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In this paper we present a parallel pricing algorithm for Asian options based on the Discrete Wavelet
Transform (DWT). The computational kernel of the pricing model is the solution of integral equations.
We obtain a sparse and accurate representation of the kernel of such equations in wavelet functions
bases. We moreover discuss the parallelization of the algorithm. Numerical results which show the
accuracy and efficiency of the procedure are reported in the paper.
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1. Introduction

Asian options are path-dependent contracts whose value depends on the average stock price. This
family of contracts is popular in the financial industry since they are less expensive than their
plain-vanilla counterparts and less sensitive to changes in the underlying asset price. Moreover,
these options enable investors to eliminate losses from movements in the underlying asset without
the need for continuous re-hedging.
The payoff of a Fixed Strike Asian options depends on the difference between the average of the
underlying and a fixed strike. The payoff of a Floating Strike option depends on the difference
between the average of the underlying and the value of the asset at maturity. Moreover, most
Asian options are traded in a discrete monitoring framework, i.e., the average is computed
considering the underlying asset values at prefixed date, like the end of each day, week, or
of each month (daily, weekly or monthly monitoring respectively). The common form of the
average could be either arithmetic or geometric average. In the first case, no analytical formulae
are available, thus numerical valuation methods are required. Several methods are proposed in
literature to deal with this kind of contracts: we refer to Chang and Tsao (2011), Fusai et al.
(2011), Kim and Wee (2011) for a review of numerical methods for Asian contracts.
In this paper, we refer to recent contributions given in this field, which assume that the

underlying assets evolve according to an exponential Lévy process, as in Černý and Kyriakou
(2011) and Fusai et al. (2011), dealing with both Floating and Fixed Strike Asian options.
Moreover, we consider the discrete monitoring case, much more relevant in practice than the
continuous one, since, as stated above, the average is usually computed at prefixed dates.
We present a pricing algorithm based on the Discrete Wavelet Transform (DWT). Wavelets

are functions that are localised both in space and frequency domain. Wavelets bases are thus
suitable for adaptive approximation, since the coefficients of the representation contain local
information. In particular, for certain operators (Beylkin (1992), Corsaro et al. (1999)), if we
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neglect coefficients under a fixed threshold we obtain a sparse, accurate representation of the
operator itself; this means that accuracy is preserved with a significative gain in efficiency.
Wavelets have been recognized as effective tools in financial and economic time series analysis
(see Gençay et al. (2002), Ramsey (2002) among the others and references therein). As an
example, in Mariani et al. (2008) authors use wavelet expansions to approximate the kernel
of an integral equation arising in the context of Heston stochastic volatility model calibration.
In Carton De Wiart et al. (2011) a PDE method, that makes use of wavelets, for evaluating
financial derivatives is introduced.
Our starting point is the pricing procedure described in Fusai et al. (2011); it is based on

a randomization technique, according to which the expiry date of the option is modeled as a
random variable distributed as geometric. The computational kernel is the solution of integral
equations; as authors point out, this procedure turns out to be accurate but computational
demanding. Our contribution in this framework is twofold. On one hand, we integrate the DWT
into the pricing algorithm in order to speed up the process while preserving accuracy; on the
other, we parallelize the developed algorithm in order to benefit from advanced architectures.
The integral equations involved in the model are Fredholm integral equations of the second
kind; the kernel of such equations fall within the class of the aforementioned operators for which
projection onto wavelet bases is particularly effective. For this reason, we apply the DWT to
the linear systems which arise from the discrete operators. Thanks to the wavelets’ localization
property, we transform the linear systems’ matrices into sparse matrix, obtaining a fast algorithm
preserving the accuracy of the original method. Numerical results reported in this paper confirm
the effectiveness of our approach.
We furthermore introduce parallelism in the pricing wavelet-based algorithm, both in the

DWT computation and in the linear systems solution process, to speed-up the evaluation
process.
It is now widely recognized the key role of High Performance Computing (HPC) in finance.
Many projects at present involve academics and financial institutions, with the aim of both
developing HPC hardware and software solutions for financial problems and training young
people to meet the future requirements of financial industry. The interest has been particularly
pushed in the last years by the financial crisis; new regulations clearly establish requirements
that concern the statistical quality standards of the models for valuation and risk management.
Therefore frequent, large-scale analyses of financial data have to be performed to develop
early warning systems. It is recognized that “the crux of the most challenging banking reform
problems lays now more than ever in the realm of computer engineering” (Albanese et al.

(2011)). Of special importance is the concept of parallelism, since today microprocessors have
multiprocessor support, thus high-performance computers are actually parallel computers.
The literature on applications of HPC to finance is very rich; in particular, we mention some
related work on the development of parallel option pricing procedures. In Sak et al. (2007) au-
thors discuss the use of parallel computing in Asian option pricing and evaluate the efficiency of
various algorithms. In Fusai et al. (2010) authors show the use of a grid computing architecture
for the solution of a complex Asian option pricing problem. In Bronstein et al. (2010) parallel
implementations of a quantization tree algorithm, applied to the pricing American multi-asset
options and swing options, are presented. In Leentvaar and Oosterlee (2008) authors show a
parallel Fourier-based sparse grid method for pricing multi-asset options. Finally Surkov (2010)
discusses the implementation on a GPU of algorithms, based on the Fourier space time-stepping
method, for pricing single- and multi-asset options.

Preliminary results of this research activity were presented in Corsaro et al. (2011), where a
first analysis of the DWT benefits has been addressed. In that paper, the pricing procedure is
based on a recursive relation defined on the transition probability density. Fixed Strike options
are considered only. Also in this paper we refer to a pricing procedure which is based on a
randomization technique, but the recursion considered here is a price recursion. Moreover, we
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here consider both Fixed and Floating Strike Asian options.
The paper is organized as follows: in Section 2. we describe the pricing model we refer to; in

Section 3. we recall basic elements of wavelet theory; in Section 4. we describe the wavelet-based
pricing method; finally, in Section 5. we discuss the parallel implementation.

2. The randomization pricing method

In this section we briefly recall the pricing model considered in this paper, addressing reader to
Fusai et al. (2011) for details. More precisely, we assume that the risk-neutral process for the
stock price S(t) is described by

S(t) = S0e
(r−d+g)t+L(t),

where r is the short rate, d is the dividend yield, g is the compensator, chosen to ensure that the
discounted price process is a martingale. L(t) is a Lévy process, identified by its characteristic
exponent ψ(ω) = logE(eiωL(1)). Let us considerM equidistant monitoring dates, with amplitude
of the interval ∆, such that t0 = 0, t1 = ∆, · · · , tn = n∆, · · · , tM = M∆ = T . The log-return
on each time interval has the following characteristic function

φ(ω) = e(ψ(ω)+iω(r−d+g))∆. (1)

The density f of the log-return is obtained computing the Fast Fourier Transform (FFT) of (1).
Let us denote with Sn the price of the underlying at time n∆, i.e., Sn = S(n∆); the payoff of
an arithmetic Asian option is given by

(IM − cSM )+ ,

where

IM :=
M∑

n=0

λnSn

is a path dependent random variable.
By suitable choices of values λn and c, it is possible to describe a wide class of Asian options.
Standard cases are

λ0 =
γ

M + γ
−
K

S0
; λn = λ =

1

M + γ
, n = 1, . . . ,M ; c = 0 (2)

for Fixed Strike call options, and

λ0 = −
αγ

M + γ
; λn = λ = −

α

M + γ
, n = 1, . . . ,M ; c = −1 (3)

for Floating Strike calls; if S0 is included in the average, we set γ = 1, otherwise γ = 0; α is the
option coefficient of partiality.
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The following recursion holds for the option price:

V(SM , IM ,M) = (IM − cSM )+,

V (Sn, In, n) = e−r∆
∫ +∞

−∞

f (s)V (Sne
s, In+λn+1Sne

s, n+ 1) ds

n =M − 1, . . . , 0.

(4)

The randomization technique consists in modeling the expiry date T as a random variable
distributed as geometric of parameter q; if one defines

H (x, q) := (1− q)
+∞∑

k=0

qkv(x, k) (5)

with v(x, k) := V (1, x,M − k), the option price is given by S0v(λ0,M). See Fusai et al. (2011)
for further details.
Considering Recursion (4) and Definition (5), Fusai et al. (2011) show that for Floating Strike
options function H satisfies the integral equation

H (x, q) = q

∫ λ

−∞

K (x, y)H (y, q) dy + (1− q)φ(x) (6)

where

K (x, y) = −e−r∆f

(
log

(
x

y − λ

))
x

(y − λ)2

and

φ(x) = (x− c)+ .

For Fixed Strike options, the value of v(x, k), k = 1, ...,M, is analitically known for x ≥ 0 and
so the integral equation becomes

H (x, q) = q

∫ 0

−∞

K (x, y)H (y, q) dy + (1− q)φ̃ (x, q) (7)

with

φ̃ (x, q) = φ (x) +
q

1− q

∫ λ

0
K (x, y)H (y, q) dy, (8)

where, if y ≥ 0,

H(y, q) =
y(1− q)

1− qe−r∆
+

e(r−d)∆(1− q)

(M + γ)(1− e(r−d)∆)

(
1

1− qe−r∆
−

1

1− qe−d∆

)
.

In this way, starting from the integral recursion for V defined in (4), an integral equation for
H (Equation (6) and (7) for Floating and Fixed Strike Asian options, respectively) is obtained.
This equation is the core of the evaluation process.
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Applying a quadrature rule, with N nodes xi and weight wi, to it, we obtain the linear system

(I − qKD)h = b (9)

where, for i, j = 1, · · · , N the vector and matrices elements are given by

h(i) = H(xi, q)

K(i, j) = K(xi, xj)

b(i) = (1− q)Φ(xi, q)

D(i, i) = wi, D(i, j) = 0 if i 6= j,

with Φ(xi, q) = φ(xi) (Φ(xi, q) = φ̃(xi, q)) for Floating (Fixed) Strike Asian options. System (9)
is the main computational kernel in the algorithm.
The option price is recovered de-randomizing the option maturity, that is, exploiting the complex
inversion integral

v(λ0,M) =
1

2πρM

∫ 2π

0

H
(
λ0, ρe

is
)

1− ρeis
e−iMsds. (10)

In particular, we approximate numerically (10) using:

vh(λ0,M) =

H(λ0,ρ)
1−ρ + (−1)M H(λ0,−ρ)

1+ρ + 2
∑M−1

j=1 (−1j)Re
(
H(λ0,ρeijπ/M )
1−ρeijπ/M

)

2MρM
(11)

where Re(·) denotes the real part function and ρ is set to 10−4/M .
The procedure consists in the following steps:

• solve Equation (6) for q equal to qj = ρeijπ/M , j = 0, ...,M ;
• approximate v(λ0,M) by vh(λ0,M) as in (11).

Moreover, Equation (11) can be written as

vh (λ0,M) =
1

ρM

M∑

j=0

(−1)jajH
(
λ0, ρe

ijπ/M
)
,

so we can use the Euler summation technique, a convergence-acceleration technique for evalu-
ating alternating series, for its computation. More precisely, fixed two positive integers me, ne,
the idea is to approximate the above summation in the following way:

ṽ (λ0,M) ≈
1

2meρM

me∑

j=0

(
me

j

)
bne+j (λ0,M) ,

where

bk (λ0,M) =

k∑

j=0

(−1)jajH
(
λ0, ρe

ijπ/M )

The acceleration technique is applied when more than ne+me monitoring dates are considered.
When M > ne +me the evaluation of H

(
λ0, ρe

ijπ/M
)
for j = 0, ..., ne +me, is required, thus
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ne+me+1 systems instead ofM+1 as in (11). The number of linear systems which are actually
solved is thus

Nsys = min(M,ne +me) + 1. (12)

In our experiments, we fix these values following Fusai et al. (2011).
It is worth emphasizing that, from a computational point of view, Fixed and Floating Strike
option valuation slightly differ: in the Floating Strike case all systems have the same right-hand
side, while for Fixed Strike options it has to be computed for each one of them, because of its
dependence on the parameter q as shown in Equation (7). In Figure 1 a sketch of the pricing
algorithm is reported.

Procedure Asian floating pricing
1 : compute K, D and b
2 : for j = 0, ...,min(M,ne +me) do

solve (I − qjKD)hj = b
end

3 : reconstruct v(λ0,M)
End Asian floating pricing

Procedure Asian fixed pricing
1 : compute K and D
2 : for j = 0, ...,min(M,ne +me) do

compute b = b(qj)
solve (I − qjKD)hj = b

end

3 : reconstruct v(λ0,M)
End Asian fixed pricing

Figure 1. Asian call randomization pricing algorithm. Up: Floating Strike options; down: Fixed Strike options.

3. The Discrete Wavelet Transform

The solutions of the linear systems in Figure 1 can be computed exploiting wavelets properties.
A wavelet ψ(t) is defined as a function belonging to L1(R) ∩ L2(R) such that

∫

R

ψ(t)dt = 0.

In probabilistic terms, most of a wavelets mass is concentrated in a compact subset of R, that is,
one of the main features of wavelets is “localization”. Each wavelet basis is derived by a mother

wavelet by means of dilation and translation; in particular, the dilation factor corresponds to a
scale within the Multiresolution Analysis (MRA). Projecting a function onto a space of a MRA
allows one to obtain information about it, at a level of detail which depends on the resolution of
the space. The mapping that leads from the l-th (fine) level resolution to the (l− 1)-th (coarse)
one retaining the information that is lost in this process is the Discrete Wavelet Transform
(DWT). More precisely, the DWT of a vector provides both scaling and wavelet coefficients. The
former give the coarse representation, the latter the detail information loss when passing from
the fine level to the coarse one. If we neglect coefficients under a fixed threshold (Hard Threshold

technique (HT) Mallat (2008)), accuracy can be preserved with a significative gain in efficiency.
Wavelet coefficients allow one to reconstruct the original data, that is, the DWT is an invertible
operator.
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Each MRA is characterized by two sequences

(hk), (gk), k ∈ Z,

the low-pass and the high-pass filters respectively. Let cl = (cln)n∈Z be the coefficients of the
projection of a function f(t) onto the l-th resolution subspace of the MRA; the DWT operator
W is defined as follows

W : cl ∈ l2(Z) −→ (cl−1, dl−1) ∈ l2(Z)× l2(Z)

where l2(Z) = {(ck)k∈Z : ck ∈ C,
∑

k |ck|
2 <∞}, and

{
cl−1
n =

∑
k∈Z hk−2nc

l
k,

dl−1
n =

∑
k∈Z gk−2nc

l
k.

(13)

In matrix form, if

L = (h̃i,j = hj−2i), H = (g̃i,j = gj−2i)

are the low-pass and the high-pass operator respectively, relations (13) can be written as

(
cl−1

dl−1

)
=

(
L
H

)
· cl ⇐⇒

{
cl−1 = Lcl

dl−1 = Hcl .

The components of the subsequence cl−1 are the scaling coefficients, that retain the information
about low frequencies, while dl−1 contains the wavelet coefficients, that retain the details.
The DWT can be applied recursively as well; at each step, only the scaling coefficients resulting
from the previous step are transformed.
Let us recursively define

Q(1) :=

(
L

H

)
, Q(k) :=

(
Q(k−1) I
I I

)
, k ≥ 2,

and let

Qs :=
s∏

k=1

Q(i).

Then, the bi-dimensional DWT in s steps of a discrete operator A is defined as

AWs := QsAQ
⊤
s .

In practice, it is performed in two stages: computing the product QsA actually requires to
transform s times the columns of A; then, multiplying by Q⊤

s , the rows are transformed. Note
that if the wavelet basis is orthonormal, then all matrices Q(k) are orthogonal, thus QsQ

⊤
s = I.

From a computational point of view, it is worth emphasizing that, if m is the length of the two
sequences hk and gk, then the number of floating-point operations required for the computation
of the DWT of a vector of length n is O(mn).
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Figure 2. Left: sparsity structure of matrix KD. Right: sparsity structure of the HT of KD with threshold 10−8.

4. The wavelet-based pricing algorithm

In this work, we consider Daubechies wavelets (see Daubechies (1992)), a family of orthonormal
compactly supported wavelets. Each family of Daubechies wavelets is characterized by a fixed
number of vanishing moments, from which the amplitude of their support depends.
We discretize the integrals in (6) and (7) by means of a quadrature rule on a truncated domain
[l, λ] for Floating Strike Asian options, [l, 0] for Fixed ones. Different values for l, chosen according
to the optimality criterion discussed in Fusai et al. (2011), have been tested. Numerical results
shown in the following refer to the value which provides the best accuracy.
The transition probability density of the underlying log-price obviously decreases close to the
bounds of the integration domain. For this reason, the most significant elements of the matrix
KD are about its diagonal, decay in magnitude is observed away from this region. This features
makes the application of DWT particularly effective. In Figure 2 the sparsity structure of matrix
KD, for 2048 quadrature nodes and a Gauss-Lobatto quadrature rule, is represented, together
with the sparsity structure of the HT of KD for a threshold level equal to 10−8. We note that
the HT operation allows to neglect about the 80% of the elements.
In Figure 3 we represent the sparsity structure of the HT of the transformed matrix, for

different transform steps and the same threshold. We note that the percentage of neglected
elements is greater than 90% even for a single DWT step; it raises up to 96% when 4 steps are
performed. Therefore, the impact of the HT increases when it is applied in the wavelet space,
thus efficiency is improved. Moreover, accuracy is preserved, as results shown in the following
reveal.

Let us refer to the pricing procedure reported in Figure 1: in the solution of the linear systems
(step 2), we apply to both sides the DWT operator Qs, for a fixed number of DWT steps s; for
each value of q we thus obtain the linear system

Qs(I − qKD)h = Qsb⇔ (Qs − qQs(KD)Q⊤
s Qs)h = Qsb

⇔ (I − qQs(KD)Q⊤
s )Qsh = Qsb

for the orthogonality of the operator Qs. Therefore, if we denote by KDW , hW , bW the DWT of
KD,h, b respectively, we have

(I − qKDW )hW = bW . (14)
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Figure 3. Sparsity structure of the HT of the DWT of matrix KD, with threshold 10−8, for different numbers of
transform steps: 1 (up-left), 2 (up-right), 3 (down-left), 4 (down-right).

We then apply a hard threshold to the coefficient matrix of (14), thus we actually solve the
linear system

(I − q(KDW )ǫ)y = bW (15)

where (KDW )ǫ is the hard threshold of KDW with threshold ǫ. Finally, the inverse DWT is
applied to the solution y of (15), thus an approximation of h, Q⊤

ǫ y, is obtained.

4.1 Numerical Results

The aim of this section is to discuss the accuracy and the computational efficiency of the proposed
wavelet-based pricing algorithm. More precisely, we use the Daubechies wavelets with support
[0, 3] (2 vanishing moments), and we show that the integration of the DWT into the pricing
procedure allows us to increase its efficiency while preserving accuracy.
In Fusai et al. (2011) the linear systems arising from the pricing model were originally solved via
GMRes; authors tested a solution method, proposed by Reichel, to speed-up the process. Here
we use the GMRes to solve (15). In the following, for sake of brevity, we denote with GMRes the
original procedure, with Reichel the procedure which uses Reichel’s method to solve the system
and with DWT, with an explicit reference to the number of transform steps, the wavelet-based
pricing algorithm. We employ the Gauss-Lobatto quadrature rule. The discretization parameters
are defined as in Fusai et al. (2011), with the exception of the number of quadrature nodes for
the computation of the integral in (8): we use 3N quadrature nodes (instead of N +2500), since,
according to our numerical tests, this choice improves accuracy 1.

1For our selected values of N , it holds N + 2500 < 3N
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Table 1. Characteristic exponents of some parametric Lévy processes
Model ψ (ω)

CGMY CΓ (−Y )
(

(M − iω)Y −MY + (G+ iω)Y −GY
)

NIG −δ

(

√

α2 − (β + iω)2 −
√

α2 − β2

)

JD −
1

2
σ2ω2 + λ

(

eiωα−
1

2
ω2δ2

− 1
)

Table 2. Mean absolute error and CPU time (in percentage with respect to GMRes) for Fixed Strike Asian
option: CGMY process.

GMRes Reichel
N Error CPUtime Error CPUtime

1024 1.64 ∗ 10−4 1 1.63 ∗ 10−4 0.52
2048 5.40 ∗ 10−5 1 5.31 ∗ 10−5 0.53
4096 1.53 ∗ 10−5 1 1.16 ∗ 10−5 0.64

1 DWT step 2 DWT steps
N ǫ Error CPUtime Error CPUtime

1024 10−10 1.63 ∗ 10−4 0.48 1.64 ∗ 10−4 0.45
1024 10−9 1.56 ∗ 10−4 0.46 1.60 ∗ 10−4 0.43
1024 10−8 2.41 ∗ 10−4 0.44 1.22 ∗ 10−4 0.42
1024 10−7 6.18 ∗ 10−4 0.43 2.29 ∗ 10−4 0.40
2048 10−10 5.24 ∗ 10−5 0.39 5.32 ∗ 10−5 0.34
2048 10−9 3.79 ∗ 10−5 0.37 4.59 ∗ 10−5 0.32
2048 10−8 1.04 ∗ 10−4 0.35 4.14 ∗ 10−4 0.31
2048 10−7 1.47 ∗ 10−3 0.34 7.19 ∗ 10−4 0.30
4096 10−10 1.65 ∗ 10−5 0.54 1.59 ∗ 10−5 0.45
4096 10−9 2.68 ∗ 10−5 0.54 2.12 ∗ 10−5 0.44
4096 10−8 3.07 ∗ 10−4 0.50 1.52 ∗ 10−4 0.43
4096 10−7 3.00 ∗ 10−3 0.48 1.54 ∗ 10−3 0.42

In Černý and Kyriakou (2011) benchmarks for Fixed Strike Asian option, with strike K ∈
{90, 100, 110}, are given. We use these values to compare accuracy of GMRes, Reichel and DWT.
More precisely, in Tables 2-3 we report the mean absolute error over the strike values, obtained
with the three procedures, simulating the CGMY and the NIG distribution respectively. We set
T = 1, r = 0.04, d = 1, M = 50, γ = 1, S0 = 100, and C = 0.9795, G = 3.512, M = 10.96, Y =
0.8 for the CGMY process, α = 7.4046, β = −3.5302, δ = 1.2573 for the NIG process (see Table
1). We denote with ǫ the threshold in the HT. We compare the procedures in terms of execution
time as well: in the tables the percentage of time with respect to the CPU time required by
GMRes is reported together with the error. These numerical tests refer to a MatLab R2011b
implementation 2 on a PC equipped with a Pentium Dual-Core 2.70 GHz and 4 GB RAM.
From these tables, we note that that the DWT achieves the same accuracy than GMRes and it
is always more efficient than Reichel. As expected, for smaller values of ǫ the error decreases
and CPU time increases, since the linear system matrix becomes less sparse. We note that the
execution time of the DWT, in percentage, decreases with respect to N for N ≤ 2048, while it
increases for N = 4096. We monitored the different stages of the pricing procedure: we observed
that when 1024 quadrature nodes are considered, the CPU time required to compute the price is
small, thus the overhead of the DWT affects performance, and we do not have great advantages.
On the opposite, if we consider 4096 grid points, the computational cost of the construction
of matrices and vectors involved in the algorithm is high: this does not depend on the specific
method used to solve the systems, thus performance is affected also if the application of the
DWT speeds up the linear systems solution process. Tables 2-3 seem to suggest that efficiency
increases with respect to the number of DWT steps.

In order to investigate the impact of the threshold ǫ and of the number of DWT steps on

2The MatLab implementation was realized for comparing the different methods employed in the pricing procedure. We
developed our parallel software in C; details are given in next section.
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Table 3. Mean absolute error and CPU time (in percentage with respect to GMRes) for Fixed Strike Asian
option: NIG process.

GMRes Reichel
N Error CPUtime Error CPUtime

1024 4.50 ∗ 10−4 1 4.49 ∗ 10−4 0.54
2048 8.97 ∗ 10−5 1 8.90 ∗ 10−5 0.54
4096 2.54 ∗ 10−5 1 2.20 ∗ 10−5 0.64

1 DWT step 2 DWT steps
N ǫ Error CPUtime Error CPUtime

1024 10−10 4.49 ∗ 10−4 0.47 4.49 ∗ 10−4 0.45
1024 10−9 4.42 ∗ 10−4 0.45 4.45 ∗ 10−4 0.44
1024 10−8 3.67 ∗ 10−4 0.44 4.08. ∗ 10−4 0.43
1024 10−7 3.58 ∗ 10−4 0.43 1.52 ∗ 10−4 0.40
2048 10−10 8.82 ∗ 10−5 0.39 8.90 ∗ 10−5 0.34
2048 10−9 7.34 ∗ 10−5 0.37 8.14 ∗ 10−5 0.32
2048 10−8 7.34 ∗ 10−4 0.35 3.90 ∗ 10−5 0.31
2048 10−7 1.49 ∗ 10−3 0.33 7.13 ∗ 10−4 0.30
4096 10−10 2.44 ∗ 10−5 0.54 2.49 ∗ 10−5 0.46
4096 10−9 2.47 ∗ 10−5 0.52 2.01 ∗ 10−5 0.44
4096 10−8 3.04 ∗ 10−4 0.50 1.43 ∗ 10−4 0.43
4096 10−7 3.11 ∗ 10−3 0.48 1.57 ∗ 10−3 0.42

Figure 4. Absolute error: Effects of the threshold tolerance ǫ (x-axis) and of the number of DWT steps.

accuracy, in Figure 4 we report the absolute error of the computed price of the Asian call
option versus the threshold employed in the HT procedure, with 4096 quadrature points. The
implemented software is written in C language and uses the freely available GSL Library (see
Galassi et al. (2009)) to perform the wavelet transform. As pointed out, the matrix arising from
the threshold applied to the projection of the discrete operators onto wavelet spaces is strongly
sparse. We solve the sparse linear systems by means of the GMRES solver, with Incomplete
Factorization ILU(0) preconditioner, implemented in the SPARSKIT library (see Saad (1990)).
More precisely, in Figure 4 we present two test cases taken from Fusai et al. (2011): a Fixed and

a Floating Strike Asian option, assuming a Jump Diffusion (JD) distribution with parameters
r = 0.0367, d = 0, T = 1, S0 = 100, M = 50, K = 100, γ = 1, σ = 0.126349, λ = 0.174814,
α = −0.390078, and δ = 0.338796 (see Table 1). In each graph the four lines refer to different
number of DWT steps. We tested all the possible values of DWT steps, that are the naturals less
or equal to log2N . We observed that the execution time decreases, with respect to the number
of transform steps, as far as this number does not exceed 8; so the four lines refer to a number of
DWT steps equal to 1, 2, 4 and 8. The absolute error is computed with respect to a reference price
obtained with GMRes, the same number of grid points, with a very small tolerance in the stopping
criterion of the linear systems solver, without applying the wavelet transform: Figure 4 shows
that errors corresponding to different values of DWT steps are comparable, even if increasing
the number of DWT steps mostly results in a slightly increase of the accuracy. Moreover, in all
cases, the most significant digits are obtained as far as threshold does not exceed 10−8. On the
other hand, the percentage of zeros in the matrix is about 30%; after the HT applied to the
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transformed matrix, more than 90% of the elements are neglected even for the threshold set to
10−6. Also in these numerical tests, an increase in the DWT steps does not always result in an
increase of efficiency. So we can use the threshold to control the accuracy and the number of
DWT steps to control the efficiency. In particular reducing the threshold we improve accuracy
and increasing the number of DWT steps we reduce the execution time. The best combination
of threshold value and number of DWT steps has to be determined; performance obviously
depends on computational environment. In our case, the best combination is ǫ = 10−9 and
DWTsteps = 8. For further details, we refer to Section 5.1, where we analyze the performances
of the parallel algorithm.

5. Parallel implementation

Parallelism has been introduced in the two most computationally intensive stages of the pricing
procedure, that are the DWT of the KD matrix and the solution of the Nsys linear systems.
The computation of the bi-dimensional DWT is performed in two independent stages. We dis-
tribute the matrix KD in a column-block fashion, that is, blocks of contiguous columns are as-
signed to each process. In the first stage, processes concurrently compute the DWT of columns;
then, communication is required for globally transposing the matrix, so, processes can concur-
rently transform the rows of the intermediate matrix.
Moreover, the algorithm requires the solution of Nsys linear systems, with Nsys defined in (12).
The systems are independent one of each other, thus, they can be solved concurrently; they are
distributed among processes, that is, processes build and solve them without communication.
If np processes are involved in the computation, let

N loc
sys := ⌊Nsys/np⌋, mod := mod (Nsys, np),

where we denote with ⌊·⌋ the integer part, then, mod processes solve N loc
sys + 1 systems, the

others N loc
sys.

In Figure 5 a sketch of the parallel algorithm for the Floating Strike Asian option is reported.
For Floating Strike Asian option the right hand side of the systems has to be computed once,
while for Fixed Strike Asian Option it has to be recomputed for each one of them, for its
dependence on the parameter q (Figure 1). In the second case each process has to build the
right hand side of the system, compute its DWT and then solve the linear system, so some more
calculations, which are done in parallel, are required: this slightly increases parallel efficiency.

Procedure

• compute KDW and hW in parallel

- distribute KD in column-block fashion

- each process computes the DWT of a column block

- global transposition

- each process computes the DWT of a row block

• collect the matrix so that each process stores the whole matrix

• neglect the elements of KDW below the fixed threshold ǫ;

• solve in parallel (I − qjKD
ǫ
W )yj = fW , j = 0, Nsys

- distribute the values (qj)
Nsys

j=0
to processes;

- each process solves the linear systems distributed to it;

- each process applies the inverse DWT to local solutions yj .

• process 0 collects local solutions

End Procedure

Figure 5. Sketch of the parallel pricing algorithm for Floating Strike Asian option pricing based on the DWT.

The parallel software uses the Message Passing Interface (MPI) communication system. We
use the routine pdtrans of the PUMMA library (see Choi et al. (1993)) for the global matrix

12



transposition. We carried out our experiments on an IBM Bladecenter installed at University
of Naples Parthenope. It consists of 6 Blade LS 21, each one of which is equipped with 2 AMD
Opteron 2210 and with 4 GB of RAM.

5.1 Numerical results

To test the parallel software we simulate the CGMY distribution with parameters C = 0.9795,
G = 3.512, M = 10.96 and Y = 0.8. We set T = 1, r = 0.04, d = 1 and M = 50. To evaluate
the parallel performance of the algorithm, in the following we show the speed-up. Speed-up (see
Foster (1995)) is the usual metrics to evaluate a parallel software and is defined as

Snp =
T1
Tnp

(16)

where np is the number of parallel processes and Tnp is the execution time of the algorithm with
np parallel processes. The speed-up denotes how much faster the parallel program is. Typically
Snp is a number between 1 and np. The ideal speed-up is Snp = np. An important theoretical
limit to the maximum improvement obtainable by a parallel algorithm is Amdahl’s Law. It states
that

Snp ≤
1

α+ 1−α
np

(17)

where α, with 0 < α < 1, is the fraction of the algorithm which is strictly serial.

Both the threshold of the HT procedure and the number of DWT steps affect performance, so,
in Figure 6 and 7 we report the speed-up values, versus the number of processes, for N = 2048
and different values of the threshold and the DWT steps.
Since we find that the optimal value for the number of DWT steps is 8 (see Section 4.1),

in Figure 6 we fix the number of DWT steps to 8 and we plot the speed-up for 4 different
threshold values ǫ = 10−10, 10−9, 10−8, 10−7. The two graphics refer to the Fixed Strike (left)
and Floating Strike (right) Asian Option. For higher values of threshold the sparsity of the
KD matrix substantially increases: as a consequence, the computational time is lower and the
communication overhead is higher, affecting parallel efficiency. Indeed the speed-up values are
very close for all the values of the threshold up to four processes, while when eight processes are
involved the speed-up decay is more evident. Similar behaviors are observed for both Floating
Strike and Fixed Strike Asian Option.
In Figure 7 the threshold is fixed at 10−9 and the speed-up is represented for 1, 2, 4 and 8
DWT steps. Again, the two graphics in figure refer to the Fixed Strike (left) and Floating
Strike (right) Asian Option. The figure reveals a decrease in terms of performance with eight
processes. In most cases, the higher the number of DWT steps, the lower the speed-up. This
because the time required for systems solution, that is the execution time of the parallel part of
the algorithm (the parallel time) is strongly reduced, thus the communication overhead and the
execution time of the part of the algorithm that cannot be parallelized (the serial time) affect
speed-up according to Amdahl’s law. Also in this case we observe slight difference between
Floating Strike and Fixed Strike Asian Option.
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Figure 6. Speed-up: Effects of the threshold tolerance ǫ for N = 211 and 8 DWT steps. Left: Fixed Strike Asian
Option; right: Floating Strike Asian Option.

Figure 7. Speed-up: Effects of the number of DWT steps, with N = 211 and ǫ set at 10−9. Left: Fixed Strike
Asian Option; right: Floating Strike Asian Option.

6. Conclusion

In this work we presented a parallel wavelet-based pricing procedure for both Fixed and Floating
Strike Asian options, within a discrete monitoring modeling framework. We integrated the DWT
into a pricing procedure previously developed by one of the authors and parallelized the main
computational kernels. More precisely, the DWT has been applied in order to obtain a sparse,
accurate representation of the coefficient matrices - typically large matrices - of the linear sys-
tems arising from the involved integral equations. Numerical results, shown in this work, confirm
the effectiveness of our approach.
We observe that the proposed algorithm can be applied also to other kind of contracts, like
barrier and lookback options, starting from the randomization procedure presented in Fusai et
al. (2012). In that paper a method based on the Fast Fourier Transform (FFT) is proposed;
the assumption that the underlying asset evolves as an exponential Lévy process is made. The
proposed randomization technique can be applied also to other processes, like the Costant Elas-
ticity of Variance (CEV) one. In this case the FFT-based algorithm cannot be used, since the
CEV process is not characterized by independent and identically distributed log-increments. Our
wavelet-based method can instead be used to speed-up the solution of the arising linear systems,
like in this work. This is at present work in progress.
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