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PERSISTENT AND SUSCEPTIBLE BACTERIA WITH INDIVIDUAL DEATHS

FABIO ZUCCA

Abstract. The aim of this paper is to study two models for a bacterial population subject to antibiotic
treatments. It is known that some bacteria are sensitive to antibiotics. These bacteria are in a state called

persistence and each bacterium can switch from this state to a non-persistent (or susceptible) state and back.
Our models extend those introduced in [6] by adding a (random) natural life cycle for each bacterium and by

allowing bacteria in the susceptible state to escape the action of the antibiotics with a fixed probability 1−p

(while every bacterium in a persistent state survives with probability 1). In the first model we “inject” the
antibiotics in the system at fixed, deterministic times while in the second one the time intervals are random.
We show that, in order to kill eventually the whole bacterial population, these time intervals cannot be “too
large”. The maximum admissible length is increasing with respect to p and it decreases rapidly when p < 1.
While in the case p = 1 switching back and forth to the persistent state is the only chance of surviving for
bacteria, when p < 1 and the death rate in the persistent case is positive then switching state is not always
a good strategy from the bacteria point of view.

Keywords: bacteria persistence, multitype branching process, random environment.
AMS subject classification: 60K35, 60K37.

1. Introduction

It is well known that some bacteria are not sensitive to antibiotics (see [4]). This state, called persistence,

is not permanent and each bacterium can switch during its lifetime from persistent to susceptible and back

to persistent many times (see for instance [9, 10]). In the persistent state it does not reproduce, while in the

susceptible state it breeds but it is also vulnerable to antibiotics.

Two models for this phenomenon have been introduced in [6]. The aim of this paper is to extend these two

models by adding (1) a life cycle for each bacterium (that is, individual deaths) and (2) a possibly positive

probability 1 − p for each bacterium in the susceptible state to survive the action of the antibiotic. In our

models each bacterium has an independent random lifetime represented by two geometrically distributed

random variables with parameters dn and dr for the susceptible state and the persistent state respectively.

At certain times, that we call mass killing times or simply killing times, an antibiotic is injected in the

system; the time intervals are deterministic and equally spaced in the first model and random in the second

one. The action of the antibiotic does not affect the persistent population but it kills each bacterium in

the susceptible state independently with probability p ∈ [0, 1]; p = 0 means that there is no target for the

antibiotic in the bacterial genome, p = 1 means that the antibiotic performs a “perfect” mass-killing action

in the susceptible state population. The models in [6] can be recovered by setting dn = dr = 0 and p = 1.

For some values of the parameters (see Section 2.1 for details), the system dies out almost surely even

without the action of the antibiotics; thus, we need to study only the so-called supercritical case, which is

the case when the natural evolution of the system allows survival with positive probability.
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In the deterministic killing times case we suppose that the mass-killings occur at times Sn := nT where

T > 0. We show that, for every value of the parameters, if the interval T between each killing time is too

large (strictly larger than a critical value Tc ∈ (0,+∞)), the bacterial population has a positive probability

of survival, while if T ≤ Tc there is almost sure extinction (see Theorem 3.1). In particular we are interested

in the dependence of Tc from p: as p converges to 0, the critical time interval length Tc converges to 0 as

well. Thus there is not a positive minimum time interval which guarantees the extinction of the bacterial

population for all p ∈ (0, 1]. When the death rate dr is positive, for some set of parameters it might happen

that switching from the susceptible to the resistant state is not a good strategy from the bacteria point of

view, since it results in a longer critical time Tc.

In the random killing time case we suppose that the mass-killings are separated by a sequence of inde-

pendent random time intervals {Tn}n≥1; this sequence is i.i.d. and the distribution is given by a probability

measure µβ , where {µβ}β>0 is a one-parameter stochastically increasing family of probability measures sat-

isfying some mild conditions (see Section 4 for details). In this case we have two randomizations, so to speak:

first we choose a realization ξ of the sequence {Tn}n≥1 (we call ξ a realization of the environment) and then

we have a random evolution of the system with killing times given by ξ. We show that if β is large enough

(β > β1
c (p)) the population survives with positive probability for almost every realization of the environment

(see Theorem 4.1). On the other hands if β is small enough (β < β2
c (p)) then the population dies out

almost surely for almost every realization of the environment (see Theorem 4.2). As in the deterministic

case, limp→0 β
2
c (p) = 0. Roughly speaking, since the expected time between two consecutive mass-killings

is a nondecreasing function of β, we have that, in order to kill almost surely the bacterial population, the

expected time between two injection of antibiotics in the system cannot be too large. According to Ex-

ample 4.4, it might happen that β2
c (p) < β1

c (p). In particular, if µβ ∼ G(1/β) (where G is the geometric

distribution) then β1
c (p) = β2

c (p) =: βc(p) and limp→0 βc(p) = 0.

2. The dynamics

This is a modification of the model described in [6] with the introduction of individual deaths for each

type of bacteria; indeed, it is quite natural to assume that each bacterium has its own life cycle in the

absence of an antibiotic treatment. Another addition to the dynamics is the possibility for some susceptible

bacteria to survive (with a fixed probability 1− p where p ∈ [0, 1]) the action of the antibiotics. We denote

by Nt and Rr the number of susceptible and persistent bacteria respectively. This is a 2-type process in

continuous time, with the following (nonnegative) rates:

(Nt, Rt) → (Nt + 1, Rt) at rate λNt

(Nt, Rt) → (Nt − 1, Rt + 1) at rate aNt

(Nt, Rt) → (Nt + 1, Rt − 1) at rate bRt

(Nt, Rt) → (Nt − 1, Rt) at rate dnNt

(Nt, Rt) → (Nt, Rt − 1) at rate drRt.

(2.1)

We recall that a change of state takes place at rate α if it takes place after a random geometrically distributed

time intervals T ∼ G(α): due to the lack of memory of the geometric distribution, this means that whenever
2



we start looking at the system, the random time to wait before the change of state is a G(α)-distributed
random variable. In particular the probability of the change of state in an interval of time [t, t + ∆t] is

asymptotic to α · ∆t as ∆t goes to 0. A more precise construction of the model is given in the proof of

Theorem 4.3. Roughly speaking, we can imagine that each particle has five clocks which ring at geometrically

distributed time intervals with parameters λ, a, b, dn and dr (the clocks are independent). When a particle

is in a susceptible state we have different possibilities: if its G(λ)-clock rings it breeds, if its G(dn)-clock rings

it dies and if its G(a)-clock rings it changes into a persistent state (it is not affected by the other clocks). On

the other hand when a particle is in a persistent state we observe the following behaviors: if its G(dr)-clock
rings it dies and if its G(b)-clock rings it moves to a susceptible state (and, again, it is not affected by the

other clocks).

When a = 0 and b = 0 the two populations are completely separated, the N -population is a branching

process with mass killing and the R-population is stable if dr = 0 or dying out if dr > 0. If a > 0 and

b = 0 then the N -population is a branching process with mass killing and individual death rate a+dn, while

the R-population survives if and only if either dr = 0 or the N -population survives. The interesting case

is b > 0. We note that this process is not monotone with respect to the parameters a and b; on the other

hand, it is monotone with respect to the other parameters and to the initial condition.

Without the mass deaths caused by the antibiotics, the process has a discrete-time branching random

walk counterpart (similar to the one described in [14, 3]). When the antibiotic is injected in the system the

dynamics is the following

(Nt, Rt) → (B(Nt, 1− p) , Rt)

which means that the number of surviving susceptible bacteria is a binomial-distributed random variable;

thus, at a killing time each susceptible bacterium is killed (independently from the others) with probability

p ∈ [0, 1]. After a mass killing the system performs a new evolution starting from the survivors. If we consider

just the surviving population at these mass killing times, we have a discrete-time process; it turns out to be

a 2-type branching process or a 2-type branching process in random environment depending on our choice of

the killing times (deterministic or random). Our choice will be either an increasing sequence of killing times

{Sn}n≥1 where Sn = nT (for a fixed T > 0) or Sn =
∑n

i=1 Tn where {Tn}n≥1 is an i.i.d. sequence (S0 := 0).

According to [1, 7, 3] the long-term behavior of this discrete-time branching process depends only of its

first-moment matrix M = (mij)i,j=1,2. where mij is the expected number of offsprings of type j from a

particle of type i (see for instance [14, 3]). In order to compute M we need to consider the mean field model

(this is done in Secton 2.1). The main results on the deterministic case and the random case are in Sections 3

and 4 respectively. We note that all these results hold for any finite (non-void) initial condition. All the

proofs and technical Lemmas can be found in Section 5.
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2.1. Mean field model. This section is a useful exercise which allows us to obtain some explicit expressions

the we need in the sequel. The linear system of equations for the expected values (nt, rt) := E[(Nt, Rt)] is{
d
dtnt = (λ− a− dn)nt + brt
d
dtrt = ant − (b+ dr)rt,

(2.2)

where b > 0 and λ, a, dn, dr ≥ 0. The eigenvalues x+, x− (where x+ ≥ x−) of the corresponding matrix

A :=

(
λ− a− dn b

a −(b+ dr)

)

are the solutions of the equation

h(x) := x2 + x(b+ dr − λ+ a+ dn)− ((b+ dr)(λ− dn)− adr) = 0. (2.3)

We note immediately that, since h(−(b+ dr)) = h(λ− a− dn) = −ab ≤ 0, then the eigenvalues are always

real numbers and x− ≤ min(−(b+ dr), λ− a− dn) and x+ ≥ max(−(b+ dr), λ− a− dn) (one of equalities

holds if and only if both hold, that is, if and only if ab = 0). Moreover, the basic branching process theory

tells us that if the maximum eigenvalue x+ ≤ 0 then we have almost sure (spontaneous) extinction. Hence

if the determinant of the matrix h(0) ≡ −(b+ dr)(λ− dn) + adr ≥ 0 we have extinction for all p and for any

choice of {Tn}n≥1 (even when T1 = +∞). From now on we assume

(b+ dr)(λ− dn)− adr > 0, (2.4)

that implies immediately x+ > 0; hence x+ > x−. A corresponding pairs of eigenvectors is Z = (1, a/(b +

dr + x+)), C = (1, a/(b+ dr + x+)). The generic solution can be written as
(
n(t)
r(t)

)
= eAt

(
n(0)
r(0)

)

where eB :=
∑∞

i=0 B
i/i! for every matrix B and (n(0), r(0)) is the initial state. The explicit computations

of eAt are easy: one simply needs to evaluate the solution of the system starting from (1, 0) and (0, 1). Note

that x+ + x− = λ− b− dr − dn − a and that x+x− = adr − (b+ dr)(λ− dn). We have
(
ñ(t)
r̃(t)

)
:=

(
b+dr+x+

x+−x−

a
x+−x−

)
etx

+ −
(

b+dr+x−

x+−x−

a
x+−x−

)
etx

−

,

(
n̄(t)
r̄(t)

)
:=

(
b

(x+−x−)

− b+dr+x−

x+−x−

)
etx

+

+

(
− b

(x+−x−)
b+dr+x+

x+−x−

)
etx

−

(2.5)

(remember that b + dr + x− < 0). We note that limt→∞ n̄(t) = limt→∞ ñ(t) = +∞; if, in addition, a > 0

then limt→∞ r̄(t) = limt→∞ r̃(t) = +∞. Hence

eAt =

(
ñ(t) n̄(t)
r̃(t) r̄(t)

)
(2.6)

note that eAteAs = eAseAt = eA(t+s).

3. Deterministic mass killing times

Between killing times, the bacterial population evolves randomly according to the rates (2.1), each time

starting from the set of survivors of the previous killing time. We choose fixed time intervals Tn = T , where

T > 0; hence mass killings occur at Sn = nT . We follow the strategy of [6]. For all n ≥ 0, we let the
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system evolve between Sn−1 and Sn and we count the number of survivors of each type at time Sn. This is

a 2-type branching process, whence we have survival if and only if the Perron-Frobenius eigenvalue γ+
T of its

first-moment matrix

M(T ) :=

(
(1− p)ñ(T ) (1− p)n̄(T )

r̃(T ) r̄(T )

)
≡
(
1− p 0
0 1

)
eAT (3.7)

satisfies γ+
T > 1 (see [3]). Note that the entries of the j-th column of the matrix are the average number

of survivals after a mass killing at time T starting from one particle of type j (j = 1 being a susceptible

particle, j = 2 being a persistent particle).

The following theorem holds for any (non-void) finite initial condition and the critical time Tc(p) does not

depend on the initial condition (clearly it depends on all the parameters of the system, even though, here,

we emphasized only the dependence on p).

Theorem 3.1. Let λ, a, dn, dr ≥ 0, b > 0 such that equation (2.4) holds and a+ 1− p > 0. For any p > 0

there exists Tc(p) ∈ (0,+∞) such that the process dies out almost surely if and only if T ≤ Tc(p). Moreover

p 7→ Tc(p) is a continuous, strictly increasing function and limp→0 Tc(p) = 0.

Requiring the inequality (2.4) is quite natural, since if it does not hold, the bacterial population would

become extinct almost surely even without the action of the antibiotic. Analogously, if a+ 1− p = 0 (that

is, p = 1 and a = 0) there cannot be survival since at the first killing time the whole susceptible bacterial

population is killed and the persistent population decreases (since they cannot reproduce without switching

to susceptible state and there is no switching back from susceptible to persistent). If p < 1 there can be

survival even when switching form susceptible to persistent state is forbidden (that is, a = 0).

Since p 7→ Tc(p) is increasing we have that if t > Tc(1) then there is survival with positive probability for

all p, while if t ∈ (0, Tc(1)) there is a critical value pc(t) ∈ (0, 1) such that there is almost sure extinction if

and only if p ≥ pc(t).

From the bacteria point of view, a winning strategy is to make Tc as small as possible. Here are three

plots of Tc where a = b = 0.01 and dn = dr = 0.025: the first one on the left is the function (λ, p) 7→ Tc, the

second one is the function p 7→ Tc (where λ = 3.7) which show a fast increasing of Tc w.r. to p as p is close to

1. This means that if the antibiotic is slightly less than perfectly efficient (that is, p < 1) then the maximum

admissible time interval Tc to kill the bacterial population is rapidly decreasing as p decreases. This is shown

also by the third plot, which represents the functions λ 7→ Tc for p = 1 (red solid line), p = 0.95 (yellow

dot-dashed line) and p = 0.9 (green dashed line).
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Let us discuss briefly the behavior of Tc w.r. to a, in order to understand if a > 0 is a better strategy than

a = 0 from the bacteria point of view. First of all, when p = 1 the only hope for survival for the bacterial

population is when a > 0. On the other hand, of p < 1 there might be a positive probability of survival even

if a = 0, since a small fraction of susceptible bacteria may survive the action of the antibiotics. Hence in this

case, it is not trivial to decide whether a > 0 is a better strategy than a = 0 or not. We note that, if dr > 0,

then by equation (2.4) we have that a ≥ (λ− dn)(b+ dr)/dr implies a.s. extinction. More precisely one can

prove that as a → (λ− dn)(b+ dr)/dr then x+ → 0 which implies Tc → ∞ (see the proof of Theorem 3.1 for

details) and eventually the situation becomes less favorable for the bacteria.

On the other hand, if we rewrite equation (2.3) as h(x) = (x + b + dr)(x − λ + dn) + a(x + dr) we see

immediately that, when dr = 0, for every fixed x > 0 (resp. x < 0) h is strictly increasing (resp. decreasing)

w.r. to a > 0 and h(x) → +∞ (resp. h(x) → −∞) as a → ∞. This implies immediately that x− and x+ are

strictly decreasing w.r. to a and that x− → −∞ and x+ → 0 as a → ∞. Hence, when dr = 0, it is easy to

prove that Tc → 0 as a → ∞ (this can be done by checking that, for every fixed t > 0, the function Ft,p(1),

introduced in the proof of Theorem 3.1, is negative for all a sufficiently large). Here are two series of plots:

on the left is dr = 0 and on the right is dr > 0 while the other parameters, with the exception of p, are fixed:

p equals 0.9 (green dashed line), 0.95 (yellow dot-dashed line), 0.99 (blue dotted line) and 1 (red solid line).
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We see that if dr = 0 then the best strategy for the bacterial population is to have a as large as possible.

If dr > 0 there is a critical value for p, above which, increasing a is a good strategy, up to a suitable value

which minimizes Tc. Below the critical value for p the best situation for the bacterial population is a = 0.

As a → ∞, eventually the situation becomes worse for the survival of the bacteria for all values of p < 1.

A more rigorous study of the behavior of Tc with respect to p, a and b is possible but it would exceed the

aim of this paper.

4. Random mass killing times

We consider a sequence of i.i.d. positive random times {Tn}n≥1. According to Lemma 5.1, max{n : Sn ≤
t} < +∞ a.s. for all t > 0, which means that there are a finite number of killing times in each finite interval

almost surely. Morever, suppose that the law of Tn is µβ , where {µβ}β∈(0,+∞) is a family of probability

measures on (0,+∞) (stochastically nondecreasing w.r.to β) satisfying

(1) ∀t0 > 0, lim
β→+∞

µβ((0, t0]) = 0;

(2) ∀β > 0, Eβ :=

∫
t µβ(dt) < +∞;

(3) ∀t0 > 0, lim
β→0

∫

(0,t0]

t µβ(dt)
/∫

(t0,∞)

t µβ(dt) = +∞.

(4.8)

Clearly, since the family {µβ}β∈(0,+∞) is stochastically nondecreasing, we have that β 7→
∫
(t0,∞)

t µβ(dt)

is a nondecreasing function for every t0 ≥ 0. Moreover, (3) implies

(4) ∀t0 > 0, lim
β→0

µβ((0, t0]) = 1.

As an example, consider the family of geometric law G(1/β).
Roughly speaking, in this case, we have two randomizations, first we choose a realization of the random

sequence of times {Tn}n≥1 (we call it, the environment) and then we consider the random evolution of the

population with the chosen killing times. More precisely, the sequence of snapshots of the system taken at the

random times {Sn}n≥0 is a multitype branching process in random environment (see [13] for the definition).

For each fixed β we call this the β-process and each realization ξ of the random time sequence {Ti}n≥1

is our environment. Henceforth, when we say that some event A (extinction or survival) has probability

0 (resp. > 0) for almost all realizations of the environment, we mean that the conditional probability of

the event with respect to the realization ξ of the sequence of killing times is 0 (resp. > 0) for almost all

realizations ξ, that is, P(ξ : P(A|Ti = ξi, ∀i ≥ 1) = 0) = 1 (resp. P(ξ : P(A|Ti = ξi, ∀i ≥ 1) > 0) = 1).

Clearly if q̄(ξ) = (q̄1(ξ), q̄2(ξ)) is the vector of extinction probabilities (starting from one susceptible

bacterium or from one persistent bacterium respectively), we have that P(q(ξ) = 1) is either 0 or 1. This

means that there is a.s. extinction for almost all realizations of the environment or for almost no realizations

of the environment.
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Our results hold for any finite (non-void) initial condition (and, again, the critical values depend on all

the parameters of the system but not on the initial condition). We assume again the inequality (2.4) to

avoid spontaneous extinction of the bacterial population without the action of the antibiotic.

The first theorem states that if β exceeds some finite critical value β1
c there is survival almost surely,

that is, for almost every realization of the environment. Roughly speaking, since the expected time is

nondecreasing with respect to β, it means that if the expected time is too large, the action of the antibiotic

might not be sufficient to kill the whole bacterial population.

Theorem 4.1. Let λ, a, dn, dr ≥ 0, b > 0 such that equation (2.4) holds. Let {µβ}β∈(0,+∞) satisfy equa-

tion (4.8) and a + 1 − p > 0. If β1
c (p) := sup{β ∈ (0,+∞) : the β-process dies out a.s.} then β1

c (p) < +∞
and for all β > β1

c (p) we have survival with positive probability for almost all realizations of the environment.

Moreover p 7→ β1
c (p) is nondecreasing.

The second result tells us that if β is smaller than some (strictly positive) critical value β2
c then, with

probability 1, the antibiotic will eventually kill the bacterial population. We show that, β2
c tends to 0 as p

tends to 0.

Theorem 4.2. Let λ, a, dn, dr ≥ 0, b > 0 such that equation (2.4) holds. Let {µβ}β∈(0,+∞) satisfy equa-

tion (4.8). If β2
c (p) := inf{β ∈ (0,+∞) : the β-process survives with positive probability} then β2

c (p) > 0

such that for all β < β2
c (p) we have a.s. extinction for almost all realizations of the environment. Moreover,

p 7→ β2
c (p) is nondecreasing and infp→0 β

2
c (p) = 0.

Sharper results can be obtained if we assume that the random times have a geometric distribution with

expected value 1/β. In this case there is a unique critical threshold βc separating almost sure extinction

from survival with positive probability.

Theorem 4.3. Let λ, dn, dr ≥ 0, a, b > 0 such that equation (2.4) holds and a+1−p > 0.. Let {µβ}β∈(0,+∞)

be a sequence of geometric laws µβ ∼ G(1/β). There exists βc(p) ∈ (0,+∞) such that for all β > βc(p) we

have survival with positive probability for almost all realizations of the environment and for all β < βc(p)

we have a.s. extinction for almost all realizations of the environment. Moreover p 7→ βc(p) is nondecreasing

and limp→0 βc(p) = 0.

The next example shows, that for a generic {µβ}β∈(0,+∞) satisfying our hypotheses, we cannot always

expect β2
c (p) = β1

c (p). This means that the probability of survival does not need to be monotone with respect

to β.

Example 4.4. Let us take λ = (
√
21+ 3)/4, b = (

√
21− 3)/4, a = dn = dr = 1/2 and p = 1. Since p = 1 it

is enough to consider the expected size of the persistent population (at each killing time, susceptible bacteria

are killed). We note that x+ = 1, x− = −1 and r̄(t) = et(5−
√
21)/8+e−t(3+

√
21)/8. From equation (5.9),

γ+
t = r̄(t); moreover the only strictly positive solution of r̄(t) = 1 is Tc = log(3 +

√
21)− log(5−

√
21). We
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have r̄(t) < 1 for all t ∈ (0, Tc) and r̄(t) > 1 for all t > Tc. Consider the following family of measures

µβ :=

{
1
2δβ/10 +

1
2δ3max(β,1) β ∈ (0, 15]

1
2δβ−13.5 +

1
2δβ−12 β ∈ (15,+∞)

where δα is the Dirac measure at α ∈ R. Roughly speaking, for any fixed β, every time interval Ti is chosen

independently between two values with probability 1/2 each. It is straightforward to see that the family

{µβ}β∈(0,+∞) is stochastically increasing and satisfies equation (4.8). According to [11, Theorem 3.1] (see

also Remark 5.2 for details) if E[log(r̄(T1))] ≤ 1 there is a.s. extinction for almost every realization of the

environment, while if E[log(r̄(T1))] > 1 there is positive probability of survival for almost every realization of

the environment. Here we have extinction if β is close to 0 (take for instance, β = 0.5), we have survival if

β = 1, we have extinction again if β = 15 and we have survival if β is large (take for instance, β = 16.5).

Thus the probability of survival is not monotone and β2
c (p) ≤ 1 < 15 ≤ β1

c (p).

5. Proofs

Proof of Theorem 3.1. Define

Ft,p(x) := x2 − x((1− p)ñ(t) + r̄(t)) + (1− p)(ñ(t)r̄(t)− n̄(t)r̃(t))

= x2 − x

(
etx

+

(
1− p

b+ dr + x+

x+ − x−

)
+ etx

−

(
1 + p

b+ dr + x−

x+ − x−

))
+ (1− p)et(x

++x−)
(5.9)

where x+ + x− = λ − b − dr − a − dn. Let γ+
t ≥ γ−

t be the solutions of Ft,p(x) = 0. In order to check the

inequality γ+
t > 1 we study the differentiable function t → Ft,p(1) for every fixed p ∈ (0, 1]; in particular we

look for the solutions of the equation Ft,p(1) = 0 with respect to t. Clearly γ+
0 = 1 and the other solution of

F0,p(x) = 0 is γ−
0 = 1− p < 1. Using equations (5.9) and (2.2) we have d

dtFt,p(1)|t=0 = p(dr + b) > 0. Hence

there exists ε > 0 such that Ft,p(1) > 0 for all t ∈ (0, ε); thus, by continuity and since γ−
0 < 1, we have that

γ+
t < 1 for all t ∈ (0, ε). Since limt→∞ Ft,p(1) = −∞ for all p ∈ (0, 1], there is at least one strictly positive

solution to Ft,p(1) = 0 w.r. to t. In order to show that it is unique, observe that, since x− < 0,

d

dt
Ft,p(1) = et(x

++x−)
[
(1− p)(x+ + x−)−

(
x+et|x

−| (1− ph)− |x−|e−tx+

(1 + p(1− h))
)]

where h = (b+ dr + x+)/(x+ − x−). Clearly sgn( d
dtFt,p(1)) = sgn(L(t, p)) where L(t, p) := Ft,p(1)e

−t(x++x−)

Since x+ > 0 we have that (for every fixed p) t 7→ L(t, p) is a strictly decreasing function such that L(0, p) > 0

and limt→+∞ L(t, p) = −∞; thus there exists a unique Tc = Tc(p) ∈ (0,+∞) such that Ft,p(1) > 0

(resp. Ft,p(1) < 0) if t ∈ (0, Tc) (resp. t ∈ (Tc,∞)). This implies that γ+
t < 1 for all t ∈ (0, Tc) and γ+

t ≥ 1

for all t ∈ [Tc,+∞) (clearly FTc(p),p(1) = 0 and γ+
Tc(p)

= 1).

By elementary analysis p 7→ Tp is a differentiable function (for every fixed t ≥ 0). Moreover, by convexity,

since (b+ dr + x+)/(x+ − x−) ∈ [0, 1],

d

dp
Ft,p(1) = etx

+ b+ dr + x+

x+ − x−
+ etx

−

(
−b+ dr + x−

x+ − x−

)
− et(x

++x−)

≥ et(x
+(b+dr+x+)/(x+−x−)−x−(b+dr+x−)/(x+−x−)) − et(x

++x−)

= et(x
++x−+b+dr) − et(x

++x−) > 0
9



for all t > 0. Hence p 7→ Ft,p(1) is strictly increasing which implies that p 7→ Tc(p) is strictly increasing. Since

limp→0 Ft,p(1) = Ft,0(1) < 0 for all t > 0 (indeed the process is supercritical in the absence of mass-killing),

we have that limp→0 Tc(p) = 0.

Finally, if a > 0 then there is survival starting from 1 persistent particle if and only if there is survival

starting from 1 susceptible particle; thus, since the process is monotone with respect to the initial state, the

long-term behavior is the same as long as the initial state is finite. If a = 0 then p < 1 and the Perron-

Frobenius eigenvalue x+ = m11(t), hence our result holds starting from 1 susceptible particle; nevertheless,

since b > 0, even if we start from 1 persistent particle there is a positive probability it becomes a susceptible

one, hence there is a positive probability of survival starting from 1 susceptible particle if and only if there

is a positive probability of survival starting from any finite initial state. �

The proof of the following Lemma is very easy, nevertheless we include it for completeness.

Lemma 5.1. Let {Ti}i∈N be nonnegative i.i.d. random variables. If P(T1 > 0) > 0 then E[Nt] < +∞ where

Nt := max{n : ∑n
i=0 Ti ≤ t}.

Proof. Let Sn :=
∑n

i=0 Ti and suppose that E[T 4
i ] < +∞: in this case define E[Ti] =: µ > 0, E[(Ti−µ)2] =: σ2

and E[(Ti − µ)4] =: r4. Clearly, eventually as n → ∞,

P(Nt ≥ n) = P(Sn ≤ t) = P(Sn/n− µ ≤ t/n− µ)

≤ P(|Sn/n− µ| ≥ µ/2) ≤ E[|Sn/n− µ|4]/(µ/2)4 =
16

n4µ4
E

[
(

n∑

i=1

(Ti − µ))4

]
= (∗).

Now (
∑n

i=1(Ti−µ))4 =
∑

i∈{1,...,n}4

∏4
j=1(Tij

−µ); moreover the independence of {Ti}i∈N yields E[
∏4

j=1(Tij
−

µ)] = 0 if there exists j such that ij 6= ik for all k 6= j. Hence

(∗) = 16

n4µ4
E




n∑

j=1

(Tij
− µ)4 +

∑

h,j : h 6=j

(Tih
− µ)2(Tij

− µ)2


 =

16

n4µ4
[nr4 + n(n− 1)σ4] ≤ C/n2

thus E[Nt] =
∑

n∈N
P(Nt ≥ n) < +∞.

In the general case, define T i := min(Ti, 1). Then E[T
4

i ] < +∞ hence E[Nt] ≤ E[N̄t] < +∞ where

N̄t := max{n : ∑n
i=0 T̄i ≤ t}. �

Remark 5.2. In the random killing time case we deal, in general, with a multitype branching process in

random environment where the sequence of environments is i.i.d. hence, if we denote by Mn := M(Tn)

the first-moment matrix (3.7) with T = Tn, by Kingman Subadditive Theorem, we have (see for instance

[2, 5, 8, 12, 13])

lim
n→∞

n−1 log

(∥∥∥∥∥

1∏

i=n

Mi

∥∥∥∥∥

)
= δβ ≡ E[δβ ], a.s.

and δβ = limn→∞ n−1
E

[
log
(∥∥∥
∏1

i=n Mi

∥∥∥
)]

where ‖M‖ := maxj
∑

i |Mij | and
∏1

i=n Mi := MnMn−1 · · ·M1.

This plays the role of the Perron-Frobenius eigenvalue of the deterministic case and it will be useful in the

next proofs (where we use [13, Teorems 9.6 and 9.10]; in the case p = 1 one may use also [11, Theorem 3.1]

instead).
10



Moreover, it is easy to check that the conditions of [13, Teorems 9.10] are satisfied. Indeed, the entries of the

first-moment matrix satisfy mi,j(t) > 0 for all t > 0 and for all i, j = 1, 2. Moreover, since µβ((0,+∞)) = 1

for all β ∈ (0,+∞), we have P(mini,j(M1)i,j > 0) = 1. Finally, if we start with a susceptible particle then

P(N(t) ≥ 1) ≥ e−(a+dn)t hence

E[| log(1− P(N(t) = 0))|] ≤
∫

(0,+∞)

(a+ dn)tµβ(dt) < +∞, ∀β ∈ (0,+∞).

On the other hand, if the initial condition is a persistent particle we proceed by using R(t) instead of N(t).

One can check analogously that our branching process in random environment is strongly regular (see [13,

Definition 9.1]). Hence, according to [13, Theorem 9.10], we have:

(1) δβ ≤ 0 implies a.s. extinction for almost all realizations of the environment,

(2) δβ > 0 implies survival with positive probability for almost all realizations of the environment.

Clearly the probability of survival is 0 if and only if the conditional probability of survival is 0 for almost all

realizations of the environment. On the other hand, since P(q(ξ) = 1) is either 0 or 1 (see Section 4), then

the probability of survival is strictly positive if and only if the conditional probability of survival is strictly

positive for almost all realizations of the environment.

Proof of Theorem 4.1. First of all we check the integrability condition, that is, for all n ≥ 1,

E

[
n−1

∣∣∣ log
(∥∥∥

1∏

i=n

Mi

∥∥∥
)∣∣∣
]
≡
∫

n−1
∣∣∣ log

(∥∥∥
1∏

i=n

M(ti)
∥∥∥
)∣∣∣

n∏

i=1

µβ(dti) < +∞,

where
∏n

i=1 µβ is a probability product measure on R
n. Below we show that if p < 1 then

∥∥∥
∏1

i=n Mi

∥∥∥ ≥
(1− p)nεn (for some ε > 0) while if a > 0 then

∥∥∥
∏1

i=n Mi

∥∥∥ ≥ εn (for some ε > 0). Hence if a+ 1− p > 0 ,

for some ε′ > 0,
∫

n−1 log−
(∥∥∥

1∏

i=n

M(ti)
∥∥∥
) n∏

i=1

µβ(dti) ≤ log−(ε′) < +∞

since log− is nonincreasing (where log−(·) := max(0,− log(·))). Thus we just need to prove that
∫
n−1

∣∣ log+
(∥∥∏1

i=n M(ti)
∥∥)∣∣∏n

i=1 µβ(dti) < +∞ (where log+(·) := max(0, log(·))). From equation (2.5)

we have ‖M(t)‖ ≤ Ketx
+

; hence, since log+ is nondecreasing,
∥∥∏1

i=n Mi

∥∥ ≤ ∏n
i=1 ‖Mi‖ and the expected

value of µβ is finite (for all β) we have
∫
n−1

∣∣ log+
(∥∥∏1

i=n M(ti)
∥∥)∣∣∏n

i=1 µβ(dti) < +∞.

Suppose p < 1 and a > 0. For all t, τ > 0 there exists β0(τ, t) such that µβ([t,+∞)) > 1 − τ for all

β > β0(τ, t). By continuity and compactness we have that, for some ε > 0,

M(t) ≥
(
(1− p)ε 0

0 ε

)
=: M0, ∀t ≥ 0

where, by definition, A ≥ B if and only if Aij ≥ Bij . It is easy to show, by using equation (2.5), that there

exists tp ∈ [0,+∞) such that

M(t) ≥
( 4

ε(1−p) 0

0 4
ε

)
=: M1, ∀t ≥ tp.

Let β > β0(1/2, tp) and {Mi}i≥1 the corresponding sequence of random first-moment matrices (Mi :=

M(Ti)); thus, according to the Law of Large Numbers, with probability 1, as n → ∞, #{i ≤ n : Mi ≥ M1} ≥
11



n/2 which implies that
∏1

i=n Mi ≥ M
n/2

0 M
n/2

1 = 2n1l almost surely. Hence lim infn→∞ n−1 log
(∥∥∥
∏1

i=n Mi

∥∥∥
)
≥

log 2 > 0 a.s. which, according to [13, Theorems 9.10], implies survival with positive probability for almost

every realization of the environment. Hence, by definition, β1(p) ≤ β0(1/4, tp).

The usual coupling technique shows that for any fixed choice of the parameters λ, a, b, dn, dr and for

any realization of the environment, the probability of survival is nonincreasing with respect to p. Hence

p 7→ β1
c (p) is nondecreasing.

If p = 1 then a > 0 and we are dealing essentially with a single population (the persistent bacteria as

in [6]), since after each killing time we have just persistent bacteria left. The first moment, starting with

a susceptible bacterium, is r̄(t). The proof is essentially the same since r̄(T ) ≥ ε > 0 for all t ≥ 0 and

r̄(T ) ≥ 4/ε for all t ≥ tp. The result follows from [11, Theorem 3.1]. Since a > 0 then there is survival

starting with a persistent bacterium if and only if there is survival starting with a susceptible one.

Finally if a = 0 (hence p < 1) again we are dealing essentially with a single population: the susceptible

bacteria. The first moment, starting with a susceptible bacterium, is ñ and the result follows (from [11,

Theorem 3.1] as before) from the inequalities ñ(t) ≥ (1 − p)ε for all t ≥ 0 and ñ(t) ≥ 4/((1 − p)ε) for all

t ≥ tp. �

Proof of Theorem 4.2. If p = 1 and a = 0 the process becomes extinct almost surely. We suppose henceforth

that a+ 1− p > 0. Since log is increasing and {Mi}i≥1 are identically distributed, we have

E

[
n−1 log

(∥∥∥
1∏

i=n

Mi

∥∥∥
)]

≤ n−1
E

[
log
( 1∏

i=n

∥∥∥Mi

∥∥∥
)]

≤ log(E[‖M1‖]).

Thus, if we prove that log(E[‖M1‖]) < 0 for every sufficiently small β then [13, Theorem 9.6] guarantees a.s.

extinction for almost all configurations (if p = 1 one can also use [11, Theorem 3.1] instead).

It is straightforward to show that t 7→ ‖M(t)‖ is differentiable from the right at 0. By elementary

computations, since M(0) = 1l, d
dt log ‖M(t)‖

∣∣∣
t=0

= d
dt‖M(t)‖

∣∣∣
t=0

=: −m < 0. Hence, there exists t0 > 0

such that log(‖M(t)‖) ≤ −tm/2 for all t ∈ [0, t0]. On the other hand, log(‖M(t)‖) ≤ Cx+t for all t > 0 and

some C > 0. Finally by equation (4.8),
∫

log(‖M(t)‖)µβ(dt) =

∫

(0,t0]

log(‖M(t)‖)µβ(dt) +

∫

(t0,∞)

log(‖M(t)‖)µβ(dt)

≤ −
∫

(0,t0]

tm

2
µβ(dt) +

∫

(t0,∞)

Cx+tµβ(dt)

≤ −
∫

(0,t0]

tm

2
µβ(dt)

(
1−

∫
(t0,∞)

tµβ(dt)∫
(0,t0]

tµβ(dt)

2Cx+

m

)
< 0

for every sufficiently small β. Hence β2(p) > 0.

As in the proof of Theorem 4.2, for every realization of the environment, the probability of survival is

nonincreasing with respect to p. Hence p 7→ β2
c (p) is nondecreasing.

Let us fix β > 0. It is well-known that

lim
n→∞

n−1 log
(∥∥∥

1∏

i=n

eATi

∥∥∥
)
= lim

n→∞
n−1 log

(∥∥∥eA
∑n

i=1
Ti

∥∥∥
)
= x+

Eβ > 0, a.s.
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(ex
+

is the maximum eigenvalue of eA). Moreover M(t) ≥ (1− p)eAt thus
∏1

i=n Mi ≥ (1− p)neA
∑n

i=1
Ti and

lim
n→∞

n−1 log

(∥∥∥∥∥

1∏

i=n

Mi

∥∥∥∥∥

)
≥ log(1− p) + x+

Eβ a.s.

which is eventually strictly positive, as p → 0. Hence, according to [13, Theorem 9.10] the process eventually

survives as p → 0; thus, by definition, β2(p) ≤ β eventually as p → 0.

�

Proof of Theorem 4.3. We use a modification of the construction shown in [6]. Given β1 ≥ β2, it is well-

known that, by using the classical decimation procedure, it is possible to construct two sequences {T 1

i }i≥1

and {T 2

i }i≥1 in such a way that, for every trajectory, {T 1

i (ω) : i ≥ 1} ⊆ {T 2

i (ω) : i ≥ 1}.
Consider the binary tree T whose vertices are the set V of finite words of the alphabet {0, 1} and whose

root is the empty word ∅. Every nonempty word v1v2 . . . vn is connected to its parent v1v2 . . . vn−1 and its

two children v1v2 . . . vn 0 and v1v2 . . . vn 1 (the root is connected to 0 and 1).

To each vertex v corresponds a variable Sv ∼ G(λ) which represents the time interval between its birth

and its splitting (when it gives birth). We assume that {Sv}v∈V is an i.i.d. family of random variables.

Define T∅ := 0 and, for every nonempty word v = v1 . . . vn, Tv =
∑n−1

i=1 Sv1...vi
. Consider now the tree

T̂ on T × [0,+∞) as follows: the set of vertices is V̂ := {(v, Tv), (v, Tv + Sv) : v ∈ T}. We have vertical

edges between (v, Tv) and (v, Sv + Tv) (for all v ∈ V ); we have horizontal edges between (v, Tv + Sv) and

each of its two children (vw, Tv + Sv) where w ∈ {0, 1} (for all v ∈ V ). The vertical edge between (v, Tv)

and (v, Tv + Sv) represents the time interval between the birth of the particle v and its splitting time. The

horizontal edge between (v, Tv) and (v1, T v) represent the birth of a child of v while we consider the other

particle, namely v0, as v itself after giving birth.

Independently of everything constructed so far, we consider four independent families of Poisson point

processes {W 1
v }v∈V , {W 2

v }v∈V , {D1
v}v∈V and {D2

v}v∈V on [0,+∞) with intensities b, a, dn and dr respec-

tively. We color the tree in white (susceptible state), red (persistent state) and black (dead particle) as

follows: we start with a white vertex (∅, 0) and we extend the color to the branches along the timeline until

we reach a point of one of the Poisson processes. If we meet a D1
v point and the current color is white we

switch to black and there are not modifications anymore in that subtree along the timeline (death of the

particle), the same happens if we meet a D2
v point and the current color is red. If the current color is not

black, then everytime we meet a W 2
v point we switch to red and everytime we meet a W 1

v point we switch to

white. Black color is not modified when we meet new points in the Poisson processes. At every split point

if the current color is white or black then we use the same color for the horizontal edges and we continue

starting from the two new vertices. If the color is red then we use the same color for the horizontal edge

which connects to the child whose name ends with 0 (and we start again from there with a red vertex); we

switch to black for the horizontal edge connecting to the other son (hence, the whole subtree branching from

this vertex is black, since red (persistent) particles do not reproduce).
13



So far we modelled the natural evolution of the system; now we add the action of the antibiotics. To

this aim, independently again, we add the coupled Poisson processes {T j

i}i≥1 (j = 1, 2) defined above and

we consider two independent families of independent Bernoulli variables {B1
e}e∈V T̂

with parameter p1 and

{B1
e}e∈V T̂

with parameter p2 where p1 ≤ p2 and V T̂ is the set of vertical edges of T̂. There is an analogous

decimation procedure which allows to couple these two Bernoulli processes in such a way that if B1
e = 1 then

B2
e = 1. At each time T 1

i (resp. T 2
i ) we consider all the white vertical edges intersecting the horizontal plane

with time coordinate T 1
i (resp. T 2

i ); for all such edges e, if Bj
e = 1 we switch to black in the corresponding

j model (hence the whole subtree is black), otherwise nothing happens.

In each model, at any time t ≥ 0, let Nt (resp. Rt) be the number of white (resp. red) vertical edges which

intersects the horizontal plane with time coordinate t; {(Nt, Rt)}t≥0 is the formal definition of the process. It

is clear that the white/red edges in the second model have the same color in the first one, hence the non-black

portion of the tree in the second model is a subtree of the non-black portion of the tree in the first model.

In this construction, the event of survival is the collection of all the trees which have at least a red/white

branch intersecting the horizontal plane t for every t > 0. This implies easily that the probability of survival

of a model (β1, p1) is larger or equal than the probability of survival of a model (β2, p2) (where β1 ≥ β2

and p2 ≥ p1). More precisely, we coupled the environments in such a way that the conditional (w.r. to the

environment) probabilities of survival of the model (β1, p1) are larger or equal than the conditional (w.r. to

the coupled environment) probabilities of survival of the model (β2, p2). In particular, for any fixed p, the

probability of survival is nondecreasing w.r. to β and, for any fixed β, is nonincreasing with respect to p.

If we define βc(p) := inf{β > 0: the process survives with positive probability} then βc(p) > 0 (according

to Theorem 4.2). Since the probability of survival is nondecreasing w.r. to β, we have that for all β > βc(p)

there is survival with positive probability and for all β < βc(p) we have almost sure extinction. Hence

βc(p) = sup{β > 0: the process dies out almost surely}, thus βc(p) < +∞ (according to Theorem 4.1).

Clearly βc(p) is nondecreasing with respect to p and, according to Theorem 4.2, limp→0 βc(p) = 0.

�
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