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Abstract

We consider a mathematical model for the study of the dynamical behavior of suspension
bridges. We show that internal resonances, which depend on the bridge structure only, are the
origin of torsional instability. We obtain both theoretical and numerical estimates of the thresholds
of instability. Our method is based on a finite dimensional projection of the phase space which
reduces the stability analysis of the model to the stability of suitable nonlinear Hill equations. This
gives an answer to a long-standing question about the origin of torsional instability.
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Mathematics Subject Classification: 37C75, 35G31, 34C15.

1 Introduction

The collapse of the Tacoma Narrows Bridge, which occurred in 1940, raised many questions about the
stability of suspension bridges. In particular, since the Federal Report [1] considers the crucial event
in the collapse to be the sudden change from a vertical to a torsional mode of oscillation, see also [31],
a natural question appears to be:

why do torsional oscillations appear suddenly in suspension bridges? (Q)

The main purpose of the present paper is to try to give an answer to (Q) by analyzing a suitable
mathematical model. We are here concerned with the main span, namely the part of the roadway
between the towers, which has a rectangular shape with two long edges (of the order of 1km) and two
shorter edges (of the order of 20m) fixed and hinged between the towers. Due to the large discrepancy
between these measures we model the roadway as a degenerate plate, that is, a beam representing
the midline of the roadway with cross sections which are free to rotate around the beam. We call
this model a fish-bone, see Figure 1. The grey part is the roadway, the two black cross sections are

Figure 1: The model of a fish-bone plate.

between the towers, they are fixed and the plate is hinged there. The red line contains the barycenters
of the cross sections and is the line where the downwards vertical displacement y is computed. The
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green orthogonal lines are virtual cross sections seen as rods that can rotate around their barycenter,
the angle of rotation with respect to the horizontal position being denoted by θ. We assume that the
roadway has length L and width 2ℓ with 2ℓ ≪ L. The kinetic energy of a rotating object is 1

2Jθ̇
2,

where J is the moment of inertia and θ̇ is the angular velocity. The moment of inertia of a rod of
length 2ℓ about the perpendicular axis through its center is given by 1

3Mℓ2 where M is the mass
of the rod. Hence, the kinetic energy of a rod having mass M and half-length ℓ, rotating about its
center with angular velocity θ̇, is given by M

6 ℓ
2θ̇2. On the other hand, the bending energy of the beam

depends on its curvature and this leads to a fourth order equation, see [5]. Note that M is also the
mass per unit length in the longitudinal direction. The hangers are prestressed and the equilibrium
position of the midline is y = 0, recall that y > 0 corresponds to a downwards displacement of the
midline. The equations for this system read







Mytt + EIyxxxx + f(y + ℓ sin θ) + f(y − ℓ sin θ) = 0 0 < x < L t > 0

Mℓ2

3 θtt − µℓ2θxx + ℓ cos θ (f(y + ℓ sin θ)− f(y − ℓ sin θ)) = 0 0 < x < L t > 0,
(1)

where µ > 0 is a constant depending on the shear modulus and the moment of inertia of the pure
torsion, EI > 0 is the flexural rigidity of the beam, f represents the restoring action of the prestressed
hangers and therefore also includes the action of gravity. We have not yet simplified by ℓ the second
equation in (1) in order to emphasize all the terms.

To (1) we associate the following boundary-initial conditions:

y(0, t) = yxx(0, t) = y(L, t) = yxx(L, t) = θ(0, t) = θ(L, t) = 0 t ≥ 0 (2)

y(x, 0) = η0(x) , yt(x, 0) = η1(x) , θ(x, 0) = θ0(x) , θt(x, 0) = θ1(x) 0 < x < L . (3)

The first four boundary conditions in (2) model a beam hinged at its endpoints whereas the last two
boundary conditions model the fixed cross sections between towers.

In a slightly different setting, involving mixed space-time fourth order derivatives, a linear version
of (1) was first suggested by Pittel-Yakubovich [27], see also [35, Chapter VI]; this model, with
the addition of an external forcing representing the wind, was studied with a parametric resonance
approach and an instability was found for a sufficiently large action of the wind. This approach
received severe criticisms from engineers [29, p.841], see also [4, 18] for the physical point of view.
The reason is that “too much importance is attributed to the action of the wind” as if some kind of
forced resonance would be involved. And it is clear that, in a windstorm, a precise phenomenon such
as forced resonance is quite unlikely to be seen [20, Section 1]. More recently, Moore [25] considered
(1) with

f(s) = k

[

(

s+
Mg

2k

)+

− Mg

2k

]

,

a nonlinearity which models hangers behaving as linear springs of elastic constant k > 0 if stretched
but exert no restoring force if compressed; here g is gravity. This nonlinearity, first suggested by
McKenna-Walter [24], describes the possible slackening of the hangers (occurring for s ≤ −Mg

2k ) which
was observed during the Tacoma Bridge collapse, see [1, V-12]. But Moore considers the case where
the hangers do not slacken: then f becomes linear, f(s) = ks, and the two equations in (1) decouple.
In this situation there is obviously no interaction between vertical and torsional oscillations and,
consequently, no possibility to give an answer to (Q).

The demand for reliable nonlinear models from the engineers dates of about half a century ago. For
instance, Robinson-West [34, p.15] write: Actually, some linear theories serve a simple introduction
to some of the essential problems of the stiffened suspension bridge. Nevertheless, all major modern
bridges are such that linear theories are unacceptable. And it is nowadays established that suspension
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bridges behave nonlinearly, see [7, 8, 13, 19] and references therein. Whence, nonlinear restoring forces
f in (1) appear unavoidable if one wishes to have a realistic model. A nonlinear f was introduced in
(1) by Holubová-Matas [16] who were able to prove well-posedness for a forced-damped version of (1).

For a slightly different model, numerical results obtained by McKenna [21] were able to show a
sudden development of large torsional oscillations as soon as the hangers lose tension, that is, as
soon as the restoring force becomes nonlinear. Further numerical results by Doole-Hogan [10] and
McKenna-Tuama [23] show that a purely vertical periodic forcing may create a torsional response.
An answer to (Q) was recently given in [2] by using suitable Poincaré maps for a suspension bridge
modeled by several coupled (second order) nonlinear oscillators. When enough energy is present within
the structure a resonance may occur, leading to an energy transfer between oscillators. The results in
[2] are, again, purely numerical. Whence, so far no theoretical explanation of the origin of torsional
oscillations has been given, nor any effective way to estimate the conditions which may create torsional
instability. This naturally leads to the following question (see [22, Problem 7.4]): can one employ the
tools of nonlinear analysis to say anything further in terms of stability?

In this paper we consider the fish-bone model and we display the same phenomenon of sudden
transition from purely vertical to torsional oscillations. Let us mention that a somehow related be-
havior of self-excited oscillations is visible in nonlinear beam equations, see [3, 14]. Here we provide a
detailed theoretical explanation of how internal resonances occur in (1), yielding instability.

In Theorem 1 we prove well-posedness of (1)-(2)-(3) for a wide class of nonlinearities f . The proof
is based on a Galerkin method which enables us to project (1) on a finite dimensional subspace of
the phase space and to study the instability of the vertical oscillating modes in terms of suitable Hill
equations [15]. This procedure is motivated by classical engineering literature. Bleich-McCullough-
Rosecrans-Vincent [6, p.23] write that out of the infinite number of possible modes of motion in which
a suspension bridge might vibrate, we are interested only in a few, to wit: the ones having the smaller
numbers of loops or half waves. The physical reason why only low modes should be considered is that
higher modes require large bending energy; this is well explained by Smith-Vincent [32, p.11] who write
that the higher modes with their shorter waves involve sharper curvature in the truss and, therefore,
greater bending moment at a given amplitude and accordingly reflect the influence of the truss stiffness
to a greater degree than do the lower modes. The suggestion to restrict attention to lower modes,
mathematically corresponds to project an infinite dimensional phase space on a finite dimensional
subspace, a technique which should be attributed to Galerkin [12]. This projection enables us to
determine both theoretical and numerical bounds for stability, see Sections 3 and 7, and to explain
the origin of torsional instability.

The obtained results yield the following answer to question (Q). The onset of large torsional
oscillations is due to a resonance which generates an energy transfer between different oscillation
modes. When the bridge is oscillating vertically with sufficiently large amplitude, part of the energy is
suddenly transferred to a torsional mode giving rise to wide torsional oscillations. Estimates of “large
amplitudes” may be obtained theoretically.

2 Simplification of the model and well-posedness

It is not our purpose to give the precise quantitative behavior of the model under consideration.
Therefore, in this section we make several simplifications which do not modify the qualitative behavior
of the nonlinear system (1). First of all, up to scaling we may assume that L = π; this will simplify the
Fourier series expansion. Then we take EI = 3µ = 1 although these parameters may be fairly different
in actual bridges. Moreover, we are not interested in describing accurately the behavior of the bridge
under large torsional oscillations. Instead, we are willing to describe how small torsional oscillations
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may suddenly become larger ones. And for small θ the following approximations are legitimate

cos θ ∼= 1 and sin θ ∼= θ .

Then we set z := ℓθ and this cancels the dependence of (1) on the width ℓ; to recover the dependence
on ℓ, note that θ = z

ℓ
so that smaller ℓ yield larger θ, that is, less stability. Finally, note that the

change of variable t 7→
√
Mt results in a positive or negative delay in the occurrence of any (possibly

catastrophic) phenomenon; whence, we may take M = 1. After all these changes, (1) becomes







ytt + yxxxx + f(y + z) + f(y − z) = 0 (0 < x < π, t ≥ 0)

ztt − zxx + 3f(y + z)− 3f(y − z) = 0 (0 < x < π, t ≥ 0) .
(4)

The boundary-initial conditions (2)-(3) may be rewritten as

y(0, t) = yxx(0, t) = y(π, t) = yxx(π, t) = z(0, t) = z(π, t) = 0 (t ≥ 0) , (5)

y(x, 0) = η0(x) , yt(x, 0) = η1(x) , z(x, 0) = ζ0(x) , zt(x, 0) = ζ1(x) (0 < x < π) , (6)

where ζ0(x) := ℓθ0(x) and ζ1(x) := ℓθ1(x). If f is nondecreasing, as in the physical situation, then

F (s) :=

∫ s

0
f(τ) dτ > 0 (7)

is a convex function. Therefore, the convex and coercive functional (here ′ = d
dx
)

J(y, z) =
‖y′′‖22
2

+
‖z′‖22
6

+

∫ π

0
[F (y + z) + F (y − z)] dx

(

y ∈ H2 ∩H1
0 (0, π) , z ∈ H1

0 (0, π)
)

admits a unique critical point, which is the absolute minimum and coincides with (y, z) = (0, 0); here
and in the sequel ‖ · ‖2 denotes the L2(0, π)-norm. Hence, (4) admits a unique stationary solution
(equilibrium) given by y = z = 0 and corresponding to the initial conditions η0 = η1 = ζ0 = ζ1 = 0.

We say that the functions

y ∈ C0(R+;H
2 ∩H1

0 (0, π)) ∩ C1(R+;L
2(0, π)) ∩ C2(R+;H

∗(0, π))

z ∈ C0(R+;H
1
0 (0, π)) ∩ C1(R+;L

2(0, π)) ∩ C2(R+;H
−1(0, π))

are solutions to (4)-(5)-(6) if they satisfy the initial conditions (6) and if

〈ytt, ϕ〉H∗ + (yxx, ϕ
′′) + (f(y − z) + f(y + z), ϕ) = 0 ∀ϕ ∈ H2 ∩H1

0 (0, π) , ∀t > 0 ,

〈ztt, ψ〉H−1 + (zx, ψ
′) + 3(f(y + z)− f(y − z), ψ) = 0 ∀ψ ∈ H1

0 (0, π) , ∀t > 0 ,

where 〈·, ·〉H−1 and 〈·, ·〉H∗ are the duality pairings in H−1 = (H1
0 (0, π))

′ and H∗ = (H2 ∩H1
0 (0, π))

′

while (·, ·) denotes the scalar product in L2(0, π). We have

Theorem 1. Let η0 ∈ H2 ∩H1
0 (0, π), ζ0 ∈ H1

0 (0, π), η1, ζ1 ∈ L2(0, π). Assume that f ∈ Liploc(R) is
nondecreasing, with f(0) = 0, and |f(s)| ≤ C(1+ |s|p) for every s ∈ R\{0} and for some p ≥ 1. Then
there exists a unique solution (y, z) to (4)-(5)-(6).

The proof of Theorem 1 is given in Section 4. It is based on a Galerkin procedure which suggests
to approximate (4) with a finite dimensional system. In the next section, we study in some detail
these approximate systems.
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3 Finite dimensional torsional stability

3.1 Approximated n-modes solutions

Consider the solution (y, z) to (4)-(5)-(6), as given by Theorem 1, and let us expand it in Fourier
series with respect to x:

y(x, t) =
∞
∑

j=1

yj(t) sin(jx) , z(x, t) =
∞
∑

j=1

zj(t) sin(jx) , (8)

where the functions yj and zj are the unknowns. We focus the attention to the lowest n oscillatory
modes, j ≤ n. As already mentioned in the introduction, this finite dimensional approximation
is physically justified. We make a finite dimensional projection of (4), that is, we fix an integer
n and consider the space Xn := span{sin(jx)}nj=1. Let Pn denote the orthogonal projection from

H2 ∩H1
0 (0, π) onto Xn. We say that the functions yn, zn ∈ C2(R+;Xn) are approximated n-mode

solutions to (4)-(5)-(6) if yn(·, t), zn(·, t) ∈ Xn for all t ≥ 0 and if they satisfy the initial conditions

yn(x, 0) = Pnη0(x), y
n
t (x, 0) = Pnη1(x), z

n(x, 0) = Pnζ0(x), z
n
t (x, 0) = Pnζ1(x) (0 < x < π). (9)

Fix n ≥ 1. Approximated n-mode solutions take the form

yn(x, t) =
n
∑

j=1

yj(t) sin(jx) , zn(x, t) =
n
∑

j=1

zj(t) sin(jx) (10)

where the unknowns yj and zj solve a system of 2n second order ODE’s and also depend on n.
Put (Y, Z) := (y1, ..., yn, z1, ..., zn) ∈ R

2n and

U(Y, Z) :=
2

π

∫ π

0

(

F (yn + zn) + F (yn − zn)
)

dx ,

with F (s) =
∫ s

0 f(τ) dτ . In order to project (4) onto Xn we multiply the equations there by sin(jx)
(j = 1, ..., n) and we integrate over (0, π). After some integrations by parts we obtain the system







ÿj(t) + j4yj(t) + Uyj (Y, Z) = 0

z̈j(t) + j2zj(t) + 3Uzj (Y, Z) = 0
(j = 1, ..., n) . (11)

Due to the integration, the dependence on x is lost and the boundary conditions have disappeared.
To (11) we associate the initial conditions

Y (0) = Y0 , Ẏ (0) = Y1 , Z(0) = Z0 , Ż(0) = Z1 , (12)

where the components of the n-vector Y0 are the n Fourier coefficients of Pnη0; similarly for Y1, Z0,
Z1. The conserved total energy of (11) is given by

E :=
|Ẏ |2
2

+
|Ż|2
6

+
1

2

n
∑

j=1

j4y2j +
1

6

n
∑

j=1

j2z2j + U(Y, Z) . (13)

Note that (13), together with (7), yields the boundedness of the L∞-norm of each of the yj , ẏj , zj and
żj . In order to attempt an answer to the main question (Q), we choose arbitrary data Y0 and Y1 and
“small” data Z0 and Z1. The initial (and constant) energy (13) is then approximately given by

E ≈ |Y1|2
2

+
1

2

n
∑

j=1

j4yj(0)
2 + U(Y0, 0) .

In the next subsections we will show that:
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if the energy E in (13) is small enough then small initial torsional oscillations remain small for
all time t > 0, whereas if E is large (that is, the vertical oscillations are initially large) then small
torsional oscillations suddenly become wider.

Therefore, a crucial role is played by the amount of energy inside the system (4). This will be
analyzed within (11), that is, in the finite dimensional projection of (4). To obtain precise results,
we consider a specific nonlinearity f satisfying the assumptions of Theorem 1. Since our purpose is
merely to describe the qualitative phenomenon, the choice of the nonlinearity is not important; it is
shown in [2] that several different nonlinearities yield the same qualitative behavior for the solutions.
We take

f(s) = s+ γs3 for γ > 0 , (14)

which allows to simplify several computations. Let us also mention that Plaut-Davis [28, Section 3.5]
make the same choice and that this nonlinearity appears in several elastic contexts, see e.g. [17, (1)].

The parameter γ measures how far is f from a linear function. In Sections 3.2-3.3 (and 7) we
consider the case γ = 1, that is,

f(s) = s+ s3 (15)

while we postpone the discussion for general γ > 0 until Section 3.4. When f is as in (15) we have

f(y + z) + f(y − z) = 2y(1 + y2 + 3z2) and f(y + z)− f(y − z) = 2z(1 + 3y2 + z2) (16)

so that (4) reduces to







ytt + yxxxx + 2y(1 + y2 + 3z2) = 0 (0 < x < π, t ≥ 0)

ztt − zxx + 6z(1 + 3y2 + z2) = 0 (0 < x < π, t ≥ 0) .
(17)

In order to determine the projected system, we need to multiply by sin(jx) (j = 1, ..., n) the
equations in (17) and then integrate over (0, π). Therefore, we will intensively exploit the following

Lemma 2. Let a, b, c ∈ N be such that a+ b+ c = 4 and let

I(a, b, c) =
1

π

∫ π

0
sina(x) sinb(2x) sinc(3x) dx .

Then I(3, 1, 0)=I(2, 1, 1)=I(1, 3, 0)=I(1, 1, 2)=I(1, 0, 3)=I(0, 3, 1)=I(0, 1, 3)=0 and

I(4, 0, 0)=I(0, 4, 0)=I(0, 0, 4)= 3
8 , I(2, 2, 0)=I(2, 0, 2)=I(0, 2, 2)=

1
4 , I(1, 2, 1)=−I(3, 0, 1)= 1

8 .

3.2 The 1-mode system

By (10), the approximated 1-mode solutions have the form

y(x, t) = y1(t) sinx , z(x, t) = z1(t) sinx .

Then, by (16) and Lemma 2, (11) reads







ÿ1 + 3y1 +
3
2y

3
1 +

9
2y1z

2
1 = 0

z̈1 + 7z1 +
9
2z

3
1 +

27
2 z1y

2
1 = 0 ,

(18)

with some initial conditions

y1(0) = η0 , ẏ1(0) = η1 , z1(0) = ζ0 , ż1(0) = ζ1 . (19)
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We are interested in determining the stability of the solution z1 ≡ 0 corresponding to ζ0 = ζ1 = 0.
Let us make precise what is meant by this.

Fix η0 and η1. If we take ζ0 = ζ1 = 0, then the unique solution to (18)-(19) is (y1, z1) = (yp, 0)
with yp = yp(η0, η1) being the unique (periodic) solution of the autonomous equation

ÿ + 3y +
3

2
y3 = 0 , y(0) = η0 , ẏ(0) = η1 , (20)

which admits the conserved quantity

E =
ẏ2

2
+

3

2
y2 +

3

8
y4 ≡ η21

2
+

3

2
η20 +

3

8
η40 . (21)

The standard procedure to deduce the stability of (yp, 0) consists in studying the behavior of the
perturbed vector (y1−yp, z1) where (y1, z1) solves (18), see [33, Chapter 5]. This leads to linearize the
system (18) around (yp, 0) and, subsequently, to apply the Floquet theory for differential equations
with periodic coefficients. The torsional component z of the linearization of system (18) around (yp, 0)
satisfies the following Hill equation [15]:

z̈ + a(t)z = 0 with a(t) = 7 +
27

2
yp(t)2 . (22)

Then we state

Definition 3. We say that the periodic solution (yp, 0) to (18) at energy E is torsionally stable if
the trivial solution z ≡ 0 of (22) is stable.

By exploiting a stability criterion given in [36] for equation (22), in Section 5 we prove

Theorem 4. The solution (yp, 0) to (18)-(19) is torsionally stable provided that

‖yp‖∞ ≤
√

10

21
≈ 0.69

or, equivalently, provided that the conserved energy E in (21) satisfies

E ≤ 235

294
≈ 0.799 .

As already remarked, Definition 3 is the usual one. Nevertheless, the stability results obtained in
[26] for suitable nonlinear Hill equations suggest that different equivalent definitions can be stated,
possibly not involving a linearization process. In particular, by [26] we know that the stability of the
trivial solution to (22) implies the stability of the trivial solution to

z̈ + a(t)z +
9

2
z3 = 0 with a(t) = 7 +

27

2
yp(t)2 .

We also refer to [9] and references therein for stability results for nonlinear first order planar systems.
As far as we are aware, there is no general theory for nonlinear systems of any number of equations but
it is reasonable to expect that similar results might hold. This is why, in our numerical experiments,
we consider system (18) without any linearization. The below numerical results suggest that the
threshold of instability is larger than the one in Theorem 4. Clearly, they only give a “local stability”
information (for finite time), but the observed phenomenon is very precise and the thresholds of
torsional instability are determined with high accuracy. The pictures in Figure 2 display the plots of
the solutions to (18) with initial data

y1(0) = ‖y1‖∞ = 104z1(0) , ẏ1(0) = ż1(0) = 0 (23)
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Figure 2: On the interval t ∈ [0, 200], plot of the solutions y1 (green) and z1 (black) to (18)-(23) for
‖y1‖∞ = 1.45, 1.47, 1.5, 1.7 (from left to right).

for different values of ‖y1‖∞. The green plot is y1 and the black plot is z1. For ‖y1‖∞ = 1.45 no
wide torsion appears, which means that the solution (y1, 0) is torsionally stable. For ‖y1‖∞ = 1.47
we see a sudden increase of the torsional oscillation around t ≈ 50. Therefore, the stability threshold
for the vertical amplitude of oscillation lies in the interval [1.45, 1.47]. Finer experiments show that
the threshold is ‖y1‖∞ ≈ 1.46, corresponding to a critical energy of about E ≈ 4.9: these values
should be compared with the statement of Theorem 4. When the amplitude is increased further, for
‖y1‖∞ = 1.5 and ‖y1‖∞ = 1.7, the appearance of wide torsional oscillations is anticipated (earlier
in time) and amplified (larger in magnitude). This phenomenon continues to increase for increasing
‖y1‖∞. We then tried different initial data with ẏ1(0) 6= 0; as expected, the sudden appearance
of torsional oscillations always occurs at the energy level E ≈ 4.9, no matter of how it is initially
distributed between kinetic and potential energy of y1. Summarizing, we have seen that the “true”
thresholds are larger than the ones obtained in Theorem 4.

Let us try to give a different point of view of this phenomenon. If we slightly modify the parameters
involved we can prove that the nonlinear frequency of z1 is larger than the frequency of y1, which
shows that the mutual position of z1 and y1 varies and may create the spark for an energy transfer.
Instead of EI = 3µ = 1, we take EI = µ = 1 and (18) should then be replaced by







ÿ1 + 3y1 +
3
2y

3
1 +

9
2y1z

2
1 = 0

z̈1 + 9z1 +
9
2z

3
1 +

27
2 z1y

2
1 = 0 .

(24)

Then we prove

Proposition 5. Let (y1, z1) be a nontrivial solution of (24). Let t1 < t2 be two consecutive critical
points of y1(t). Then there exists τ ∈ (t1, t2) such that z1(τ) = 0.

Proof. For any solution (y1, z1) of (24) we have

d

dt

[

ẏ31 ż1

]

+ 9
d

dt

[

y1z1 +
y1z

3
1

2
+
z1y

3
1

2

]

ẏ21 = 0 . (25)

By integrating (25) by parts over (t1, t2) we obtain

0 = 9

∫ t2

t1

d

dt

[

y1(t)z1(t) +
y1(t)z1(t)

3

2
+
z1(t)y1(t)

3

2

]

ẏ1(t)
2 dt

= −18

∫ t2

t1

y1(t)z1(t)

[

1 +
z1(t)

2

2
+
y1(t)

2

2

]

ÿ1(t)ẏ1(t) dt

= 54

∫ t2

t1

y1(t)
2z1(t)

[

1 +
z1(t)

2

2
+
y1(t)

2

2

] [

1 +
y1(t)

2

2
+

3z1(t)
2

2

]

ẏ1(t) dt

where, in the last step, we used (24)1. In the integrand, y21[1 +
z2
1

2 +
y2
1

2 ][1 +
y2
1

2 +
3z2

1

2 ] ≥ 0 and also ẏ1
has fixed sign so that the integral may vanish only if z1(t) changes sign in (t1, t2). 2
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Proposition 5 shows that the nonlinear frequency of z1 is always larger than the frequency of y1.
If the frequency of z1 reaches a multiple of the frequency of y1 then an internal resonance is created
and this yields a possible transfer of energy from y1 to z1.

3.3 The 2-modes system

When n ≥ 2 different vertical oscillation modes are visible and a precise characterization is needed.

Definition 6. Let n ≥ 2 and 1 ≤ j ≤ n; we call Yj = (0, ..., yj , ..., 0) the j-th vertical oscillating

mode if (Yj , 0) ∈ R
2n is a solution to (11).

Whence, we may identify a j-th vertical oscillating mode with the unique nontrivial component
yj of the vector (Y, Z) ∈ R

2n. For every j there exist infinitely many j-th vertical oscillating modes,
each one being identified by the values of yj(0) and ẏj(0). Any j-th vertical oscillating mode is the
(periodic) solution ypj = ypj (t) of the second order autonomous nonlinear equation

ÿ(t) + (j4 + 2)y(t) +
3

2
y(t)3 = 0 , (26)

which admits the conserved energy

Ej =
ẏ(t)2

2
+ (j4 + 2)

y(t)2

2
+

3y(t)4

8
=
ẏ(0)2

2
+ (j4 + 2)

y(0)2

2
+

3

8
y(0)4 ≥ 0 . (27)

The energy Ej of such solution is constant in time and merely depends on the initial conditions,
Ej = Ej(yj(0), ẏj(0)). Two j-th vertical oscillating modes are equal up to a time translation if and
only if they have the same energy: the energy Ej determines univocally the maximum amplitude of
oscillation of ypj , see (50) below.

Our purpose is to study the torsional stability of the Yj ’s. To this end, as in the 1-mode case, we
consider the linearized system around (Yj , 0) and we give the following definition.

Definition 7. We say that the j-th vertical oscillating mode Yj = (0, ..., yj , ..., 0) at energy Ej is
torsionally stable if the torsional components of the linear system, obtained by linearizing (11)
around (Yj , 0), are stable.

Let us now fix n = 2 in (10) and put

y(x, t) = y1(t) sinx+ y2(t) sin(2x) , z(x, t) = z1(t) sinx+ z2(t) sin(2x) .

Then, after integration over (0, π), we see that yj and zj satisfy the system































































ÿ1(t) + y1(t) = − 2

π

∫ π

0
[f(y(x, t)− z(x, t)) + f(y(x, t) + z(x, t))] sinx dx

ÿ2(t) + 16y2(t) = − 2

π

∫ π

0
[f(y(x, t)− z(x, t)) + f(y(x, t) + z(x, t))] sin(2x) dx

z̈1(t) + z1(t) =
6

π

∫ π

0
[f(y(x, t)− z(x, t))− f(y(x, t) + z(x, t))] sinx dx

z̈2(t) + 4z2(t) =
6

π

∫ π

0
[f(y(x, t)− z(x, t))− f(y(x, t) + z(x, t))] sin(2x) dx .
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By (16) and Lemma 2, this system becomes























































ÿ1 + 3y1 +
9

2
y1z

2
1 + 3y1z

2
2 + 3y1y

2
2 +

3

2
y31 + 6z1z2y2 = 0

ÿ2 + 18y2 +
9

2
y2z

2
2 + 3y2z

2
1 + 3y2y

2
1 +

3

2
y32 + 6z1z2y1 = 0

z̈1 + 7z1 +
27

2
z1y

2
1 + 9z1y

2
2 + 9z1z

2
2 +

9

2
z31 + 18y1y2z2 = 0

z̈2 + 10z2 +
27

2
z2y

2
2 + 9z2y

2
1 + 9z2z

2
1 +

9

2
z32 + 18y1y2z1 = 0 ,

(28)

while the energy becomes

E =
1

2
(ẏ21 + ẏ22) +

1

6
(ż21 + ż22) +

3

2
y21 + 9y22 +

7

6
z21 +

5

3
z22 + 6y1y2z1z2

+
9

4
(y21z

2
1 + y22z

2
2) +

3

2
(y21y

2
2 + y21z

2
2 + y22z

2
1 + z21z

2
2) +

3

8
(y41 + y42 + z41 + z42) .

Since our purpose is to emphasize perturbations of linear equations, it is more convenient to rewrite
the two last equations in (28) as



















z̈1 +

(

7 +
27

2
y21 + 9y22 + 9z22

)

z1 +
9

2
z31 = −18y1y2z2

z̈2 +

(

10 +
27

2
y22 + 9y21 + 9z21

)

z2 +
9

2
z32 = −18y1y2z1 .

(29)

In view of Definition 7, to deduce the stability of Y1 = (yp1 , 0) and Y2 = (0, yp2), we linearize system
(29) around (Yj , 0) and we consider its torsional part; we are so led to study the stability of the
following systems of uncoupled Hill equations:







z̈1(t) + a1,j(t)z1(t) = 0

z̈2(t) + a2,j(t)z2(t) = 0
(j = 1, 2) (30)

where ai,j(t) = i2 + 6 + 9αi,jy
p
j (t)

2 and αi,j = 1 if i 6= j, αi,i =
3
2 . By Definition 7, ypj is torsionally

stable if the trivial solutions (z1, z2) = (0, 0) of (30) are stable. Then we prove

Theorem 8. The first vertical oscillating mode yp1 of (28) is torsionally stable provided that

‖yp1‖∞ ≤ 1√
3
≈ 0.577 ⇐⇒ E ≤ 13

24
≈ 0.542 . (31)

The second vertical oscillating mode yp2 of (28) is torsionally stable provided that

‖yp2‖∞ ≤
√

32

51
≈ 0.792 ⇐⇒ E ≤ 5024

867
≈ 5.795 .

Again, Theorem 8 merely gives a sufficient condition for the torsional stability and, numerically,
the thresholds seem to be larger. Once more, numerics only shows local stability but the observed
phenomena are very precise and hence they appear reliable. Here the situation is slightly more
complicated because two modes (4 equations) are involved. Therefore, we proceed differently.
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Figure 3: On the interval t ∈ [0, 200], plot of the torsional components z1 (green) and z2 (black) to
(28)-(32) for ‖y1‖∞ = 1, 1.4, 1.45, 1.47 (from left to right).

We start by studying the stability of the first vertical oscillating mode. The pictures in Figure 3
display the plots of the torsional components (z1, z2) of the solutions to (28) with initial data

y1(0) = ‖y1‖∞ = 104y2(0) = 104z1(0) = 104z2(0) , ẏ1(0) = ẏ2(0) = ż1(0) = ż2(0) = 0 (32)

for different values of ‖y1‖∞. The green plot is z1 and the black plot is z2. Recalling that the initial
torsional amplitudes are of the order of 10−4 we can see that, for ‖y1‖∞ = 1, both torsional components
remain small, although z1 is slightly larger than z2. By increasing the y1 amplitude, ‖y1‖∞ = 1.4
and ‖y1‖∞ = 1.45, we see that z1 and z2 still remain small but now z1 is significantly larger than
z2 and displays bumps. When ‖y1‖∞ = 1.47, z1 has become so large that z2, which is still of the
order of 10−4, is no longer visible in the fourth plot of Figure 3. The threshold for the appearance
of z1 ≫ z2 is again ‖y1‖∞ ≈ 1.46, see Section 3.2. Therefore, it seems that the stability of the first
vertical oscillating mode does not transfer energy on the second modes; but, as we now show, this is
not true.

We increased further the initial datum up to ‖y1‖∞ = 3. In Figure 4 we display the plot of all the
components (y1, y2, z1, z2) of the corresponding solution to (28)-(32). One can see that some energy is

Figure 4: On the interval t ∈ [0, 100], plot of the solution to (28)-(32) for ‖y1‖∞ = 3. Left picture:
green=y1, black=z1. Right picture: green=y2, black=z2.

also transferred to both the vertical and torsional second modes, although this occurs with some delay
(in the second picture, the green oscillation is hidden but it is almost as wide as the black oscillation).

Concerning the stability of the second vertical oscillating mode, we just quickly describe our
numerical results. The loss of stability appeared for ‖y2‖∞ ≈ 0.945 corresponding to E ≈ 8.33; in this
case, Theorem 8 gives a fairly good sufficient condition. For ‖y2‖∞ ≤ 0.94, both z1 and z2 (and also
y1) remain small and of the same magnitude, with the amplitude of oscillations of z1 being almost
constant while the amplitude of oscillations of z2 being variable. For ‖y2‖∞ ≥ 0.945, z2 suddenly
displays the bumps seen in the above pictures. Finally, for ‖y2‖∞ ≥ 1.08, also y1 and z1 display
sudden wide oscillations which, however, appear delayed in time when compared with z2.
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3.4 The impact of nonlinearity

Let γ > 0. When f is as in (14), the system (4) becomes







ytt + yxxxx + 2y(1 + γy2 + 3γz2) = 0 (0 < x < π, t ≥ 0)

ztt − zxx + 6z(1 + 3γy2 + γz2) = 0 (0 < x < π, t ≥ 0) .

By multiplying these equations by sin(jx) (j = 1, ..., n) and integrating by parts over (0, π), (11) takes
the form







ÿj(t) + µjyj(t) + γPj(Y, Z) = 0

z̈j(t) + νjzj(t) + γQj(Y, Z) = 0
(j = 1, ..., n) (33)

where, for all j = 1, ..., n, µj , νj > 0 and Pj , Qj are third order homogeneous polynomials in the 2n
variables y1, ..., yn, z1, ..., zn. To (33) we associate some initial conditions; then we denote by (Yγ , Zγ)
the corresponding solution to (33) and by Eγ the conserved energy. If we put (Y , Z) =

√
γ (Yγ , Zγ),

then (Y , Z) solves system (33) when γ = 1. Since each vertical oscillating mode of this system has its
own thresholds for stability, we infer the thresholds for (33):

Proposition 9. Let γ > 0. The energy threshold Eγ for the torsional stability of a vertical oscillating
mode (Yγ , 0) of (33) satisfies Eγ = E/γ, where E is the energy threshold for the vertical oscillating
mode (Y , 0) of (33) when γ = 1. Moreover, the widest amplitude threshold ‖Yγ‖∞ for the torsional
stability satisfies ‖Yγ‖∞ = ‖Y ‖∞/

√
γ.

The proof of Proposition 9 follows by noticing that the energy E of the solution (Y , Z) satisfies
E = γEγ . From Proposition 9 we see that

γ 7→ Eγ and γ 7→ ‖Yγ‖∞

are decreasing with respect to γ and both tend to 0 if γ → ∞, whereas they tend to ∞ if γ → 0. This
shows that the nonlinearity plays against stability:

more nonlinearity yields more instability and almost linear elastic behaviors are extremely stable.

3.5 The impact of aerodynamic forces

Even in absence of wind, an aerodynamic force is exerted on the bridge by the surrounding air in
which the structure is immersed, and is due to the relative motion between the bridge and the air.
Scanlan-Tomko [30] assume that the aerodynamic forces depend linearly on the derivatives. For the
1-mode system (18), this leads to the following modified system:







ÿ1 + 3y1 +
3
2y

3
1 +

9
2y1z

2
1 + δż1 = 0

z̈1 + 7z1 +
9
2z

3
1 +

27
2 z1y

2
1 + δẏ1 = 0

(34)

with δ > 0. As in (23), we take the initial conditions

y1(0) = σ = 104z1(0) , ẏ1(0) = ż1(0) = 0 (35)

for different values of σ and we wish to highlight the differences, if any, between (18) and (34). For
(34) we have no energy conservation; however, let us consider the (variable) energy function

E(t) =
ẏ21
2

+
ż21
6

+
3

2
y21 +

7

6
z21 +

9

4
y21z

2
1 +

3

8
(y41 + z41) . (36)
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Figure 5: On the interval t ∈ [0, 200], plot of the solutions y1 (green) and z1 (black) to (34)-(35)
for σ = 1.47 and δ = 0.01, 0.02, 0.03, 0.05 (from left to right). On the second line (red), the energy
E = E(t) defined in (36).

We first take σ = 1.47 and we modify the aerodynamic parameter δ. In Figure 5 we plot both the
behavior of the solutions (first line) and the behavior of the energy E(t) (second line), for increasing
values of δ. The first line should be compared with the second picture in Figure 2 (case δ = 0).
We note that, as the aerodynamic parameter increases, the transfer of energy is anticipated but it
is not amplified. Quite surprisingly, on the second line we see that the energy E(t) remains almost
constant except in the interval of time where the transfer of energy occurs: for increasing aerodynamic
parameters δ we observe increasing variations in the energy behavior.

Then we maintain fixed δ = 0.01 and we increase the initial energy, that is, the initial amplitude
of oscillation. In Figure 6 we plot both the behavior of the solutions (first line) and the behavior of
the energy E(t) (second line), for increasing values of σ. It turns out that all the phenomena are

Figure 6: On the interval t ∈ [0, 170], plot of the solutions y1 (green) and z1 (black) to (34)-(35) for
δ = 0.01 and σ = 1.5, 1.6, 1.8, 3 (from left to right). On the second line (red), the energy E = E(t)
defined in (36).

anticipated (in time) and amplified (in width) and reach a quite chaotic behavior for σ = 3 where we
had to stop the integration time at t = 90.

These experiments seem to show that the onset of instability does not depend on aerodynamic
forces. The amount of initial energy still seems to be the decisive parameter. The aerodynamic forces
modify the internal energy only when the exchange of energy occurs.
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4 Proof of Theorem 1

The existence and uniqueness issues are inspired to [16, Theorems 8 and 11] while the regularity
statement is achieved by arguing as in [11, Lemma 8.1].

For the existence part we perform a Galerkin procedure. The sequence {sin(jx)}j≥1 is an orthog-
onal basis of the spaces L2(0, π), H1

0 (0, π) and H
2 ∩H1

0 (0, π). Then, for a given n ∈ N, we set

yn(x, t) =

n
∑

j=1

yj(t) sin(jx) , zn(x, t) =

n
∑

j=1

zj(t) sin(jx) , (37)

where yj and zj satisfy the system of ODE’s























ÿj(t) + j4yj(t) +
2

π

∫ π

0
[f(yn(x, t) + zn(x, t)) + f(yn(x, t)− zn(x, t))] sin(jx) dx = 0

z̈j(t) + j2zj(t) +
6

π

∫ π

0
[f(yn(x, t) + zn(x, t))− f(yn(x, t)− zn(x, t))] sin(jx) dx = 0

(38)

for t > 0 and j = 1, ..., n. Moreover, writing the Fourier expansion of the initial data (6) as

η0(x) =
∞
∑

j=1

ηj0 sin(jx) in H2 ∩H1
0 (0, π) y1(x) =

∞
∑

j=1

ηj1 sin(jx) in L2(0, π)

ζ0(x) =
∞
∑

j=1

ζj0 sin(jx) in H1
0 (0, π) ζ1(x) =

∞
∑

j=1

ζj1 sin(jx) in L2(0, π) ,

we assume that, for every 1 ≤ j ≤ n, the yj ’s and the zj ’s satisfy

yj(0) = ηj0 , ẏj(0) = ηj1 , zj(0) = ζj0 , żj(0) = ζj1 . (39)

The existence of a unique local solution to (38)-(39) in some maximal interval of continuation
[0, τn), τn > 0, follows from standard theory of ODE’s. Then, we multiply the first equation in (38)
by 6ẏj(t) and the second equation by 2żj(t), then we add the so obtained 2n equations for j = 1 to n,
finally we integrate over (0, t) to obtain

3‖ẏn(t)‖22 + 3‖ynxx(t)‖22 + ‖żn(t)‖22 + ‖znx (t)‖22 + 12

∫ π

0
(F (yn(t) + zn(t)) + F (yn(t)− zn(t))) dx ≤

3‖ẏn(0)‖22 + 3‖ynxx(0)‖22 + ‖żn(0)‖22 + ‖znx (0)‖22 + 12

∫ π

0
(F (yn(0) + zn(0)) + F (yn(0)− zn(0))) dx

where yn(t) = yn(x, t), zn(t) = zn(x, t) and F (s) =
∫ s

0 f(τ) dτ . Since F ≥ 0, this yields

3‖ẏn(t)‖22 + 3‖ynxx(t)‖22 + ‖żn(t)‖22 + ‖znx (t)‖22 ≤ C for any t ∈ [0, τn) and n ≥ 1 (40)

for some constant C independent of n and t. Hence, {yn} and {zn} are globally defined in R+

and uniformly bounded, respectively, in the spaces C0([0, T ];H2 ∩H1
0 (0, π))∩C1([0, T ];L2(0, π)) and

C0([0, T ];H1
0 (0, π))∩C1([0, T ]; L2(0, π)) for all finite T > 0. We show that they both admit a strongly

convergent subsequence in the same spaces.
The estimate (40) shows that {yn} and {zn} are bounded and equicontinuous in C0([0, T ];L2(0, π)).

By the Ascoli-Arzelà Theorem we then conclude that, up to a subsequence, yn → y and zn → z strongly
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in C0([0, T ];L2(0, π)). By (40) and the embedding H1
0 (0, π) ⊂ L∞(0, π) we also infer that yn and zn

are uniformly bounded in [0, π]× [0, T ]. Whence,

∣

∣

∣

∣

∫ π

0
F (yn(t) + zn(t)) dx−

∫ π

0
F (y(t) + z(t)) dx

∣

∣

∣

∣

≤
∫ π

0
|f(τ(yn(t) + zn(t)) + (1− τ)(y(t) + z(t)))| (|yn(t)− y(t)|+ |zn(t)− z(t)|) dx

for some τ = τ(x, t, n) ∈ [0, 1]. Since yn and zn are uniformly bounded, so is f(τ(yn+zn)+(1−τ)(y+z))
and the latter inequality yields

∣

∣

∣

∣

∫ π

0
F (yn(t) + zn(t)) dx−

∫ π

0
F (y(t) + z(t)) dx

∣

∣

∣

∣

≤ C
(

‖yn(t)− y(t)‖2 + ‖zn(t)− z(t)‖2
)

→ 0 . (41)

We may argue similarly for F (yn − zn).
Next, for every n > m ≥ 1, we set yn,m := yn − ym and zn,m := zn − zm. Repeating the

computations which yield (40), for all t ∈ [0, T ] one gets

3‖ẏn,m(t)‖22 + 3‖yn,mxx (t)‖22 + ‖żn,m(t)‖22 + ‖zn,mx (t)‖22

= 3‖ẏn,m(0)‖22 + 3‖yn,mxx (0)‖22 + ‖żn,m(0)‖22 + ‖zn,mx (0)‖22

−12

∫ π

0
[F (yn(t) + zn(t))− F (ym(t) + zm(t)) + F (yn(t)− zn(t))− F (ym(t)− zm(t))] dx

+12

∫ π

0
[F (yn(0) + zn(0))− F (ym(0) + zm(0)) + F (yn(0)− zn(0))− F (ym(0)− zm(0))] dx .

Therefore, by using (41), we infer that

sup
t∈[0,T ]

(

3‖ẏn,m(t)‖22 + 3‖yn,mxx (t)‖22 + ‖żn,m(t)‖22 + ‖zn,mx (t)‖22
)

→ 0 as n,m→ ∞

so that {yn} and {zn} are Cauchy sequences in the spaces C0([0, T ];H2∩H1
0 (0, π))∩C1([0, T ];L2(0, π))

and C0([0, T ];H1
0 (0, π)) ∩ C1([0, T ];L2(0, π)), respectively. In turn this yields

yn → y in C0([0, T ];H2 ∩H1
0 (0, π)) ∩ C1([0, T ];L2(0, π)) as n→ +∞

and
zn → z in C0([0, T ];H1

0 (0, π)) ∩ C1([0, T ];L2(0, π)) as n→ +∞ .

Let Υ ∈ C∞
c (0, T ), ϕ ∈ H2 ∩ H1

0 (0, π) and ψ ∈ H1
0 (0, π). We denote by ϕn and ψn the orthogonal

projections of ϕ and ψ onto Xn := span{sin(jx)}nj=1 from, respectively, the spaces H2 ∩H1
0 (0, π) and

H1
0 (0, π). Then (38) yields



























∫ T

0
(ẏn(t), ϕn)Υ̇(t) dt =

∫ T

0

[

(ynxx(t), (ϕ
n)′′) +

2

π
(f(yn(t)− zn(t)) + f(yn(t) + zn(t)), ϕn)

]

Υ(t) dt

∫ T

0
(żn(t), ψn)Υ̇(t) dt = −

∫ T

0

[

(znx (t), (ψ
n)′) +

6

π
(f(yn(t)− zn(t))− f(yn(t) + zn(t)), ψn)

]

Υ(t) dt.

Since, by compactness,

f(yn ± zn) → f(y ± z) in C0([0, T ], L2(0, π)) ,

15



by letting n→ +∞ in the above system we conclude that ytt ∈ C0([0, T ];H∗) and ztt ∈ C0([0, T ];H−1).
The verification of the initial conditions follows by noting that yn(0) → y(0) in H2∩H1

0 (0, π), ẏ
n(0) →

ẏ(0) in L2(0, π), zn(0) → z(0) in H1
0 (0, π) and żn(0) → ż(0) in L2(0, π). The proof of the existence

part is complete, once we observe that all the above results hold for any T > 0.
Next we turn to the uniqueness issue. Since it follows by repeating the proof of [16, Theorem 11]

with some minor changes we only give a sketch of it. Assume problem (4)-(5)-(6) admits two couples of
solutions (y1, z1) and (y2, z2) and denote (ȳ, z̄) := (y1−y2, z1−z2). Next, we put µs(t) = −

∫ s

t
ȳ(τ) dτ ,

ηs(t) = −
∫ s

t
z̄(τ) dτ , Y (t) =

∫ t

0 ȳ(τ) dτ and Z(t) =
∫ t

0 z̄(τ) dτ with 0 < t ≤ s. Note that µ′s(t) = ȳ(t),
η′s(t) = z̄(t), µs(t) = Y (t)− Y (s) and ηs(t) = Z(t)− Z(s). Multiply the equation satisfied by ȳ times
µs and the one satisfied by z̄ times ηs. By integrating, one deduces























1

2
‖ȳ(s)‖22 +

1

2
‖Yxx(s)‖22 =

∫ s

0

([

f(y1 − z1) + f(y1 + z1)− f(y2 − z2)− f(y2 + z2)
]

, µs
)

dt

1

2
‖z̄(s)‖22 +

1

2
‖Zx(s)‖22 = 3

∫ s

0

([

f(y1 − z1)− f(y1 + z1)− f(y2 − z2) + f(y2 + z2)
]

, ηs
)

dt.

Exploiting the fact that f ∈ Liploc(R) and (40), one infers that

‖ȳ(s)‖22 + ‖z̄(s)‖22 + ‖Yxx(s)‖22 + ‖Zx(s)‖22 ≤ C

∫ s

0

(

‖ȳ(t)‖22 + ‖z̄(t)‖22 + ‖Yxx(t)‖22 + ‖Zx(t)‖22
)

dt

where both the Young and the Poincaré inequalities have been exploited. Hence, by the Gronwall
Lemma, ‖ȳ(s)‖2 = ‖z̄(s)‖2 = 0 and uniqueness follows.

5 Proof of Theorem 4

For any E > 0 we put

Λ±(E) := 2

√

1 +
2

3
E ± 2.

Then we prove

Lemma 10. For any η0, η1 ∈ R problem (20) admits a unique solution y = yp which is periodic of
period

T (E) =
8√
3

∫ 1

0

ds
√

(Λ+(E) + Λ−(E)s2)(1− s2)
. (42)

In particular, the map E 7→ T (E) is strictly decreasing and limE→0 T (E) = 2π/
√
3.

Proof. The existence, uniqueness and periodicity of the solution yp is a known fact from the theory
of ODE’s. For a given E > 0, we may rewrite (21) as

ẏ2 = 2E − 3y2 − 3

4
y4 . (43)

Hence,
‖yp‖∞ =

√

Λ−(E) . (44)

Since (20) merely consists of odd terms, the period T (E) of yp is the double of the width of an interval
of monotonicity for yp. Since the problem is autonomous, we may assume that yp(0) = −‖yp‖∞ and
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ẏp(0) = 0; then, by symmetry and periodicity, we have that yp(T/2) = ‖yp‖∞ and ẏp(T/2) = 0. By
rewriting (43) as

ẏ =

√
3

2

√

(Λ+(E) + y2)(Λ−(E)− y2) ∀t ∈
(

0,
T

2

)

,

by separating variables, and upon integration over the time interval (0, T/2) we obtain

T (E)

2
=

2√
3

∫ ‖yp‖∞

−‖yp‖∞

dy
√

(Λ+(E) + y2)(Λ−(E)− y2)
.

Then, using the fact that the integrand is even with respect to y and through a change of variable,

T (E) =
8√
3

∫ ‖yp‖∞

0

dy
√

(Λ+(E) + y2)(‖yp‖2∞ − y2)
=

8√
3

∫ 1

0

ds
√

(Λ+(E) + Λ−(E)s2)(1− s2)
,

which proves (42). Both the maps E 7→ Λ±(E) are continuous and increasing for E ∈ [0,∞) and
Λ−(0) = 0, Λ+(0) = 4. Whence, E 7→ T (E) is strictly decreasing and

lim
E→0

T (E) = T (0) =
4√
3

∫ 1

0

ds√
1− s2

=
2π√
3
,

a result that could have also been obtained by noticing that, as E → 0, the equation (20) tends to
ÿ + 3y = 0. 2

In the sequel, we need bounds for T (E). From (42) we see that, by taking s = 0 in the first
polynomial under square root,

T (E) ≤ 8
√

3Λ+(E)

∫ 1

0

ds√
1− s2

=
4π

√

3Λ+(E)
=⇒ 16π2

T (E)2
≥ 3Λ+(E) . (45)

Moreover, by taking s = 1 in the first polynomial under square root, we infer

T (E) ≥ 8√
3
√

Λ+(E) + Λ−(E)

∫ 1

0

ds√
1− s2

=
2π

4
√
9 + 6E

=⇒ 4π2

T (E)2
≤

√
9 + 6E . (46)

Let us now consider (22). With the initial conditions z(0) = ż(0) = 0, the unique solution to (22)
is z ≡ 0. We are interested in determining whether the trivial solution is stable in the Lyapunov sense,
namely if the solutions to (22) with small initial data |z(0)| and |ż(0)| remain small for all t ≥ 0.
By Lemma 10, the function yp(t)2 is T/2-periodic. Then a is a positive T/2-periodic function and a
stability criterion for the Hill equation due to Zhukovskii [36], see also [35, Chapter VIII], states that
the trivial solution to (22) is stable provided

4π2

T (E)2
≤ a(t) ≤ 16π2

T (E)2
. (47)

Let us translate this condition in terms of ‖yp‖∞. By the definition of a in (22) and by (44), we have

7 ≤ a(t) ≤ 7 +
27

2
‖yp‖2∞ = −20 + 9

√
9 + 6E .

Whence, (47) holds if both

4π2

T (E)2
≤ 7 and − 20 + 9

√
9 + 6E ≤ 16π2

T (E)2
. (48)
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In turn, by (45)-(46), the inequalities in (48) certainly hold if
√
9 + 6E ≤ 7 and − 20 + 9

√
9 + 6E ≤ 3Λ+(E) .

The first of such inequalities is fulfilled provided that E ≤ 20
3 ; the second inequality is satisfied if

E ≤ 235

294
≈ 0.799 , ‖yp‖∞ ≤

√

10

21
≈ 0.69 , (49)

which is more stringent and, therefore, yields a sufficient condition for (47) to hold. This proves
Theorem 4.

Remark 11. The sufficient condition (47) is fulfilled as long as both (48) hold. Numerically, we see
that the former is satisfied for E / 10.445 whereas the latter is satisfied for E / 0.944. The most
stringent is the second one which corresponds to ‖yp‖∞ / 0.74, not significantly better than (49).

6 Proof of Theorem 8

For any E > 0, we put

Λj
±(E) = 2

√

(j4 + 2)2

9
+

2

3
E ± 2

3
(j4 + 2) (j = 1, 2) .

Then (27), with Ej = E, reads

ẏj
2 =

3

4
(Λj

+(E) + y2j )(Λ
j
−(E)− y2j ) (j = 1, 2) .

By this, since any j-th oscillating mode ypj satisfies (27), we deduce

‖ypj ‖∞ =

√

Λj
−(E) (j = 1, 2) . (50)

Then, the same analysis performed in Section 5 yields that the ypj are periodic functions of period

Tj(E) =
8√
3

∫ 1

0

ds
√

(Λj
+(E) + Λj

−(E)s2)(1− s2)
.

In particular, the map E 7→ Tj(E) is strictly decreasing and limE→0 Tj(E) = 2π/
√

j4 + 2. Further-
more, the following estimates hold

Tj(E) ≤ 8
√

3Λj
+(E)

∫ 1

0

ds√
1− s2

=
4π

√

3Λj
+(E)

=⇒ 16π2

Tj(E)2
≥ 3Λj

+(E) (51)

and

Tj(E) ≥ 8
√
3
√

Λj
+(E) + Λj

−(E)

∫ 1

0

ds√
1− s2

=
2π

4

√

(j4 + 2)2 + 6E
=⇒ 4π2

Tj(E)2
≤

√

(j4 + 2)2 + 6E .

(52)
Consider the first mode (Y1, 0) = (yp1 , 0, 0, 0). For j = 1 system (30) reads







z̈1(t) + (7 + 27
2 y

p
1(t)

2)z1(t) = 0

z̈2(t) + (10 + 9yp1(t)
2)z2(t) = 0 .

(53)
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If the trivial solution of both the equations in (53) is stable then system (53) itself is stable and
Definition 7 is satisfied, see [35, Theorem II-Chapter III-vol 1]. Since the first equation in (53)
coincides with (22), the proof of Theorem 4 yields the torsional stability provided that (49) holds. For
the second equation in (53), by applying again the Zhukovskii stability criterion (47), we see that the
trivial solution is stable provided that

4π2

T (E)2
≤ 10 + 9yp1(t)

2 ≤ 16π2

T (E)2
.

By arguing as in the proof of Theorem 4, see (48), we reach the bounds (31) which are more stringent
than (49). Whence, these are the bounds for the torsional stability of the first vertical oscillating
mode.

For the second vertical mode (Y2, 0) = (0, yp2 , 0, 0) we proceed similarly, but now system (30) reads







z̈1(t) + (7 + 9yp2(t)
2)z1(t) = 0

z̈2(t) + (10 + 27
2 y

p
2(t)

2)z2(t) = 0 .
(54)

Concerning the first equation, a different stability criterion for the Hill equation due to Zhukovskii
[36], see also [35, Chapter VIII], states that the trivial solution is stable provided that

0 ≤ 7 + 9yp2(t)
2 ≤ 4π2

T2(E)2
. (55)

The left inequality is always satisfied while the second inequality is satisfied if 7 + 9‖yp2‖2∞ ≤ 4π2

T2(E)2
.

Whence, by (51) a sufficient condition for the stability is

7 + 9‖yp2‖2∞ ≤ 3

4
Λ2
+(E) ⇐⇒ E ≤ 38

3
, ‖yp2‖∞ ≤ 2√

3
. (56)

Next we focus on the second equation in (54). The stability of the trivial solution is ensured if

0 ≤ 10 +
27

2
yp2(t)

2 ≤ 4π2

T2(E)2
,

that is, if 10 + 27
2 ‖y

p
2‖2∞ ≤ 4π2

T2(E)2
. Whence, by (51) with j = 2, a sufficient condition for the stability

is

10 +
27

2
‖yp2‖2∞ ≤ 3

4
Λ2
+(E) ⇐⇒ E ≤ 5024

867
, ‖yp2‖∞ ≤

√

32

51
. (57)

This is more restrictive than (56) and is therefore a sufficient condition for the stability of the second
vertical oscillating mode yp2 .

7 Appendix: general n-modes systems

Definitions 6 and 7 hold for general n-modes systems. The main difference is that, for n ≥ 3, the
equations of the linearized system may not decouple. For instance, when n = 3, we put

y(x, t) = y1(t) sinx+ y2(t) sin(2x) + y3(t) sin(3x) , z(x, t) = z1(t) sinx+ z2(t) sin(2x) + z3(t) sin(3x) .
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By (16), Lemma 2, and by arguing as for (28), we find that yj and zj satisfy the system



































































































































ÿ1 + 3y1 +
9
2y1z

2
1 + 3y1z

2
2 + 3y1z

2
3 + 3y1y

2
2 + 3y1y

2
3 − 3y1z1z3 − 3

2y
2
1y3

+3
2y

3
1 + 6y2z1z2 + 3y2z2z3 +

3
2y

2
2y3 − 3

2y3z
2
1 +

3
2y3z

2
2 + 6y3z1z3 = 0

ÿ2 + 18y2 + 3y2z
2
1 +

9
2y2z

2
2 + 3y2z

2
3 + 3y2y

2
1 + 3y2y

2
3 + 3y2z1z3 + 3y2y1y3

+3
2y

3
2 + 6y1z1z2 + 3y1z2z3 + 3y3z1z2 + 6y3z2z3 = 0

ÿ3 + 83y3 + 3y3z
2
1 + 3y3z

2
2 +

9
2y3z

2
3 + 3y3y

2
1 + 3y3y

2
2 +

3
2y

3
3

−3
2y1z

2
1 +

3
2y1z

2
2 +

3
2y1y

2
2 + 6y1z1z3 − 1

2y
3
1 + 3y2z1z2 + 6y2z2z3 = 0

z̈1 + 7z1 +
27
2 z1y

2
1 + 9z1y

2
2 + 9z1y

2
3 − 9z1y1y3 + 9z1z

2
2 + 9z1z

2
3 − 9

2z
2
1z3

+9
2z

3
1 + 9z2y2y3 + 18z2y1y2 +

9
2z3z

2
2 + 18z3y1y3 − 9

2z3y
2
1 +

9
2z3y

2
2 = 0

z̈2 + 10z2 + 9z2y
2
1 +

27
2 z2y

2
2 + 9z2y

2
3 + 9z2y1y3 + 9z2z

2
1 + 9z2z

2
3 + 9z1z2z3

+9
2z

3
2 + 18z1y1y2 + 9z1y2y3 + 9z3y1y2 + 18z3y2y3 = 0

z̈3 + 15z3 + 9z3y
2
1 + 9z3y

2
2 +

27
2 z3y

2
3 + 9z3z

2
1 + 9z3z

2
2 +

9
2z

3
3 − 9

2z1y
2
1

+9
2z1y

2
2 +

9
2z1z

2
2 + 18z1y1y3 − 3

2z
3
1 + 9z2y1y2 + 18z2y2y3 = 0 ,

(58)

while the energy becomes

E = 1
2(ẏ

2
1 + ẏ22 + ẏ23) +

1
6(ż

2
1 + ż22 + ż23) +

3
2y

2
1 + 9y22 +

83
2 y

2
3 +

7
6z

2
1 +

5
3z

2
2 +

5
2z

2
3

+3
2

(

y21y
2
2 + y21y

2
3 + y22y

2
3 + y21z

2
2 + y21z

2
3 + y22z

2
1 + y22z

2
3 + y23z

2
1 + y23z

2
2 + z21z

2
2 + z21z

2
3 + z22z

2
3

)

+3
2

(

y1y3y
2
2 + y1y3z

2
2 + z1z3y

2
2 + z1z3z

2
2 − z1z3y

2
1 − y1y3z

2
1

)

+9
4

(

y21z
2
1 + y22z

2
2 + y23z

2
3

)

+ 1
2

(

y3y
3
1 + z3z

3
1

)

+ 6 (y1y2z1z2 + y1y3z1z3 + y2y3z2z3)

+3 (y1y2z2z3 + y2y3z1z2) +
3
8

(

y41 + y42 + y43 + z41 + z42 + z43
)

.

By considering the torsional components of the linearized system around (Yj , 0), with Yj having
just the j-th nontrivial component ypj , we reduce to the following system of differential equations with
periodic coefficients:



















z̈1(t) + a1,j(t)z1(t) + bj(t)z3(t) = 0

z̈2(t) + a2,j(t)z2(t) = 0

z̈3(t) + a3,j(t)z3(t) + bj(t)z1(t) = 0 ,

(59)

where ai,j(t) = i2 + 6 + 9αi,jy
p
j (t)

2, with αi,j = 1 if i 6= j and αi,i = 3
2 , and bj(t) = (−1)j 92y

p
j (t)

2

if j = 1, 2 and b3(t) = 0. Differently from the 2-mode case, the above equations are coupled. The
stability of such systems can be studied as in [35, Th.II vol.1]. Here, to avoid too many distinctions,
we fix j and for every i we consider (59) subject the conditions zk(0) = 0, żk(0) = 0 for k 6= i; this
procedure decouples the equations and, once more, we reduce to Hill equations of the form (22).

Proposition 12. For j = 1, 2, 3 fixed, let Zj
i = (0, ..., zji , ..., 0) be the solution to system (59) subject

the conditions zk(0) = żk(0) = 0 for k 6= i.
If the first vertical oscillating mode yp1 of (58) satisfies

‖yp1‖∞ ≤ 1√
3
≈ 0.577 ⇐⇒ E ≤ 13

24
≈ 0.542 , (60)
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then Z1
i is stable for every i = 1, 2, 3.

If the second vertical oscillating mode yp2 of (58) satisfies

‖yp2‖∞ ≤ 2√
11

≈ 0.603 ⇐⇒ E ≤ 402

121
≈ 3.322 ,

then Z2
i is stable for every i = 1, 2, 3.

If the third vertical oscillating mode yp3 of (58) satisfies

‖yp3‖∞ ≤ 4√
3
≈ 2.309 ⇐⇒ E ≤ 232 ,

then Z3
i is stable for every i = 1, 2, 3.

Proof. The three vertical oscillating modes ypj satisfy (26) with j = 1, 2, 3 and the analysis performed

at the beginning of Section 6 is valid. Then, for j = 1, 2, 3 fixed, the nontrivial component of Zj
i

satisfies the Hill equation
z̈(t) + ai,j(t)z(t) = 0 (61)

for i = 1, 2, 3, with ai,j as in (59). Since ai,j is a positive Tj/2-periodic function, we exploit a stability
criterion for the Hill equation due to Zhukovskii [36] which states that the trivial solution to (61) is
stable provided that

4m2π2

Tj(E)2
≤ ai,j(t) ≤

4(m+ 1)2π2

Tj(E)2
(62)

for some integer m ≥ 0.
Fix j = 1, from the proofs of Theorems 4 and 8 we know that (62), with m = 1 and i = 1, namely

(47), holds if (49) is satisfied. While (62) with m = 1 and i = 2 holds when (31) is satisfied. If i = 3,
we test (62) with m = 2. By (52), the left inequality in (62) is satisfied if 4

√
9 + 6E ≤ 15, namely

E ≤ 27
32 . By (50) and (51), the right inequality in (62) follows if

15 + 9Λ1
−(E) ≤ 27

4
Λ1
+(E) ,

namely if E ≤ 56
3 . The more restrictive is (31) and yields (60).

Fix j = 2. We test (62) with m = 0 for i = 1, 2, 3. When i = 1 and i = 2, (62) holds provided
(56), respectively (57), is satisfied. When i = 3, by (50) and (51), (62) follows if

15 + 9Λ2
−(E) ≤ 3

4
Λ2
+(E) ,

namely if E ≤ 402
121 and ‖yp2‖∞ ≤

√

Λ2
−(E) ≤ 2√

11
.

Fix j = 3. By (50) and (51), (62) with m = 0 and i = 1, 2, 3 follows if

i2 + 6 + 9αi,3Λ
3
−(E) ≤ 3

4
Λ3
+(E) .

Some computations yield E ≤ 150328
363 when i = 1, E ≤ 143956

363 if i = 2 and E ≤ 232 if i = 3. The latter
is the more restrictive and the conclusion follows. 2

The same proof of Proposition 12 can be generalized to the case of n-modes. Indeed, by considering
the torsional part of the linearization of system (11) around (Yj , 0) subject the conditions zk(0) =
żk(0) = 0 for k 6= i we still obtain (61) with ai,j as in (59). Then, we may exploit the stability
criterion (62). As E → 0, (62) reads

m2(j4 + 2) ≤ i2 + 6 ≤ (m+ 1)2(j4 + 2) . (63)
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For 1 ≤ j ≤ n fixed and for every i = 1, ..., n, we denote by mi = mi(j) the least integer such that the
right inequality holds in (63). Furthermore, let Li = Li(j) > 0 be such that the inequalities

m2
i

√

(j4 + 2)2 + 6E ≤ i2 + 6 , i2 + 6 + 9αi,1Λ
j
−(E) ≤ 3

4
(mi + 1)2Λj

+(E)

hold for every E ≤ Li. From (50), (51) and (52), the above inequalities yield (62) with m = mi(j)
and E ≤ min1≤i≤n{Li(j)} and, in turn, the stability of (61) follows. Summarizing, we have proved

Proposition 13. Let Λj
−(E) and Li(j) be as defined above. Furthermore, let Zj

i = (0, ..., zji , ..., 0)
be the solution to the torsional part of to the linearized system (11) around (Yj , 0) and subject to the
conditions zk(0) = żk(0) = 0 for k 6= i.

For 1 ≤ j ≤ n fixed, if the j-th vertical oscillating mode Yj = (0, ..., ypj , ...0) of system (11) at
energy E satisfies

‖ypj ‖∞ ≤
√

Λj
−(E) ⇐⇒ E ≤ min

1≤i≤n
{Li(j)} .

then Zj
i is stable for every i = 1, 2, 3.

Remark 14. When j = n, from (63), mi(n) = 0 for every i = 1, ..., n. Then, if αi,j is as in (59),
(62) (with m = 0) follows if

i2 + 6 + 9αi,nΛ
n
−(E) ≤ 3

4
Λn
+(E) ,

that is,

Li(n) :=
1

6

[

(n4 + 2)(12αi,n + 1)− 2(i2 + 6)

12αi,n − 1

]2

− (n4 + 2)2

6
.

On the other hand, if j = 1, it is not difficult to verify that mi(1) > 0 for every i = 1, ..., n.

We conclude by describing (with no plots) the numerical results obtained when n = 3. We found
that the first vertical oscillating mode is stable up to ‖y1‖∞ ≈ 1.07 ⇔ E ≈ 2.21: at this level, the
instability of the z1 and z3 torsional oscillations appears while z2 remains small. We then increased
the energy: when we reached ‖y1‖∞ ≈ 2.1 ⇔ E ≈ 13.91 also the z2 oscillations lost stability. By
increasing further the energy, the amplitude of the z2 oscillations increased while the amplitudes of
the z1 and z3 oscillations decreased: at ‖y1‖∞ ≈ 3 ⇔ E ≈ 43.87 all the energy is transferred onto z2
while z1 and z3 appear stable. A further increase of the energy lead to “chaos”, that is, a disordered
distribution of the energy from y1 to all the other components y2, y3, z1, 2, z3.

We then found that the second vertical oscillating mode y2 was stable up to ‖y2‖∞ ≈ 0.69 ⇔ E ≈
4.37, showing that Proposition 12 gives a fairly good condition: at this energy level, an instability of
the z1 and z3 torsional oscillations appears while z2 remains small. At ‖y2‖∞ ≈ 0.8 ⇔ E ≈ 5.91 also
the z2 oscillations appear unstable, although its oscillations are quite small when compared with z1
and z3. Then unpredictable behaviors start. For instance, when we reach ‖y2‖∞ ≈ 3 ⇔ E ≈ 111.38,
we are back in the situation where z1 and z3 are (equally) unstable while z2 appears stable. More
generally, a quite chaotic behavior was apparent.

The numerical results suggest that the third vertical oscillating mode y3 is stable up to ‖y3‖∞ ≈
2.7 ⇔ E ≈ 322, showing that Proposition 12 gives a fairly good condition: at this energy level, an
instability of the z3 torsional oscillation appears while z1 and z2 remain small. At ‖y3‖∞ ≈ 3 ⇔ E ≈
404 the behavior appears disordered and we could not detect any precise behavior; the only fact was
that the z1 and z2 instability manifested delayed in time.

We tried many other experiments but, yet, we could not detect a general rule. The only evident
thing is that the instability was lost for values slightly larger than the ones in Proposition 12.
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