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Abstract

In this paper we introduce a new fast and accurate numerical method for pric-
ing exotic derivatives when discrete monitoring is applied. The algorithm is
general and is examined in detail with reference to the CEV (Constant Elas-
ticity of Variance) process, for which up to date no efficient procedures are
available. The approach exploits the structure of the matrix arising from
the numerical quadrature of the pricing backward formulas to devise a con-
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1. Introduction

Over the years exotic options, such as Asian, barrier, and lookback con-
tracts, have become more and more popular in equity markets and raised
the attention in the academic research. Most of the articles in this literature
price these contracts assuming a continuous monitoring, i.e., the payoff is
triggered by events occurring continuously before expiry. For example, for
a barrier option the barrier crossing event is monitored continuously. Stan-
dard contractual features usually specify discrete monitoring. As shown at
first in [4], with reference to the geometric Brownian motion (GBM) model,
price differences between continuous and discrete monitoring can be very
large. However, under this contractual feature no analytical formula is at
the moment available, except when the underlying evolves according to a
GBM process, see [13].

The discretely monitoring pricing procedure is based on the standard
backward recursion. The numerical implementation involves a recursive nu-
merical quadrature (integration) as shown for example in [1, 12]. A consid-
erable speed-up can be obtained when the recursion is of convolution type,
since in this case we can exploit the Fast Fourier Transform (FFT) algo-
rithm. Indeed, if the underlying asset evolves according to a exponential
Lévy model then the log-price transition density has a convolution structure
and the pricing recursion can be implemented by applying at each step a
Fourier transform-convolution-Fourier inversion. This can be done efficiently
through the use of the FFT, see for example [10, 12, 17]. The convolution
structure of the transition density depends on the fact that the log-price in-
crements follow an independent and identically distributed (i.i.d.) process.
Unfortunately, if the i.i.d. assumption does not hold, the numerical integra-
tion becomes computational intensive having a cost proportional to O(m2)
respect to the O(m log(m)) cost of the FFT algorithm (here m refers to the
number of discretization points of the integral).

The main idea of the present paper is to investigate the structure in the
probability transition density of the underlying asset and of its sampling ma-
trix. More precisely, we introduce the concept of cluster of eigenvalues of
a sequence of matrices arising from the numerical quadrature of the back-
ward recursion as we increase the number of nodes m. We formally prove
(Theorem 3) that the number of significant eigenvalues (i.e., larger than a
fixed tolerance ǫ) is approaching a constant rǫ as we take larger values of
m. This result can be exploited to factorize the iteration matrix, giving
a computational cost of O(kǫm) operations, kǫ ≈ rǫ, for the matrix-vector
multiplication, instead of the standard O(m2). Given that the cost of the
factorization is nearly independent on the number of monitoring dates, the
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advantage of our approach will be the greatest, greater the number of mon-
itoring dates. The algorithm is general and it is examined in detail with
reference to the Constant Elasticity of Variance (CEV) model, introduced
by [7, 8]. This dynamic is interesting allowing for very different transition
densities and implied volatility shapes. Very few option pricing models yield
fully analytical results, and most require numerical evaluations. The CEV
model is not an exception.

Numerical methods for pricing derivatives under the CEV process are
presented, for example, in [3, 6, 19]. These articles price derivatives con-
tracts, like barrier [3], lookback [3, 6] and geometric Asian [19] options, via a
lattice approach, such as binomial [6, 19] and trinomial [3] trees. The main
limit of this approach is the slow and erratic convergence to the true price, a
phenomena that is well-known to affect the tree approximation to the GBM
dynamics. We can have large errors even with thousands of time steps and
millions of node calculations. American options are considered in [18], where
the author proposes an alternative characterization of the early exercise pre-
mium that is valid for any Markovian and diffusive underlying price process.
Finally, an analytical Laplace transform approach based on the scale function
of a diffusion process is pursued in [9]. These authors obtain Laplace trans-
form of barrier and lookback option prices involving Whittaker and Bessel
functions of complex argument. Option prices are then obtained via a nu-
merical inversion of the Laplace transform. Unfortunately, the procedure is
quite computational intensive mainly for lookback options: this problem re-
quires the numerical computation of an integral involving the inverse Laplace
transform.

We are not aware of investigations on the structure of the probability
transition density when the FFT algorithm cannot be used, and in particular
when the CEV dynamic is considered. Therefore this investigation represents
the main contribution of the present paper. In addition, we show how the
proposed approach can be applied to a large class of exotic derivatives such as
Asian, barriers, Bermudan, lookback and step options. Extensive numerical
experiments are conducted to compare the accuracy and the computational
cost of our algorithm with respect to a standard backward recursive quadra-
ture and to Monte Carlo simulation. In particular, numerical experiments
confirm that the greatest benefits are achieved for a large number of moni-
toring dates.

The structure of the paper is as follows. First of all, in Section 2 we
describe the general setup to price exotic derivatives with the discrete mon-
itoring feature. In Section 3 we deal with the quadrature approach to solve
the recursive pricing formulas, while in Section 4 we study the structure of
the pricing matrix and we introduce the factorization idea. Finally, in Sec-
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tion 5 we validate the pricing procedure with numerical results assuming a
CEV dynamic for the underlying. Accuracy and computational cost of our
pricing algorithm are compared with the above mentioned benchmarks, i.e.,
the classical quadrature approach and Monte Carlo simulation.

2. The Option Pricing Problem

Let us consider a derivative contract with a payoff φ (·) at maturity
T = N∆, where N is the number of ∆-equally spaced monitoring dates, and
let S be the underlying asset price. The standard backward procedure com-
putes the derivative price V (S, n) at time n∆ through the following recursion
(eventually with a modification to deal with the early exercise feature):

V (S, n)=e−r∆

∫

Ω

p (S, ξ; ∆)V (ξ, n+ 1) dξ, n = N − 1, · · · , 0, (1)

where r is the risk-free rate, and p (S, ξ; ∆) is the transition density from S
at time t to ξ at time t+∆. Ω refers to the integration domain and can vary
depending on the trigger event. The above recursion starts with the payoff
condition at maturity V (S,N) = φ(S). We are interested in computing
V (S0, 0), S0 being the current spot price.

In the following subsections, we show how the above framework fits dif-
ferent exotic contracts.

2.1. Barrier Options

If we deal with barrier options, the pricing recursion (1) starts from the
payoff function φ(S) := (ϕ(S − E))+, where E is the strike price and ϕ is a
binary variables taking value 1 for calls, and -1 for puts. If we denote with
L (U) the lower (upper) barrier, the domain Ω is (L,+∞) for down-and-out,
(L,U) for knock-and-out, and (0, U) for up-and-out barrier options.
For numerical purposes, the integration interval in (1) is truncated to (L,U)
- for down-and-out options - or (L, U) - for up-and-out options - with L < S0

(U > S0). The truncation is chosen such that the probability of moving from
S0 to L (U) is less than a preassigned tolerance.

2.2. Bermudan Options

A Bermudan option gives the holder the right to early exercise at each
monitoring date. This option is worth more than the corresponding European
version, but less than the American counterparty, for which the exercise
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occurs continuously. To take into account the early exercise possibility we
modify (1) into:

V (S, n)= max

{
e−r∆

∫

Ω

p (S, ξ; ∆)V (ξ, n+ 1) dξ, φ(S)

}
, n = N − 1, · · · , 0,

(2)
with Ω = (0,+∞) for standard Bermudan options. If we have Bermudan
contracts with a barrier trigger, then Ω = (L,+∞), Ω = (0, U) or Ω = (L,U).
Payoff function and domain truncation are as in Section 2.1.

2.3. Lookback Options

The maturity settlement of lookback options is based on the minimum or
the maximum value of the underlying asset as registered during the lifetime
of the option. At maturity, the holder can “look-back” and select the most
favorable figure of the underlying as occurring at the monitoring dates. If we
let S(n∆) to be the asset price at the n-th monitoring date, we can define
the discretely observed minimum price as

Jn := min{S(0), · · · , S(n∆)}.

The payoff function of a fixed-strike lookback on the minimum is given by
(E − JN)

+ . The lookback option price at time n∆ depends on the underlying
asset price S, and on the up-to-date minimum Jn = J and we denote it by
V (S, J, n). Clearly it must be J ≤ S. Similar considerations hold for payoffs
written on the maximum.
Respect to the GBM dynamic, where a change of numeraire argument reduces
the number of state variables, under a more general process specification
we must keep track of both state variables, underlying price and running
minimum. Given that

Jn+1 = min{Jn, S((n+ 1)∆)},

the backward recursion becomes

V (S, J,N) = (ϕ (J − E))+ ,

V (S, J, n) = e−r∆

∫ +∞

0

p(S, ξ; ∆)V (ξ,min{J, ξ}, n+ 1)dξ, (3)

for n = N − 1, · · · , 0 and S ≥ J . Here min{J, ξ} is the minimum value of
the underlying asset at the (n+1)-th monitoring date given that Jn = J and
S((n+ 1)∆) = ξ. The initial option price is then given by V (S0, S0, 0).
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2.4. Asian Options

Asian options are a very popular type of exotic derivative. Such as for
lookback options, their pricing requires the introduction of a new state vari-
able, i.e., the (arithmetic) average up to time n∆

An =
1

n+ 1

n∑

i=0

S(n∆).

The arithmetic average follows the updating rule

An+1 =
n+ 1

n+ 2
An +

1

n+ 2
S((n+ 1)∆),

so that the price of the arithmetic fixed-strike Asian option satisfies the
following backward recursion:

V (S,A, n) = e−r∆

∫ +∞

0

p(S, ξ; ∆)V

(
ξ,

n+ 1

n+ 2
A+

1

n+ 2
ξ, n+ 1

)
dξ, (4)

for n = N − 1, · · · , 0, with V (S,A,N) = (ϕ(A− E))+.

2.5. Step Options

Step options are similar to barrier options, but the knock-and-out feature
operates only gradually. To this aim we define the occupation time In of the
subset I, I ⊂ R

+,

In =
n∑

i=1

1{S(i∆)∈I},

where 1{S(i∆)∈I} is the indicator function, i.e., it is equal to 1 if S(i∆) ∈ I,
0 otherwise. Notice that In measures the time spent by the underlying asset
in the set I up to time n∆. In takes values in {0, 1, 2, · · · , n} and satisfies
the updating rule

In+1 = In + 1{S((n+1)∆)∈I}.

Given S(N∆) = S and IN = I, the payoff of a step option with principal
amortization below the barrier is

V (S, I,N) =
(
1−

ρ

N
I
)+

(ϕ(S − E))+,

where ρ is the knock-out killing rate. The introduction of the knock-out range
has the advantage of regularize the barrier option by making the price and
the delta continuous at the barrier, see for example [16]. The price recursion
for step options reads as: for n = N − 1, · · · , 0

V (S, I, n) = e−r∆

∫ +∞

0

p(S, ξ; ∆)V
(
ξ, I + 1{ξ∈I}, n+ 1

)
dξ.
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3. The Quadrature Approach

As shown in the previous section, the general pricing framework requires
the numerical computation of the following recursive integral equation

W (x, n) =

∫ b

a

H(x, y; ∆)W (y, n+ 1)dy, ∀ x ∈ (a, b), (5)

for n = N − 1, · · · , 0, with W (x,N) assigned. This recursion holds for Eu-
ropean and barrier options. Bermudan options also require an early exercise
clause.

If we have more than one state variable (such as for lookback, Asian and
step derivatives), the function W depends on the time index n and on two
state variables, so that we write W (x, ·, n). The additional state variable is
the minimum value J if lookback options are considered, the average value
A for Asian contracts and the occupation time I for step options.

If we apply a quadrature formula to (5), with nodes si and weights wi,
i = 0, · · · ,m− 1, we obtain

W (si, n) =
m−1∑

j=0

wjH(si, sj; ∆)W (sj, n+ 1). (6)

If we define the matrix Hm as Hm = [H(si, sj,∆)]m−1
i,j=0, then (6) can be

written as

Wn = HmDmWn+1, n = N − 1, · · · , 0, (7)

where Wn = [W (si, n)]
m−1
i=0 , and Dm = diag(w0, . . . , wm−1). The matrix Hm

is called the sampling matrix of the function H, while HmDm is the iteration
matrix of the backward procedure.

In the recursion (7) the size of the iteration matrix equals the number of
discretization points (nodes). It is well-known that increasing the number
of nodes improves the accuracy of the solution. More precisely, the speed
of convergence of the quadrature error to zero can be determined by using
results on the speed of convergence of the integration rule when it is applied
to the integral

∫
Ω
H(·, ξ; ∆)dξ, as discussed in [2, Chapter 4]. In this setting

the backward recursion (7) has a cost proportional to N m2 operations. Our
aim is to reduce this cost substantially by exploiting the spectral properties
of the iteration matrix HmDm as the matrix size m grows. This is discussed
in Section 4.1.

In the following we detail how the quadrature applies to the different
contractual settings.

7



3.1. Barrier and Bermudan Options

For barrier options, i.e., recursions (1) and (2), we have W (x,N) = φ(x),
H(x, y; ∆) = e−r∆p(x, y; ∆), and a, b depend on the domain Ω. For example,
for down-and-out barrier options, we set a = L and b = U . From the
discretization of (1), we obtain a recursion of the form (7) with WN =
[φ(si)]

m−1
i=0 .

If Bermudan options are considered, we have W (x,N), H(x, y; ∆), and
a, b as above. From the discretization of (2) we obtain

{
WCV

n = HmDmWn+1

Wn = max{WCV
n ,Φ},

where WCV is the continuation value, and Φ = [φ(si)]
m−1
i=0 = WN .

3.2. Other Derivatives

In this section we discuss the discretization for lookback, Asian and Step
options, that are characterized by having the same sampling matrix but differ
due to an additional updating at each step.

3.2.1. Lookback Options

If fixed-strike lookback put options are considered, we set H(x, y; ∆) =
e−r∆p(x, y; ∆), a = 0 and b = +∞ (truncated to L and U for numerical
valuation). Thus the semi-discrete formulation of (3) is

W (si, J, n) =
m−1∑

l=0

wlH(si, sl; ∆)W (sl,min{J, sl}, n+ 1),

i = 0, . . . ,m − 1, with W (si, J,N) = (E − min{si, J})
+. Since J is the

minimum value of the underlying asset, we discretize J on the same grid
{si}

m−1
i=0 used for the underlying asset. More precisely, we can implement

recursion (3) as follows: considering m quadrature nodes sj and weights wj,
j = 0, · · · ,m− 1, we define for n = N − 1, · · · , 0 the vectors

Wj
n := [W (si, sj, n)]

m−1
i=0 ,

Ŵj
n := [W (si,min{si, sj}, n)]

m−1
i=0 ,

with Ŵ
j
N = [(E −min{si, sj})

+]m−1
i=0 .

The fully-discretized lookback recursion (3) is: for n = N − 1, · · · , 0

Wj
n = HmDmŴ

j
n+1,
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with Dm and Hm defined as above. Notice that (Ŵj
n)i corresponds to

W (si, sj, n) (and thus to (Wj
n)i) only if si ≥ sj, and thus i ≥ j. Thus,

moving from Wj
n to Ŵj

n, an update of the minimum value is necessary for
the indices i such that sj > si. This implies that the pricing recursion can
be written as: for n = N − 1, · · · , 0 and j = 0, · · · ,m− 1,





Wj
n = HmDmŴ

j
n+1 Recursion Step

(Ŵj
n)i =

{
(Wj

n)i if i ≥ j
(Wi

n)i if i < j
Updating Step

(8)

Remark 1. The iteration (8) can be accelerated using a subset s̃ of m/ω
quadrature nodes, i.e., for n = N − 1, · · · , 0, for jω = 0, · · · ,m/ω − 1, being
(Wjω

n )i = W (si, s̃jω , n), it holds



Wjω
n = HmDmŴ

jω
n+1,

(Ŵjω
n )i =

{
(Wjω

n )i if i ≥ jω,
(Wi

n)i if i < jω,

where the element (Wi
n)i is computed by cubic interpolation if the node si

do not belong to the subgrid s̃.

3.2.2. Asian Options

For Asian options, at each step the possible new values of the state vari-
able A do not fall on the A-grid at the previous step. Therefore an inter-
polation is also required at each iteration. More precisely, the semi-discrete
formulation of (4) is: for i = 0, . . . ,m− 1

W (si, A, n) =
m−1∑

l=0

wlH(si, sl; ∆)W

(
sl,

n+ 1

n+ 2
A+

1

n+ 2
sl, n+ 1

)
.

To obtain the fully-discrete formulation, we define

Wj
n = (W (si, sj, n))

m−1
i=0 , j = 0, · · · ,m− 1,

and

Ŵj
n =

(
W

(
si,

n

n+ 1
sj +

1

n+ 1
si, n

))m−1

i=0

, j = 0, · · · ,m− 1.

Thus the discretization of (4) can be written as: for n = N − 1, · · · , 0, given
W

j
n+1, compute Ŵj

n exploiting cubic interpolation, and then set

Wj
n = HmDmŴ

j
n+1.

Again, as stated in Remark 1, we can assume that the average falls on a
subset s̃ of m/ω quadrature nodes, i.e.,

Wjω
n = (W (si, sjω , n))

m−1
i=0 , jω = 0, · · · ,

m

ω
− 1.
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3.2.3. Step Options

Finally, for step derivatives, In can only assume the n+1 values 0, 1, · · · , n.
The payoff is discretized according to

Ŵ
j
N =

((
1−

ρ

N

(
j + 1{si∈I}

))
(ϕ(si − E))+

)m

i=0
, j = 0, · · · , N − 1.

Then, for n = N − 1, · · · , 0, we compute

Wj
n = HmDmŴ

j
n+1, j = 0, · · · , n,

and then, if n > 0, we construct Ŵj
n as follows: for i = 0, · · · ,m− 1, for j =

0, · · · , n− 1, if si /∈ I, then
(
Ŵj

n

)
i
= (Wj

n)i, otherwise
(
Ŵj

n

)
i
= (Wj+1

n )i.

4. Matrix Factorization

Section 3 has shown how the numerical quadrature of Equation (5) gives
us a recursion with iteration matrix HD (we omit the subscripts to sim-
plify the notation). It turns out that this matrix is the same for European,
Bermudan, Asian, lookback and step options. The knock-out trigger event
in barrier options generates a different structure of the domain Ω and thus
of the iteration matrix. In this section, we analyze the spectral properties
of the matrix HD. These properties allow us to factorize HD by using the
bidiagonalization algorithm of Golub and Reinsch [14]. The factorization
consists in replacing the iteration matrix by the product PJQH , where P

and Q are unitary matrices, QH is the hermitian of matrix Q, and J is a
bidiagonal matrix.1

For this purpose, at first we define the cluster point of eigenvalues of
a sequence of matrices of increasing dimension (that can be obtained, for
example, by increasing the number of nodes in the quadrature formula (7)).
This means to analyze the asymptotic behavior of eigenvalues of a sequence
of matrices, and to show that they cluster around zero. In particular, the
number rǫ of eigenvalues greater than a fixed tolerance ǫ remains constant
as we increase the number of quadrature nodes. Therefore the factorization
of the matrix HD into the product PJQH returns a bidiagonal matrix J

having as non-zero elements only the first kǫ elements, kǫ ≈ rǫ, on the main
and on the upper diagonals. This means that it is not necessary to perform
the full factorization PJQH , but we can stop at the kǫ-th step. If kǫ is
much smaller than m, where m is the dimension of the matrix, this implies a

1For the sake of completeness, we recall that the hermitian matrix of a matrix Q is its
transpose conjugate, and Q is unitary if and only if QQH is the identity matrix.
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significant reduction in the computational cost. Furthermore, the particular
“composition” of matrices P and Q allows us to compute the matrix-vector
multiplication in O(kǫm) operations instead of the O(m2) characterizing the
standard recursive approach.

4.1. Spectral properties of a sequence of matrices

In this section we give the main definitions and theorems related to the
spectral properties of sequences of matrices that satisfy certain conditions.
In the following, we denote with {Am} = {Am}

∞
m=1 a sequence of matrices

in C
m×m joined by a structural content that remains unchanged when the

size varies. For brevity, we will denote the sequence simply by {Am} and

we use the symbols λ
(m)
j and σ

(m)
j , j = 1, . . . ,m, to denote, respectively, the

eigenvalues and the singular values of Am.
A property of the spectrum of a sequence of matrices is its cluster point.

Definition 1. [24] A matrix sequence {Am} is strongly clustered at s ∈ C

(in the eigenvalue sense), if for any ε > 0 the number of the eigenvalues
of Am off the disc D(s, ε) := {z : |z − s| < ε} can be bounded by a pure
constant qε possibly depending on ε, but not on m. In other words

qε(m, s) := #{j : λ
(m)
j /∈ D(s, ε)} = O(1), m → ∞.

If every Am has only real eigenvalues (at least for large m) then we may
assume that s is real and that the disc D(s, ε) is the interval (s−ε, s+ε). We
replace the term “strongly” by “weakly”, if qε(m, s) = o(m), when m → ∞.
Similar definitions hold if we replace the term eigenvalues with singular val-
ues.

A sufficient condition under which a sequence of matrices is strongly
clustered is given in the following theorem.

Theorem 1. [21, Theorem 1.2] Let {Am} be a sequence of matrices of strictly

increasing dimension (Am ∈ C
m×m) with eigenvalues |λ

(m)
1 | ≥ |λ

(m)
2 | ≥ · · · ≥

|λ
(m)
m | and singular values σ

(m)
1 ≥ σ

(m)
2 ≥ · · · ≥ σ

(m)
m . If

- there exist a number N > 0, independent of m, such that σ
(m)
1 =

‖Am‖2 ≤ N , that is {Am} is a sequence uniformly bounded;

- the sequence {Am} is strongly clustered at 0 in the singular value sense,
that is, following Definition 1, ∀ǫ > 0 ∃C = Cǫ independent of m such
that #{j : σ

(m)
j > ǫ} ≤ Cǫ, uniformly ∀m,
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then {Am} is strongly clustered at 0 in the eigenvalue sense, that is ∀ ǫ >

0 ∃Ĉ = Ĉǫ independent of m such that #{j : |λ
(m)
j | > ǫ} ≤ Ĉǫ, uniformly

∀m.

The following lemma gives us a sufficient condition under which a se-
quence of matrices is strongly clustered at zero.

Lemma 2. Let {Am} be a sequence of matrices (Am ∈ C
m×m), if ∃N > 0,

independent of m, such that ‖Am‖F ≤ N , where ‖·‖F is the Frobenius norm,
then the sequence {Am} is strongly clustered at zero in the singular value and
eigenvalue sense.

Proof. For the singular value cluster see [22, Section 4, Corollary 4.1, point

2, with Bn = 0]. For the cluster of the eigenvalues, if σ
(m)
1 ≥ σ

(m)
2 ≥ · · · ≥

σ
(m)
m are the singular values ofAm and σm = [σ

(m)
1 , σ

(m)
2 , . . . , σ

(m)
m ], we observe

that

N ≥ ‖Am‖F = ‖σ(m)‖2 ≥ ‖σ(m)‖∞ = σ
(m)
1 = ‖Am‖2,

then we are under the hypotheses of Theorem 1 and we can conclude that the
sequence {Am} is strongly clustered at zero in the sense of the eigenvalues.

We conclude this section with our main result on the clustering of se-
quences of matrices that arise from discretization of integrals of functions in
two variables.

Theorem 3. Let us define Am = KmDm, where Km is the sampling matrix
of a continuous function k, k(·, ·) : Ω × Ω → R, Ω ⊂ R

d, d ≥ 1, Ω closed
and bounded, and Dm = diag(w0, . . . , wm−1) is the diagonal matrix with the
weights of the quadrature formula wi. Then the sequence {Am} is strongly
clustered at zero in the singular value and eigenvalue sense.

Proof. We consider the Frobenius norm of the matrix Am:

‖Am‖
2
F =

m∑

i,j=0

(Am)
2
i,j =

m∑

i,j=0

k2(ih, jh)w2
j

=

∫

Ω2

k2(x, y)dxdy + ǫm ≤ C,

where C is a constant which depends on Ω and the smoothness of the function
k, and ǫm is the error of the quadrature formula which approaches to 0 as m
increases. The application of Lemma 2 concludes the proof.

In conclusion, we observe that the above theorem can be applied to the
sampling matrix Hm in (7). Thus we have proved that our iteration matrix
is strongly clustered at zero.
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4.2. Bidiagonalization

Formula (7) implies that the option price W0 can be obtained by per-
forming N times the matrix-vector multiplication HDv, starting from the
payoff vector WN . In order to speed-up the matrix-vector product, we use
the spectral properties of the matrix HD as discussed above. These proper-
ties allow us to factorize the iteration matrix into the product of “simpler”
matrices. To this end, we consider the following theorem.

Theorem 4. [14, Theorem 1] Let A be any m × m matrix with complex
elements. Then A can be decomposed as A = PJQH where P and Q are
unitary matrices and J is an m×m bidiagonal matrix of the form

J =




α1 β1 0 · · · 0

0 α2 β2
. . .

...
...

. . . . . . . . . 0
...

. . . . . . . . . βm−1

0 · · · · · · 0 αm




.

Matrices P and Q are obtained as products of Householder’s elementary
(rank 1) matrices, i.e., matrices of the form I − 2xxH , x ∈ C

m, xHx = 1.
Moreover, the matrix-vector product with Householder matrix requires only
2m multiplicative and 2m− 1 additive operations. This means that it is not
necessary to calculate explicitly the matrices P and Q, but we can simply
store the vectors of the Householder’s matrices that generate them. If, for
example, P = (I−2x1x

H
1 )(I−2x2x

H
2 ) · · · (I−2xmx

H
m), xi ∈ C

m it is sufficient
to store the vectors x1, x2, . . . , xm to get all the informations necessary to
calculate the matrix-vector product Pv.

Using Theorem 4 we can factorize the matrix HD as PJQH . In gen-
eral, this algorithm is very expensive requiring O(m3) operations (see [15]).
However, using the cluster property of the matrixHD, it is possible to see ex-
perimentally that the elements (α1, · · · , αm,) on the main diagonal and those
(β1, · · · , βm−1,) on the upper diagonal of the matrix J, exhibit, in modulus,
the behavior shown in Figure 1. Therefore, if we consider to be non-zero only
the kǫ elements above a certain threshold ǫ, the computation of the matrices
P, J and Q can stop at the kǫ-th iteration with O(kǫm

2) operations. The
value of kǫ is closely related to the fixed tolerance ǫ and to the cluster of
the matrix. As a rule of thumb, if the number of eigenvalues greater than a
tolerance ǫ is rǫ, then the number of steps kǫ of the algorithm is only slightly
larger than rǫ.
Given the matrix HD and using the algorithm of Golub and Reinsch [14],
we compute the vectors x1, x2, . . . , xkǫ , y1, y2, . . . , ykǫ and the elements

13



Figure 1: Trend of the absolute values of αj on the main diagonal and βj on the upper
diagonal of the matrix J obtained from the discretization of the iteration matrix HD for
a double barrier option in the lognormal model with N = 252, m = 1000. Parameters
setting as in Section 5. In this case ǫ = 10−8, rǫ = 64 and j ≤ kǫ = 65.

α1, . . . , αkǫ , and β1, . . . , βkǫ−1, so that

Pkǫ = (I− 2x1x
H
1 )(I− 2x2x

H
2 ) · · · (I− 2xkǫx

H
kǫ
),

Qkǫ = (I− 2y1y
H
1 )(I− 2y2y

H
2 ) · · · (I− 2ykǫy

H
kǫ
),

and

Pkǫ




α1 β1 0 · · · 0

0
. . . . . .

...
...

. . . βkǫ−1
...

... αkǫ 0
0 · · · · · · · · · 0




QH
kǫ
= PkǫJkǫQ

H
kǫ
∼= HD.

Using this factorization, we compute PkǫJkǫQ
H
kǫ
v, instead of HDv, v ∈ C

m.
In addition, exploiting the Householder structure of matrices Pkǫ and Qkǫ

we can reduce the number of operations in the matrix-vector product from
O(m2) to O(kǫm).

Summarizing, since in the recursive quadrature equation (7) we have to
compute N matrix-vector products, the classical approach requires O(Nm2)
operations againstO(kǫm

2+Nkǫm) operations of the factorization. Therefore
we have a cost reduction if kǫ < mN/(N +m). In the following section we
show how it is possible even to achieve a larger time reduction exploiting the
structure of the matrix HD.
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Figure 2: “Breaking into pieces” a banded matrix. The black parts of the vectors overlap
in the final sum. btop = max{bctop, brtop}

4.2.1. “Breaking into pieces” banded matrices

As discussed in Section 4.2, if the number rǫ of eigenvalues greater than a
fixed tolerance ǫ is not small enough with respect to the size m of the given
matrix (usually, in applications, we use matrices of size at most 4000×4000)
or to the number of monitoring dates N , then the factorization can be very
expensive and we lose the advantage of the matrix-vector multiplication.
However, the matrixHD is ‘nearly’ banded, i.e., due to the transition density
structure, the significant entries having values greater than a fixed tolerance
are confined to a diagonal band. This behavior is illustrated in Figure 2.
Thus our the idea is to “break into pieces” the matrix HD as shown in the
same figure and to factorize separately each piece via the bidiagonalization
algorithm.
More precisely, each sub piece of the sampling matrix HD inherits its cluster
property, so that it is convenient to perform the factorization on matrices of a
smaller size. This makes the procedure faster (especially when the size of the
original matrix is very large). We emphasize the importance of the bandwidth
of the matrix. It is clear that a too large band leads to consider “pieces of
matrix” having a large size, so that we do not achieve any benefit from the
suggested breakdown procedure. In this case, the standard quadrature will
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remain the preferred approach. However, if a band structure is detected, once
each piece is factorized we can calculate the matrix-vector product as shown
in Figure 2: the original matrix (top left corner of Figure 2) is “broken” into
smaller pieces (top right corner of Figure 2). Then each piece is factorized
using the Golub-Reinsch algorithm (bottom left corner of Figure 2) and the
matrix-vector product is computed exploiting the Householder or bidiagonal
structure of the matrices involved. Finally the resulting vectors are “summed
up” taking into account the overlapping parts.

5. Numerical Results

In this section we validate with numerical experiments the theoretical re-
sults of previous sections. The setup is quite general but for aim of clarity we
consider the CEV process. This dynamic is indeed quite interesting allowing
for very different transition densities and implied volatility shapes. For this
reason, we describe it in some detail in Section 5.1. Then in Section 5.2 we
show that the matrix HD obtained by the discretization of the CEV transi-
tion density exhibits eigenvalues strongly clustered at zero: if we increase the
size (number of quadrature points) of the matrix, the number of eigenvalues
greater than a given tolerance remains constant. Thus the CEV process ad-
mits the cluster property that allows us to improve the performance of the
recursive approach. Finally, in Section 5.3 we apply our algorithm (hereafter
denominated BP algorithm) to “break into pieces” the matrix HD and we
apply to price exotic derivatives. This algorithm is detailed with a pseudo-
code in Appendix A.

For the numerical discretization of (5) we opt for a Gauss-Legendre quadra-
ture [20]. Numerical experiments not reported here have shown that the
cluster of eigenvalues of the iteration matrix is independent of the adopted
quadrature formulas, but the bandwidth of the matrix is larger for Gaussian
quadrature respect to Newton-Cotes ones. However the results are similar,
in terms of computational efficiency, for both classes of quadrature formulas.

All calculations were performed using Matlab R2008a on a PC Intel Core2
Quad 2.40 GHz with 3.24 GB RAM and Windows XP operating system.

5.1. The CEV Process
Even if our algorithm is quite general, from now on, we assume that the

underlying asset evolves according to a CEV process [7], i.e.,

dS(t) = rS(t)dt+ σSβ+1(t)dW (t), S(0) = S0, (9)

and thus the transition probability density is given by

p (S, ξ; ∆) := e−r∆ p0

(
S, e−r∆ξ;

1

2rβ

(
e2rβ∆ − 1

))
,
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with

p0 (S, ξ; ∆) =
ξ−2β− 3

2S
1
2

σ2|β|∆
e
−S−2β+ξ−2β

2σ2β2∆ I 1
2|β|

(
S−βξ−β

σ2β2∆

)
,

where Iν is the modified Bessel function of the first kind of order ν. In
particular, when β = 0 we have the classical geometric Brownian process
(GBM), when β = −1 we have an arithmetic Brownian motion (ABM),
while when β = −0.5 the Cox-Ingersoll-Ross square-root process (SR) is
obtained. For details see also [7, 9, 12]. In Figure 3 we plot the density
function for different values of the leverage parameter β (left panel) and
the corresponding implied volatility curve (right panel). In particular, large
negative values of β generate a skewed to the left density function and a
very steep implied volatility curve, as often observed in the market. The
CEV process, consistently with empirical studies, allows for the volatility to
depend on the price level and in addition the two are negatively correlated
(leverage effect); moreover, the model is able to generate the smirk effect
often observed in the market implied volatility curve. See for example [3, 6].
Unfortunately, the transition density of the CEV process is not of convolution
type, thus a fast computation of the recursion via the FFT is not feasible.
For these reasons, the CEV dynamic turns out to be an interesting case to
test our pricing procedure.
Unless otherwise specified, we consider the same parameter setting as in [9]:
the initial asset price is S0 = 100, the risk-free interest rate is 10% per annum
(r = 0.1), the volatility is σ = 0.25/Sβ

0 . Moreover, we assume that the asset
pays no dividends (q = 0), and all options have six months to expiration
(T = 0.5). If necessary, we truncate the integration interval as stated in
Section 2.1 with a 10−8 tolerance.

5.2. Cluster of the HD matrix

Table 1 provides the number of eigenvalues greater, in absolute value,
than ǫ = 10−11 and the bandwidth size btop of the matrix HD, see Figure 2.
The bandwidth size is fixed setting to zero the elements smaller, in absolute
value, than 10−9. The leverage parameter β in the CEV model is set equal
to −0.5 (results for different values of β are reported in Appendix B, Tables
B.12-B.15). We stress that this table refers to pricing problems characterized
by a different iteration matrix. We notice that:

• a strong cluster at zero always occurs. For example, let us consider
down-and-out options in Table 1, given a number of monitoring dates
N = 52. The number of significative eigenvalues (greater than ǫ) is
107, independently of the matrix dimension m;
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Figure 3: Density function (left) and implied volatility (right) of the CEV model for
different values of β.

• the cluster increases less than linearly with respect to the number of
monitoring dates N . Thus our algorithm will achieve a large time
reduction when N is large. In fact, we see in Table 1 that, given m,
as the number of monitoring dates increases, the same happens to the
number of eigenvalues greater than ǫ, but the ratio rǫ/N decreases;

• the presence of barriers strongly improves the cluster. This is evident
if we compare the double barrier case in Table 1 to other contracts. In
particular this suggests a relative better performance of the algorithm
in pricing this kind of exotics;

• changing the value of the leverage parameter β in the CEV density does
not affect the cluster. This is shown in Tables B.12-B.15 in Appendix
B.

We can also make some additional considerations on the bandwidth of the
matrix:

• we always have banded matrices; for example in Table 1 for European,
lookback, Asian or step options with N = 52 and m = 4000, the band-
width size is btop = 493. However, the presence of barriers increases
btop. Indeed barriers cut the tails of the density so that we have to
sample a function that does not approach zero on the frontier of the
domain. In general, the ratio btop/m remains constant as m varies.

• the bandwidth size decreases as we increase the number N of monitor-
ing dates; this is, for example, confirmed for all contracts in Table 1
when m = 4000 and we let N to vary from 52 to 1008;
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rǫ bandwidth=btop
Contract N m m

1000 2000 3000 4000 1000 2000 3000 4000
European 52 190 190 190 190 126 249 372 493
Lookback 104 266 267 267 267 105 208 310 411
Asian 252 411 412 412 412 83 165 247 328
Step 504 576 580 581 581 70 139 207 275

1008 774 819 819 832 59 116 174 231
Down-and-out 52 107 107 107 107 209 414 617 818

104 149 149 149 149 174 345 514 683
252 230 230 230 229 139 275 410 544
504 322 322 323 322 116 231 344 456
1008 455 455 455 454 98 194 289 384

Up-and-out 52 115 115 115 115 183 362 540 716
104 161 161 161 161 152 301 449 596
252 247 247 247 247 121 239 357 474
504 348 348 348 348 101 201 299 397
1008 489 490 490 490 85 168 251 333

Double barrier 52 32 32 32 32 471 929 1382 1831
104 44 44 43 43 383 757 1126 1493
252 65 65 65 65 300 592 882 1170
504 90 90 90 90 249 493 734 974
1008 125 125 125 125 208 412 614 814

Table 1: Number rǫ of eigenvalues of HD greater than ǫ = 10−11. Legend: m is the matrix
dimension, N is the number of monitoring dates, β = −0.5 is the leverage parameter in
(9) and btop is the bandwidth size of the matrix HD. Contracts are grouped according to
the iteration matrix HD.

Since the performance of the algorithm is optimized when the cluster size
rǫ and the bandwidth size btop are both small, the above remarks suggest
that this happens in all cases and the greatest benefit occurs as we increase
N .

N=252 N=504 N=1008
European 1.1604 1.3270 1.4151
Barrier Down-and-out 1.1045 1.4104 1.7289
Barrier Up-and-out 1.1784 1.4872 1.7964
Double barrier 0.7263 0.9809 1.9535
Bermudan 1.1634 1.3476 1.4189
Bermudan Down-and-out 1.1102 1.4176 1.7126
Bermudan Up-and-out 1.1891 1.5065 1.7883
Bermudan Double barrier 0.7315 0.9867 1.9412
Lookback 2.3617 2.1688 1.9565
Lookback (ω = 4) 3.0116 2.8686 2.5773
Asian 1.8654 1.7169 1.5609
Asian (ω = 4) 1.9707 1.9769 1.9624
Step 4.3515 3.6113 3.1951

Table 2: Speed-up values for different contracts with β = −0.5 and m = 4000. The initial
asset price is S0 = 100, the volatility is σ = 0.25/Sβ

0 , the risk-free interest rate is 10% per
annum (r = 0.1), the asset pays no dividends (q = 0), and all options have six months to
expiration (T = 0.5). The strike price E is equal to 105. Additional payoff’s parameters
for step options are ρ = 0.5 and A = [90, 110]. ω is the parameter in Remark 1.
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In Table 2 we show the speed-up for different contracts. Here the speed-up
is defined as the ratio between the CPU time for the classical recursive (Rec.)
algorithm and the one for our pricing procedure (Rec.+BP). As expected, the
speed-up is always greater than 1. Double barrier options are the exception
when the number of monitoring dates is small, due to a too large bandwidth.

5.3. Pricing options

In this section we validate our pricing procedure comparing it to stan-
dard numerical quadrature and to Monte Carlo simulation. This has been
implemented with an Euler discretization scheme with 300 steps between two
consecutive monitoring dates, and 1.000.000 runs. In general Monte Carlo
simulations applied to the CEV process achieve a two digits accuracy, but
with a CPU time that turns to be higher than the recursive quadrature of a
factor that varies from 4 to 10.2 Extended numerical results are reported in
Appendix B.

5.3.1. Barrier and Bermudan Options

In Tables 4 and 5 we price European and barrier call options. Analyti-
cal formulas for European options are available in terms of the non-central
chi-square distribution, see [23]. Prices of continuously monitored barrier
options, i.e., N = ∞, are given in [9] and reported here in Table 3.

β = 0 β = −0.5 β = −1
European 7.0995 7.0170 6.9403

Down-and-out 6.3722 6.2554 6.1438
Up-and-out 0.6711 0.7734 0.8904

Double barrier 0.4418 0.5126 0.5945

Table 3: Prices in [9, Table 1].

β m Prices CPU Times (sec.)
Rec. Rec.+BP Rec. Rec.+BP

0 2000 7.099596 7.099596 1.01 4.60
4000 7.099571 7.099571 3.90 18.20

-0.5 2000 7.017063 7.017063 6.09 10.16
4000 7.016999 7.016999 23.63 39.66

-1 2000 6.940388 6.940388 8.09 12.96
4000 6.940318 6.940318 31.40 50.87

Table 4: European call: m is the matrix dimension and β is the leverage parameter in (9).
Parameters as in Table 2.

2We also considered an exact Monte Carlo simulation by sampling from the known tran-
sition cumulative density function, but the procedure turns out to be too time consuming
and of no practical relevance.
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Since European options are path-independent contracts, their pricing re-
quires a single recursion. For this reason, in Table 4 we set N = 1 and the
BP algorithm is not at all convenient because the factorization is too costly
with respect to a single matrix-vector multiplication. However the algorithm
has the same accuracy as the analytical formula: our price estimates agree
with those of the first row of Table 3.

Numerical results for barrier options with β = −0.5 are given in Table
5. Prices for different values of β and for up-and-out options are reported in
Appendix B, Table B.16. We notice that:

• prices computed with the BP algorithm agree with the ones from the
pure recursion up to five decimal digits;

• as expected, the BP algorithm performs better as we increase the num-
ber of monitoring dates N , since the factorization has to be performed
only once, and, at the same time, the bandwidth decreases (see Table
1 - we recall that our algorithm performs well if the bandwidth size is
not too large). In fact, from Table 5 we notice the benefits of the BP
factorization for N = 252 or greater;

• the algorithm works better as we increase the number of quadrature
nodes m, since the cluster size rǫ does not increase varying m, while
the computational cost of the matrix-vector multiplication increases;

• for double barrier options we observe that, increasing N , we have a
trade-off between the cluster size (it improves) and the bandwidth size
(it becomes larger). On this point we can make two remarks:

1. In general, our algorithm improves the standard recursion for N
larger than 252. Additional numerical tests have shown that the
algorithm applied to the double barrier case can achieve a speed-
up up to 3.6 when N = 10000.

2. Numerical results in Table 2 show that the BP algorithm performs
better for single barrier respect to double barrier options if N is
lower than 1008.

• concerning the convergence of the discrete monitoring price to the con-
tinuous monitoring case, we notice a slow convergence from above of
prices in Table 5 to the ones in Table 3. This justifies the pricing
of discretely monitored options. For example, when β = −0.5 and
N = 10000, a single barrier option with discrete monitoring is worth
6.2756, whilst the continuous version is 6.2554.

Experiments not reported here show similar performances for Bermudan
options. The results are not affected by the presence or absence of dividends.
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Down-and-out call Double barrier call
N m Prices CPU (sec.) Prices CPU (sec.)

Rec. Rec. Rec. Rec. Rec. Rec. Rec. Rec.
+BP +BP +BP +BP

52 2000 6.497277 6.497277 4.47 6.03 0.771025 0.771025 4.16 8.70
52 4000 6.497278 6.497278 17.13 23.74 0.771024 0.771024 16.12 34.37
104 2000 6.434699 6.434699 4.87 5.51 0.694140 0.694140 4.48 8.41
104 4000 6.434700 6.434700 18.73 22.22 0.694140 0.694140 17.21 32.49
252 2000 6.375374 6.375374 6.03 5.70 0.628248 0.628248 5.39 7.61
252 4000 6.375375 6.375375 23.24 21.04 0.628248 0.628248 20.68 28.47
504 2000 6.342071 6.342072 7.91 7.06 0.593922 0.593922 6.94 7.46
504 4000 6.342072 6.342073 30.65 21.73 0.593922 0.593922 26.77 27.29
1008 2000 6.317620 6.317621 11.63 11.24 0.569846 0.569846 13.99 8.47
1008 4000 6.317621 6.317623 45.04 26.05 0.569846 0.569846 54.64 27.97
10000 2000 6.275649 6.275652 72.95 122.85 0.530602 0.530603 85.20 49.35
10000 4000 6.275651 6.275652 282.11 154.93 0.530602 0.530604 331.26 91.33

Table 5: Down-and-out and double barrier call: β = −0.5 is the parameter in (9), m is
the matrix dimension and N is the number of monitoring dates. Parameters as in Table
2.

5.3.2. Lookback Options

Pricing lookback options is in general more expensive than pricing bar-
rier options, because we have to keep trace of an additional state variable,
the running minimum J . Thus, we expect an increase in the CPU time with
respect to barrier and Bermudan option. However, since the matrix factoriza-
tion is independent on the J-grid nodes, we still expect an improvement with
respect to the standard recursion. Results reported in Table 6 confirm this.
In addition the two recursive algorithms show comparable accuracy. Table 7
provides, as benchmark, confidence intervals computed by the Monte Carlo
algorithm. An additional speed-up can be obtained considering less nodes
on the J-grid, up to ten times if we reduce by a factor of four the nodes on
the J-grid (ω = 4 in the mentioned table), maintaining a two decimal digits
accuracy.

5.3.3. Asian Options

Asian options (see Section 2.4) share with lookback options the presence
of an additional state variable. Given that the iteration matrix is the same
for the two contracts, we expect a similar performance of the algorithm in the
Asian as in the lookback case. Results are given in Table 8, and comments
given in Section 5.3.2 still apply. For example, if we set ω = 4, we reduce the
CPU time by a factor of seven, still maintaining a two decimal digits accuracy.
Reported option prices always fall into the Monte Carlo confidence intervals.

Finally, in Table 10 we consider the log-normal process (β = 0). In
this case, indeed, it is more efficient to use a FFT approach, as in [5], or
a randomization technique, as in [11]. We use the results in [5, Table 7] as
benchmark. In Table 10 we also analyze the effect on the price accuracy of
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N m Prices CPU Times (sec.)
Rec. Rec. Rec. Rec. Rec. Rec. Rec. Rec.

+BP +BP +BP +BP +BP +BP
ω = 1 ω = 1 ω = 2 ω = 4 ω = 1 ω = 1 ω = 2 ω = 4

52 2000 14.545701 14.545701 14.544358 14.553307 592 323 140 64
52 4000 14.542978 14.542978 14.542853 14.546845 4566 1422 703 332
104 2000 14.887939 14.887940 14.886958 14.893453 1069 629 270 124
104 4000 14.886366 14.886366 14.886282 14.889097 8084 2897 1381 618
252 2000 15.191305 15.191306 15.190640 15.194984 2193 1361 598 254
252 4000 15.190981 15.190982 15.190932 15.192716 16567 7015 3212 1376
504 2000 15.353628 15.353629 15.353129 15.356335 3953 2684 1194 534
504 4000 15.354248 15.354250 15.354219 15.355452 29570 13634 5969 2573
1008 2000 15.469194 15.469194 15.468811 15.471220 6886 5117 2043 986
1008 4000 15.470853 15.470857 15.470839 15.471678 51971 26563 11362 5025

Table 6: Fixed-strike lookback put: β = −0.5 is the parameter in (9), m is the matrix
dimension and N is the number of monitoring dates. Parameters as in Table 2. ω is the
parameter in Remark 1.

N Confidence CPU Times
Interval (sec.)

52 14.5242 - 14.5576 2523
104 14.8738 - 14.9073 5014
252 15.1781 - 15.2116 12104
504 15.3483 - 15.3818 24180
1008 15.4511 - 15.4846 48331

Table 7: Monte Carlo values for fixed-strike lookback put options with 1.000.000 iterations,
parameters as in Table 6.

N m Prices CPU Times (sec.)
Rec. Rec. Rec. Rec. Rec. Rec. Rec. Rec.

+BP +BP +BP +BP +BP +BP
ω = 1 ω = 1 ω = 2 ω = 4 ω = 1 ω = 1 ω = 2 ω = 4

52 2000 2.919996 2.919996 2.920009 2.919707 843 573 284 157
52 4000 2.920010 2.920010 2.920007 2.920017 5615 2377 1186 673
104 2000 2.928446 2.928446 2.928341 2.926760 1642 1128 543 307
104 4000 2.928465 2.928465 2.928459 2.928347 10072 4814 2379 1304
252 2000 2.933353 2.933353 2.932724 2.929454 3592 2591 1370 725
252 4000 2.933498 2.933499 2.933402 2.932702 21221 11376 5755 3140
504 2000 2.934878 2.934878 2.933790 2.929121 6448 5137 2796 1400
504 4000 2.935238 2.935238 2.934972 2.933777 38909 22662 11140 5495
1008 2000 2.935444 2.935444 2.933788 2.927539 12413 9834 5488 2992
1008 4000 2.936030 2.936031 2.935583 2.933823 71120 45563 22044 10207

Table 8: Fixed-strike Asian call: β = −0.5 is the parameter in (9), m is the matrix
dimension and N is the number of monitoring dates. Parameters as in Table 2. ω is the
parameter in Remark 1.

the truncation of the integration interval (see Section 2.1). The Rec.+BP
algorithm always achieves a three to five decimal digits accuracy depending
on the tolerance level when we truncate the domain. Significant reduction in
the CPU time, without loss of accuracy, can be achieved with a sparser grid
(ω = 2 and ω = 4) on the running average.
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N Confidence CPU Times
Interval (sec.)

52 2.9151 - 2.9356 2523
104 2.9196 - 2.9401 5014
252 2.9272 - 2.9477 12104
504 2.9283 - 2.9487 24180
1008 2.9264 - 2.9468 48331

Table 9: Monte Carlo values for fixed-strike Asian call options with 1.000.000 iterations,
parameters as in Table 8.

σ

ω m Tol 10−8 Tol 10−10

0.1 0.3 0.5 0.1 0.3 0.5
1 1000 11.58113 13.66975 17.19193 11.58113 13.66991 17.19255
1 2000 11.58113 13.66977 17.19196 11.58113 13.66980 17.19236
1 4000 11.58113 13.66977 17.19192 11.58113 13.66982 17.19240
2 1000 11.58118 13.67068 17.19441 11.58120 13.67232 17.19750
2 2000 11.58113 13.66974 17.19191 11.58113 13.66982 17.19272
2 4000 11.58113 13.66977 17.19191 11.58113 13.66982 17.19239
4 1000 11.58175 13.67434 17.20552 11.58184 13.68018 17.20388
4 2000 11.58118 13.67081 17.19409 11.58121 13.67196 17.19835
4 4000 11.58113 13.66973 17.19192 11.58113 13.66981 17.19270

Table 10: Fixed-strike Asian call: A comparison between the Rec.+BP algorithm and [5,
Table 7]: Gaussian case (β = 0) and strike price E = 90. Benchmark price: 11.58113
(σ = 0.1), 13.66981 (σ = 0.3) and 17.19239 (σ = 0.5).

5.3.4. Step Options

Numerical results given in Table 11 show that our algorithm applied to
step options achieves the same accuracy as the direct recursive procedure:
they agree up to the sixth digit, but with a strong reduction in the compu-
tational time. Thus, also for this kind of contracts the Rec.+BP algorithm
is more efficient than the plain recursion and Monte Carlo simulation.

N m Prices CPU Times (sec.) Monte Carlo values
Rec. Rec.+BP Rec. Rec.+BP Confidence CPU Times

Interval (sec.)
52 2000 5.580878 5.580878 13.08 7.46 5.5772-5.6133 2446.38
52 4000 5.581670 5.581670 50.64 23.71
104 2000 5.564554 5.564554 35.21 13.98 5.5473-5.5832 4881.28
104 4000 5.565345 5.565345 134.63 35.45
252 2000 5.554981 5.554981 154.47 60.41 5.5414-5.5772 11811.86
252 4000 5.555772 5.555773 589.53 135.57
504 2000 5.551620 5.551620 533.47 241.04 5.5367-5.5725 23616.72
504 4000 5.552411 5.552412 2003.21 554.70
1008 2000 5.549940 5.549940 1823.83 1044.87 5.5276-5.5634 47231.25
1008 4000 5.550731 5.550732 6931.57 2169.42

Table 11: Step call: m is the matrix dimension, N is the number of monitoring dates.
Parameters as in Table 2.
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Appendix A. Algorithm to “break into pieces” a matrix

In order to “break into pieces” the matrix HD as explained in Section
4.2.1, we proceed, recursively, as follows: we denote by

fact(A) the factorization (bidiagonalization) procedure of a matrix A;

bandRtop(A) the number of elements larger than a tolerance ǫ in the
first row of A;

bandCtop(A) the number of elements larger than a tolerance ǫ in the
first column of A;

bandRend(A) the number of elements larger than a tolerance ǫ in the
last row of A;

bandCend(A) the number of elements larger than a tolerance ǫ in the
last column of A;

dim(A) the number of rows (columns) of a square matrix A.

The algorithm, described in Figure A.4, is the following.

function = Cut(HD,epsilon)

while(1)

compute bandRtop(HD);

compute bandCtop(HD); %(see Figure A.4A)

put dimNew=2*max(bandCtop(HD),bandRtop(HD)); %(see Figure A.4B)

If dimNew >= dim(HD)

fact(HD);

BREAK; %(see Figure A.4C)

else

put HDnew=HD(1:dimNew,1:dimNew); %(see Figure A.4D-E)

compute bandRend(HDnew);

compute bandCend(HDnew); %(see Figure A.4F)

put maxRCend=max(bandaRend(HDnew),bandaCend(HDnew));

put HDnew(dimNew-maxRCend:end,dimNew-maxRCend:end)=0; %(see Figure A.4G)

fact(HDnew);

put HD=HD(dimNew-maxRCend:end,dimNew-maxRCend:end); %(see Figure A.4H-I)

end

end

The value 2 in the fifth line of code has been experimentally verified to be
the best one.
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A: initial matrix HD B C: last submatrix, see Figure 2

D: first submatrix considered E: enlargement of Figure D F

G H: new matrix HD I: enlargement of Figure H

Figure A.4: “Breaking into pieces” a banded matrix.
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Appendix B. Supplementary Material

rǫ bandwidth=btop
β N m m

1000 2000 3000 4000 1000 2000 3000 4000
0 52 192 192 192 192 99 195 291 387

104 269 270 270 270 82 163 243 322
252 407 417 417 417 65 130 193 256
504 538 586 587 587 55 109 162 215
1008 681 811 828 828 46 91 136 181

-0.5 52 190 190 190 190 126 249 372 493
104 266 267 267 267 105 208 310 411
252 411 412 412 412 83 165 247 328
504 576 580 581 581 70 139 207 275
1008 774 819 819 832 59 116 174 231

-1 52 190 190 190 190 172 341 509 675
104 267 267 267 267 145 287 427 567
252 412 412 412 412 116 230 343 455
504 580 581 581 581 98 193 288 383
1008 818 819 819 819 82 163 243 323

-2 52 152 152 152 152 135 268 399 529
104 214 214 214 214 114 225 336 446
252 332 332 332 332 91 181 270 358
504 467 468 469 469 77 152 227 301
1008 621 661 662 662 65 128 191 254

Table B.12: European, Asian, Lookback, Standard Bermudan and Step options have the
same iteration matrix HD. In the Table we give the number rǫ of eigenvalues greater than
ǫ = 10−11 and the bandwidth size. Legend: m is the matrix dimension, N is the number
of monitoring dates, β is the parameter in (9) and btop is defined as in Figure 2.

rǫ bandwidth=btop
β N m m

1000 2000 3000 4000 1000 2000 3000 4000
0 52 105 105 105 105 182 359 535 710

104 146 146 146 146 151 298 445 590
252 225 225 225 225 120 237 353 469
504 316 316 316 316 100 198 296 393
1008 444 445 445 445 84 167 248 330

-0.5 52 107 107 107 107 209 414 617 818
104 149 149 149 149 174 345 514 683
252 230 230 230 229 139 275 410 544
504 322 322 323 322 116 231 344 456
1008 455 455 455 454 98 194 289 384

-1 52 111 111 111 111 229 454 676 897
104 156 155 155 155 192 380 566 751
252 239 239 239 239 153 303 452 600
504 336 336 336 336 129 255 380 505
1008 473 473 473 473 108 215 320 425

-2 52 117 117 117 117 192 379 565 749
104 164 164 164 164 161 318 475 630
252 252 252 252 252 129 255 380 505
504 355 355 355 355 108 215 320 425
1008 499 500 500 500 91 181 270 358

Table B.13: Down-and-out European and Bermudan call. The notation is as in Table
B.12.
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rǫ bandwidth=btop
β N m m

1000 2000 3000 4000 1000 2000 3000 4000
0 52 119 119 119 119 162 321 478 635

104 166 166 166 166 135 267 398 528
252 256 256 256 256 107 212 316 420
504 359 360 360 360 90 178 265 352
1008 505 506 507 507 75 149 222 295

-0.5 52 115 115 115 115 183 362 540 716
104 161 161 161 161 152 301 449 596
252 247 247 247 247 121 239 357 474
504 348 348 348 348 101 201 299 397
1008 489 490 490 490 85 168 251 333

-1 52 111 111 111 111 229 452 674 894
104 156 155 155 155 191 379 565 749
252 239 239 239 239 153 303 452 600
504 336 336 336 336 129 255 380 504
1008 473 473 473 473 108 214 320 424

-2 52 69 69 69 69 208 411 612 812
104 97 97 97 97 173 343 511 678
252 149 149 149 149 138 273 407 540
504 210 210 210 210 116 229 342 453
1008 295 295 295 295 97 193 287 381

Table B.14: Up-and-out call European and Bermudan. The notation is as in Table B.12.

rǫ bandwidth=btop
β N m m

1000 2000 3000 4000 1000 2000 3000 4000
0 52 32 32 32 32 465 917 1364 1807

104 43 43 43 43 377 744 1107 1468
252 64 64 64 64 294 581 865 1147
504 88 88 88 88 244 482 718 953
1008 122 122 122 122 203 402 600 796

-0.5 52 32 32 32 32 471 929 1382 1831
104 44 44 43 43 383 757 1126 1493
252 65 65 65 65 300 592 882 1170
504 90 90 90 90 249 493 734 974
1008 125 125 125 125 208 412 614 814

-1 52 33 33 33 33 477 940 1398 1853
104 44 44 44 44 389 769 1145 1518
252 66 66 66 66 306 604 900 1194
504 92 91 91 91 255 504 750 996
1008 127 127 127 127 213 421 628 833

-2 52 34 34 34 34 436 859 1278 1694
104 46 46 46 46 356 703 1047 1388
252 69 69 69 69 280 553 823 1092
504 96 96 96 96 233 461 686 911
1008 133 133 133 133 195 385 574 762

Table B.15: Double barrier European and Bermudan call. The notation is as in Table
B.12.
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Down-and-out call Up-and-out call Double barrier call
β N m Prices CPU Times (sec.) Prices CPU Times (sec.) Prices CPU Times (sec.)

Rec. Rec.+BP Rec. Rec.+BP Rec. Rec.+BP Rec. Rec.+BP Rec. Rec.+BP Rec. Rec.+BP
0 52 2000 6.604402 6.604402 1.54 3.04 0.884296 0.884296 1.60 2.80 0.681155 0.681155 1.28 5.61

52 4000 6.604392 6.604392 6.12 12.57 0.884296 0.884296 6.37 11.44 0.681155 0.681155 5.09 22.08
104 2000 6.544377 6.544377 1.95 2.60 0.822557 0.822557 2.05 2.35 0.609453 0.609453 1.59 5.42
104 4000 6.544368 6.544368 7.68 10.69 0.822557 0.822557 8.11 9.83 0.609452 0.609452 6.32 20.95
252 2000 6.487436 6.487437 3.10 2.74 0.768701 0.768701 3.31 2.80 0.548320 0.548320 2.48 4.57
252 4000 6.487428 6.487428 12.21 9.96 0.768701 0.768701 13.02 9.20 0.548320 0.548320 9.81 17.43
504 2000 6.455458 6.455458 5.05 4.18 0.740206 0.740206 5.36 4.41 0.516598 0.516598 4.01 4.53
504 4000 6.455450 6.455450 19.69 10.88 0.740206 0.740206 20.96 10.51 0.516598 0.516598 15.82 16.24
1008 2000 6.431973 6.431974 8.75 8.38 0.720007 0.720008 9.33 9.12 0.494401 0.494401 11.11 5.42
1008 4000 6.431965 6.431967 34.12 15.24 0.720007 0.720008 36.27 16.05 0.494401 0.494401 43.78 17.02
10000 2000 6.391650 6.391652 70.44 117.66 0.686660 0.686660 73.34 128.37 0.458320 0.458320 82.40 45.61
10000 4000 6.391642 6.391643 272.71 143.39 0.686660 0.686661 283.23 158.21 0.458320 0.458321 325.58 81.60

-0.5 52 2000 6.497277 6.497277 4.47 6.03 0.998684 0.998684 4.53 5.71 0.771025 0.771025 4.16 8.70
52 4000 6.497278 6.497278 17.13 23.74 0.998683 0.998683 17.31 22.66 0.771024 0.771024 16.12 34.37
104 2000 6.434699 6.434699 4.87 5.51 0.933797 0.933797 4.97 5.42 0.694140 0.694140 4.48 8.41
104 4000 6.434700 6.434700 18.73 22.22 0.933796 0.933796 19.20 21.31 0.694140 0.694140 17.21 32.49
252 2000 6.375374 6.375374 6.03 5.70 0.876956 0.876956 6.24 5.68 0.628248 0.628248 5.39 7.61
252 4000 6.375375 6.375375 23.24 21.04 0.876956 0.876956 24.17 20.51 0.628248 0.628248 20.68 28.47
504 2000 6.342071 6.342072 7.91 7.06 0.846791 0.846791 8.32 7.22 0.593922 0.593922 6.94 7.46
504 4000 6.342072 6.342073 30.65 21.73 0.846790 0.846790 32.20 21.65 0.593922 0.593922 26.77 27.29
1008 2000 6.317620 6.317621 11.63 11.24 0.825369 0.825370 12.32 11.74 0.569846 0.569846 13.99 8.47
1008 4000 6.317621 6.317623 45.04 26.05 0.825369 0.825369 47.57 26.48 0.569846 0.569846 54.64 27.97
10000 2000 6.275649 6.275652 72.95 122.85 0.789931 0.789932 76.40 130.61 0.530602 0.530603 85.20 49.35
10000 4000 6.275651 6.275652 282.11 154.93 0.789930 0.789931 294.67 163.17 0.530602 0.530604 331.26 91.33

-1 52 2000 6.395544 6.395544 3.79 5.57 1.127531 1.127531 4.64 6.52 0.872938 0.872938 3.51 8.14
52 4000 6.395542 6.395542 14.50 22.20 1.127534 1.127534 17.91 26.29 0.872938 0.872938 13.28 31.17
104 2000 6.330371 6.330371 4.17 5.05 1.059619 1.059619 4.79 5.67 0.790679 0.790679 3.78 7.57
104 4000 6.330370 6.330369 15.92 19.86 1.059621 1.059621 18.60 22.50 0.790679 0.790679 14.54 30.41
252 2000 6.268625 6.268626 5.32 5.17 0.999873 0.999873 5.64 5.47 0.719811 0.719811 4.68 6.93
252 4000 6.268624 6.268624 20.43 18.33 0.999875 0.999875 21.71 19.67 0.719811 0.719811 17.99 26.24
504 2000 6.233978 6.233979 7.19 6.51 0.968068 0.968068 7.50 6.70 0.682749 0.682749 7.94 6.96
504 4000 6.233977 6.233978 27.80 19.15 0.968071 0.968071 29.01 19.77 0.682748 0.682748 31.13 25.10
1008 2000 6.208546 6.208548 10.93 10.77 0.945441 0.945442 11.45 10.92 0.656689 0.656689 13.26 7.88
1008 4000 6.208545 6.208547 42.11 24.06 0.945444 0.945444 44.11 24.19 0.656689 0.656689 51.73 25.25
10000 2000 6.164904 6.164904 71.94 125.83 0.907932 0.907932 76.30 126.07 0.614098 0.614098 83.90 49.39
10000 4000 6.164903 6.164904 278.78 156.93 0.907934 0.907935 295.46 157.10 0.614097 0.614099 327.11 88.16

Table B.16: Down-and-out, Up-and-out and Double barrier call: m is the matrix dimension, N is the number of monitoring dates and
β is the parameter in (9). The initial asset price is S0 = 100, the risk-free interest rate is 10% per annum (r = 0.1), the volatility is

σ = 0.25/Sβ
0 , the asset pays no dividends (q = 0), and all options have six months to expiration (T = 0.5). The strike price E is equal

to 105.
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β N m Prices CPU Times (sec.) Monte Carlo values
Rec. Rec.+BP Rec.+BP Rec.+BP Rec. Rec.+BP Rec.+BP Rec.+BP Confidence CPU Times
ω = 1 ω = 1 ω = 2 ω = 4 ω = 1 ω = 1 ω = 2 ω = 4 Interval (sec.)

0 52 2000 14.362044 14.362044 14.368058 14.369366 597 309 132 59 14.3423 - 14.3737 2504
52 4000 14.362427 14.362427 14.365849 14.367109 4539 1452 709 330
104 2000 14.688093 14.688093 14.692382 14.693144 1070 602 258 110 14.6684 - 14.6997 4975
104 4000 14.688808 14.688808 14.691229 14.692165 8130 2948 1401 626
252 2000 14.976531 14.976532 14.979313 14.979588 2255 1381 600 263 14.9614 - 14.9926 11996
252 4000 14.977817 14.977818 14.979365 14.980017 17062 6831 3096 1335
504 2000 15.130593 15.130594 15.132574 15.132582 4043 2710 1119 548 15.1186 - 15.1498 23949
504 4000 15.132509 15.132511 15.133593 15.134096 30530 13481 5914 2585
1008 2000 15.240091 15.240095 15.241506 15.241316 7303 5145 2061 1119 15.2282 - 15.2593 47910
1008 4000 15.242882 15.242885 15.243636 15.244035 54829 26279 11411 5038

-0.5 52 2000 14.545701 14.545701 14.544358 14.553307 592 323 140 64 14.5242 - 14.5576 2523
52 4000 14.542978 14.542978 14.542853 14.546845 4566 1422 703 332
104 2000 14.887939 14.887940 14.886958 14.893453 1069 629 270 124 14.8738 - 14.9073 5014
104 4000 14.886366 14.886366 14.886282 14.889097 8084 2897 1381 618
252 2000 15.191305 15.191306 15.190640 15.194984 2193 1361 598 254 15.1781 - 15.2116 12104
252 4000 15.190981 15.190982 15.190932 15.192716 16567 7015 3212 1376
504 2000 15.353628 15.353629 15.353129 15.356335 3953 2684 1194 534 15.3483 - 15.3818 24180
504 4000 15.354248 15.354250 15.354219 15.355452 29570 13634 5969 2573
1008 2000 15.469194 15.469194 15.468811 15.471220 6886 5117 2043 986 15.4511 - 15.4846 48331
1008 4000 15.470853 15.470857 15.470839 15.471678 51971 26563 11362 5025

-1 52 2000 14.756810 14.756811 14.760338 14.758654 447 332 145 67 14.7353 - 14.7712 2504
52 4000 14.758292 14.758292 14.757768 14.757772 3403 1441 710 340
104 2000 15.120440 15.120440 15.122999 15.121791 847 630 272 125 15.1081 - 15.1442 4974
104 4000 15.121902 15.121902 15.121527 15.121535 6507 2911 1384 624
252 2000 15.443344 15.443345 15.445053 15.444263 1881 1434 632 251 15.4216 - 15.4577 12001
252 4000 15.445043 15.445044 15.444800 15.444812 14273 6938 3168 1368
504 2000 15.616345 15.616346 15.617602 15.617035 3446 2679 1113 549 15.60411 - 15.6403 23960
504 4000 15.618467 15.618469 15.618295 15.618309 26085 13904 6095 2656
1008 2000 15.739613 15.739613 15.740549 15.740141 6332 5212 2089 963 15.7278 - 15.7640 47922
1008 4000 15.742423 15.742427 15.742302 15.742317 47523 26561 11375 5076

Table B.17: Fixed-strike lookback put: m is the matrix dimension, N is the number of monitoring dates and β is the parameter in (9).

The initial asset price is S0 = 100, σ = 0.25/Sβ
0 , the risk-free interest rate is 10% per annum (r = 0.1), the volatility is σ = 0.25/Sβ

0 , the
asset pays no dividends (q = 0), and all options have six months to expiration (T = 0.5). The strike price E is equal to 105. ω is the
parameter in Remark 1.

V
I



β N m Prices CPU Times (sec.) Monte Carlo values
Rec. Rec.+BP Rec.+BP Rec.+BP Rec. Rec.+BP Rec.+BP Rec.+BP Confidence CPU Times
ω = 1 ω = 1 ω = 2 ω = 4 ω = 1 ω = 1 ω = 2 ω = 4 Interval (sec.)

0 52 2000 2.971650 2.971650 2.971659 2.971273 832 554 272 151 2.9684 - 2.9899 2504
52 4000 2.971649 2.971649 2.971651 2.971663 5255 2387 1287 644
104 2000 2.979972 2.979972 2.979856 2.978041 1552 1122 547 297 2.9730 - 2.9945 4975
104 4000 2.979976 2.979976 2.979980 2.979828 9667 4879 2325 1207
252 2000 2.984833 2.984834 2.984143 2.980487 3407 2485 1368 724 2.9792 - 3.0008 11996
252 4000 2.984937 2.984937 2.984850 2.984018 20237 11290 5451 2693
504 2000 2.986369 2.986370 2.985192 2.980024 6494 4907 2736 1471 2.9802 - 3.0018 23949
504 4000 2.986659 2.986660 2.986394 2.985004 37182 22672 11095 5397
1008 2000 2.986954 2.986955 2.985223 2.978418 11913 9699 5417 2951 2.9728 - 2.9944 47910
1008 4000 2.987461 2.987462 2.987004 2.984990 70096 44719 21764 10988

-0.5 52 2000 2.919996 2.919996 2.920009 2.919707 843 573 284 157 2.9151 - 2.9356 2523
52 4000 2.920010 2.920010 2.920007 2.920017 5615 2377 1186 673
104 2000 2.928446 2.928446 2.928341 2.926760 1642 1128 543 307 2.9196 - 2.9401 5014
104 4000 2.928465 2.928465 2.928459 2.928347 10072 4814 2379 1304
252 2000 2.933353 2.933353 2.932724 2.929454 3592 2591 1370 725 2.9272 - 2.9477 12104
252 4000 2.933498 2.933499 2.933402 2.932702 21221 11376 5755 3140
504 2000 2.934878 2.934878 2.933790 2.929121 6448 5137 2796 1400 2.9283 - 2.9487 24180
504 4000 2.935238 2.935238 2.934972 2.933777 38909 22662 11140 5495
1008 2000 2.935444 2.935444 2.933788 2.927539 12413 9834 5488 2992 2.9264 - 2.9468 48331
1008 4000 2.936030 2.936031 2.935583 2.933823 71120 45563 22044 10207

-1 52 2000 2.870184 2.870184 2.870212 2.869682 709 557 285 158 2.8617 - 2.8812 2504
52 4000 2.870184 2.870184 2.870184 2.870193 4322 2307 1181 629
104 2000 2.878753 2.878753 2.878602 2.876448 1368 1120 540 306 2.8670 - 2.8864 4974
104 4000 2.878759 2.878759 2.878760 2.878558 8724 4627 2323 1221
252 2000 2.883723 2.883724 2.882903 2.878681 3191 2686 1360 736 2.8696 - 2.8891 12001
252 4000 2.883859 2.883859 2.883741 2.882776 18885 11500 5717 2719
504 2000 2.885274 2.885274 2.883894 2.877906 6221 4976 2675 1464 2.8734 - 2.8929 23960
504 4000 2.885618 2.885619 2.885298 2.883710 35444 22953 11326 5387
1008 2000 2.885842 2.885842 2.883806 2.875826 11770 9963 5642 3000 2.8787 - 2.8982 47922
1008 4000 2.886430 2.886431 2.885892 2.883583 69791 45781 22172 10841

Table B.18: Fixed-strike Asian call: m is the matrix dimension, N is the number of monitoring dates and β is the parameter in (9).

The initial asset price is S0 = 100, σ = 0.25/Sβ
0 , the risk-free interest rate is 10% per annum (r = 0.1), the volatility is σ = 0.25/Sβ

0 , the
asset pays no dividends (q = 0), and all options have six months to expiration (T = 0.5). The strike price E is equal to 105. ω is the
parameter in Remark 1.
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β N m Prices CPU Times (sec.) Monte Carlo values
Rec. Rec.+BP Rec. Rec.+BP Confidence CPU Times

Interval (sec.)
0 52 2000 5.652152 5.652152 9.86 4.09 5.6518-5.7025 2434.59

52 4000 5.653228 5.653228 37.81 13.50
104 2000 5.635620 5.635620 30.66 10.02 5.6331-5.6716 4857.49
104 4000 5.636695 5.636695 117.49 26.51
252 200 5.625925 5.625925 145.48 56.39 5.6248-5.6632 11756.54
252 4000 5.626999 5.627000 553.91 126.05
504 2000 5.622521 5.622521 507.55 239.23 5.6224-5.6608 23505.95
504 4000 5.623595 5.623596 1919.93 528.45
1008 2000 5.620819 5.620820 1804.38 1054.60 5.6068-5.6452 46992.97
1008 4000 5.621893 5.621894 6764.08 2196.21

-0.5 52 2000 5.580878 5.580878 13.08 7.46 5.5772-5.6133 2446.38
52 4000 5.581670 5.581670 50.64 23.71
104 2000 5.564554 5.564554 35.21 13.98 5.5473-5.5832 4881.28
104 4000 5.565345 5.565345 134.63 35.45
252 2000 5.554981 5.554981 154.47 60.41 5.5414-5.5772 11811.86
252 4000 5.555772 5.555773 589.53 135.57
504 2000 5.551620 5.551620 533.47 241.04 5.5367-5.5725 23616.72
504 4000 5.552411 5.552412 2003.21 554.70
1008 2000 5.549940 5.549940 1823.83 1044.87 5.5276-5.5634 47231.25
1008 4000 5.550731 5.550732 6931.57 2169.42

-1 52 2000 5.503713 5.503713 10.75 7.32 5.4874-5.5213 2436.01
52 4000 5.503624 5.503624 41.19 26.01
104 2000 5.487607 5.487607 29.01 14.10 5.4634-5.4970 4858.14
104 4000 5.487518 5.487518 110.89 35.87
252 2000 5.478162 5.478162 132.63 61.44 5.4638-5.4975 11756.46
252 4000 5.478073 5.478074 509.16 134.53
504 2000 5.474846 5.474846 478.82 229.71 5.4407-5.4762 23504.15
504 4000 5.474757 5.474758 1824.61 559.48
1008 2000 5.473189 5.473189 1744.86 1047.12 5.4639-5.4976 46996.17
1008 4000 5.473100 5.473101 6619.11 2196.39

Table B.19: Step call: m is the matrix dimension, N is the number of monitoring dates.
The initial asset price is S0 = 100, σ = 0.25/Sβ

0 , the risk-free interest rate is 10% per

annum (r = 0.1), the volatility is σ = 0.25/Sβ
0 , the asset pays no dividends (q = 0),

and all options have six months to expiration (T = 0.5). The payoff parameters are
ρ = 0.5, E = 105, and A = [90, 110].
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