn,ε] (x, t)) dx

(5.19)

on such intervals. As we have just seen, g(t) ∈ Lp
−γ(R

d) for all p complying with (5.17) and

|x|γ(−∆)s(g(t)) ∈ Lp
−γ(R

d) for all p ∈ [1,∞]. Moreover, as a consequence of Lemma 5.3, we have

that (an(t) + ε)ψn,ε(t) ∈ Lp
−γ(R

d) for all p ∈ [1,∞] and |x|γ(−∆)s[(an(t) + ε)ψn,ε(t)] ∈ Lp
−γ(R

d)
for all p ∈ (1,∞). We are therefore in position to apply Proposition B.3 to the r.h.s. of (5.19) (the
interval ((d− γ)/(d− 2s),∞) ∩ [2, 2(d− γ)/(d− 2s)) is never empty) to get

d

dt

∫

Rd

g(x, t)ψn,ε(x, t) |x|
−γdx =

∫

Rd

(an(x, t) + ε− a(x, t)) (−∆)s(g)(x, t)ψn,ε(x, t) dx . (5.20)

But the r.h.s. of (5.20) is L1((τ, T )) for any τ ∈ (0, T ), from which (5.18) is absolutely continuous
on the whole of (0, T ] and not only on (tk+1, tk). Formula (5.15) is then just a consequence of
integrating (5.20) between t and T . �

In the next Lemma we introduce the Riesz potential of |x|−γψn,ε(t), which will take a fundamental
role from now on.

Lemma 5.5. Let d > 2s and γ ∈ (0, 2s) ∩ (0, d− 2s]. Let an, ψn,ε and ψ be as in Lemma 5.3. We
denote as Hn,ε(t) the Riesz potential of ψn,ε(t), that is

Hn,ε(t) = I2s ∗
(
|x|−γψn,ε(t)

)
∀t ∈ (0, T ] .

Then Hn,ε(t) ∈ Ḣs(Rd) and the identity

∥∥I2s ∗ (|x|−γψ)
∥∥2
Ḣs = ‖Hn,ε(t)‖

2
Ḣs + 2

∫ T

t

∫

Rd

(an(x, τ) + ε)ψ2
n,ε(x, τ) |x|

−γdx dτ (5.21)

holds true for all t ∈ (0, T ].
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Proof. First notice that |x|γ(−∆)s(Hn,ε(t)) = ψn,ε(t) ∈ Lp
−γ(R

d) for all p ∈ [1,∞] (recall (5.8)) and

Hn,ε(t) ∈ Lp
−γ(R

d) for all p satisfying (5.17) (this can be proved by exploiting Lemma 4.8 exactly as
in the proof of Lemma 5.4). Again, since the interval ((d− γ)/(d− 2s),∞) ∩ [2, 2(d− γ)/(d− 2s))

is never empty, by applying Proposition B.3 we get that Hn,ε(t) ∈ Ḣs(Rd) and the identity

‖Hn,ε(t)‖
2
Ḣs =

∫

Rd

Hn,ε(x, t)(−∆)s (Hn,ε) (x, t) dx =

∫

Rd

Hn,ε(x, t)ψn,ε(x, t) |x|
−γdx (5.22)

holds true. Thanks to the validity of the differential equation

(Hn,ε)t (x, t) = (an(x, t) + ε)ψn,ε(x, t) for a.e. (x, t) ∈ R
d × (0, T ) , (5.23)

which can be justified as (5.4) for γ ≤ d − 2s, taking the time derivative of (5.22) in the intervals
(tk+1, tk) (let {tk} be as in (5.16)), using (5.23), (5.6) and again Proposition B.3 we obtain:

d

dt
‖Hn,ε(t)‖

2
Ḣs = 2

∫

Rd

(an(x, t) + ε)ψ2
n,ε(x, t) |x|

−γdx . (5.24)

A priori, from (5.22), we have that ‖Hn,ε(t)‖
2
Ḣs

is continuous on (0, T ] and absolutely continuous

only on (tk+1, tk); but the r.h.s. of (5.24) is L1((τ, T )) for any τ ∈ (0, T ). Thus, (5.21) just follows
by integrating (5.24) from t to T . �

Lemma 5.6. Let d > 2s and γ ∈ (0, 2s). Let ψn,ε and ψ be as in Lemma 5.3. Then the L1
−γ norm

of ψn,ε(t) is preserved, that is
∫

Rd

ψn,ε(x, t) |x|
−γdx =

∫

Rd

ψ(x) |x|−γdx ∀t ∈ (0, T ] . (5.25)

Proof. Multiplying (5.7) by any ϕ ∈ D(Rd) and integrating in R
d, we obtain:

∫

Rd

ψn,ε(x, t2)ϕ(x) |x|
−γdx−

∫

Rd

ψn,ε(x, t1)ϕ(x) |x|
−γdx

=

∫

Rd

(−∆)s(ϕ)(x)

(∫ t2

t1

(an(x, τ) + ε)ψn,ε(x, τ) dτ

)
dx

(5.26)

for all t1, t2 ∈ (tk+1, tk). Since the L1
−γ norm of ψn,ε(t) is controlled by the L1

−γ norm of the final
datum ψ (recall (5.8)), from (5.26) we get:
∣∣∣∣
∫

Rd

ψn,ε(x, t2)ϕ(x) |x|
−γdx−

∫

Rd

ψn,ε(x, t1)ϕ(x) |x|
−γdx

∣∣∣∣ ≤ C |t2 − t1| ‖ψ‖1,−γ ‖|x|
γ(−∆)s(ϕ)‖∞

(5.27)
for all t1, t2 ∈ (tk+1, tk), where C = ‖an + ε‖L∞(Rd×(t1∧t2,T )), namely it is a positive constant
independent of n and ε. Replacing ϕ with the cut-off function ξR (defined as in Lemma A.3 of
Appendix A) yields
∣∣∣∣
∫

Rd

ψn,ε(x, t2)ξR(x)|x|
−γdx−

∫

Rd

ψn,ε(x, t1)ξR(x)|x|
−γdx

∣∣∣∣ ≤ C|t2 − t1| ‖ψ‖1,−γ

‖|x|γ(−∆)s(ξ)‖∞
R2s−γ

(5.28)
for all R > 0 and t2, t1 ∈ (tk+1, tk). Recalling that ψn,ε(t) is a continuous curve (for instance in
L2
−γ(R

d)) on (0, T ], we can extend the validity of (5.28) (and (5.27)) to any t1, t2 ∈ (0, T ]. By
choosing t1 = T an letting R→ ∞ in (5.28) we finally get (5.25). �

5.2. Passing to the limit as n → ∞. The goal of the next lemma is to show that, as n → ∞,
{ψn,ε} suitably converges to a limit function ψε that enjoys some crucial properties.

Lemma 5.7. Let d > 2s and γ ∈ (0, 2s) ∩ (0, d − 2s]. Let u1 and u2 be two weak solutions to
problem (1.1), taking the common positive, finite measure µ as initial datum. Let g be as in (5.3),
a as in (5.5) and ψn,ε, ψ as in Lemma 5.3. Then, up to subsequences, {ψn,ε} converges weakly
in L2

−γ(R
d × (τ, T )) (for all τ ∈ (0, T )) to a suitable nonnegative function ψε and {|x|−γψn,ε(t)}
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converges to |x|−γψε(t) in σ(M(Rd), Cb(R
d)) for a.e. t ∈ (0, T ). Moreover, such a ψε enjoys the

following properties: ∫

Rd

ψε(x, t) |x|
−γdx =

∫

Rd

ψ(x) |x|−γdx , (5.29)

∫

Rd

ψ(x)ϕ(x) |x|−γdx−

∫

Rd

ψε(x, t)ϕ(x) |x|
−γdx

=

∫

Rd

(−∆)s(ϕ)(x)

(∫ T

t

(a(x, τ) + ε)ψε(x, τ) dτ

)
dx ,

(5.30)

∣∣∣∣
∫

Rd

g(x, T )ψ(x) |x|−γdx−

∫

Rd

g(x, t)ψε(x, t) |x|
−γdx

∣∣∣∣
≤ε (T − t) ‖ψ‖1,−γ ‖u2(τ + h)− u1(τ)‖L∞(Rd×(t,T ))

(5.31)

for a.e. t ∈ (0, T ), where ϕ is any function of D(Rd).

Proof. From (5.21) one gets that, up to subsequences, {ψn,ε} converges weakly in L2
−γ

(
R

d × (τ, T )
)

(for all τ ∈ (0, T )) to a suitable ψε. Moreover, thanks to the uniform boundedness of {|x|−γψn,ε(t)}
in L1(Rd) (see (5.8)), for every t ∈ (0, T ) there exists a subsequence (which a priori may depend on t)
such that {|x|−γψn,ε(t)} converges in σ(M(Rd), Cc(R

d)) to some positive, finite measure ν(t) (recall
the preliminary results of Section 2). We aim at identifying (al least for almost every t ∈ (0, T )) ν(t)
with |x|−γψε(t), so that a posteriori the subsequence does not depend on t. In order to do that, let
t ∈ (0, T ) be a Lebesgue point of ψε(t) (as a curve in L1((τ, T );L2

−γ(R
d), for instance). Taking any

ϕ ∈ D(Rd) and using (5.27), we obtain:
∣∣∣∣∣

∫ t+δ

t

∫

Rd

ψn,ε(x, τ)ϕ(x) |x|
−γdx dτ −

∫ t+δ

t

∫

Rd

ψn,ε(x, t)ϕ(x) |x|
−γdx dτ

∣∣∣∣∣

≤

∫ t+δ

t

∣∣∣∣
∫

Rd

ψn,ε(x, τ)ϕ(x) |x|
−γdx−

∫

Rd

ψn,ε(x, t)ϕ(x) |x|
−γdx

∣∣∣∣ dτ

≤

∫ t+δ

t

C(τ − t) ‖ψ‖1,−γ ‖|x|
γ(−∆)s(ϕ)‖∞ dτ =

δ2

2
C ‖ψ‖1,−γ ‖|x|

γ(−∆)s(ϕ)‖∞ ,

(5.32)

for all δ sufficiently small. Letting n→ ∞ (up to suitable subsequences) in (5.32) yields
∣∣∣∣∣

∫ t+δ

t

∫

Rd

ψε(x, τ)ϕ(x) |x|
−γdx dτ − δ

∫

Rd

ϕ(x) dν(t)

∣∣∣∣∣ ≤
δ2

2
C ‖ψ‖1,−γ ‖|x|

γ(−∆)s(ϕ)‖∞ . (5.33)

Dividing (5.33) by δ and letting δ → 0 one deduces that (recall that t is a Lebesgue point for {ψε(t)})
∫

Rd

ψε(x, t)ϕ(x) |x|
−γdx =

∫

Rd

ϕ(x) dν(t) ,

which is valid for any ϕ ∈ D(Rd), whence |x|−γψε(x, t) dx = dν(t).
We now prove the claimed properties of ψε. Letting n→ ∞ in (5.28) (with t1 = T and t2 = t) and
using the just proved convergence of {|x|−γψn,ε(t)} to |x|−γψε(t) in σ(M(Rd), Cc(R

d)) we get
∣∣∣∣
∫

Rd

ψ(x) ξR(x) |x|
−γdx−

∫

Rd

ψε(x, t) ξR(x) |x|
−γdx

∣∣∣∣ ≤ C(T − t) ‖ψ‖−1,γ

‖|x|γ(−∆)s(ξ)‖∞
R2s−γ

(5.34)
for a.e. t ∈ (0, T ). Letting R→ ∞ in (5.34) we deduce (5.29). Thanks to (5.25) and (5.29) we infer
in particular that

lim
n→∞

‖ψn,ε(t)‖1,−γ = ‖ψε(t)‖1,−γ ,
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so that the convergence of {|x|−γψn,ε(t)} to |x|−γψε(t) takes place also in σ(M(Rd), Cb(R
d)). Re-

calling that g(t) belongs to Cb(R
d) (Lemma 4.8), we can let n→ ∞ in (5.15) to obtain:

∫

Rd

g(x, T )ψ(x) |x|−γ dx−

∫

Rd

g(x, t)ψε(x, t) |x|
−γ dx

= lim
n→∞

(∫ T

t

∫

Rd

(an(x, τ) + ε− a(x, τ)) (−∆)s(g)(x, τ)ψn,ε(x, τ) dx dτ

)

= lim
n→∞

(∫ T

t

∫

Rd

(an(x, τ) + ε− a(x, τ)) (u2(x, τ + h)− u1(x, τ))ψn,ε(x, τ) |x|
−γ dx dτ

)

=ε

∫ T

t

∫

Rd

(u2(x, τ + h)− u1(x, τ))ψε(x, τ) |x|
−γ dx dτ for a.e. t ∈ (0, T ) ,

(5.35)

where in the last integral we can pass to the limit since {ψn,ε} tends to ψε in L2
−γ(R

d × (t, T )),

{an} tends to a in L∞(Rd × (t, T )) and u1, u2 belong to Lp
−γ(R

d × (t, T + h)) for all p ∈ [1,∞]. In
particular, from (5.35) and (5.29) we get (5.31). Notice that, in a similarly way, we can pass to the
limit in (5.26) (which actually holds for any t1, t2 ∈ (0, T )) and obtain (5.30). �

5.3. Passing to the limit as ε → 0 and proof of Theorem 3.3. We are now in position to
prove Theorem 3.3, using the strategy of [33]: we give some detail for the reader’s convenience.

Proof of Theorem 3.3. To begin with, we introduce the Riesz potential Hε(t) of |x|−γψε(t). Since
we only know that |x|−γψε(t) ∈ L1(Rd), we have no information over the integrability of Hε(t) other
than L1

loc(R
d) (by classical results, see e.g. [28]). However, exploiting (5.30) and proceeding once

again as in the proof of (4.62), we obtain

I2s ∗
(
|x|−γψ

)
−Hε(t) =

∫ T

t

(a(τ) + ε)ψε(τ) dτ ≥ 0 for a.e. t ∈ (0, T ) ,

whence, in particular,

0 ≤ Hε(x, t1) ≤ Hε(x, t2) ≤ Hε(x, T ) = I2s ∗
(
|y|−γψ

)
(x) ∀x ∈ R

d , for a.e. 0 < t1 ≤ t2 ≤ T .
(5.36)

The above inequality shows that Hε(t) belongs to Lp(Rd) at least for the same p for which Hε(x, T )
does, namely for any p ∈ (d/(d−2),∞]. The fact that (5.36) holds for every x rather than for almost
every x follows by standard potential theory: one uses the strategy of [28, Th. 1.12] and exploits
[28, Lem. 1.1] to find that two potentials ordered for a.e. x are actually ordered for every x.
Our next goal is to let ε → 0. Thanks to the boundedness of {|x|−γψε(t)} in L1(Rd) (trivial
consequence of (5.29)), for a.e. t ∈ (0, T ) there exists a subsequence {εn} (a priori depending on t)
such that {|x|−γψεn(t)} converges to a positive, finite measure ν(t) in σ(M(Rd), Cc(R

d)). In order
to overcome the possible dependence of {εn} on t, we exploit the properties of {Hε}. First notice
that (5.36) ensures the uniform boundedness of {Hε} in Lp(Rd × (0, T )) for any p ∈ (d/(d− 2),∞].
Such boundedness entails the existence of a subsequence {εm} (which can be taken to be decreasing)
such that {Hεm} converges weakly in Lp(Rd × (0, T )) to a suitable limit H. But Mazur’s Lemma
implies that there exists a sequence {Hk} of convex combinations of {Hεm} that converges strongly
to H in Lp(Rd × (0, T )). By definition, the sequence {Hk} is of the form

Hk =

Mk∑

m=1

λm,kHεm ,

Mk∑

m=1

λm,k = 1

for some sequence {Mk} ⊂ N and a suitable choice of the coefficients λm,k ∈ [0, 1]. With no loss of
generality we shall also assume that

lim
k→∞

(
Mk∑

m=1

εmλm,k

)
= 0 .
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This can be justified by applying iteratively Mazur’s Lemma on suitable subsequences of {Hεm}.
Now notice that the function whose Riesz potential is Hk is nothing but

fk(x, t) =

Mk∑

m=1

λm,k |x|
−γψεm(x, t) .

Multiplying (5.31) (with ε = εm) by λm,k and summing over k, one gets that fk satisfies
∣∣∣∣
∫

Rd

g(x, T )ψ(x) |x|−γ dx−

∫

Rd

g(x, t)fk(x, t) dx

∣∣∣∣

≤

(
Mk∑

m=1

εmλm,k

)
(T − t) ‖ψ‖1,−γ ‖u2(τ + h)− u1(τ)‖L∞(Rd×(t,T ))

(5.37)

for a.e. t ∈ (0, T ), whereas from (5.29) and (5.34) one infers that
∣∣∣∣
∫

Rd

ψ(x) ξR(x) |x|
−γdx−

∫

Rd

fk(x, t) ξR(x) dx

∣∣∣∣ ≤ C(T − t) ‖ψ‖1,−γ

‖|x|γ(−∆)s(ξ)‖∞
R2s−γ

(5.38)

for a.e. t ∈ (0, T ) and
∫

Rd

ψ(x) |x|−γdx =

∫

Rd

fk(x, t) dx for a.e. t ∈ (0, T ) . (5.39)

Letting k → ∞ we find that, for a.e. t ∈ (0, T ), there exists a subsequence of {fk(t)} (a priori
depending on t) that converges in σ(M(Rd), Cc(R

d)) to a positive, finite measure ν(t). But the fact
that {Hk} converges strongly in Lp(Rd × (0, T )) to H forces the potential of ν(t) to coincide a.e.
with H(t). This is a consequence of [28, Th. 3.8]. By [28, Th. 1.12] we therefore deduce that the
limit ν(t) is uniquely determined by its potential H(t). This identification allows to assert that for
a.e. t ∈ (0, T ) the whole sequence {fk(t)} converges to ν(t) in σ(M(Rd), Cc(R

d)).
Passing to the limit in (5.36) (after having set ε = εm, multiplied by λm,k and summed over k) one
gets that also the potentials H(t) of ν(t) are ordered and bounded above by I2s ∗ (|x|

−γψ):

0 ≤ H(x, t1) ≤ H(x, t2) ≤ I2s ∗
(
|y|−γψ

)
(x) ∀x ∈ R

d , for a.e. 0 < t1 ≤ t2 ≤ T . (5.40)

Letting k → ∞ in (5.38) yields
∣∣∣∣
∫

Rd

ψ(x) ξR(x) |x|
−γdx−

∫

Rd

ξR(x) dν(t)

∣∣∣∣ ≤ C(T − t) ‖ψ‖1,−γ

‖|x|γ(−∆)s(ξ)‖∞
R2s−γ

(5.41)

for a.e. t ∈ (0, T ), whence, letting R→ ∞ in (5.41), we obtain
∫

Rd

ψ(x) |x|−γdx =

∫

Rd

dν(t) for a.e. t ∈ (0, T ) . (5.42)

Gathering (5.39) and (5.42) we infer that {fk(t)} converges to ν(t) also in σ(M(Rd), Cb(R
d)): this

allows to pass to the limit in (5.37) to get the identity (by exploiting (5.3) as well)
∫

Rd

g(x, T )ψ(x) |x|−γdx =

∫

Rd

g(x, t) dν(t) for a.e. t ∈ (0, T ) . (5.43)

Note that, as a consequence of the monotonicity given by (5.40) and thanks to (5.41)-(5.43), the
curve ν(t) can be extended to every t ∈ (0, T ] so that it still complies with (5.40)-(5.43).
Recalling that g(x, t) = U2(x, t+ h)− U1(x, t) and that potentials do not increase in time (Lemma
5.1), we have that g(x, t) ≤ U2(x, h) − U1(x, t0) holds for all x ∈ R

d and all t0 > t. Because ν(t) is
a positive, finite measure, this fact and (5.43) imply that

∫

Rd

g(x, T )ψ(x) |x|−γdx ≤

∫

Rd

(U2(x, h)− U1(x, t0)) dν(t) ∀t0 > t . (5.44)

Our next goal is to let t tend to zero in (5.44). Since the mass of ν(t) is constant (formula (5.42)),
up to subsequences ν(t) converges to a suitable positive, finite measure ν in σ(M(Rd), Cc(R

d)).
Moreover, by (5.40) we know that the potentials H(t) of ν(t) are nonincreasing as t ↓ 0: hence,
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Theorem 3.10 of [28] ensures that H(t) converges a.e. to the potential H0 of the limit measure ν
(which therefore does not depend on the subsequence). We can then pass to the limit in the integral

∫

Rd

U1(x, t0) dν(t) . (5.45)

Indeed, Fubini’s Theorem ensures that (5.45) coincides with
∫

Rd

u1(x, t0)H(x, t) |x|−γdx . (5.46)

Passing to the limit in (5.46) as t ↓ 0 we get that

lim
t↓0

∫

Rd

u1(x, t0)H(x, t) |x|−γdx =

∫

Rd

u1(x, t0)H0(x) |x|
−γdx , (5.47)

for instance by dominated convergence. Recalling that H0 is the potential of ν, and using again
Fubini’s Theorem, (5.47) can be rewritten as

lim
t↓0

∫

Rd

U1(x, t0) dν(t) =

∫

Rd

U1(x, t0) dν .

One proceeds similarly for the integral
∫

Rd

U2(x, h) dν(t) .

Hence, passing to the limit as t ↓ 0 in (5.44) yields
∫

Rd

g(x, T )ψ(x) |x|−γdx ≤

∫

Rd

(U2(x, h)− U1(x, t0)) dν ∀t0 > 0 . (5.48)

Now we let t0 ↓ 0 in (5.48). By monotone convergence (see Lemmas 5.1 and 5.2) we obtain
∫

Rd

g(x, T )ψ(x) |x|−γdx ≤

∫

Rd

(U2(x, h)− Uµ(x)) dν . (5.49)

In this step it is crucial that the limit of U1(x, t0) to Uµ(x) is taken for all x ∈ R
d (Lemma 5.2),

because we have no information over ν besides the fact that it is a positive, finite measure. Still by
monotonicity we have that U2(x, h) ≤ Uµ(x) for all x ∈ R

d. Thus, from (5.49) it follows that
∫

Rd

g(x, T )ψ(x) |x|−γdx ≤ 0 . (5.50)

Since (5.50) holds for any h, T > 0 and any nonnegative ψ ∈ D(Rd), we infer that U2 ≤ U1.
Interchanging the role of u1 and u2 we also get that U1 ≤ U2, whence U1 = U2 and u1 = u2. �

Appendix A

We recall here some basic properties of the fractional Laplacian (and a similar nonlocal, nonlinear
operator) of compactly supported, regular functions.

Lemma A.1. The fractional s-Laplacian (−∆)s(φ)(x) of any φ ∈ D(Rd) is a regular function which
decays (together with its derivatives) at least like |x|−d−2s as |x| → ∞.

Proof. We sketch the easy proof for the convenience of the reader, following the strategy of [5,
Lemma 2.1], Take r > 0 such that suppφ ⋐ Br. We can split the principal value in (2.4) as follows:

(−∆)s(φ)(x) = p.v. Cd,s

∫

B2r

φ(x)− φ(y)

|x− y|d+2s
dy + Cd,s φ(x)

∫

Bc
2r

1

|x− y|d+2s
dy ∀x ∈ Br , (A.1)

(−∆)s(φ)(x) = −Cd,s

∫

suppφ

φ(y)

|x− y|d+2s
dy ∀x ∈ Bc

r . (A.2)

Given the integrability of y−d−2s as |y| → ∞ and the regularity of φ(x), the second term on the
r.h.s. of (A.1) gives rise to a continuous function of x in Br. The same holds true for the principal
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value in (A.1). In fact, for y → x, one can replace φ(x) − φ(y) with (x − y)′∇2
x(φ)(x − y), which

makes the singularity integrable.
As for (A.2), we have:

∫

suppφ

φ(y)

|x− y|d+2s
dy =

1

|x|d+2s

∫

suppφ

φ(y)

|x|x|−1 − y|x|−1|
d+2s

dy ∀x ∈ Bc
r , (A.3)

where the integral on the r.h.s. of (A.3) is a continuous and bounded function of x in Bc
r .

The fact that (−∆)s(φ) is C∞(Rd) (and all of its derivatives decay at least like |x|−d−2s as
|x| → ∞) just follows by the identity

dk(−∆)s(φ)

dxk
= (−∆)s

(
dkφ

dxk

)
∀k ∈ N .

�

Lemma A.2. For any φ ∈ D(Rd), the function

ls(φ)(x) =

∫

Rd

(φ(x)− φ(y))2

|x− y|d+2s
dy ∀x ∈ R

d

is regular and decays (together with its derivatives) at least like |x|−d−2s as |x| → ∞.

Proof. Proceeding exactly as in the proof of Lemma A.1, we obtain:

ls(φ)(x) =

∫

B2r

(φ(x)− φ(y))2

|x− y|d+2s
dy + φ2(x)

∫

Bc
2r

1

|x− y|d+2s
dy ∀x ∈ Br , (A.4)

ls(φ)(x) =

∫

suppφ

φ2(y)

|x− y|d+2s
dy ∀x ∈ Bc

r . (A.5)

The second integral on the r.h.s. of (A.4) and (A.5) can be dealt with exactly as in the proof of
the quoted lemma. As for the first integral on the r.h.s. of (A.4) just notice that, for y → x,
(φ(x)− φ(y))2 behaves like (∇x(φ) · (x− y))2, and this also makes the singularity integrable.

The fact that ls(φ) is C∞(Rd) (and derivatives decay at least like |x|−d−2s as |x| → ∞) cannot be
proved as in Lemma A.1, since ls is nonlinear. However, performing the change of variable z = x−y,
one has:

ls(φ)(x) =

∫

Rd

(φ(x)− φ(x− z))2

|z|d+2s
dz ∀x ∈ R

d , (A.6)

and taking derivatives of (A.6) one sees that they can be written as sums of terms whose expression
is similar to (A.6). �

Lemma A.3. For any R > 0, let ξR be the cut-off function

ξR(x) = ξ
( x
R

)
∀x ∈ R

d ,

where ξ(x) is a positive, regular function such that ‖ξ‖∞ ≤ 1, ξ = 1 in B1 and ξ = 0 in Bc
2. Then,

(−∆)s(ξR) and ls(ξR) enjoy the following scaling properties:

(−∆)s(ξR)(x) =
1

R2s
(−∆)s(ξ)

( x
R

)
∀x ∈ R

d ,

ls(ξR)(x) =
1

R2s
ls(ξ)

( x
R

)
∀x ∈ R

d .

Proof. We just show the result for ls(ξR), but notice that for (−∆)s(ξR) the proof is identical.
Letting ỹ = y/R, one has:

ls(ξR)(x) =

∫

Rd

(ξR(x)− ξR(y))
2

|x− y|d+2s
dy

=Rd

∫

Rd

(ξ(x/R)− ξ(ỹ))2

|x−Rỹ|d+2s
dỹ =

1

R2s

∫

Rd

(ξ(x/R)− ξ(ỹ))2

|x/R− ỹ|d+2s
dỹ =

1

R2s
ls(ξ)

( x
R

)
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for all x ∈ R
d. �

Appendix B

This section is devoted to the statement (and a sketch of the corresponding proof) of a technical
result which is a crucial tool in Section 5.

Definition B.1. Let d > 2s and γ ∈ (0, 2s). We denote as Xs,γ the Hilbert space of all functions
v ∈ L2

−γ(R
d) such that (−∆)s(v) (as a distribution) belongs to L2

γ(R
d), equipped with the norm

‖v‖
2
Xs,γ

= ‖v‖
2
2,−γ + ‖(−∆)s(v)‖

2
2,γ ∀v ∈ Xs,γ .

Theorem B.2. Let d > 2s and γ ∈ (0, 2s). Let A : D(A) = Xs,γ ⊂ L2
−γ(R

d) → L2
−γ(R

d) be the
operator

A(v) = |x|γ(−∆)s(v) ∀v ∈ Xs,γ .

Then, A is densely defined, positive and self-adjoint on L2
−γ(R

d), and the quadratic form associated
to it is

Q(v, v) =

∫

Rd

∫

Rd

(v(x)− v(y))2

|x− y|d+2s
dx dy ,

with domain D(Q) = L2
−γ(R

d) ∩ Ḣs(Rd).

Moreover, Q is a Dirichlet form on L2
−γ(R

d) and A generates a Markov semigroup S2(t) on

L2
−γ(R

d). In particular for all p ∈ [1,∞] there exists a contraction semigroup Sp(t) on Lp
−γ(R

d),

consistent with S2(t) on L2
−γ(R

d) ∩ Lp
−γ(R

d), which is furthermore analytic with a suitable angle
θp > 0 when p ∈ (1,∞).

Sketch of proof. As already remarked, here we shall just give an outline of the techniques that allow
to prove the theorem. Full details are given in the note [30].

The basic idea is to start from the validity of the fractional “integration by parts” formula

Cd,s

∫

Rd

∫

Rd

(φ(x)− φ(y))(ψ(x)− ψ(y))

|x− y|d+2s
dx dy =

∫

Rd

φ(x)(−∆)s(ψ)(x) dx (B.1)

for all φ, ψ ∈ D(Rd) and then to extend it to all functions of Xs,γ . In order to do it, the first
step consists in showing that C∞(Rd) ∩ Xs,γ is dense in Xs,γ . This can be done by mollification
arguments, which however are slightly more complicated than the standard ones, since one works
with L2

−γ(R
d) and L2

γ(R
d) instead of L2(Rd). Hence, given v, w ∈ C∞(Rd) ∩ Xs,γ , one plugs the

cut-off functions φ = ξRv and ψ = ξRw into (B.1) and lets R→ ∞. The problem is that on the r.h.s.
there appear terms involving ‖ξRw‖Ḣs , and a priori one does not know whether C∞(Rd) ∩Xs,γ is

continuously embedded in Ḣs(Rd). But this turns out to be true: the inequality

Cd,s

∫

Rd

∫

Rd

(w(x)− w(y))2

|x− y|d+2s
dx dy ≤

∫

Rd

w(x)(−∆)s(w)(x) dx ∀w ∈ C∞(Rd) ∩Xs,γ (B.2)

can be proved just by repeating the above scheme with φ = ψ = ξRw. In fact, on the r.h.s. of (B.1)
one still has terms involving ‖ξRw‖Ḣs , but the latter are small and can be absorbed into the l.h.s.;
passing to the limit as R→ ∞ yields (B.2). Therefore, having at our disposal (B.2), we can now let
R→ ∞ safely in (B.1) (with φ = ξRv and ψ = ξRw) and obtain that

Cd,s

∫

Rd

∫

Rd

(v(x)− v(y))(w(x)− w(y))

|x− y|d+2s
dx dy =

∫

Rd

v(x)(−∆)s(w)(x) dx (B.3)

for all v, w ∈ C∞(Rd) ∩ Xs,γ , which then shows that (B.2) is actually an equality. Notice that in
all these approximation procedures using cut-off functions, to prove that “remainder” terms go to
zero we deeply exploit the results provided by Lemmas A.1, A.2 and A.3. It is in fact here that the
condition γ < 2s plays a fundamental role: in particular, it ensures that both ‖|x|γ(−∆)s(ξR)‖∞
and ‖|x|γ ls(ξR)‖∞ vanish as R→ ∞. As already mentioned, we refer the reader to the note [30] for
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the details; however, for similar computations involving (−∆)s(ξR) and ls(ξR), see also the proofs
of Proposition 4.1, Lemma 4.4 and Lemma 5.6.
By the claimed density of C∞(Rd) ∩ Xs,γ , we are allowed to extend (B.3) to the whole of Xs,γ .
Clearly, the r.h.s. of (B.3) can be rewritten as

∫

Rd

v(x)A(w)(x) |x|−γdx ,

and letting v = w in particular entails that the operator A is positive. The fact that it is densely
defined is trivial since, for instance, D(Rd) ⊂ Xs,γ . Because in (B.3) one can interchange the role
of v and w, one also has that A is symmetric. In order to prove that it is self-adjoint one needs to
show that D(A∗) ⊂ D(A), namely that any function of D(A∗) also belongs to Xs,γ . It is indeed
straightforward to check this fact, and we leave the details to the reader.

We now deal with the quadratic form Q associated to A. Thanks to (B.3), we have that

Q(v, v) = Cd,s

∫

Rd

∫

Rd

(v(x)− v(y))2

|x− y|d+2s
dx dy ∀v ∈ D(A) . (B.4)

As it is well-known (see e.g. [12]), the domain D(Q) of Q is just the closure of D(A) w.r.t. the norm

‖v‖
2
Q = ‖v‖

2
2,−γ +Q(v, v) = ‖v‖

2
2,−γ + ‖v‖

2
Ḣs .

It is then easy to see that such a closure is nothing but L2
−γ(R

d) ∩ Ḣs(Rd) and the quadratic form

on D(Q) = L2
−γ(R

d) ∩ Ḣs(Rd) is still represented by (B.4).
By classical results (we refer again to [12]), proving that A generates a Markov semigroup is

equivalent to proving that if v belongs to D(Q) then both v∨0 and v∧1 belong to D(Q) and satisfy

Q(v ∨ 0, v ∨ 0) ≤ Q(v, v) , Q(v ∧ 1, v ∧ 1) ≤ Q(v, v) .

But the latter properties are straightforward consequences of the characterization of Q given above.
The last assertions follow from the general theory of symmetric Markov semigroups (cf. [12, Sect.

1.4]) and from their known analiticity properties (cf. [12, Th. 1.4.2]). �

The next proposition extends the symmetry property of the operator A = |x|γ(−∆)s to functions
which belong to other suitable Lp

−γ spaces. This is essential in proving our uniqueness Theorem 3.3
for certain values of γ in low dimensions d ≤ 3, more precisely whenever (d− γ)/(d− 2s) > 2.

Proposition B.3. Let d > 2s and γ ∈ (0, 2s). Let p ∈ [2, 2(d − γ)/(d − 2s)) and p′ = p/(p − 1)

be its conjugate exponent. Suppose that v, w ∈ Lp
−γ(R

d) are such that A(v), A(w) ∈ Lp′

−γ(R
d). Then

v, w ∈ Ḣs(Rd) and the following formula holds true:
∫

Rd

v(x)(−∆)s(w)(x) dx =

∫

Rd

(−∆)s(v)(x)w(x) dx

=Cd,s

∫

Rd

∫

Rd

(v(x)− v(y))(w(x)− w(y))

|x− y|d+2s
dxdy .

Sketch of proof. The method of proof proceeds along the lines of the one of Theorem B.2. The main
difference here lies in the fact that, when using the approximation procedure by cut-off functions
mentioned above, if p is strictly larger than 2 in order to prove that “remainder” terms go to zero
one cannot exploit the fact that |x|γ(−∆)s(ξR) and |x|γ ls(ξR) vanish in L∞(Rd) as R→ ∞. In fact,
such remainder terms are of the form∫

Rd

v2(x)(−∆)s(ξR)(x) dx or

∫

Rd

v2(x)ls(ξR)(x) dx . (B.5)

Thanks to Lemmas A.1, A.2 and A.3 it is direct to see that ‖|x|γ(−∆)s(ξR)‖q,−γ and ‖|x|γ ls(ξR)‖q,−γ

vanish as R→ ∞ provided q > (d− γ)/(2s− γ), whence the condition p ∈ [2, 2(d− γ)/(d− 2s)) to
ensure that also the integrals in (B.5) go to zero as R→ ∞. �
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