
DIPARTIMENTO DI MATEMATICA
“Francesco Brioschi”

POLITECNICO DI MILANO

On the moments of solutions to linear

parabolic equations involving the

biharmonic operator

Gazzola, F.

Collezione dei Quaderni di Dipartimento, numero QDD 126

Inserito negli Archivi Digitali di Dipartimento in data 8-7-2012

Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)



On the moments of solutions to linear parabolic equations

involving the biharmonic operator

Filippo GAZZOLA

Dipartimento di Matematica - Politecnico di Milano

Piazza Leonardo da Vinci 32 - 20133 Milano (Italy)

June 14, 2012

Abstract

We consider the solutions to Cauchy problems for the parabolic equation uτ+∆2u = 0 in R+×R
n,

with fast decay initial data. We study the behavior of their moments. This enables us to give a more
precise description of the sign-changing behavior of solutions corresponding to positive initial data.

1 Introduction

The Cauchy problem
{

uτ +∆2u = 0 in R+ × R
n ,

u(0, y) = u0(y) in R
n ,

(1)

where u0 ∈ L1(Rn), and the behavior of its solutions u = u(τ, y), have been recently studied under
several aspects. For general linear problems we refer to [2, 15, 18], for the semilinear equations uτ +
∆2u = |u|p−1u and uτ +∆2u = |u|p we refer respectively to [11, 14, 16] and [3, 7, 8, 9, 13], whereas for
nonlinear problems with irregular initial data u0 we refer to [4, 5, 6]. These papers show a quite strong
interest about (1) developed in recent years.
It is well-known that the kernels fn of the biharmonic heat operator change sign, see Section A.1

where we recall their basic properties. Therefore, one expects the solution u to (1) to display at least
one sign change even if the initial datum is nonnegative, namely u0 ≥ 0 in R

n. This was explicitly
shown in [11, 18] where a property named eventual local positivity was highlighted. Roughly speaking,
for suitable initial data u0 ≥ 0 the solution u becomes positive on compact subsets of Rn for sufficiently
large time τ although it is strictly negative in some other points. In other words, “negativity always
exists but it goes to infinity in space as time goes to infinity”.
The purpose of the present paper is to shed some further light on the long-time behavior of solutions

to (1). Most of the classical methods usually exploited for the second order heat equation do not apply.
For instance, any reasonable Lyapunov functional for (1) becomes very complicated due to the presence
of fourth order derivatives, too many terms appear and the study of their signs is out of reach. Also
standard entropy methods fail, due to the change of sign of the kernels and of the solution to (1); the
usual entropy is

∫

u log u and cannot be considered. The sign change of the kernels fn also forbids to
analyze the behavior of suitable scaled ratios such as u/fn (the solution u to (1) divided by the kernel
fn in (27)) in order to obtain Ornstein-Uhlenbeck-type equations. These difficulties force us use to
develop alternative strategies.



We first introduce some energy-type functionals and describe their time evolution. Theorem 1 and
Corollary 1 show the link between different energies and their decreasing properties with respect to τ .
This enables us to deduce some striking properties of the positive and negative parts of the solutions
to (1), see Remark 1.
Next, we study the behavior of the moments of the solutions to (1). To this end, we transform (1)

into a Fokker-Planck-type equation, see (3). The first step then consists in determining the sign of the
moments, with respect to general monomials, of the unique stationary solution, see Theorem 2; it turns
out that these signs follow a quite elegant pattern. This result enables us to determine the behavior
of the moments of general solutions to the Fokker-Planck equation, see Theorem 3; in particular, since
these moments converge to the moments studied in Theorem 2, we may asymptotically determine
their sign. Then we repeat the same study for the moments with respect to powers of |x|, that is,
|x|b for all b > −n. The pattern for the stationary solution is even more elegant than the one for
general monomials, see Theorem 4. We use this result in Theorem 5 in order to determine very precise
properties of the corresponding moments of any solution to (1). Finally, with these results at hand
we may find almost optimal thresholds between initial data u0 for which the solution to (1) is always
positive and the data for which it changes sign, see Corollaries 3 and 4.
This paper is organized as follows. In Section 2.1 we introduce and study some decreasing energies for

solutions to (1). In Section 2.2 we study in full details the moments of solutions of the corresponding
Fokker-Planck equation. Section 3 is devoted to the proofs of the main results. Finally, in the Appendix
we recall the basic properties of the biharmonic heat kernels and of the spectrum of the biharmonic
Fokker-Planck operator, and we conclude by suggesting an open problem.

2 Asymptotic behavior of the solution

We first transform (1) into a Fokker-Planck-type equation. Let

R(τ) := 4
√
4 τ + 1

so that R(τ)3R′(τ) ≡ 1. Also put

u(τ, y) := R(τ)−n v

(

logR(τ),
y

R(τ)

)

. (2)

Then take t = logR(τ) and x = y/R(τ). Some lengthy but straightforward computations show that
v = v(t, x) solves

{

vt + L v = 0 in R+ × R
n ,

v(x, 0) = u0(x) in R
n ,

(3)

where
L v := ∆2v −∇ · (x v) . (4)

In this paper, we will also consider the space S of smooth fast decaying functions

S := {w ∈ C∞(Rn) : |x|aDαw(x) → 0 as |x| → ∞ for all a ≥ 0 , α ∈ N
n} .

In order to describe the behavior of the solutions to (3), one needs first to characterize possible
stationary solutions. From, for instance, [9, (1.7) and (1.8)], or [10], we recall
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Proposition 1. Up to a multiplication by a constant, there exists a unique nontrivial stationary so-
lution to (3) which belongs to S. This solution is radially symmetric and, if we further assume that
∫

Rn v∞(x) dx = 1, explicitly given by

v∞(x) = 2(n+2)/4 αn |x|1−n/2

∫ ∞

0
e−s4 sn/2 J(n−2)/2(

√
2 |x| s) ds , (5)

and satisfies

|v∞(x)| ≤ K e−µ |x|4/3 for all x ∈ R
n , (6)

for some constants K, µ > 0.

For the explicit value of µ in (6) in the case n = 1, see [12, (5.14)]. Notice that v∞ can be expressed
in terms of the kernel fn: v∞(x) = 2n/2 αn fn(

√
2 |x|), for any x ∈ R

n, and (6) is therefore equivalent to

|fn(x)| ≤
K

2
n
2 αn

e−µ ( 1
2
|x|2)2/3 for all x ∈ R

n . (7)

Although the functions v∞ and fn are strictly related we prefer to maintain the double notation since,
in our setting, they play quite different roles; the former is a stationary solution to (3), the latter is the
biharmonic heat kernel.

2.1 Decreasing energies

Assume that u0 ∈ L1(Rn) and let v be the solution to (3). To this solution we associate five different
energy-type functionals

E0(t) :=
∫

Rn

|v(t, x)|2 dx , E1(t) :=
∫

Rn

|∇v(t, x)|2 dx , E2(t) :=
∫

Rn

|∆v(t, x)|2 dx ,

E3(t) :=
∫

Rn

|∇∆v(t, x)|2 dx , E4(t) :=
∫

Rn

|∆2v(t, x)|2 dx ,

and we prove

Theorem 1. Let u0 ∈ L1(Rn) and let v be the solution to (3). Then, for any j ∈ {0, 1, 2}, the energies
of v satisfy the following ODE’s:

E ′
j(t) = − 2 Ej+2(t) + (n+ 2j) Ej(t) .

Undoing the change of variables (2) yields

Corollary 1. Let u0 ∈ L1(Rn) and let u be the solution to (1). Then, for all τ > 0 we have
∫

Rn

u(τ, y) dy =

∫

Rn

u0(y) dy , (8)

d

dτ

∫

Rn

u(τ, y)2 dy = − 2

∫

Rn

|∆u(τ, y)|2 dy , (9)

d

dτ

∫

Rn

|∇u(τ, y)|2 dy = − 2

∫

Rn

|∇∆u(τ, y)|2 dy ,

d

dτ

∫

Rn

|∆u(τ, y)|2 dy = − 2

∫

Rn

|∆2u(τ, y)|2 dy .
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The proof of (8) follows by integrating (1) and by applying the divergence theorem. The other
statements of Corollary 1 may be obtained either by direct computations using (1) and integrations by
parts or as a straightforward consequence of Theorem 1, whence we omit their proof.

Remark 1. Denote by u+ = max{u, 0} and u− = −min{u, 0} the positive and negative parts of a
function u, so that u = u+ − u−. As already mentioned, the solution u to (1) may change sign, see
[11, 18]. This happens, for instance, if u0 ∈ C0

c (R
n), 0 6≡ u0 ≥ 0 in R

n, see [18, Theorem 1]. In such
case, (8) states that the map

τ 7→
∫

Rn

u(τ, y) dy (τ ≥ 0)

is constant and equals a strictly positive number even if some pointwise negativity appears in u(τ, y).
Hence,

∫

Rn

u−(τ, y) dy >

∫

Rn

u−(0, y) dy = 0 for all τ > 0 ,

∫

Rn

u+(τ, y) dy >

∫

Rn

u+(0, y) dy =

∫

Rn

u0(y) dy for all τ > 0 ;

here we use redundant notations (u+(0, y) = u+0 (y) = u0(y) and u−(0, y) = u−0 (y) = 0) in order to
emphasize the strict inequalities between the mass of the positive (respectively, negative) part of the
solution u = u(τ, y) and the the mass of the positive (respectively, negative) part of initial datum u0.
On the other hand, (9) states that

τ 7→
∫

Rn

u(τ, y)2 dy (τ ≥ 0)

decreases and, in particular, that

∫

Rn

u+(τ, y)2 dy <

∫

Rn

u0(y)
2 dy =

∫

Rn

u+0 (y)
2 dy (τ > 0) .

Summarizing, the L2-norm of the positive part of the solution u is smaller that the L2-norm of the
positive part of the initial datum u0, whereas the L1-norm of the positive part of the solution u is
larger than the L1-norm of the positive part of the initial datum u0. �

2.2 Behavior of the moments

Here we are interested in the moments of the function v∞ defined in (5) and to relate them to the
moments of solutions v to (3). The prototype monomial in R

n is given by

Pm(x) =

n
∏

i=1

xmi
i for m = (m1, ...,mn) ∈ N

n

and its degree is |m| =
∑

imi. Then we define the Pm-moment of v∞ by

MPm :=

∫

Rn

Pm(x) v∞(x) dx (10)

and we prove

4



Theorem 2. For any m = (m1, ...,mn) ∈ N
n the following facts hold:

1. M∆2Pm
= − |m|MPm,

2. if |m| 6∈ 4N or if at least one of the mi’s is odd, then MPm = 0,

3. if |m| ∈ 8N and all the mi’s are even, then MPm > 0,

4. if |m| ∈ 8N+ 4 and all the mi’s are even, then MPm < 0.

Let u0 ∈ S and consider the solution v to (3). Let Pm be as above and consider the (time-dependent)
map

MPm,u0
(t) :=

∫

Rn

Pm(x) v(t, x) dx =

∫

Rn

(

n
∏

i=1

xmi
i

)

v(t, x) dx .

The following result holds.

Theorem 3. Assume that u0 ∈ S is normalized in such a way that

∫

Rn

u0(x) dx =

∫

Rn

v∞(x) dx = 1 (11)

and let v denote the solution to (3). For any t ≥ 0, the following facts hold:

1. M ′
Pm,u0

(t) = −M∆2Pm,u0
(t)− |m|MPm,u0

(t) for all m ∈ N
n,

2. MPm,u0
(t) = e−|m| t

∫

Rn Pm(x)u0(x) dx for all |m| ≤ 3,

3. limt→∞MPm,u0
(t) = MPm for all m ∈ N

n.

By combining Theorems 2 and 3, we infer

Corollary 2. Assume that u0 ∈ S is normalized in such a way that (11) holds and let v denote the
solution to (3). Then

lim
t→∞

MPm,u0
(t)







= 0 if |m| 6∈ 4N or if at least one of the mi’s is odd,
> 0 if |m| ∈ 8N and all the mi’s are even,
< 0 if |m| ∈ 8N+ 4 and all the mi’s are even.

We have so far considered moments having polynomials of x as weights. In fact, also different kinds
of moments are of interest. We now consider powers of |x| which are polynomials only for even integer
powers. For any b > −n we define

Mb :=

∫

Rn

|x|b v∞(x) dx .

Note that for b > −n the above integral is finite since |x|b v∞(x) ∼ v∞(0) |x|b as x → 0 and v∞ has
exponential decay at infinity according to (6). If Pm(x) = |x|m for some m ∈ 2N, then Mm coincides
with MPm as defined in (10). We are again interested in the sign of these moments. By combining
several arguments from [11] we prove
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Theorem 4. Assume that n ≥ 1 and that b > −n. Then

Mb > 0 for all b ∈ (−n, 2)
⋃

(

∞
⋃

k=0

(8k + 6, 8k + 10)
)

,

Mb = 0 for all b ∈ 4N+ 2 ,

Mb < 0 for all b ∈
∞
⋃

k=0

(8k + 2, 8k + 6) .

Theorems 2 and 4 give further evidence to the sign-changing properties of the kernels fn (recall that
v∞(x) = 2n/2 αn fn(

√
2 |x|)) , and they better describe how these infinitely many sign changes occur.

They also show that the sign of the moments do not depend on n, see Figure 1; for instance, negativity
of Mb occurs for b ∈ (2, 6) ∪ (10, 14) ∪ ... regardless of the value of n ≥ 1.

Figure 1: Sign of Mb.

In the particular case where |m| = 2k and Pm(x) = |x|2k we may give a simple characterization of the
moments of a solution to (3). Consider a solution v to (3) with initial data u0. For all b ≥ 0 we put

Mb,u0
(t) :=

∫

Rn

|x|b v(t, x) dx

and we prove

Theorem 5. Assume that u0 ∈ S is normalized in such a way that (11) holds and let v denote the
solution to (3). Then for any k ∈ N, k ≥ 2, the above defined functions satisfy the following ODE

M ′
2k,u0

(t) + 2kM2k,u0
(t) = − 2k (2k − 2) (2k + n− 2) (2k + n− 4)M2k−4,u0

(t) . (12)

Moreover, for any k ∈ N, we have
lim

t→+∞
M2k,u0

(t) = M2k (13)

and the following explicit representation

M2k,u0
(t) =

k
∑

j=0

akj e
−2jt , (14)
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where ak0 = M2k and

(i) akk = M2k,u0
(0) + 2k (k − 1) (2k + n− 2) (2k + n− 4)

k−2
∑

j=0

ak−2
j

k − j
,

(ii) akk−1 = 0 if k ≥ 1 ,

(iii) akj = − 2k (k − 1) (2k + n− 2) (2k + n− 4)

k − j
ak−2
j if k ≥ 2 and j = 0, ..., k − 2 .

In (i) we use the convention that
∑k−2

j=0 = 0 if k ≤ 1.

Formula (14) shows, for instance, that

M0,u0
(t) ≡

∫

Rn

u0(x) dx , M2,u0
(t) = e−2t

∫

Rn

|x|2 u0(x) dx ,

M4,u0
(t) = − 2n (n+ 2)

∫

Rn

u0(x) dx+

∫

Rn

[

|x|4 + 2n (n+ 2)
]

u0(x) dx e−4t ,

M6,u0
(t) = − 6 (n+ 4) (n+ 2)

∫

Rn

|x|2 u0(x) dx e−2t

+

(
∫

Rn

|x|6 u0(x) dx+ 6 (n+ 4) (n+ 2)

∫

Rn

|x|2 u0(x) dx
)

e−6t .

Remark 2. Even if b 6∈ 2N (so that |x|b is not a polynomial) we may still define the map Mb,u0
and,

arguing as for (12), for all b ∈ [4,∞) we obtain

M ′
b,u0

(t) + bMb,u0
(t) = − b (b− 2) (b+ n− 2) (b+ n− 4)Mb−4,u0

(t) . �

Note that Theorems 3 and 5 also hold in a weaker form if u0 ∈ L1(Rn) and |x|a u0 ∈ L1(Rn) for
some a ≥ 4. In this case, the statements hold true under the additional restriction that |m| ≤ a. In
particular, we have the following

Corollary 3. Assume that (1+ |x|4)u0 ∈ L1(Rn) and that (11) holds. If v denotes the solution to (3),
then

lim
t→+∞

∫

Rn

|x|4 v(t, x) dx = M4 < 0 .

By combining (8) with Corollary 3 and with [11, Proposition A.6], we obtain

Corollary 4. Assume that u0 > 0 a.e. in R
n.

(i) If (1 + |x|4)u0 ∈ L1(Rn), then the solution u to (1) changes sign.
(ii) If n = 1, there exists β0 > 0 such that if β ∈ (0, β0) and u0(x) = |x|−β, then the solution u to (1)

is a.e. positive in R+ × R.

Corollary 4 can be interpreted as follows. From [18, Theorem 1] we know that solutions u to (1) with
compactly supported nonnegative initial data u0 display the eventual local positivity property, that
is, u(τ, y) becomes eventually positive on any compact subset of Rn but it is always strictly negative
somewhere in a neighborhood of |y| = ∞. This happens because the biharmonic heat kernels exhibit
oscillations and, outside the support of u0, they “push below zero” the initial datum. The same happens
if u0 > 0 but u0 is “very close to zero”, see statement (i). On the other hand, if u0 > 0 and u0 is
“far away from zero” then the kernels do not have enough negative strength to push the solution below
zero, see statement (ii). The trivial case u0 ≡ 1 (which is a stationary solution to (1)!) well explains
this situation.
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3 Proofs

3.1 Proof of Theorem 1

Let fn be the biharmonic heat kernels, see (27), and let αn > 0 be a normalization constant, see (28).
Then the solution u to (1) is explicitly given in terms of a convolution with the initial datum

u(τ, y) = αn τ
−n/4

∫

Rn

u0(y − z) fn

( |z|
τ1/4

)

dz (15)

= αn

∫

Rn

u0(y − τ1/4z) fn(|z|) dz , (τ, y) ∈ R+ × R
n .

A well-known fact is that u(τ, y) decays to 0 as τ → +∞, see e.g. [11, Theorem 1.1]. Moreover,
by differentiating under integral sign (15) and by applying Lebesgue’s dominated convergence theorem
(this can be done in view of (7)), one obtains

Proposition 2. Let u0 ∈ L1(Rn) and let u be given by (15). Then

lim
|y|→∞

Dαu(τ, y) = 0

for any τ > 0 and any multiindex α, where Dα denotes the corresponding differentiation with respect
to the y-variables. Therefore, if v denotes the corresponding solution to (3), we have

lim
|x|→∞

Dαv(t, x) = 0

for any t > 0 and any multiindex α, where Dα now denotes differentiation with respect to the x-variables.

Proposition 2 allows integrations by parts with no terms at infinity. If j = 0 we have

E ′
0(t) = 2

∫

Rn

v vt dx = −2

∫

Rn

vL v dx

so that two integrations by parts yield

E ′
0(t) = − 2

∫

Rn

|∆v|2 dx+ 2

∫

Rn

v∇ · (x v) dx .

By computing ∇ · (x v) = n v + x · ∇v and with a further integration by parts we obtain the statement
for j = 0.
If j = 1 we have

E ′
1(t) = 2

∫

Rn

∇v∇vt dx = − 2

∫

Rn

∆v vt dx = 2

∫

Rn

∆vL v dx .

Since there are no boundary terms, an integration by parts shows that

∫

Rn

∆v (x · ∇v) dx =
n− 2

2

∫

Rn

|∇v|2 dx .

Hence, proceeding as above we obtain the statement for j = 1.
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If j = 2 we have

E ′
2(t) = 2

∫

Rn

∆v∆vt dx = 2

∫

Rn

∆2v vt dx = −2

∫

Rn

∆2vL v dx .

In view of the Rellich-type identity due to Mitidieri [20, (2.6)] we have

∫

Rn

∆2v (x · ∇v) dx =
4− n

2

∫

Rn

|∆v|2 dx

and, once again, proceeding as above proves the statement also for j = 2.

3.2 Proof of Theorem 2

Recalling that v∞ is a stationary solution to (3), several integrations by parts, which are allowed by
Proposition 2, show that

M∆2Pm
=

∫

Rn

(∆2Pm) v∞ dx =

∫

Rn

Pm∆2v∞ dx

=

∫

Rn

Pm∇ · (x v∞) dx = − |m|
∫

Rn

Pm v∞ dx = − |m|MPm

which proves Item 1, while it is straightforward to check that

MPm = 0 for all 1 ≤ |m| ≤ 3 . (16)

The first part of Item 2 follows by combining Item 1 and (16). The second part of Item 2 follows by
recalling that v∞ is even with respect to all the variables xi and, therefore, if Pm is odd with respect
to some xi so is Pm v∞.
We prove Items 3 and 4 at the same time. We know that Item 3 is true if |m| = 0 (see Theorem 4 with

b = 0 for further details). If |m| = 4 and all the mi’s are even, then either ∆2Pm = 24 (if Pm(x) = x4i
for some i) or ∆2Pm = 8 (if Pm(x) = x2i x

2
j for some i 6= j). In any case, ∆Pm is a positive constant

γ > 0 so that Item 1 shows γ
∫

Rn v∞ dx = − 4MPm . This shows that MPm < 0. By repeating the use
of Item 1, we see that both Items 3 and 4 hold.

3.3 Proof of Theorem 3

Note first that, by Proposition 2, the moments of v are well defined. We have

M ′
Pm,u0

(t) =

∫

Rn

Pm vt dx = −
∫

Rn

Pm L v dx . (17)

Once more, Proposition 2 allows several integrations by parts which show that

−
∫

Rn

Pm∆2v dx = −
∫

Rn

v∆2Pm dx and

∫

Rn

Pm∇ · (x v) dx = − |m|
∫

Rn

Pm v dx . (18)

This proves Item 1.
If |m| ≤ 3, then ∆2Pm = 0. In view of (17) and (18) this tells us that

M ′
Pm,u0

(t) = − |m|MPm,u0
(t)

9



which proves Item 2 upon integration of the ODE.
Item 3 is proved by induction as follows. We first claim that if 4k < |m| < 4(k + 1) for some k ∈ N

then limt→∞MPm,u0
(t) = 0. For k = 0 this is a straightforward consequence of Item 2. Assume that

the above statement has been proved for some k ∈ N. Then we take 4(k + 1) < |m| < 4(k + 2) and we
rewrite Item 1 as

d

dt

(

e|m| tMPm,u0
(t)
)

= − e|m| tM∆2Pm,u0
(t) . (19)

Since ∆2Pm is a polynomial of degree |m|−4 ∈ (4k, 4(k+1)) we know by assumption thatM∆2Pm,u0
(t) =

o(1) as t → ∞. Hence, integrating (19) gives

e|m| tMPm,u0
(t) = MPm,u0

(0)−
∫ t

0
e|m|τM∆2Pm,u0

(τ) dτ (20)

and proves the claim also for 4(k + 1) < |m| < 4(k + 2).
Similarly, we prove Item 3 when |m| = 4k for some k ∈ N. When k = 0, Item 2 yields M0,u0

(t) ≡
∫

Rn v∞ dx so that Item 3 follows by (11). When k = 1, Item 3 follows by Item 1 and by taking into
account that M∆2Pm,u0

(t) equals a constant times
∫

Rn v∞ dx. Assume that Item 3 has been proved for
some k ∈ N, k ≥ 1. By Item 1 we still know that (19) holds. Since ∆2Pm is a polynomial of degree
|m| − 4 = 4k we know by assumption that M∆2Pm,u0

(t) = MPm + o(1) as t → ∞. Hence, by (20) we
infer that

lim
t→∞

MPm,u0
(t) = lim

t→∞

(

MPm,u0
(0)e−|m| t − e−|m| t

∫ t

0
e|m|τM∆2Pm,u0

(τ) dτ

)

= − lim
t→∞

M∆2Pm,u0
(t)

|m| = − M∆2Pm

|m| = MPm

where we used de l’Hopital’s rule, the assumption, and Item 1 in Theorem 2. This completes the proof
of Item 3.

3.4 Proof of Theorem 4

Up to the constant ωn (that is, surface measure of the unit ball in R
n) the Mb’s coincide with

∫ ∞

0
rn+b−1 v∞(r) dr

if we abusively write v∞(x) = v∞(r), r = |x|. In view of [11, Proposition 3.2] we know that

Mb > 0 for all b ∈ (−n, 0] . (21)

Note that Mb differs from Cn,β in [11] by a positive factor.
For the next steps we need to emphasize the dependence of Mb on n and we denote it by Mb (n).

Then we remark that the recurrence formula (29) in [11, Lemma 4.2] can be extended to all b > −n.
More precisely, an integration by parts combined with (29) gives

∫ ∞

0
ηn+b+1fn+2(η) dη = (n+ b)

∫ ∞

0
ηn+b−1fn(η) dη for all b > −n .

In terms of Mb this proves that

Mb (n+ 2) =
n+ b

2
Mb (n) for all b > −n (22)
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and shows that the sign of Mb (n) does not depend on n. On the other hand, several integration by
parts (see (29) and (30) in Appendix A.1) show that

∫ ∞

0
ηn+b−1fn(η) dη = 4 (2− b) (n− 2 + b)

∫ ∞

0
ηn+b−3fn+2(η) dη for all b > 2− n .

In terms of Mb this reads

Mb (n) = 2 (2− b) (n+ b− 2)Mb−4(n+ 2) for all b > 2− n

which, combined with (22), gives

Mb (n) = (2− b) (n+ b− 2) (n+ b− 4)Mb−4(n) for all b > 4− n . (23)

Theorem 4 follows by using repeatedly (21), (22), (23), and by taking into account that the map
(b, n) 7→ Mb (n) is continuous in {(b, n) ∈ R

2 : n ≥ 1, b > −n}.

3.5 Proof of Theorem 5

First, notice that

M0,u0
(0) =

∫

Rn

u0 dx

and

M ′
0,u0

(t) =

∫

Rn

vt dx = −
∫

Rn

L v dx = 0 .

This proves that

M0,u0
(t) ≡

∫

Rn

u0(x) dx . (24)

Next, integrations by parts yield

M ′
2,u0

(t) =

∫

Rn

|x|2 vt dx = −
∫

Rn

|x|2 L v dx = n

∫

Rn

|x|2 v dx+

∫

Rn

|x|2 (x · ∇v) dx

so that a further integration by parts gives

M ′
2,u0

(t) = n

∫

Rn

|x|2 v dx− (n+ 2)

∫

Rn

|x|2 v dx = − 2M2,u0
(t) .

By integrating this first order linear ODE we obtain

M2,u0
(t) = e−2t

∫

Rn

|x|2 u0 dx . (25)

Moreover, we recall that for any smooth radially symmetric function w = w(r), with r = |x|, we have

∆2w(r) = w′′′′(r) +
2 (n− 1)

r
w′′′(r) +

(n− 1) (n− 3)

r2
w′′(r)− (n− 1) (n− 3)

r3
w′(r) .

Therefore, if b ≥ 4, we get

∆2(|x|b) = b (b− 2) (b+ n− 2) (b+ n− 4) |x|b−4 =: γ(b, n) |x|b−4
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so that, with an integration by parts,

M ′
b,u0

(t) =

∫

Rn

|x|b vt dx =

∫

Rn

|x|b [−∆2v +∇ · (x v)] dx = − γ(b, n)

∫

Rn

v |x|b−4 dx− b

∫

Rn

|x|b v dx .

Then, by recalling the definition of Mb,u0
and Mb−4,u0

, we obtain

M ′
b,u0

(t) + bMb,u0
(t) = − b (b− 2) (b+ n− 2) (b+ n− 4)Mb−4,u0

(t) for all b ∈ [4,∞)

which proves (12). The latter equation may be rewritten as

d

dt

(

ebtMb,u0
(t)
)

= − b (b− 2) (b+ n− 2) (b+ n− 4)Mb−4,u0
(t) ebt for all b ∈ [4,∞) . (26)

We now assume that b = 2k for some k ∈ N and we prove the representation formula (14). We proceed
by induction on k.
For k = 0 only statement (i) needs to be proved and this follows from the explicit (constant) form

of M0,u0
given in (24). For k = 1, only statements (i) and (ii) have to be proved and these follow by

(24)-(25).
Assume now that (14) has been proved for M2k,u0

, for some k ≥ 0 with the constants akj as in the
statement. Then, since 2k + 4 ≥ 4, we may use (26) with b = 2k + 4 to obtain

d

dt

(

e(2k+4)tM2k+4,u0
(t)
)

= − (2k + 4) (2k + 2) (2k + n+ 2) (2k + n)

k
∑

j=0

akj e
(2k+4−2j)t .

By integrating over [0, t] we get

e(2k+4)tM2k+4,u0
(t) = M2k+4,u0

(0)−(2k+4) (2k+2) (2k+n+2) (2k+n)
k
∑

j=0

akj
2k + 4− 2j

(e(2k+4−2j)t−1) .

Therefore,

M2k+4,u0
(t) =

(

M2k+4,u0
(0) + (2k + 4) (k + 1) (2k + n+ 2) (2k + n)

k
∑

j=0

akj
k + 2− j

)

e−(2k+4)t

− (2k + 4) (k + 1) (2k + n+ 2) (2k + n)
k
∑

j=0

akj
k + 2− j

e−2jt .

This establishes (14) for M2k+4,u0
. The proof covers all even integers b = 2k.

Finally, since (11) holds, by (14) we know that

lim
t→+∞

Mb,u0
(t) = ak0 .

Moreover, by iterated applications of (iii) for j = 0 we see that ak0 = 0 if k is even, whereas ak0 equals
a constant times

∫

Rn u0 dx if k is odd. One then finds that ak0 = M2k. Since also v∞ is a (stationary)
solution to (3), the same also holds for v∞. This proves (13).
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A Appendix

A.1 Basic properties of the biharmonic heat kernels

The kernel of the linear operator u 7→ uτ +∆2u in R+ × R
n is given by

g(τ, x) = αn
fn(η)

τn/4
, η =

|x|
τ1/4

,

fn(η) = η1−n

∫ ∞

0
e−s4(η s)n/2 J(n−2)/2(η s) ds ,

(27)

where Jν denotes the ν-th Bessel function and αn > 0 is a normalization constant. More precisely, if
ωn denotes the surface measure of the n-dimensional unit ball (with the convention ω1 = 2), then

α−1
n = ωn

∫ ∞

0
rn−1fn(r) dr =

∫

Rn

fn(|x|) dx . (28)

The biharmonic heat kernels are defined in (27) by means of Bessel functions. We refer to [1] for the
definition and main properties of the Bessel functions and to [11] for a power series representation of
fn defined in (27). Here we just point out that (fn)n≥1 obeys the following recurrence formula:

f ′
n(η) = − η fn+2(η) for all n ≥ 1 . (29)

This follows by direct computation:

d

dη
fn(η) =

d

dη

[
∫ ∞

0
e−s4 sn−1 (η s)(2−n)/2J(n−2)/2(η s) ds

]

{by [1, (4.6.2)]} = −
∫ ∞

0
e−s4 sn (η s)(2−n)/2Jn/2(η s) ds = − η fn+2(η) .

From Proposition 1, we know that fn has an exponential decay at infinity. In [11] it was also proved
that the functions fn satisfy the following ODE:

f ′′′
n (η) +

n− 1

η
f ′′
n (η)− n− 1

η2
f ′
n (η)−

η

4
fn (η) = 0. (30)

In particular, (30) enables one to show that as η → ∞, the function η 7→ fn(η) changes sign infinitely
many times. We refer again to [11] for the details. Finally, we also refer to [19] for possible extensions
to higher order polyharmonic heat equations.

A.2 The spectrum of the biharmonic Fokker-Planck operator

We recall here some basic properties of the eigenfunctions of the operator defined by (4). Together with
the space L2

a(R
n) endowed with the scalar product defined in (34), we consider the weighted Sobolev

space H4
a(R

n) endowed with the scalar product

〈u, v〉H4
a(R

n) =

∫

Rn

ρa(x)
∑

|α|≤4

Dαu(x)Dαv(x) dx .

In view of [9, Proposition 2.1], we know that L is a bounded linear operator from H4
a(R

n) onto L2
a(R

n).
Stationary solutions v to (3) satisfy L v = 0 and belong to the kernel of L . By Proposition 1, we infer

13



that the kernel of L is a one dimensional space spanned by v∞. For a complete proof of this fact we
refer to [9]. Here, we just give a heuristic justification of this statement. Stationary solutions v to (3)
satisfy

∇ · (∇∆v − x v) = 0 , x ∈ R
n .

By integrating this equation over the ball Br (centered at the origin and of radius r > 0) and by
applying the divergence theorem we obtain

∫

∂Br

(

∂∆v

∂ν
− v (x · ν)

)

dσ = 0 for all r > 0 .

If we assume that v is radially symmetric and consider it as a function of r = |x|, the latter reads

(∆v)′ − r v = 0 (31)

and therefore

v′′′ +
n− 1

r
v′′ − n− 1

r2
v′ − r v = 0 for all r > 0 . (32)

Hence, any radially symmetric stationary solution to (3) satisfies (32) and the initial conditions

v(0) = α , v′(0) = 0 , v′′(0) = β

for some values of the parameters α and β; notice that, due to radial symmetry, v′(0) = 0. Therefore,
the space of all radially symmetric stationary solutions to (3) is a 2-dimensional vector space identified
to R

2 through the couple of its initial values (α, β). In order to determine all solutions to (32) we need
to find two linearly independent (i.e. non proportional) solutions.
In view of (30), one of them is v∞(r) = 2n/2 αn fn(

√
2 r) which may be rewritten as in (5). Consider

the solution v to (32) corresponding to (α, β) = (1, 1) so that v is initially positive and increasing. If
we integrate (31) and we use the initial condition ∆v(0) = n > 0, we obtain

∆v(r) >

∫ r

0
t v(t) dt > 0

which shows that v is subharmonic and that it cannot have a maximum point. Hence, r 7→ v(r) is
increasing on R+ and it does not vanish at infinity. Therefore, the 2-dimensional space of even solutions
to (32) is spanned by v∞ and v but the only solution vanishing at infinity is v∞ (and its multiples).

Concerning nontrivial eigenvalues of the operator L defined in (4), we recall [9, Theorem 2.1].

Proposition 3. The spectrum of L coincides with the set of nonnegative integers, σ(L ) = N. Each
eigenvalue λ ∈ σ(L ) has finite multiplicity and the corresponding eigenfunctions are given by

Dαv∞ for |α| = λ ∈ N .

The set of eigenfunctions is complete in L2
a(R

n) for any a ∈ [0, µ).
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A.3 An open problem

Let µ > 0 be the number in (6) and, for any a ∈ [0, 2µ), consider the function

ρa(x) = ea |x|
4/3

, x ∈ R
n (33)

so that, in particular, ρa ≡ 1 if a = 0. For any such function ρa consider the space L2
a(R

n), the weighted
space endowed with the scalar product and norm

(u, v)L2
a(R

n) =

∫

Rn

ρa(x)u(x) v(x) dx , ‖u‖2L2
a(R

n) = (u, u)L2
a(R

n) . (34)

Clearly, if a = 0 we have L2
a(R

n) = L2(Rn). An interesting problem is to determine the convergence
rate of the solution to (3) towards its projection onto the kernel, that is, the space spanned by v∞.
Consider the (normalized) projection operator Pa by

Paw :=

(
∫

Rn

ρaw v∞ dx

)

v∞
‖v∞‖2

L2
a(R

n)

for all w ∈ L2
a(R

n) . (35)

Contrary to the second order heat equation, the operator L is not self-adjoint: we refer to [9, Section
3] for some properties of the adjoint operator L ∗. Therefore, although from Proposition 3 we know
that the least nontrivial eigenvalue of L is 1, we cannot obtain the standard Poincaré-type inequality

‖u− Pau‖2L2
a(R

n) ≤ (u,Lu)L2
a(R

n) for all u ∈ H4
a(R

n) .

In turn, we do not know whether the following estimate holds:

(u,Lu)L2
a(R

n) =

∫

Rn

ρa(x)u(x)Lu(x) dx ≥ ‖u‖2L2
a(R

n) for all u ∈ [kerL ]⊥ .

These estimates, which have their own interest, would allow to study the convergence rates (in the
weighted Lp-norm, 1 ≤ p < ∞) of the solution to (3) towards its projection Pau onto the kernel, that
is, onto the space spanned by v∞.
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